linux/drivers/ata/libata-core.c
<<
>>
Prefs
   1/*
   2 *  libata-core.c - helper library for ATA
   3 *
   4 *  Maintained by:  Tejun Heo <tj@kernel.org>
   5 *                  Please ALWAYS copy linux-ide@vger.kernel.org
   6 *                  on emails.
   7 *
   8 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   9 *  Copyright 2003-2004 Jeff Garzik
  10 *
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2, or (at your option)
  15 *  any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; see the file COPYING.  If not, write to
  24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 *
  27 *  libata documentation is available via 'make {ps|pdf}docs',
  28 *  as Documentation/DocBook/libata.*
  29 *
  30 *  Hardware documentation available from http://www.t13.org/ and
  31 *  http://www.sata-io.org/
  32 *
  33 *  Standards documents from:
  34 *      http://www.t13.org (ATA standards, PCI DMA IDE spec)
  35 *      http://www.t10.org (SCSI MMC - for ATAPI MMC)
  36 *      http://www.sata-io.org (SATA)
  37 *      http://www.compactflash.org (CF)
  38 *      http://www.qic.org (QIC157 - Tape and DSC)
  39 *      http://www.ce-ata.org (CE-ATA: not supported)
  40 *
  41 */
  42
  43#include <linux/kernel.h>
  44#include <linux/module.h>
  45#include <linux/pci.h>
  46#include <linux/init.h>
  47#include <linux/list.h>
  48#include <linux/mm.h>
  49#include <linux/spinlock.h>
  50#include <linux/blkdev.h>
  51#include <linux/delay.h>
  52#include <linux/timer.h>
  53#include <linux/time.h>
  54#include <linux/interrupt.h>
  55#include <linux/completion.h>
  56#include <linux/suspend.h>
  57#include <linux/workqueue.h>
  58#include <linux/scatterlist.h>
  59#include <linux/io.h>
  60#include <linux/async.h>
  61#include <linux/log2.h>
  62#include <linux/slab.h>
  63#include <linux/glob.h>
  64#include <scsi/scsi.h>
  65#include <scsi/scsi_cmnd.h>
  66#include <scsi/scsi_host.h>
  67#include <linux/libata.h>
  68#include <asm/byteorder.h>
  69#include <asm/unaligned.h>
  70#include <linux/cdrom.h>
  71#include <linux/ratelimit.h>
  72#include <linux/leds.h>
  73#include <linux/pm_runtime.h>
  74#include <linux/platform_device.h>
  75
  76#define CREATE_TRACE_POINTS
  77#include <trace/events/libata.h>
  78
  79#include "libata.h"
  80#include "libata-transport.h"
  81
  82/* debounce timing parameters in msecs { interval, duration, timeout } */
  83const unsigned long sata_deb_timing_normal[]            = {   5,  100, 2000 };
  84const unsigned long sata_deb_timing_hotplug[]           = {  25,  500, 2000 };
  85const unsigned long sata_deb_timing_long[]              = { 100, 2000, 5000 };
  86
  87const struct ata_port_operations ata_base_port_ops = {
  88        .prereset               = ata_std_prereset,
  89        .postreset              = ata_std_postreset,
  90        .error_handler          = ata_std_error_handler,
  91        .sched_eh               = ata_std_sched_eh,
  92        .end_eh                 = ata_std_end_eh,
  93};
  94
  95const struct ata_port_operations sata_port_ops = {
  96        .inherits               = &ata_base_port_ops,
  97
  98        .qc_defer               = ata_std_qc_defer,
  99        .hardreset              = sata_std_hardreset,
 100};
 101
 102static unsigned int ata_dev_init_params(struct ata_device *dev,
 103                                        u16 heads, u16 sectors);
 104static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
 105static void ata_dev_xfermask(struct ata_device *dev);
 106static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
 107
 108atomic_t ata_print_id = ATOMIC_INIT(0);
 109
 110struct ata_force_param {
 111        const char      *name;
 112        unsigned int    cbl;
 113        int             spd_limit;
 114        unsigned long   xfer_mask;
 115        unsigned int    horkage_on;
 116        unsigned int    horkage_off;
 117        unsigned int    lflags;
 118};
 119
 120struct ata_force_ent {
 121        int                     port;
 122        int                     device;
 123        struct ata_force_param  param;
 124};
 125
 126static struct ata_force_ent *ata_force_tbl;
 127static int ata_force_tbl_size;
 128
 129static char ata_force_param_buf[PAGE_SIZE] __initdata;
 130/* param_buf is thrown away after initialization, disallow read */
 131module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 132MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
 133
 134static int atapi_enabled = 1;
 135module_param(atapi_enabled, int, 0444);
 136MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 137
 138static int atapi_dmadir = 0;
 139module_param(atapi_dmadir, int, 0444);
 140MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 141
 142int atapi_passthru16 = 1;
 143module_param(atapi_passthru16, int, 0444);
 144MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 145
 146int libata_fua = 0;
 147module_param_named(fua, libata_fua, int, 0444);
 148MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 149
 150static int ata_ignore_hpa;
 151module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 152MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 153
 154static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 155module_param_named(dma, libata_dma_mask, int, 0444);
 156MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 157
 158static int ata_probe_timeout;
 159module_param(ata_probe_timeout, int, 0444);
 160MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 161
 162int libata_noacpi = 0;
 163module_param_named(noacpi, libata_noacpi, int, 0444);
 164MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 165
 166int libata_allow_tpm = 0;
 167module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 168MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 169
 170static int atapi_an;
 171module_param(atapi_an, int, 0444);
 172MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 173
 174MODULE_AUTHOR("Jeff Garzik");
 175MODULE_DESCRIPTION("Library module for ATA devices");
 176MODULE_LICENSE("GPL");
 177MODULE_VERSION(DRV_VERSION);
 178
 179
 180static bool ata_sstatus_online(u32 sstatus)
 181{
 182        return (sstatus & 0xf) == 0x3;
 183}
 184
 185/**
 186 *      ata_link_next - link iteration helper
 187 *      @link: the previous link, NULL to start
 188 *      @ap: ATA port containing links to iterate
 189 *      @mode: iteration mode, one of ATA_LITER_*
 190 *
 191 *      LOCKING:
 192 *      Host lock or EH context.
 193 *
 194 *      RETURNS:
 195 *      Pointer to the next link.
 196 */
 197struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 198                               enum ata_link_iter_mode mode)
 199{
 200        BUG_ON(mode != ATA_LITER_EDGE &&
 201               mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 202
 203        /* NULL link indicates start of iteration */
 204        if (!link)
 205                switch (mode) {
 206                case ATA_LITER_EDGE:
 207                case ATA_LITER_PMP_FIRST:
 208                        if (sata_pmp_attached(ap))
 209                                return ap->pmp_link;
 210                        /* fall through */
 211                case ATA_LITER_HOST_FIRST:
 212                        return &ap->link;
 213                }
 214
 215        /* we just iterated over the host link, what's next? */
 216        if (link == &ap->link)
 217                switch (mode) {
 218                case ATA_LITER_HOST_FIRST:
 219                        if (sata_pmp_attached(ap))
 220                                return ap->pmp_link;
 221                        /* fall through */
 222                case ATA_LITER_PMP_FIRST:
 223                        if (unlikely(ap->slave_link))
 224                                return ap->slave_link;
 225                        /* fall through */
 226                case ATA_LITER_EDGE:
 227                        return NULL;
 228                }
 229
 230        /* slave_link excludes PMP */
 231        if (unlikely(link == ap->slave_link))
 232                return NULL;
 233
 234        /* we were over a PMP link */
 235        if (++link < ap->pmp_link + ap->nr_pmp_links)
 236                return link;
 237
 238        if (mode == ATA_LITER_PMP_FIRST)
 239                return &ap->link;
 240
 241        return NULL;
 242}
 243
 244/**
 245 *      ata_dev_next - device iteration helper
 246 *      @dev: the previous device, NULL to start
 247 *      @link: ATA link containing devices to iterate
 248 *      @mode: iteration mode, one of ATA_DITER_*
 249 *
 250 *      LOCKING:
 251 *      Host lock or EH context.
 252 *
 253 *      RETURNS:
 254 *      Pointer to the next device.
 255 */
 256struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 257                                enum ata_dev_iter_mode mode)
 258{
 259        BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 260               mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 261
 262        /* NULL dev indicates start of iteration */
 263        if (!dev)
 264                switch (mode) {
 265                case ATA_DITER_ENABLED:
 266                case ATA_DITER_ALL:
 267                        dev = link->device;
 268                        goto check;
 269                case ATA_DITER_ENABLED_REVERSE:
 270                case ATA_DITER_ALL_REVERSE:
 271                        dev = link->device + ata_link_max_devices(link) - 1;
 272                        goto check;
 273                }
 274
 275 next:
 276        /* move to the next one */
 277        switch (mode) {
 278        case ATA_DITER_ENABLED:
 279        case ATA_DITER_ALL:
 280                if (++dev < link->device + ata_link_max_devices(link))
 281                        goto check;
 282                return NULL;
 283        case ATA_DITER_ENABLED_REVERSE:
 284        case ATA_DITER_ALL_REVERSE:
 285                if (--dev >= link->device)
 286                        goto check;
 287                return NULL;
 288        }
 289
 290 check:
 291        if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 292            !ata_dev_enabled(dev))
 293                goto next;
 294        return dev;
 295}
 296
 297/**
 298 *      ata_dev_phys_link - find physical link for a device
 299 *      @dev: ATA device to look up physical link for
 300 *
 301 *      Look up physical link which @dev is attached to.  Note that
 302 *      this is different from @dev->link only when @dev is on slave
 303 *      link.  For all other cases, it's the same as @dev->link.
 304 *
 305 *      LOCKING:
 306 *      Don't care.
 307 *
 308 *      RETURNS:
 309 *      Pointer to the found physical link.
 310 */
 311struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 312{
 313        struct ata_port *ap = dev->link->ap;
 314
 315        if (!ap->slave_link)
 316                return dev->link;
 317        if (!dev->devno)
 318                return &ap->link;
 319        return ap->slave_link;
 320}
 321
 322/**
 323 *      ata_force_cbl - force cable type according to libata.force
 324 *      @ap: ATA port of interest
 325 *
 326 *      Force cable type according to libata.force and whine about it.
 327 *      The last entry which has matching port number is used, so it
 328 *      can be specified as part of device force parameters.  For
 329 *      example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 330 *      same effect.
 331 *
 332 *      LOCKING:
 333 *      EH context.
 334 */
 335void ata_force_cbl(struct ata_port *ap)
 336{
 337        int i;
 338
 339        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 340                const struct ata_force_ent *fe = &ata_force_tbl[i];
 341
 342                if (fe->port != -1 && fe->port != ap->print_id)
 343                        continue;
 344
 345                if (fe->param.cbl == ATA_CBL_NONE)
 346                        continue;
 347
 348                ap->cbl = fe->param.cbl;
 349                ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 350                return;
 351        }
 352}
 353
 354/**
 355 *      ata_force_link_limits - force link limits according to libata.force
 356 *      @link: ATA link of interest
 357 *
 358 *      Force link flags and SATA spd limit according to libata.force
 359 *      and whine about it.  When only the port part is specified
 360 *      (e.g. 1:), the limit applies to all links connected to both
 361 *      the host link and all fan-out ports connected via PMP.  If the
 362 *      device part is specified as 0 (e.g. 1.00:), it specifies the
 363 *      first fan-out link not the host link.  Device number 15 always
 364 *      points to the host link whether PMP is attached or not.  If the
 365 *      controller has slave link, device number 16 points to it.
 366 *
 367 *      LOCKING:
 368 *      EH context.
 369 */
 370static void ata_force_link_limits(struct ata_link *link)
 371{
 372        bool did_spd = false;
 373        int linkno = link->pmp;
 374        int i;
 375
 376        if (ata_is_host_link(link))
 377                linkno += 15;
 378
 379        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 380                const struct ata_force_ent *fe = &ata_force_tbl[i];
 381
 382                if (fe->port != -1 && fe->port != link->ap->print_id)
 383                        continue;
 384
 385                if (fe->device != -1 && fe->device != linkno)
 386                        continue;
 387
 388                /* only honor the first spd limit */
 389                if (!did_spd && fe->param.spd_limit) {
 390                        link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 391                        ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 392                                        fe->param.name);
 393                        did_spd = true;
 394                }
 395
 396                /* let lflags stack */
 397                if (fe->param.lflags) {
 398                        link->flags |= fe->param.lflags;
 399                        ata_link_notice(link,
 400                                        "FORCE: link flag 0x%x forced -> 0x%x\n",
 401                                        fe->param.lflags, link->flags);
 402                }
 403        }
 404}
 405
 406/**
 407 *      ata_force_xfermask - force xfermask according to libata.force
 408 *      @dev: ATA device of interest
 409 *
 410 *      Force xfer_mask according to libata.force and whine about it.
 411 *      For consistency with link selection, device number 15 selects
 412 *      the first device connected to the host link.
 413 *
 414 *      LOCKING:
 415 *      EH context.
 416 */
 417static void ata_force_xfermask(struct ata_device *dev)
 418{
 419        int devno = dev->link->pmp + dev->devno;
 420        int alt_devno = devno;
 421        int i;
 422
 423        /* allow n.15/16 for devices attached to host port */
 424        if (ata_is_host_link(dev->link))
 425                alt_devno += 15;
 426
 427        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 428                const struct ata_force_ent *fe = &ata_force_tbl[i];
 429                unsigned long pio_mask, mwdma_mask, udma_mask;
 430
 431                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 432                        continue;
 433
 434                if (fe->device != -1 && fe->device != devno &&
 435                    fe->device != alt_devno)
 436                        continue;
 437
 438                if (!fe->param.xfer_mask)
 439                        continue;
 440
 441                ata_unpack_xfermask(fe->param.xfer_mask,
 442                                    &pio_mask, &mwdma_mask, &udma_mask);
 443                if (udma_mask)
 444                        dev->udma_mask = udma_mask;
 445                else if (mwdma_mask) {
 446                        dev->udma_mask = 0;
 447                        dev->mwdma_mask = mwdma_mask;
 448                } else {
 449                        dev->udma_mask = 0;
 450                        dev->mwdma_mask = 0;
 451                        dev->pio_mask = pio_mask;
 452                }
 453
 454                ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 455                               fe->param.name);
 456                return;
 457        }
 458}
 459
 460/**
 461 *      ata_force_horkage - force horkage according to libata.force
 462 *      @dev: ATA device of interest
 463 *
 464 *      Force horkage according to libata.force and whine about it.
 465 *      For consistency with link selection, device number 15 selects
 466 *      the first device connected to the host link.
 467 *
 468 *      LOCKING:
 469 *      EH context.
 470 */
 471static void ata_force_horkage(struct ata_device *dev)
 472{
 473        int devno = dev->link->pmp + dev->devno;
 474        int alt_devno = devno;
 475        int i;
 476
 477        /* allow n.15/16 for devices attached to host port */
 478        if (ata_is_host_link(dev->link))
 479                alt_devno += 15;
 480
 481        for (i = 0; i < ata_force_tbl_size; i++) {
 482                const struct ata_force_ent *fe = &ata_force_tbl[i];
 483
 484                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 485                        continue;
 486
 487                if (fe->device != -1 && fe->device != devno &&
 488                    fe->device != alt_devno)
 489                        continue;
 490
 491                if (!(~dev->horkage & fe->param.horkage_on) &&
 492                    !(dev->horkage & fe->param.horkage_off))
 493                        continue;
 494
 495                dev->horkage |= fe->param.horkage_on;
 496                dev->horkage &= ~fe->param.horkage_off;
 497
 498                ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 499                               fe->param.name);
 500        }
 501}
 502
 503/**
 504 *      atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 505 *      @opcode: SCSI opcode
 506 *
 507 *      Determine ATAPI command type from @opcode.
 508 *
 509 *      LOCKING:
 510 *      None.
 511 *
 512 *      RETURNS:
 513 *      ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 514 */
 515int atapi_cmd_type(u8 opcode)
 516{
 517        switch (opcode) {
 518        case GPCMD_READ_10:
 519        case GPCMD_READ_12:
 520                return ATAPI_READ;
 521
 522        case GPCMD_WRITE_10:
 523        case GPCMD_WRITE_12:
 524        case GPCMD_WRITE_AND_VERIFY_10:
 525                return ATAPI_WRITE;
 526
 527        case GPCMD_READ_CD:
 528        case GPCMD_READ_CD_MSF:
 529                return ATAPI_READ_CD;
 530
 531        case ATA_16:
 532        case ATA_12:
 533                if (atapi_passthru16)
 534                        return ATAPI_PASS_THRU;
 535                /* fall thru */
 536        default:
 537                return ATAPI_MISC;
 538        }
 539}
 540
 541/**
 542 *      ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 543 *      @tf: Taskfile to convert
 544 *      @pmp: Port multiplier port
 545 *      @is_cmd: This FIS is for command
 546 *      @fis: Buffer into which data will output
 547 *
 548 *      Converts a standard ATA taskfile to a Serial ATA
 549 *      FIS structure (Register - Host to Device).
 550 *
 551 *      LOCKING:
 552 *      Inherited from caller.
 553 */
 554void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
 555{
 556        fis[0] = 0x27;                  /* Register - Host to Device FIS */
 557        fis[1] = pmp & 0xf;             /* Port multiplier number*/
 558        if (is_cmd)
 559                fis[1] |= (1 << 7);     /* bit 7 indicates Command FIS */
 560
 561        fis[2] = tf->command;
 562        fis[3] = tf->feature;
 563
 564        fis[4] = tf->lbal;
 565        fis[5] = tf->lbam;
 566        fis[6] = tf->lbah;
 567        fis[7] = tf->device;
 568
 569        fis[8] = tf->hob_lbal;
 570        fis[9] = tf->hob_lbam;
 571        fis[10] = tf->hob_lbah;
 572        fis[11] = tf->hob_feature;
 573
 574        fis[12] = tf->nsect;
 575        fis[13] = tf->hob_nsect;
 576        fis[14] = 0;
 577        fis[15] = tf->ctl;
 578
 579        fis[16] = tf->auxiliary & 0xff;
 580        fis[17] = (tf->auxiliary >> 8) & 0xff;
 581        fis[18] = (tf->auxiliary >> 16) & 0xff;
 582        fis[19] = (tf->auxiliary >> 24) & 0xff;
 583}
 584
 585/**
 586 *      ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 587 *      @fis: Buffer from which data will be input
 588 *      @tf: Taskfile to output
 589 *
 590 *      Converts a serial ATA FIS structure to a standard ATA taskfile.
 591 *
 592 *      LOCKING:
 593 *      Inherited from caller.
 594 */
 595
 596void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 597{
 598        tf->command     = fis[2];       /* status */
 599        tf->feature     = fis[3];       /* error */
 600
 601        tf->lbal        = fis[4];
 602        tf->lbam        = fis[5];
 603        tf->lbah        = fis[6];
 604        tf->device      = fis[7];
 605
 606        tf->hob_lbal    = fis[8];
 607        tf->hob_lbam    = fis[9];
 608        tf->hob_lbah    = fis[10];
 609
 610        tf->nsect       = fis[12];
 611        tf->hob_nsect   = fis[13];
 612}
 613
 614static const u8 ata_rw_cmds[] = {
 615        /* pio multi */
 616        ATA_CMD_READ_MULTI,
 617        ATA_CMD_WRITE_MULTI,
 618        ATA_CMD_READ_MULTI_EXT,
 619        ATA_CMD_WRITE_MULTI_EXT,
 620        0,
 621        0,
 622        0,
 623        ATA_CMD_WRITE_MULTI_FUA_EXT,
 624        /* pio */
 625        ATA_CMD_PIO_READ,
 626        ATA_CMD_PIO_WRITE,
 627        ATA_CMD_PIO_READ_EXT,
 628        ATA_CMD_PIO_WRITE_EXT,
 629        0,
 630        0,
 631        0,
 632        0,
 633        /* dma */
 634        ATA_CMD_READ,
 635        ATA_CMD_WRITE,
 636        ATA_CMD_READ_EXT,
 637        ATA_CMD_WRITE_EXT,
 638        0,
 639        0,
 640        0,
 641        ATA_CMD_WRITE_FUA_EXT
 642};
 643
 644/**
 645 *      ata_rwcmd_protocol - set taskfile r/w commands and protocol
 646 *      @tf: command to examine and configure
 647 *      @dev: device tf belongs to
 648 *
 649 *      Examine the device configuration and tf->flags to calculate
 650 *      the proper read/write commands and protocol to use.
 651 *
 652 *      LOCKING:
 653 *      caller.
 654 */
 655static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 656{
 657        u8 cmd;
 658
 659        int index, fua, lba48, write;
 660
 661        fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 662        lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 663        write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 664
 665        if (dev->flags & ATA_DFLAG_PIO) {
 666                tf->protocol = ATA_PROT_PIO;
 667                index = dev->multi_count ? 0 : 8;
 668        } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 669                /* Unable to use DMA due to host limitation */
 670                tf->protocol = ATA_PROT_PIO;
 671                index = dev->multi_count ? 0 : 8;
 672        } else {
 673                tf->protocol = ATA_PROT_DMA;
 674                index = 16;
 675        }
 676
 677        cmd = ata_rw_cmds[index + fua + lba48 + write];
 678        if (cmd) {
 679                tf->command = cmd;
 680                return 0;
 681        }
 682        return -1;
 683}
 684
 685/**
 686 *      ata_tf_read_block - Read block address from ATA taskfile
 687 *      @tf: ATA taskfile of interest
 688 *      @dev: ATA device @tf belongs to
 689 *
 690 *      LOCKING:
 691 *      None.
 692 *
 693 *      Read block address from @tf.  This function can handle all
 694 *      three address formats - LBA, LBA48 and CHS.  tf->protocol and
 695 *      flags select the address format to use.
 696 *
 697 *      RETURNS:
 698 *      Block address read from @tf.
 699 */
 700u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
 701{
 702        u64 block = 0;
 703
 704        if (tf->flags & ATA_TFLAG_LBA) {
 705                if (tf->flags & ATA_TFLAG_LBA48) {
 706                        block |= (u64)tf->hob_lbah << 40;
 707                        block |= (u64)tf->hob_lbam << 32;
 708                        block |= (u64)tf->hob_lbal << 24;
 709                } else
 710                        block |= (tf->device & 0xf) << 24;
 711
 712                block |= tf->lbah << 16;
 713                block |= tf->lbam << 8;
 714                block |= tf->lbal;
 715        } else {
 716                u32 cyl, head, sect;
 717
 718                cyl = tf->lbam | (tf->lbah << 8);
 719                head = tf->device & 0xf;
 720                sect = tf->lbal;
 721
 722                if (!sect) {
 723                        ata_dev_warn(dev,
 724                                     "device reported invalid CHS sector 0\n");
 725                        return U64_MAX;
 726                }
 727
 728                block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 729        }
 730
 731        return block;
 732}
 733
 734/**
 735 *      ata_build_rw_tf - Build ATA taskfile for given read/write request
 736 *      @tf: Target ATA taskfile
 737 *      @dev: ATA device @tf belongs to
 738 *      @block: Block address
 739 *      @n_block: Number of blocks
 740 *      @tf_flags: RW/FUA etc...
 741 *      @tag: tag
 742 *      @class: IO priority class
 743 *
 744 *      LOCKING:
 745 *      None.
 746 *
 747 *      Build ATA taskfile @tf for read/write request described by
 748 *      @block, @n_block, @tf_flags and @tag on @dev.
 749 *
 750 *      RETURNS:
 751 *
 752 *      0 on success, -ERANGE if the request is too large for @dev,
 753 *      -EINVAL if the request is invalid.
 754 */
 755int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 756                    u64 block, u32 n_block, unsigned int tf_flags,
 757                    unsigned int tag, int class)
 758{
 759        tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 760        tf->flags |= tf_flags;
 761
 762        if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
 763                /* yay, NCQ */
 764                if (!lba_48_ok(block, n_block))
 765                        return -ERANGE;
 766
 767                tf->protocol = ATA_PROT_NCQ;
 768                tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 769
 770                if (tf->flags & ATA_TFLAG_WRITE)
 771                        tf->command = ATA_CMD_FPDMA_WRITE;
 772                else
 773                        tf->command = ATA_CMD_FPDMA_READ;
 774
 775                tf->nsect = tag << 3;
 776                tf->hob_feature = (n_block >> 8) & 0xff;
 777                tf->feature = n_block & 0xff;
 778
 779                tf->hob_lbah = (block >> 40) & 0xff;
 780                tf->hob_lbam = (block >> 32) & 0xff;
 781                tf->hob_lbal = (block >> 24) & 0xff;
 782                tf->lbah = (block >> 16) & 0xff;
 783                tf->lbam = (block >> 8) & 0xff;
 784                tf->lbal = block & 0xff;
 785
 786                tf->device = ATA_LBA;
 787                if (tf->flags & ATA_TFLAG_FUA)
 788                        tf->device |= 1 << 7;
 789
 790                if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
 791                        if (class == IOPRIO_CLASS_RT)
 792                                tf->hob_nsect |= ATA_PRIO_HIGH <<
 793                                                 ATA_SHIFT_PRIO;
 794                }
 795        } else if (dev->flags & ATA_DFLAG_LBA) {
 796                tf->flags |= ATA_TFLAG_LBA;
 797
 798                if (lba_28_ok(block, n_block)) {
 799                        /* use LBA28 */
 800                        tf->device |= (block >> 24) & 0xf;
 801                } else if (lba_48_ok(block, n_block)) {
 802                        if (!(dev->flags & ATA_DFLAG_LBA48))
 803                                return -ERANGE;
 804
 805                        /* use LBA48 */
 806                        tf->flags |= ATA_TFLAG_LBA48;
 807
 808                        tf->hob_nsect = (n_block >> 8) & 0xff;
 809
 810                        tf->hob_lbah = (block >> 40) & 0xff;
 811                        tf->hob_lbam = (block >> 32) & 0xff;
 812                        tf->hob_lbal = (block >> 24) & 0xff;
 813                } else
 814                        /* request too large even for LBA48 */
 815                        return -ERANGE;
 816
 817                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 818                        return -EINVAL;
 819
 820                tf->nsect = n_block & 0xff;
 821
 822                tf->lbah = (block >> 16) & 0xff;
 823                tf->lbam = (block >> 8) & 0xff;
 824                tf->lbal = block & 0xff;
 825
 826                tf->device |= ATA_LBA;
 827        } else {
 828                /* CHS */
 829                u32 sect, head, cyl, track;
 830
 831                /* The request -may- be too large for CHS addressing. */
 832                if (!lba_28_ok(block, n_block))
 833                        return -ERANGE;
 834
 835                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 836                        return -EINVAL;
 837
 838                /* Convert LBA to CHS */
 839                track = (u32)block / dev->sectors;
 840                cyl   = track / dev->heads;
 841                head  = track % dev->heads;
 842                sect  = (u32)block % dev->sectors + 1;
 843
 844                DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 845                        (u32)block, track, cyl, head, sect);
 846
 847                /* Check whether the converted CHS can fit.
 848                   Cylinder: 0-65535
 849                   Head: 0-15
 850                   Sector: 1-255*/
 851                if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 852                        return -ERANGE;
 853
 854                tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 855                tf->lbal = sect;
 856                tf->lbam = cyl;
 857                tf->lbah = cyl >> 8;
 858                tf->device |= head;
 859        }
 860
 861        return 0;
 862}
 863
 864/**
 865 *      ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 866 *      @pio_mask: pio_mask
 867 *      @mwdma_mask: mwdma_mask
 868 *      @udma_mask: udma_mask
 869 *
 870 *      Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 871 *      unsigned int xfer_mask.
 872 *
 873 *      LOCKING:
 874 *      None.
 875 *
 876 *      RETURNS:
 877 *      Packed xfer_mask.
 878 */
 879unsigned long ata_pack_xfermask(unsigned long pio_mask,
 880                                unsigned long mwdma_mask,
 881                                unsigned long udma_mask)
 882{
 883        return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 884                ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 885                ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 886}
 887
 888/**
 889 *      ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 890 *      @xfer_mask: xfer_mask to unpack
 891 *      @pio_mask: resulting pio_mask
 892 *      @mwdma_mask: resulting mwdma_mask
 893 *      @udma_mask: resulting udma_mask
 894 *
 895 *      Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 896 *      Any NULL destination masks will be ignored.
 897 */
 898void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 899                         unsigned long *mwdma_mask, unsigned long *udma_mask)
 900{
 901        if (pio_mask)
 902                *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 903        if (mwdma_mask)
 904                *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 905        if (udma_mask)
 906                *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 907}
 908
 909static const struct ata_xfer_ent {
 910        int shift, bits;
 911        u8 base;
 912} ata_xfer_tbl[] = {
 913        { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 914        { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 915        { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 916        { -1, },
 917};
 918
 919/**
 920 *      ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 921 *      @xfer_mask: xfer_mask of interest
 922 *
 923 *      Return matching XFER_* value for @xfer_mask.  Only the highest
 924 *      bit of @xfer_mask is considered.
 925 *
 926 *      LOCKING:
 927 *      None.
 928 *
 929 *      RETURNS:
 930 *      Matching XFER_* value, 0xff if no match found.
 931 */
 932u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 933{
 934        int highbit = fls(xfer_mask) - 1;
 935        const struct ata_xfer_ent *ent;
 936
 937        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 938                if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 939                        return ent->base + highbit - ent->shift;
 940        return 0xff;
 941}
 942
 943/**
 944 *      ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 945 *      @xfer_mode: XFER_* of interest
 946 *
 947 *      Return matching xfer_mask for @xfer_mode.
 948 *
 949 *      LOCKING:
 950 *      None.
 951 *
 952 *      RETURNS:
 953 *      Matching xfer_mask, 0 if no match found.
 954 */
 955unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 956{
 957        const struct ata_xfer_ent *ent;
 958
 959        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 960                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 961                        return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 962                                & ~((1 << ent->shift) - 1);
 963        return 0;
 964}
 965
 966/**
 967 *      ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 968 *      @xfer_mode: XFER_* of interest
 969 *
 970 *      Return matching xfer_shift for @xfer_mode.
 971 *
 972 *      LOCKING:
 973 *      None.
 974 *
 975 *      RETURNS:
 976 *      Matching xfer_shift, -1 if no match found.
 977 */
 978int ata_xfer_mode2shift(unsigned long xfer_mode)
 979{
 980        const struct ata_xfer_ent *ent;
 981
 982        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 983                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 984                        return ent->shift;
 985        return -1;
 986}
 987
 988/**
 989 *      ata_mode_string - convert xfer_mask to string
 990 *      @xfer_mask: mask of bits supported; only highest bit counts.
 991 *
 992 *      Determine string which represents the highest speed
 993 *      (highest bit in @modemask).
 994 *
 995 *      LOCKING:
 996 *      None.
 997 *
 998 *      RETURNS:
 999 *      Constant C string representing highest speed listed in
1000 *      @mode_mask, or the constant C string "<n/a>".
1001 */
1002const char *ata_mode_string(unsigned long xfer_mask)
1003{
1004        static const char * const xfer_mode_str[] = {
1005                "PIO0",
1006                "PIO1",
1007                "PIO2",
1008                "PIO3",
1009                "PIO4",
1010                "PIO5",
1011                "PIO6",
1012                "MWDMA0",
1013                "MWDMA1",
1014                "MWDMA2",
1015                "MWDMA3",
1016                "MWDMA4",
1017                "UDMA/16",
1018                "UDMA/25",
1019                "UDMA/33",
1020                "UDMA/44",
1021                "UDMA/66",
1022                "UDMA/100",
1023                "UDMA/133",
1024                "UDMA7",
1025        };
1026        int highbit;
1027
1028        highbit = fls(xfer_mask) - 1;
1029        if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1030                return xfer_mode_str[highbit];
1031        return "<n/a>";
1032}
1033
1034const char *sata_spd_string(unsigned int spd)
1035{
1036        static const char * const spd_str[] = {
1037                "1.5 Gbps",
1038                "3.0 Gbps",
1039                "6.0 Gbps",
1040        };
1041
1042        if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1043                return "<unknown>";
1044        return spd_str[spd - 1];
1045}
1046
1047/**
1048 *      ata_dev_classify - determine device type based on ATA-spec signature
1049 *      @tf: ATA taskfile register set for device to be identified
1050 *
1051 *      Determine from taskfile register contents whether a device is
1052 *      ATA or ATAPI, as per "Signature and persistence" section
1053 *      of ATA/PI spec (volume 1, sect 5.14).
1054 *
1055 *      LOCKING:
1056 *      None.
1057 *
1058 *      RETURNS:
1059 *      Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060 *      %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1061 */
1062unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1063{
1064        /* Apple's open source Darwin code hints that some devices only
1065         * put a proper signature into the LBA mid/high registers,
1066         * So, we only check those.  It's sufficient for uniqueness.
1067         *
1068         * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069         * signatures for ATA and ATAPI devices attached on SerialATA,
1070         * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1071         * spec has never mentioned about using different signatures
1072         * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1073         * Multiplier specification began to use 0x69/0x96 to identify
1074         * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075         * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076         * 0x69/0x96 shortly and described them as reserved for
1077         * SerialATA.
1078         *
1079         * We follow the current spec and consider that 0x69/0x96
1080         * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1081         * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082         * SEMB signature.  This is worked around in
1083         * ata_dev_read_id().
1084         */
1085        if ((tf->lbam == 0) && (tf->lbah == 0)) {
1086                DPRINTK("found ATA device by sig\n");
1087                return ATA_DEV_ATA;
1088        }
1089
1090        if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1091                DPRINTK("found ATAPI device by sig\n");
1092                return ATA_DEV_ATAPI;
1093        }
1094
1095        if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1096                DPRINTK("found PMP device by sig\n");
1097                return ATA_DEV_PMP;
1098        }
1099
1100        if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1101                DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102                return ATA_DEV_SEMB;
1103        }
1104
1105        if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1106                DPRINTK("found ZAC device by sig\n");
1107                return ATA_DEV_ZAC;
1108        }
1109
1110        DPRINTK("unknown device\n");
1111        return ATA_DEV_UNKNOWN;
1112}
1113
1114/**
1115 *      ata_id_string - Convert IDENTIFY DEVICE page into string
1116 *      @id: IDENTIFY DEVICE results we will examine
1117 *      @s: string into which data is output
1118 *      @ofs: offset into identify device page
1119 *      @len: length of string to return. must be an even number.
1120 *
1121 *      The strings in the IDENTIFY DEVICE page are broken up into
1122 *      16-bit chunks.  Run through the string, and output each
1123 *      8-bit chunk linearly, regardless of platform.
1124 *
1125 *      LOCKING:
1126 *      caller.
1127 */
1128
1129void ata_id_string(const u16 *id, unsigned char *s,
1130                   unsigned int ofs, unsigned int len)
1131{
1132        unsigned int c;
1133
1134        BUG_ON(len & 1);
1135
1136        while (len > 0) {
1137                c = id[ofs] >> 8;
1138                *s = c;
1139                s++;
1140
1141                c = id[ofs] & 0xff;
1142                *s = c;
1143                s++;
1144
1145                ofs++;
1146                len -= 2;
1147        }
1148}
1149
1150/**
1151 *      ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1152 *      @id: IDENTIFY DEVICE results we will examine
1153 *      @s: string into which data is output
1154 *      @ofs: offset into identify device page
1155 *      @len: length of string to return. must be an odd number.
1156 *
1157 *      This function is identical to ata_id_string except that it
1158 *      trims trailing spaces and terminates the resulting string with
1159 *      null.  @len must be actual maximum length (even number) + 1.
1160 *
1161 *      LOCKING:
1162 *      caller.
1163 */
1164void ata_id_c_string(const u16 *id, unsigned char *s,
1165                     unsigned int ofs, unsigned int len)
1166{
1167        unsigned char *p;
1168
1169        ata_id_string(id, s, ofs, len - 1);
1170
1171        p = s + strnlen(s, len - 1);
1172        while (p > s && p[-1] == ' ')
1173                p--;
1174        *p = '\0';
1175}
1176
1177static u64 ata_id_n_sectors(const u16 *id)
1178{
1179        if (ata_id_has_lba(id)) {
1180                if (ata_id_has_lba48(id))
1181                        return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1182                else
1183                        return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1184        } else {
1185                if (ata_id_current_chs_valid(id))
1186                        return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1187                               id[ATA_ID_CUR_SECTORS];
1188                else
1189                        return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1190                               id[ATA_ID_SECTORS];
1191        }
1192}
1193
1194u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1195{
1196        u64 sectors = 0;
1197
1198        sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199        sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1200        sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1201        sectors |= (tf->lbah & 0xff) << 16;
1202        sectors |= (tf->lbam & 0xff) << 8;
1203        sectors |= (tf->lbal & 0xff);
1204
1205        return sectors;
1206}
1207
1208u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1209{
1210        u64 sectors = 0;
1211
1212        sectors |= (tf->device & 0x0f) << 24;
1213        sectors |= (tf->lbah & 0xff) << 16;
1214        sectors |= (tf->lbam & 0xff) << 8;
1215        sectors |= (tf->lbal & 0xff);
1216
1217        return sectors;
1218}
1219
1220/**
1221 *      ata_read_native_max_address - Read native max address
1222 *      @dev: target device
1223 *      @max_sectors: out parameter for the result native max address
1224 *
1225 *      Perform an LBA48 or LBA28 native size query upon the device in
1226 *      question.
1227 *
1228 *      RETURNS:
1229 *      0 on success, -EACCES if command is aborted by the drive.
1230 *      -EIO on other errors.
1231 */
1232static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1233{
1234        unsigned int err_mask;
1235        struct ata_taskfile tf;
1236        int lba48 = ata_id_has_lba48(dev->id);
1237
1238        ata_tf_init(dev, &tf);
1239
1240        /* always clear all address registers */
1241        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1242
1243        if (lba48) {
1244                tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245                tf.flags |= ATA_TFLAG_LBA48;
1246        } else
1247                tf.command = ATA_CMD_READ_NATIVE_MAX;
1248
1249        tf.protocol = ATA_PROT_NODATA;
1250        tf.device |= ATA_LBA;
1251
1252        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1253        if (err_mask) {
1254                ata_dev_warn(dev,
1255                             "failed to read native max address (err_mask=0x%x)\n",
1256                             err_mask);
1257                if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1258                        return -EACCES;
1259                return -EIO;
1260        }
1261
1262        if (lba48)
1263                *max_sectors = ata_tf_to_lba48(&tf) + 1;
1264        else
1265                *max_sectors = ata_tf_to_lba(&tf) + 1;
1266        if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1267                (*max_sectors)--;
1268        return 0;
1269}
1270
1271/**
1272 *      ata_set_max_sectors - Set max sectors
1273 *      @dev: target device
1274 *      @new_sectors: new max sectors value to set for the device
1275 *
1276 *      Set max sectors of @dev to @new_sectors.
1277 *
1278 *      RETURNS:
1279 *      0 on success, -EACCES if command is aborted or denied (due to
1280 *      previous non-volatile SET_MAX) by the drive.  -EIO on other
1281 *      errors.
1282 */
1283static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1284{
1285        unsigned int err_mask;
1286        struct ata_taskfile tf;
1287        int lba48 = ata_id_has_lba48(dev->id);
1288
1289        new_sectors--;
1290
1291        ata_tf_init(dev, &tf);
1292
1293        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1294
1295        if (lba48) {
1296                tf.command = ATA_CMD_SET_MAX_EXT;
1297                tf.flags |= ATA_TFLAG_LBA48;
1298
1299                tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300                tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301                tf.hob_lbah = (new_sectors >> 40) & 0xff;
1302        } else {
1303                tf.command = ATA_CMD_SET_MAX;
1304
1305                tf.device |= (new_sectors >> 24) & 0xf;
1306        }
1307
1308        tf.protocol = ATA_PROT_NODATA;
1309        tf.device |= ATA_LBA;
1310
1311        tf.lbal = (new_sectors >> 0) & 0xff;
1312        tf.lbam = (new_sectors >> 8) & 0xff;
1313        tf.lbah = (new_sectors >> 16) & 0xff;
1314
1315        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1316        if (err_mask) {
1317                ata_dev_warn(dev,
1318                             "failed to set max address (err_mask=0x%x)\n",
1319                             err_mask);
1320                if (err_mask == AC_ERR_DEV &&
1321                    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1322                        return -EACCES;
1323                return -EIO;
1324        }
1325
1326        return 0;
1327}
1328
1329/**
1330 *      ata_hpa_resize          -       Resize a device with an HPA set
1331 *      @dev: Device to resize
1332 *
1333 *      Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334 *      it if required to the full size of the media. The caller must check
1335 *      the drive has the HPA feature set enabled.
1336 *
1337 *      RETURNS:
1338 *      0 on success, -errno on failure.
1339 */
1340static int ata_hpa_resize(struct ata_device *dev)
1341{
1342        struct ata_eh_context *ehc = &dev->link->eh_context;
1343        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1344        bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1345        u64 sectors = ata_id_n_sectors(dev->id);
1346        u64 native_sectors;
1347        int rc;
1348
1349        /* do we need to do it? */
1350        if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1351            !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1352            (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1353                return 0;
1354
1355        /* read native max address */
1356        rc = ata_read_native_max_address(dev, &native_sectors);
1357        if (rc) {
1358                /* If device aborted the command or HPA isn't going to
1359                 * be unlocked, skip HPA resizing.
1360                 */
1361                if (rc == -EACCES || !unlock_hpa) {
1362                        ata_dev_warn(dev,
1363                                     "HPA support seems broken, skipping HPA handling\n");
1364                        dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1365
1366                        /* we can continue if device aborted the command */
1367                        if (rc == -EACCES)
1368                                rc = 0;
1369                }
1370
1371                return rc;
1372        }
1373        dev->n_native_sectors = native_sectors;
1374
1375        /* nothing to do? */
1376        if (native_sectors <= sectors || !unlock_hpa) {
1377                if (!print_info || native_sectors == sectors)
1378                        return 0;
1379
1380                if (native_sectors > sectors)
1381                        ata_dev_info(dev,
1382                                "HPA detected: current %llu, native %llu\n",
1383                                (unsigned long long)sectors,
1384                                (unsigned long long)native_sectors);
1385                else if (native_sectors < sectors)
1386                        ata_dev_warn(dev,
1387                                "native sectors (%llu) is smaller than sectors (%llu)\n",
1388                                (unsigned long long)native_sectors,
1389                                (unsigned long long)sectors);
1390                return 0;
1391        }
1392
1393        /* let's unlock HPA */
1394        rc = ata_set_max_sectors(dev, native_sectors);
1395        if (rc == -EACCES) {
1396                /* if device aborted the command, skip HPA resizing */
1397                ata_dev_warn(dev,
1398                             "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399                             (unsigned long long)sectors,
1400                             (unsigned long long)native_sectors);
1401                dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1402                return 0;
1403        } else if (rc)
1404                return rc;
1405
1406        /* re-read IDENTIFY data */
1407        rc = ata_dev_reread_id(dev, 0);
1408        if (rc) {
1409                ata_dev_err(dev,
1410                            "failed to re-read IDENTIFY data after HPA resizing\n");
1411                return rc;
1412        }
1413
1414        if (print_info) {
1415                u64 new_sectors = ata_id_n_sectors(dev->id);
1416                ata_dev_info(dev,
1417                        "HPA unlocked: %llu -> %llu, native %llu\n",
1418                        (unsigned long long)sectors,
1419                        (unsigned long long)new_sectors,
1420                        (unsigned long long)native_sectors);
1421        }
1422
1423        return 0;
1424}
1425
1426/**
1427 *      ata_dump_id - IDENTIFY DEVICE info debugging output
1428 *      @id: IDENTIFY DEVICE page to dump
1429 *
1430 *      Dump selected 16-bit words from the given IDENTIFY DEVICE
1431 *      page.
1432 *
1433 *      LOCKING:
1434 *      caller.
1435 */
1436
1437static inline void ata_dump_id(const u16 *id)
1438{
1439        DPRINTK("49==0x%04x  "
1440                "53==0x%04x  "
1441                "63==0x%04x  "
1442                "64==0x%04x  "
1443                "75==0x%04x  \n",
1444                id[49],
1445                id[53],
1446                id[63],
1447                id[64],
1448                id[75]);
1449        DPRINTK("80==0x%04x  "
1450                "81==0x%04x  "
1451                "82==0x%04x  "
1452                "83==0x%04x  "
1453                "84==0x%04x  \n",
1454                id[80],
1455                id[81],
1456                id[82],
1457                id[83],
1458                id[84]);
1459        DPRINTK("88==0x%04x  "
1460                "93==0x%04x\n",
1461                id[88],
1462                id[93]);
1463}
1464
1465/**
1466 *      ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467 *      @id: IDENTIFY data to compute xfer mask from
1468 *
1469 *      Compute the xfermask for this device. This is not as trivial
1470 *      as it seems if we must consider early devices correctly.
1471 *
1472 *      FIXME: pre IDE drive timing (do we care ?).
1473 *
1474 *      LOCKING:
1475 *      None.
1476 *
1477 *      RETURNS:
1478 *      Computed xfermask
1479 */
1480unsigned long ata_id_xfermask(const u16 *id)
1481{
1482        unsigned long pio_mask, mwdma_mask, udma_mask;
1483
1484        /* Usual case. Word 53 indicates word 64 is valid */
1485        if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1486                pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1487                pio_mask <<= 3;
1488                pio_mask |= 0x7;
1489        } else {
1490                /* If word 64 isn't valid then Word 51 high byte holds
1491                 * the PIO timing number for the maximum. Turn it into
1492                 * a mask.
1493                 */
1494                u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1495                if (mode < 5)   /* Valid PIO range */
1496                        pio_mask = (2 << mode) - 1;
1497                else
1498                        pio_mask = 1;
1499
1500                /* But wait.. there's more. Design your standards by
1501                 * committee and you too can get a free iordy field to
1502                 * process. However its the speeds not the modes that
1503                 * are supported... Note drivers using the timing API
1504                 * will get this right anyway
1505                 */
1506        }
1507
1508        mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1509
1510        if (ata_id_is_cfa(id)) {
1511                /*
1512                 *      Process compact flash extended modes
1513                 */
1514                int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1515                int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1516
1517                if (pio)
1518                        pio_mask |= (1 << 5);
1519                if (pio > 1)
1520                        pio_mask |= (1 << 6);
1521                if (dma)
1522                        mwdma_mask |= (1 << 3);
1523                if (dma > 1)
1524                        mwdma_mask |= (1 << 4);
1525        }
1526
1527        udma_mask = 0;
1528        if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1529                udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1530
1531        return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532}
1533
1534static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1535{
1536        struct completion *waiting = qc->private_data;
1537
1538        complete(waiting);
1539}
1540
1541/**
1542 *      ata_exec_internal_sg - execute libata internal command
1543 *      @dev: Device to which the command is sent
1544 *      @tf: Taskfile registers for the command and the result
1545 *      @cdb: CDB for packet command
1546 *      @dma_dir: Data transfer direction of the command
1547 *      @sgl: sg list for the data buffer of the command
1548 *      @n_elem: Number of sg entries
1549 *      @timeout: Timeout in msecs (0 for default)
1550 *
1551 *      Executes libata internal command with timeout.  @tf contains
1552 *      command on entry and result on return.  Timeout and error
1553 *      conditions are reported via return value.  No recovery action
1554 *      is taken after a command times out.  It's caller's duty to
1555 *      clean up after timeout.
1556 *
1557 *      LOCKING:
1558 *      None.  Should be called with kernel context, might sleep.
1559 *
1560 *      RETURNS:
1561 *      Zero on success, AC_ERR_* mask on failure
1562 */
1563unsigned ata_exec_internal_sg(struct ata_device *dev,
1564                              struct ata_taskfile *tf, const u8 *cdb,
1565                              int dma_dir, struct scatterlist *sgl,
1566                              unsigned int n_elem, unsigned long timeout)
1567{
1568        struct ata_link *link = dev->link;
1569        struct ata_port *ap = link->ap;
1570        u8 command = tf->command;
1571        int auto_timeout = 0;
1572        struct ata_queued_cmd *qc;
1573        unsigned int tag, preempted_tag;
1574        u32 preempted_sactive, preempted_qc_active;
1575        int preempted_nr_active_links;
1576        DECLARE_COMPLETION_ONSTACK(wait);
1577        unsigned long flags;
1578        unsigned int err_mask;
1579        int rc;
1580
1581        spin_lock_irqsave(ap->lock, flags);
1582
1583        /* no internal command while frozen */
1584        if (ap->pflags & ATA_PFLAG_FROZEN) {
1585                spin_unlock_irqrestore(ap->lock, flags);
1586                return AC_ERR_SYSTEM;
1587        }
1588
1589        /* initialize internal qc */
1590
1591        /* XXX: Tag 0 is used for drivers with legacy EH as some
1592         * drivers choke if any other tag is given.  This breaks
1593         * ata_tag_internal() test for those drivers.  Don't use new
1594         * EH stuff without converting to it.
1595         */
1596        if (ap->ops->error_handler)
1597                tag = ATA_TAG_INTERNAL;
1598        else
1599                tag = 0;
1600
1601        qc = __ata_qc_from_tag(ap, tag);
1602
1603        qc->tag = tag;
1604        qc->scsicmd = NULL;
1605        qc->ap = ap;
1606        qc->dev = dev;
1607        ata_qc_reinit(qc);
1608
1609        preempted_tag = link->active_tag;
1610        preempted_sactive = link->sactive;
1611        preempted_qc_active = ap->qc_active;
1612        preempted_nr_active_links = ap->nr_active_links;
1613        link->active_tag = ATA_TAG_POISON;
1614        link->sactive = 0;
1615        ap->qc_active = 0;
1616        ap->nr_active_links = 0;
1617
1618        /* prepare & issue qc */
1619        qc->tf = *tf;
1620        if (cdb)
1621                memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1622
1623        /* some SATA bridges need us to indicate data xfer direction */
1624        if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1625            dma_dir == DMA_FROM_DEVICE)
1626                qc->tf.feature |= ATAPI_DMADIR;
1627
1628        qc->flags |= ATA_QCFLAG_RESULT_TF;
1629        qc->dma_dir = dma_dir;
1630        if (dma_dir != DMA_NONE) {
1631                unsigned int i, buflen = 0;
1632                struct scatterlist *sg;
1633
1634                for_each_sg(sgl, sg, n_elem, i)
1635                        buflen += sg->length;
1636
1637                ata_sg_init(qc, sgl, n_elem);
1638                qc->nbytes = buflen;
1639        }
1640
1641        qc->private_data = &wait;
1642        qc->complete_fn = ata_qc_complete_internal;
1643
1644        ata_qc_issue(qc);
1645
1646        spin_unlock_irqrestore(ap->lock, flags);
1647
1648        if (!timeout) {
1649                if (ata_probe_timeout)
1650                        timeout = ata_probe_timeout * 1000;
1651                else {
1652                        timeout = ata_internal_cmd_timeout(dev, command);
1653                        auto_timeout = 1;
1654                }
1655        }
1656
1657        if (ap->ops->error_handler)
1658                ata_eh_release(ap);
1659
1660        rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1661
1662        if (ap->ops->error_handler)
1663                ata_eh_acquire(ap);
1664
1665        ata_sff_flush_pio_task(ap);
1666
1667        if (!rc) {
1668                spin_lock_irqsave(ap->lock, flags);
1669
1670                /* We're racing with irq here.  If we lose, the
1671                 * following test prevents us from completing the qc
1672                 * twice.  If we win, the port is frozen and will be
1673                 * cleaned up by ->post_internal_cmd().
1674                 */
1675                if (qc->flags & ATA_QCFLAG_ACTIVE) {
1676                        qc->err_mask |= AC_ERR_TIMEOUT;
1677
1678                        if (ap->ops->error_handler)
1679                                ata_port_freeze(ap);
1680                        else
1681                                ata_qc_complete(qc);
1682
1683                        if (ata_msg_warn(ap))
1684                                ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1685                                             command);
1686                }
1687
1688                spin_unlock_irqrestore(ap->lock, flags);
1689        }
1690
1691        /* do post_internal_cmd */
1692        if (ap->ops->post_internal_cmd)
1693                ap->ops->post_internal_cmd(qc);
1694
1695        /* perform minimal error analysis */
1696        if (qc->flags & ATA_QCFLAG_FAILED) {
1697                if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1698                        qc->err_mask |= AC_ERR_DEV;
1699
1700                if (!qc->err_mask)
1701                        qc->err_mask |= AC_ERR_OTHER;
1702
1703                if (qc->err_mask & ~AC_ERR_OTHER)
1704                        qc->err_mask &= ~AC_ERR_OTHER;
1705        } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1706                qc->result_tf.command |= ATA_SENSE;
1707        }
1708
1709        /* finish up */
1710        spin_lock_irqsave(ap->lock, flags);
1711
1712        *tf = qc->result_tf;
1713        err_mask = qc->err_mask;
1714
1715        ata_qc_free(qc);
1716        link->active_tag = preempted_tag;
1717        link->sactive = preempted_sactive;
1718        ap->qc_active = preempted_qc_active;
1719        ap->nr_active_links = preempted_nr_active_links;
1720
1721        spin_unlock_irqrestore(ap->lock, flags);
1722
1723        if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1724                ata_internal_cmd_timed_out(dev, command);
1725
1726        return err_mask;
1727}
1728
1729/**
1730 *      ata_exec_internal - execute libata internal command
1731 *      @dev: Device to which the command is sent
1732 *      @tf: Taskfile registers for the command and the result
1733 *      @cdb: CDB for packet command
1734 *      @dma_dir: Data transfer direction of the command
1735 *      @buf: Data buffer of the command
1736 *      @buflen: Length of data buffer
1737 *      @timeout: Timeout in msecs (0 for default)
1738 *
1739 *      Wrapper around ata_exec_internal_sg() which takes simple
1740 *      buffer instead of sg list.
1741 *
1742 *      LOCKING:
1743 *      None.  Should be called with kernel context, might sleep.
1744 *
1745 *      RETURNS:
1746 *      Zero on success, AC_ERR_* mask on failure
1747 */
1748unsigned ata_exec_internal(struct ata_device *dev,
1749                           struct ata_taskfile *tf, const u8 *cdb,
1750                           int dma_dir, void *buf, unsigned int buflen,
1751                           unsigned long timeout)
1752{
1753        struct scatterlist *psg = NULL, sg;
1754        unsigned int n_elem = 0;
1755
1756        if (dma_dir != DMA_NONE) {
1757                WARN_ON(!buf);
1758                sg_init_one(&sg, buf, buflen);
1759                psg = &sg;
1760                n_elem++;
1761        }
1762
1763        return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1764                                    timeout);
1765}
1766
1767/**
1768 *      ata_pio_need_iordy      -       check if iordy needed
1769 *      @adev: ATA device
1770 *
1771 *      Check if the current speed of the device requires IORDY. Used
1772 *      by various controllers for chip configuration.
1773 */
1774unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1775{
1776        /* Don't set IORDY if we're preparing for reset.  IORDY may
1777         * lead to controller lock up on certain controllers if the
1778         * port is not occupied.  See bko#11703 for details.
1779         */
1780        if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1781                return 0;
1782        /* Controller doesn't support IORDY.  Probably a pointless
1783         * check as the caller should know this.
1784         */
1785        if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1786                return 0;
1787        /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1788        if (ata_id_is_cfa(adev->id)
1789            && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1790                return 0;
1791        /* PIO3 and higher it is mandatory */
1792        if (adev->pio_mode > XFER_PIO_2)
1793                return 1;
1794        /* We turn it on when possible */
1795        if (ata_id_has_iordy(adev->id))
1796                return 1;
1797        return 0;
1798}
1799
1800/**
1801 *      ata_pio_mask_no_iordy   -       Return the non IORDY mask
1802 *      @adev: ATA device
1803 *
1804 *      Compute the highest mode possible if we are not using iordy. Return
1805 *      -1 if no iordy mode is available.
1806 */
1807static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1808{
1809        /* If we have no drive specific rule, then PIO 2 is non IORDY */
1810        if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1811                u16 pio = adev->id[ATA_ID_EIDE_PIO];
1812                /* Is the speed faster than the drive allows non IORDY ? */
1813                if (pio) {
1814                        /* This is cycle times not frequency - watch the logic! */
1815                        if (pio > 240)  /* PIO2 is 240nS per cycle */
1816                                return 3 << ATA_SHIFT_PIO;
1817                        return 7 << ATA_SHIFT_PIO;
1818                }
1819        }
1820        return 3 << ATA_SHIFT_PIO;
1821}
1822
1823/**
1824 *      ata_do_dev_read_id              -       default ID read method
1825 *      @dev: device
1826 *      @tf: proposed taskfile
1827 *      @id: data buffer
1828 *
1829 *      Issue the identify taskfile and hand back the buffer containing
1830 *      identify data. For some RAID controllers and for pre ATA devices
1831 *      this function is wrapped or replaced by the driver
1832 */
1833unsigned int ata_do_dev_read_id(struct ata_device *dev,
1834                                        struct ata_taskfile *tf, u16 *id)
1835{
1836        return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1837                                     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1838}
1839
1840/**
1841 *      ata_dev_read_id - Read ID data from the specified device
1842 *      @dev: target device
1843 *      @p_class: pointer to class of the target device (may be changed)
1844 *      @flags: ATA_READID_* flags
1845 *      @id: buffer to read IDENTIFY data into
1846 *
1847 *      Read ID data from the specified device.  ATA_CMD_ID_ATA is
1848 *      performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1849 *      devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1850 *      for pre-ATA4 drives.
1851 *
1852 *      FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1853 *      now we abort if we hit that case.
1854 *
1855 *      LOCKING:
1856 *      Kernel thread context (may sleep)
1857 *
1858 *      RETURNS:
1859 *      0 on success, -errno otherwise.
1860 */
1861int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1862                    unsigned int flags, u16 *id)
1863{
1864        struct ata_port *ap = dev->link->ap;
1865        unsigned int class = *p_class;
1866        struct ata_taskfile tf;
1867        unsigned int err_mask = 0;
1868        const char *reason;
1869        bool is_semb = class == ATA_DEV_SEMB;
1870        int may_fallback = 1, tried_spinup = 0;
1871        int rc;
1872
1873        if (ata_msg_ctl(ap))
1874                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1875
1876retry:
1877        ata_tf_init(dev, &tf);
1878
1879        switch (class) {
1880        case ATA_DEV_SEMB:
1881                class = ATA_DEV_ATA;    /* some hard drives report SEMB sig */
1882        case ATA_DEV_ATA:
1883        case ATA_DEV_ZAC:
1884                tf.command = ATA_CMD_ID_ATA;
1885                break;
1886        case ATA_DEV_ATAPI:
1887                tf.command = ATA_CMD_ID_ATAPI;
1888                break;
1889        default:
1890                rc = -ENODEV;
1891                reason = "unsupported class";
1892                goto err_out;
1893        }
1894
1895        tf.protocol = ATA_PROT_PIO;
1896
1897        /* Some devices choke if TF registers contain garbage.  Make
1898         * sure those are properly initialized.
1899         */
1900        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1901
1902        /* Device presence detection is unreliable on some
1903         * controllers.  Always poll IDENTIFY if available.
1904         */
1905        tf.flags |= ATA_TFLAG_POLLING;
1906
1907        if (ap->ops->read_id)
1908                err_mask = ap->ops->read_id(dev, &tf, id);
1909        else
1910                err_mask = ata_do_dev_read_id(dev, &tf, id);
1911
1912        if (err_mask) {
1913                if (err_mask & AC_ERR_NODEV_HINT) {
1914                        ata_dev_dbg(dev, "NODEV after polling detection\n");
1915                        return -ENOENT;
1916                }
1917
1918                if (is_semb) {
1919                        ata_dev_info(dev,
1920                     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1921                        /* SEMB is not supported yet */
1922                        *p_class = ATA_DEV_SEMB_UNSUP;
1923                        return 0;
1924                }
1925
1926                if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1927                        /* Device or controller might have reported
1928                         * the wrong device class.  Give a shot at the
1929                         * other IDENTIFY if the current one is
1930                         * aborted by the device.
1931                         */
1932                        if (may_fallback) {
1933                                may_fallback = 0;
1934
1935                                if (class == ATA_DEV_ATA)
1936                                        class = ATA_DEV_ATAPI;
1937                                else
1938                                        class = ATA_DEV_ATA;
1939                                goto retry;
1940                        }
1941
1942                        /* Control reaches here iff the device aborted
1943                         * both flavors of IDENTIFYs which happens
1944                         * sometimes with phantom devices.
1945                         */
1946                        ata_dev_dbg(dev,
1947                                    "both IDENTIFYs aborted, assuming NODEV\n");
1948                        return -ENOENT;
1949                }
1950
1951                rc = -EIO;
1952                reason = "I/O error";
1953                goto err_out;
1954        }
1955
1956        if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1957                ata_dev_dbg(dev, "dumping IDENTIFY data, "
1958                            "class=%d may_fallback=%d tried_spinup=%d\n",
1959                            class, may_fallback, tried_spinup);
1960                print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1961                               16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1962        }
1963
1964        /* Falling back doesn't make sense if ID data was read
1965         * successfully at least once.
1966         */
1967        may_fallback = 0;
1968
1969        swap_buf_le16(id, ATA_ID_WORDS);
1970
1971        /* sanity check */
1972        rc = -EINVAL;
1973        reason = "device reports invalid type";
1974
1975        if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1976                if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1977                        goto err_out;
1978                if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1979                                                        ata_id_is_ata(id)) {
1980                        ata_dev_dbg(dev,
1981                                "host indicates ignore ATA devices, ignored\n");
1982                        return -ENOENT;
1983                }
1984        } else {
1985                if (ata_id_is_ata(id))
1986                        goto err_out;
1987        }
1988
1989        if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1990                tried_spinup = 1;
1991                /*
1992                 * Drive powered-up in standby mode, and requires a specific
1993                 * SET_FEATURES spin-up subcommand before it will accept
1994                 * anything other than the original IDENTIFY command.
1995                 */
1996                err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1997                if (err_mask && id[2] != 0x738c) {
1998                        rc = -EIO;
1999                        reason = "SPINUP failed";
2000                        goto err_out;
2001                }
2002                /*
2003                 * If the drive initially returned incomplete IDENTIFY info,
2004                 * we now must reissue the IDENTIFY command.
2005                 */
2006                if (id[2] == 0x37c8)
2007                        goto retry;
2008        }
2009
2010        if ((flags & ATA_READID_POSTRESET) &&
2011            (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2012                /*
2013                 * The exact sequence expected by certain pre-ATA4 drives is:
2014                 * SRST RESET
2015                 * IDENTIFY (optional in early ATA)
2016                 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2017                 * anything else..
2018                 * Some drives were very specific about that exact sequence.
2019                 *
2020                 * Note that ATA4 says lba is mandatory so the second check
2021                 * should never trigger.
2022                 */
2023                if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2024                        err_mask = ata_dev_init_params(dev, id[3], id[6]);
2025                        if (err_mask) {
2026                                rc = -EIO;
2027                                reason = "INIT_DEV_PARAMS failed";
2028                                goto err_out;
2029                        }
2030
2031                        /* current CHS translation info (id[53-58]) might be
2032                         * changed. reread the identify device info.
2033                         */
2034                        flags &= ~ATA_READID_POSTRESET;
2035                        goto retry;
2036                }
2037        }
2038
2039        *p_class = class;
2040
2041        return 0;
2042
2043 err_out:
2044        if (ata_msg_warn(ap))
2045                ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2046                             reason, err_mask);
2047        return rc;
2048}
2049
2050static int ata_do_link_spd_horkage(struct ata_device *dev)
2051{
2052        struct ata_link *plink = ata_dev_phys_link(dev);
2053        u32 target, target_limit;
2054
2055        if (!sata_scr_valid(plink))
2056                return 0;
2057
2058        if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2059                target = 1;
2060        else
2061                return 0;
2062
2063        target_limit = (1 << target) - 1;
2064
2065        /* if already on stricter limit, no need to push further */
2066        if (plink->sata_spd_limit <= target_limit)
2067                return 0;
2068
2069        plink->sata_spd_limit = target_limit;
2070
2071        /* Request another EH round by returning -EAGAIN if link is
2072         * going faster than the target speed.  Forward progress is
2073         * guaranteed by setting sata_spd_limit to target_limit above.
2074         */
2075        if (plink->sata_spd > target) {
2076                ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2077                             sata_spd_string(target));
2078                return -EAGAIN;
2079        }
2080        return 0;
2081}
2082
2083static inline u8 ata_dev_knobble(struct ata_device *dev)
2084{
2085        struct ata_port *ap = dev->link->ap;
2086
2087        if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2088                return 0;
2089
2090        return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2091}
2092
2093static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2094{
2095        struct ata_port *ap = dev->link->ap;
2096        unsigned int err_mask;
2097        int log_index = ATA_LOG_NCQ_SEND_RECV * 2;
2098        u16 log_pages;
2099
2100        err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2101                                     0, ap->sector_buf, 1);
2102        if (err_mask) {
2103                ata_dev_dbg(dev,
2104                            "failed to get Log Directory Emask 0x%x\n",
2105                            err_mask);
2106                return;
2107        }
2108        log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2109        if (!log_pages) {
2110                ata_dev_warn(dev,
2111                             "NCQ Send/Recv Log not supported\n");
2112                return;
2113        }
2114        err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2115                                     0, ap->sector_buf, 1);
2116        if (err_mask) {
2117                ata_dev_dbg(dev,
2118                            "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2119                            err_mask);
2120        } else {
2121                u8 *cmds = dev->ncq_send_recv_cmds;
2122
2123                dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2124                memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2125
2126                if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2127                        ata_dev_dbg(dev, "disabling queued TRIM support\n");
2128                        cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2129                                ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2130                }
2131        }
2132}
2133
2134static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2135{
2136        struct ata_port *ap = dev->link->ap;
2137        unsigned int err_mask;
2138        int log_index = ATA_LOG_NCQ_NON_DATA * 2;
2139        u16 log_pages;
2140
2141        err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2142                                     0, ap->sector_buf, 1);
2143        if (err_mask) {
2144                ata_dev_dbg(dev,
2145                            "failed to get Log Directory Emask 0x%x\n",
2146                            err_mask);
2147                return;
2148        }
2149        log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2150        if (!log_pages) {
2151                ata_dev_warn(dev,
2152                             "NCQ Send/Recv Log not supported\n");
2153                return;
2154        }
2155        err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2156                                     0, ap->sector_buf, 1);
2157        if (err_mask) {
2158                ata_dev_dbg(dev,
2159                            "failed to get NCQ Non-Data Log Emask 0x%x\n",
2160                            err_mask);
2161        } else {
2162                u8 *cmds = dev->ncq_non_data_cmds;
2163
2164                memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2165        }
2166}
2167
2168static void ata_dev_config_ncq_prio(struct ata_device *dev)
2169{
2170        struct ata_port *ap = dev->link->ap;
2171        unsigned int err_mask;
2172
2173        if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2174                dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2175                return;
2176        }
2177
2178        err_mask = ata_read_log_page(dev,
2179                                     ATA_LOG_SATA_ID_DEV_DATA,
2180                                     ATA_LOG_SATA_SETTINGS,
2181                                     ap->sector_buf,
2182                                     1);
2183        if (err_mask) {
2184                ata_dev_dbg(dev,
2185                            "failed to get Identify Device data, Emask 0x%x\n",
2186                            err_mask);
2187                return;
2188        }
2189
2190        if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2191                dev->flags |= ATA_DFLAG_NCQ_PRIO;
2192        } else {
2193                dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2194                ata_dev_dbg(dev, "SATA page does not support priority\n");
2195        }
2196
2197}
2198
2199static int ata_dev_config_ncq(struct ata_device *dev,
2200                               char *desc, size_t desc_sz)
2201{
2202        struct ata_port *ap = dev->link->ap;
2203        int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2204        unsigned int err_mask;
2205        char *aa_desc = "";
2206
2207        if (!ata_id_has_ncq(dev->id)) {
2208                desc[0] = '\0';
2209                return 0;
2210        }
2211        if (dev->horkage & ATA_HORKAGE_NONCQ) {
2212                snprintf(desc, desc_sz, "NCQ (not used)");
2213                return 0;
2214        }
2215        if (ap->flags & ATA_FLAG_NCQ) {
2216                hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2217                dev->flags |= ATA_DFLAG_NCQ;
2218        }
2219
2220        if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2221                (ap->flags & ATA_FLAG_FPDMA_AA) &&
2222                ata_id_has_fpdma_aa(dev->id)) {
2223                err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2224                        SATA_FPDMA_AA);
2225                if (err_mask) {
2226                        ata_dev_err(dev,
2227                                    "failed to enable AA (error_mask=0x%x)\n",
2228                                    err_mask);
2229                        if (err_mask != AC_ERR_DEV) {
2230                                dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2231                                return -EIO;
2232                        }
2233                } else
2234                        aa_desc = ", AA";
2235        }
2236
2237        if (hdepth >= ddepth)
2238                snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2239        else
2240                snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2241                        ddepth, aa_desc);
2242
2243        if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2244                if (ata_id_has_ncq_send_and_recv(dev->id))
2245                        ata_dev_config_ncq_send_recv(dev);
2246                if (ata_id_has_ncq_non_data(dev->id))
2247                        ata_dev_config_ncq_non_data(dev);
2248                if (ata_id_has_ncq_prio(dev->id))
2249                        ata_dev_config_ncq_prio(dev);
2250        }
2251
2252        return 0;
2253}
2254
2255static void ata_dev_config_sense_reporting(struct ata_device *dev)
2256{
2257        unsigned int err_mask;
2258
2259        if (!ata_id_has_sense_reporting(dev->id))
2260                return;
2261
2262        if (ata_id_sense_reporting_enabled(dev->id))
2263                return;
2264
2265        err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2266        if (err_mask) {
2267                ata_dev_dbg(dev,
2268                            "failed to enable Sense Data Reporting, Emask 0x%x\n",
2269                            err_mask);
2270        }
2271}
2272
2273static void ata_dev_config_zac(struct ata_device *dev)
2274{
2275        struct ata_port *ap = dev->link->ap;
2276        unsigned int err_mask;
2277        u8 *identify_buf = ap->sector_buf;
2278        int log_index = ATA_LOG_SATA_ID_DEV_DATA * 2, i, found = 0;
2279        u16 log_pages;
2280
2281        dev->zac_zones_optimal_open = U32_MAX;
2282        dev->zac_zones_optimal_nonseq = U32_MAX;
2283        dev->zac_zones_max_open = U32_MAX;
2284
2285        /*
2286         * Always set the 'ZAC' flag for Host-managed devices.
2287         */
2288        if (dev->class == ATA_DEV_ZAC)
2289                dev->flags |= ATA_DFLAG_ZAC;
2290        else if (ata_id_zoned_cap(dev->id) == 0x01)
2291                /*
2292                 * Check for host-aware devices.
2293                 */
2294                dev->flags |= ATA_DFLAG_ZAC;
2295
2296        if (!(dev->flags & ATA_DFLAG_ZAC))
2297                return;
2298
2299        /*
2300         * Read Log Directory to figure out if IDENTIFY DEVICE log
2301         * is supported.
2302         */
2303        err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2304                                     0, ap->sector_buf, 1);
2305        if (err_mask) {
2306                ata_dev_info(dev,
2307                             "failed to get Log Directory Emask 0x%x\n",
2308                             err_mask);
2309                return;
2310        }
2311        log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2312        if (log_pages == 0) {
2313                ata_dev_warn(dev,
2314                             "ATA Identify Device Log not supported\n");
2315                return;
2316        }
2317        /*
2318         * Read IDENTIFY DEVICE data log, page 0, to figure out
2319         * if page 9 is supported.
2320         */
2321        err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA, 0,
2322                                     identify_buf, 1);
2323        if (err_mask) {
2324                ata_dev_info(dev,
2325                             "failed to get Device Identify Log Emask 0x%x\n",
2326                             err_mask);
2327                return;
2328        }
2329        log_pages = identify_buf[8];
2330        for (i = 0; i < log_pages; i++) {
2331                if (identify_buf[9 + i] == ATA_LOG_ZONED_INFORMATION) {
2332                        found++;
2333                        break;
2334                }
2335        }
2336        if (!found) {
2337                ata_dev_warn(dev,
2338                             "ATA Zoned Information Log not supported\n");
2339                return;
2340        }
2341
2342        /*
2343         * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2344         */
2345        err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA,
2346                                     ATA_LOG_ZONED_INFORMATION,
2347                                     identify_buf, 1);
2348        if (!err_mask) {
2349                u64 zoned_cap, opt_open, opt_nonseq, max_open;
2350
2351                zoned_cap = get_unaligned_le64(&identify_buf[8]);
2352                if ((zoned_cap >> 63))
2353                        dev->zac_zoned_cap = (zoned_cap & 1);
2354                opt_open = get_unaligned_le64(&identify_buf[24]);
2355                if ((opt_open >> 63))
2356                        dev->zac_zones_optimal_open = (u32)opt_open;
2357                opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2358                if ((opt_nonseq >> 63))
2359                        dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2360                max_open = get_unaligned_le64(&identify_buf[40]);
2361                if ((max_open >> 63))
2362                        dev->zac_zones_max_open = (u32)max_open;
2363        }
2364}
2365
2366/**
2367 *      ata_dev_configure - Configure the specified ATA/ATAPI device
2368 *      @dev: Target device to configure
2369 *
2370 *      Configure @dev according to @dev->id.  Generic and low-level
2371 *      driver specific fixups are also applied.
2372 *
2373 *      LOCKING:
2374 *      Kernel thread context (may sleep)
2375 *
2376 *      RETURNS:
2377 *      0 on success, -errno otherwise
2378 */
2379int ata_dev_configure(struct ata_device *dev)
2380{
2381        struct ata_port *ap = dev->link->ap;
2382        struct ata_eh_context *ehc = &dev->link->eh_context;
2383        int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2384        const u16 *id = dev->id;
2385        unsigned long xfer_mask;
2386        unsigned int err_mask;
2387        char revbuf[7];         /* XYZ-99\0 */
2388        char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2389        char modelbuf[ATA_ID_PROD_LEN+1];
2390        int rc;
2391
2392        if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2393                ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2394                return 0;
2395        }
2396
2397        if (ata_msg_probe(ap))
2398                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2399
2400        /* set horkage */
2401        dev->horkage |= ata_dev_blacklisted(dev);
2402        ata_force_horkage(dev);
2403
2404        if (dev->horkage & ATA_HORKAGE_DISABLE) {
2405                ata_dev_info(dev, "unsupported device, disabling\n");
2406                ata_dev_disable(dev);
2407                return 0;
2408        }
2409
2410        if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2411            dev->class == ATA_DEV_ATAPI) {
2412                ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2413                             atapi_enabled ? "not supported with this driver"
2414                             : "disabled");
2415                ata_dev_disable(dev);
2416                return 0;
2417        }
2418
2419        rc = ata_do_link_spd_horkage(dev);
2420        if (rc)
2421                return rc;
2422
2423        /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2424        if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2425            (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2426                dev->horkage |= ATA_HORKAGE_NOLPM;
2427
2428        if (dev->horkage & ATA_HORKAGE_NOLPM) {
2429                ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2430                dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2431        }
2432
2433        /* let ACPI work its magic */
2434        rc = ata_acpi_on_devcfg(dev);
2435        if (rc)
2436                return rc;
2437
2438        /* massage HPA, do it early as it might change IDENTIFY data */
2439        rc = ata_hpa_resize(dev);
2440        if (rc)
2441                return rc;
2442
2443        /* print device capabilities */
2444        if (ata_msg_probe(ap))
2445                ata_dev_dbg(dev,
2446                            "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2447                            "85:%04x 86:%04x 87:%04x 88:%04x\n",
2448                            __func__,
2449                            id[49], id[82], id[83], id[84],
2450                            id[85], id[86], id[87], id[88]);
2451
2452        /* initialize to-be-configured parameters */
2453        dev->flags &= ~ATA_DFLAG_CFG_MASK;
2454        dev->max_sectors = 0;
2455        dev->cdb_len = 0;
2456        dev->n_sectors = 0;
2457        dev->cylinders = 0;
2458        dev->heads = 0;
2459        dev->sectors = 0;
2460        dev->multi_count = 0;
2461
2462        /*
2463         * common ATA, ATAPI feature tests
2464         */
2465
2466        /* find max transfer mode; for printk only */
2467        xfer_mask = ata_id_xfermask(id);
2468
2469        if (ata_msg_probe(ap))
2470                ata_dump_id(id);
2471
2472        /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2473        ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2474                        sizeof(fwrevbuf));
2475
2476        ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2477                        sizeof(modelbuf));
2478
2479        /* ATA-specific feature tests */
2480        if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2481                if (ata_id_is_cfa(id)) {
2482                        /* CPRM may make this media unusable */
2483                        if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2484                                ata_dev_warn(dev,
2485        "supports DRM functions and may not be fully accessible\n");
2486                        snprintf(revbuf, 7, "CFA");
2487                } else {
2488                        snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2489                        /* Warn the user if the device has TPM extensions */
2490                        if (ata_id_has_tpm(id))
2491                                ata_dev_warn(dev,
2492        "supports DRM functions and may not be fully accessible\n");
2493                }
2494
2495                dev->n_sectors = ata_id_n_sectors(id);
2496
2497                /* get current R/W Multiple count setting */
2498                if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2499                        unsigned int max = dev->id[47] & 0xff;
2500                        unsigned int cnt = dev->id[59] & 0xff;
2501                        /* only recognize/allow powers of two here */
2502                        if (is_power_of_2(max) && is_power_of_2(cnt))
2503                                if (cnt <= max)
2504                                        dev->multi_count = cnt;
2505                }
2506
2507                if (ata_id_has_lba(id)) {
2508                        const char *lba_desc;
2509                        char ncq_desc[24];
2510
2511                        lba_desc = "LBA";
2512                        dev->flags |= ATA_DFLAG_LBA;
2513                        if (ata_id_has_lba48(id)) {
2514                                dev->flags |= ATA_DFLAG_LBA48;
2515                                lba_desc = "LBA48";
2516
2517                                if (dev->n_sectors >= (1UL << 28) &&
2518                                    ata_id_has_flush_ext(id))
2519                                        dev->flags |= ATA_DFLAG_FLUSH_EXT;
2520                        }
2521
2522                        /* config NCQ */
2523                        rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2524                        if (rc)
2525                                return rc;
2526
2527                        /* print device info to dmesg */
2528                        if (ata_msg_drv(ap) && print_info) {
2529                                ata_dev_info(dev, "%s: %s, %s, max %s\n",
2530                                             revbuf, modelbuf, fwrevbuf,
2531                                             ata_mode_string(xfer_mask));
2532                                ata_dev_info(dev,
2533                                             "%llu sectors, multi %u: %s %s\n",
2534                                        (unsigned long long)dev->n_sectors,
2535                                        dev->multi_count, lba_desc, ncq_desc);
2536                        }
2537                } else {
2538                        /* CHS */
2539
2540                        /* Default translation */
2541                        dev->cylinders  = id[1];
2542                        dev->heads      = id[3];
2543                        dev->sectors    = id[6];
2544
2545                        if (ata_id_current_chs_valid(id)) {
2546                                /* Current CHS translation is valid. */
2547                                dev->cylinders = id[54];
2548                                dev->heads     = id[55];
2549                                dev->sectors   = id[56];
2550                        }
2551
2552                        /* print device info to dmesg */
2553                        if (ata_msg_drv(ap) && print_info) {
2554                                ata_dev_info(dev, "%s: %s, %s, max %s\n",
2555                                             revbuf,    modelbuf, fwrevbuf,
2556                                             ata_mode_string(xfer_mask));
2557                                ata_dev_info(dev,
2558                                             "%llu sectors, multi %u, CHS %u/%u/%u\n",
2559                                             (unsigned long long)dev->n_sectors,
2560                                             dev->multi_count, dev->cylinders,
2561                                             dev->heads, dev->sectors);
2562                        }
2563                }
2564
2565                /* Check and mark DevSlp capability. Get DevSlp timing variables
2566                 * from SATA Settings page of Identify Device Data Log.
2567                 */
2568                if (ata_id_has_devslp(dev->id)) {
2569                        u8 *sata_setting = ap->sector_buf;
2570                        int i, j;
2571
2572                        dev->flags |= ATA_DFLAG_DEVSLP;
2573                        err_mask = ata_read_log_page(dev,
2574                                                     ATA_LOG_SATA_ID_DEV_DATA,
2575                                                     ATA_LOG_SATA_SETTINGS,
2576                                                     sata_setting,
2577                                                     1);
2578                        if (err_mask)
2579                                ata_dev_dbg(dev,
2580                                            "failed to get Identify Device Data, Emask 0x%x\n",
2581                                            err_mask);
2582                        else
2583                                for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2584                                        j = ATA_LOG_DEVSLP_OFFSET + i;
2585                                        dev->devslp_timing[i] = sata_setting[j];
2586                                }
2587                }
2588                ata_dev_config_sense_reporting(dev);
2589                ata_dev_config_zac(dev);
2590                dev->cdb_len = 16;
2591        }
2592
2593        /* ATAPI-specific feature tests */
2594        else if (dev->class == ATA_DEV_ATAPI) {
2595                const char *cdb_intr_string = "";
2596                const char *atapi_an_string = "";
2597                const char *dma_dir_string = "";
2598                u32 sntf;
2599
2600                rc = atapi_cdb_len(id);
2601                if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2602                        if (ata_msg_warn(ap))
2603                                ata_dev_warn(dev, "unsupported CDB len\n");
2604                        rc = -EINVAL;
2605                        goto err_out_nosup;
2606                }
2607                dev->cdb_len = (unsigned int) rc;
2608
2609                /* Enable ATAPI AN if both the host and device have
2610                 * the support.  If PMP is attached, SNTF is required
2611                 * to enable ATAPI AN to discern between PHY status
2612                 * changed notifications and ATAPI ANs.
2613                 */
2614                if (atapi_an &&
2615                    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2616                    (!sata_pmp_attached(ap) ||
2617                     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2618                        /* issue SET feature command to turn this on */
2619                        err_mask = ata_dev_set_feature(dev,
2620                                        SETFEATURES_SATA_ENABLE, SATA_AN);
2621                        if (err_mask)
2622                                ata_dev_err(dev,
2623                                            "failed to enable ATAPI AN (err_mask=0x%x)\n",
2624                                            err_mask);
2625                        else {
2626                                dev->flags |= ATA_DFLAG_AN;
2627                                atapi_an_string = ", ATAPI AN";
2628                        }
2629                }
2630
2631                if (ata_id_cdb_intr(dev->id)) {
2632                        dev->flags |= ATA_DFLAG_CDB_INTR;
2633                        cdb_intr_string = ", CDB intr";
2634                }
2635
2636                if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2637                        dev->flags |= ATA_DFLAG_DMADIR;
2638                        dma_dir_string = ", DMADIR";
2639                }
2640
2641                if (ata_id_has_da(dev->id)) {
2642                        dev->flags |= ATA_DFLAG_DA;
2643                        zpodd_init(dev);
2644                }
2645
2646                /* print device info to dmesg */
2647                if (ata_msg_drv(ap) && print_info)
2648                        ata_dev_info(dev,
2649                                     "ATAPI: %s, %s, max %s%s%s%s\n",
2650                                     modelbuf, fwrevbuf,
2651                                     ata_mode_string(xfer_mask),
2652                                     cdb_intr_string, atapi_an_string,
2653                                     dma_dir_string);
2654        }
2655
2656        /* determine max_sectors */
2657        dev->max_sectors = ATA_MAX_SECTORS;
2658        if (dev->flags & ATA_DFLAG_LBA48)
2659                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2660
2661        /* Limit PATA drive on SATA cable bridge transfers to udma5,
2662           200 sectors */
2663        if (ata_dev_knobble(dev)) {
2664                if (ata_msg_drv(ap) && print_info)
2665                        ata_dev_info(dev, "applying bridge limits\n");
2666                dev->udma_mask &= ATA_UDMA5;
2667                dev->max_sectors = ATA_MAX_SECTORS;
2668        }
2669
2670        if ((dev->class == ATA_DEV_ATAPI) &&
2671            (atapi_command_packet_set(id) == TYPE_TAPE)) {
2672                dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2673                dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2674        }
2675
2676        if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2677                dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2678                                         dev->max_sectors);
2679
2680        if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2681                dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2682                                         dev->max_sectors);
2683
2684        if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2685                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2686
2687        if (ap->ops->dev_config)
2688                ap->ops->dev_config(dev);
2689
2690        if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2691                /* Let the user know. We don't want to disallow opens for
2692                   rescue purposes, or in case the vendor is just a blithering
2693                   idiot. Do this after the dev_config call as some controllers
2694                   with buggy firmware may want to avoid reporting false device
2695                   bugs */
2696
2697                if (print_info) {
2698                        ata_dev_warn(dev,
2699"Drive reports diagnostics failure. This may indicate a drive\n");
2700                        ata_dev_warn(dev,
2701"fault or invalid emulation. Contact drive vendor for information.\n");
2702                }
2703        }
2704
2705        if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2706                ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2707                ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2708        }
2709
2710        return 0;
2711
2712err_out_nosup:
2713        if (ata_msg_probe(ap))
2714                ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2715        return rc;
2716}
2717
2718/**
2719 *      ata_cable_40wire        -       return 40 wire cable type
2720 *      @ap: port
2721 *
2722 *      Helper method for drivers which want to hardwire 40 wire cable
2723 *      detection.
2724 */
2725
2726int ata_cable_40wire(struct ata_port *ap)
2727{
2728        return ATA_CBL_PATA40;
2729}
2730
2731/**
2732 *      ata_cable_80wire        -       return 80 wire cable type
2733 *      @ap: port
2734 *
2735 *      Helper method for drivers which want to hardwire 80 wire cable
2736 *      detection.
2737 */
2738
2739int ata_cable_80wire(struct ata_port *ap)
2740{
2741        return ATA_CBL_PATA80;
2742}
2743
2744/**
2745 *      ata_cable_unknown       -       return unknown PATA cable.
2746 *      @ap: port
2747 *
2748 *      Helper method for drivers which have no PATA cable detection.
2749 */
2750
2751int ata_cable_unknown(struct ata_port *ap)
2752{
2753        return ATA_CBL_PATA_UNK;
2754}
2755
2756/**
2757 *      ata_cable_ignore        -       return ignored PATA cable.
2758 *      @ap: port
2759 *
2760 *      Helper method for drivers which don't use cable type to limit
2761 *      transfer mode.
2762 */
2763int ata_cable_ignore(struct ata_port *ap)
2764{
2765        return ATA_CBL_PATA_IGN;
2766}
2767
2768/**
2769 *      ata_cable_sata  -       return SATA cable type
2770 *      @ap: port
2771 *
2772 *      Helper method for drivers which have SATA cables
2773 */
2774
2775int ata_cable_sata(struct ata_port *ap)
2776{
2777        return ATA_CBL_SATA;
2778}
2779
2780/**
2781 *      ata_bus_probe - Reset and probe ATA bus
2782 *      @ap: Bus to probe
2783 *
2784 *      Master ATA bus probing function.  Initiates a hardware-dependent
2785 *      bus reset, then attempts to identify any devices found on
2786 *      the bus.
2787 *
2788 *      LOCKING:
2789 *      PCI/etc. bus probe sem.
2790 *
2791 *      RETURNS:
2792 *      Zero on success, negative errno otherwise.
2793 */
2794
2795int ata_bus_probe(struct ata_port *ap)
2796{
2797        unsigned int classes[ATA_MAX_DEVICES];
2798        int tries[ATA_MAX_DEVICES];
2799        int rc;
2800        struct ata_device *dev;
2801
2802        ata_for_each_dev(dev, &ap->link, ALL)
2803                tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2804
2805 retry:
2806        ata_for_each_dev(dev, &ap->link, ALL) {
2807                /* If we issue an SRST then an ATA drive (not ATAPI)
2808                 * may change configuration and be in PIO0 timing. If
2809                 * we do a hard reset (or are coming from power on)
2810                 * this is true for ATA or ATAPI. Until we've set a
2811                 * suitable controller mode we should not touch the
2812                 * bus as we may be talking too fast.
2813                 */
2814                dev->pio_mode = XFER_PIO_0;
2815                dev->dma_mode = 0xff;
2816
2817                /* If the controller has a pio mode setup function
2818                 * then use it to set the chipset to rights. Don't
2819                 * touch the DMA setup as that will be dealt with when
2820                 * configuring devices.
2821                 */
2822                if (ap->ops->set_piomode)
2823                        ap->ops->set_piomode(ap, dev);
2824        }
2825
2826        /* reset and determine device classes */
2827        ap->ops->phy_reset(ap);
2828
2829        ata_for_each_dev(dev, &ap->link, ALL) {
2830                if (dev->class != ATA_DEV_UNKNOWN)
2831                        classes[dev->devno] = dev->class;
2832                else
2833                        classes[dev->devno] = ATA_DEV_NONE;
2834
2835                dev->class = ATA_DEV_UNKNOWN;
2836        }
2837
2838        /* read IDENTIFY page and configure devices. We have to do the identify
2839           specific sequence bass-ackwards so that PDIAG- is released by
2840           the slave device */
2841
2842        ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2843                if (tries[dev->devno])
2844                        dev->class = classes[dev->devno];
2845
2846                if (!ata_dev_enabled(dev))
2847                        continue;
2848
2849                rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2850                                     dev->id);
2851                if (rc)
2852                        goto fail;
2853        }
2854
2855        /* Now ask for the cable type as PDIAG- should have been released */
2856        if (ap->ops->cable_detect)
2857                ap->cbl = ap->ops->cable_detect(ap);
2858
2859        /* We may have SATA bridge glue hiding here irrespective of
2860         * the reported cable types and sensed types.  When SATA
2861         * drives indicate we have a bridge, we don't know which end
2862         * of the link the bridge is which is a problem.
2863         */
2864        ata_for_each_dev(dev, &ap->link, ENABLED)
2865                if (ata_id_is_sata(dev->id))
2866                        ap->cbl = ATA_CBL_SATA;
2867
2868        /* After the identify sequence we can now set up the devices. We do
2869           this in the normal order so that the user doesn't get confused */
2870
2871        ata_for_each_dev(dev, &ap->link, ENABLED) {
2872                ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2873                rc = ata_dev_configure(dev);
2874                ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2875                if (rc)
2876                        goto fail;
2877        }
2878
2879        /* configure transfer mode */
2880        rc = ata_set_mode(&ap->link, &dev);
2881        if (rc)
2882                goto fail;
2883
2884        ata_for_each_dev(dev, &ap->link, ENABLED)
2885                return 0;
2886
2887        return -ENODEV;
2888
2889 fail:
2890        tries[dev->devno]--;
2891
2892        switch (rc) {
2893        case -EINVAL:
2894                /* eeek, something went very wrong, give up */
2895                tries[dev->devno] = 0;
2896                break;
2897
2898        case -ENODEV:
2899                /* give it just one more chance */
2900                tries[dev->devno] = min(tries[dev->devno], 1);
2901        case -EIO:
2902                if (tries[dev->devno] == 1) {
2903                        /* This is the last chance, better to slow
2904                         * down than lose it.
2905                         */
2906                        sata_down_spd_limit(&ap->link, 0);
2907                        ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2908                }
2909        }
2910
2911        if (!tries[dev->devno])
2912                ata_dev_disable(dev);
2913
2914        goto retry;
2915}
2916
2917/**
2918 *      sata_print_link_status - Print SATA link status
2919 *      @link: SATA link to printk link status about
2920 *
2921 *      This function prints link speed and status of a SATA link.
2922 *
2923 *      LOCKING:
2924 *      None.
2925 */
2926static void sata_print_link_status(struct ata_link *link)
2927{
2928        u32 sstatus, scontrol, tmp;
2929
2930        if (sata_scr_read(link, SCR_STATUS, &sstatus))
2931                return;
2932        sata_scr_read(link, SCR_CONTROL, &scontrol);
2933
2934        if (ata_phys_link_online(link)) {
2935                tmp = (sstatus >> 4) & 0xf;
2936                ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2937                              sata_spd_string(tmp), sstatus, scontrol);
2938        } else {
2939                ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2940                              sstatus, scontrol);
2941        }
2942}
2943
2944/**
2945 *      ata_dev_pair            -       return other device on cable
2946 *      @adev: device
2947 *
2948 *      Obtain the other device on the same cable, or if none is
2949 *      present NULL is returned
2950 */
2951
2952struct ata_device *ata_dev_pair(struct ata_device *adev)
2953{
2954        struct ata_link *link = adev->link;
2955        struct ata_device *pair = &link->device[1 - adev->devno];
2956        if (!ata_dev_enabled(pair))
2957                return NULL;
2958        return pair;
2959}
2960
2961/**
2962 *      sata_down_spd_limit - adjust SATA spd limit downward
2963 *      @link: Link to adjust SATA spd limit for
2964 *      @spd_limit: Additional limit
2965 *
2966 *      Adjust SATA spd limit of @link downward.  Note that this
2967 *      function only adjusts the limit.  The change must be applied
2968 *      using sata_set_spd().
2969 *
2970 *      If @spd_limit is non-zero, the speed is limited to equal to or
2971 *      lower than @spd_limit if such speed is supported.  If
2972 *      @spd_limit is slower than any supported speed, only the lowest
2973 *      supported speed is allowed.
2974 *
2975 *      LOCKING:
2976 *      Inherited from caller.
2977 *
2978 *      RETURNS:
2979 *      0 on success, negative errno on failure
2980 */
2981int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2982{
2983        u32 sstatus, spd, mask;
2984        int rc, bit;
2985
2986        if (!sata_scr_valid(link))
2987                return -EOPNOTSUPP;
2988
2989        /* If SCR can be read, use it to determine the current SPD.
2990         * If not, use cached value in link->sata_spd.
2991         */
2992        rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2993        if (rc == 0 && ata_sstatus_online(sstatus))
2994                spd = (sstatus >> 4) & 0xf;
2995        else
2996                spd = link->sata_spd;
2997
2998        mask = link->sata_spd_limit;
2999        if (mask <= 1)
3000                return -EINVAL;
3001
3002        /* unconditionally mask off the highest bit */
3003        bit = fls(mask) - 1;
3004        mask &= ~(1 << bit);
3005
3006        /* Mask off all speeds higher than or equal to the current
3007         * one.  Force 1.5Gbps if current SPD is not available.
3008         */
3009        if (spd > 1)
3010                mask &= (1 << (spd - 1)) - 1;
3011        else
3012                mask &= 1;
3013
3014        /* were we already at the bottom? */
3015        if (!mask)
3016                return -EINVAL;
3017
3018        if (spd_limit) {
3019                if (mask & ((1 << spd_limit) - 1))
3020                        mask &= (1 << spd_limit) - 1;
3021                else {
3022                        bit = ffs(mask) - 1;
3023                        mask = 1 << bit;
3024                }
3025        }
3026
3027        link->sata_spd_limit = mask;
3028
3029        ata_link_warn(link, "limiting SATA link speed to %s\n",
3030                      sata_spd_string(fls(mask)));
3031
3032        return 0;
3033}
3034
3035static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3036{
3037        struct ata_link *host_link = &link->ap->link;
3038        u32 limit, target, spd;
3039
3040        limit = link->sata_spd_limit;
3041
3042        /* Don't configure downstream link faster than upstream link.
3043         * It doesn't speed up anything and some PMPs choke on such
3044         * configuration.
3045         */
3046        if (!ata_is_host_link(link) && host_link->sata_spd)
3047                limit &= (1 << host_link->sata_spd) - 1;
3048
3049        if (limit == UINT_MAX)
3050                target = 0;
3051        else
3052                target = fls(limit);
3053
3054        spd = (*scontrol >> 4) & 0xf;
3055        *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3056
3057        return spd != target;
3058}
3059
3060/**
3061 *      sata_set_spd_needed - is SATA spd configuration needed
3062 *      @link: Link in question
3063 *
3064 *      Test whether the spd limit in SControl matches
3065 *      @link->sata_spd_limit.  This function is used to determine
3066 *      whether hardreset is necessary to apply SATA spd
3067 *      configuration.
3068 *
3069 *      LOCKING:
3070 *      Inherited from caller.
3071 *
3072 *      RETURNS:
3073 *      1 if SATA spd configuration is needed, 0 otherwise.
3074 */
3075static int sata_set_spd_needed(struct ata_link *link)
3076{
3077        u32 scontrol;
3078
3079        if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3080                return 1;
3081
3082        return __sata_set_spd_needed(link, &scontrol);
3083}
3084
3085/**
3086 *      sata_set_spd - set SATA spd according to spd limit
3087 *      @link: Link to set SATA spd for
3088 *
3089 *      Set SATA spd of @link according to sata_spd_limit.
3090 *
3091 *      LOCKING:
3092 *      Inherited from caller.
3093 *
3094 *      RETURNS:
3095 *      0 if spd doesn't need to be changed, 1 if spd has been
3096 *      changed.  Negative errno if SCR registers are inaccessible.
3097 */
3098int sata_set_spd(struct ata_link *link)
3099{
3100        u32 scontrol;
3101        int rc;
3102
3103        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3104                return rc;
3105
3106        if (!__sata_set_spd_needed(link, &scontrol))
3107                return 0;
3108
3109        if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3110                return rc;
3111
3112        return 1;
3113}
3114
3115/*
3116 * This mode timing computation functionality is ported over from
3117 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3118 */
3119/*
3120 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3121 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3122 * for UDMA6, which is currently supported only by Maxtor drives.
3123 *
3124 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3125 */
3126
3127static const struct ata_timing ata_timing[] = {
3128/*      { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
3129        { XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
3130        { XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
3131        { XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
3132        { XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
3133        { XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
3134        { XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
3135        { XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
3136
3137        { XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
3138        { XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
3139        { XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
3140
3141        { XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
3142        { XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
3143        { XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
3144        { XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
3145        { XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
3146
3147/*      { XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
3148        { XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
3149        { XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
3150        { XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
3151        { XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
3152        { XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
3153        { XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
3154        { XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
3155
3156        { 0xFF }
3157};
3158
3159#define ENOUGH(v, unit)         (((v)-1)/(unit)+1)
3160#define EZ(v, unit)             ((v)?ENOUGH(v, unit):0)
3161
3162static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3163{
3164        q->setup        = EZ(t->setup      * 1000,  T);
3165        q->act8b        = EZ(t->act8b      * 1000,  T);
3166        q->rec8b        = EZ(t->rec8b      * 1000,  T);
3167        q->cyc8b        = EZ(t->cyc8b      * 1000,  T);
3168        q->active       = EZ(t->active     * 1000,  T);
3169        q->recover      = EZ(t->recover    * 1000,  T);
3170        q->dmack_hold   = EZ(t->dmack_hold * 1000,  T);
3171        q->cycle        = EZ(t->cycle      * 1000,  T);
3172        q->udma         = EZ(t->udma       * 1000, UT);
3173}
3174
3175void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3176                      struct ata_timing *m, unsigned int what)
3177{
3178        if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
3179        if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
3180        if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
3181        if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
3182        if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
3183        if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3184        if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3185        if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
3186        if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
3187}
3188
3189const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3190{
3191        const struct ata_timing *t = ata_timing;
3192
3193        while (xfer_mode > t->mode)
3194                t++;
3195
3196        if (xfer_mode == t->mode)
3197                return t;
3198
3199        WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3200                        __func__, xfer_mode);
3201
3202        return NULL;
3203}
3204
3205int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3206                       struct ata_timing *t, int T, int UT)
3207{
3208        const u16 *id = adev->id;
3209        const struct ata_timing *s;
3210        struct ata_timing p;
3211
3212        /*
3213         * Find the mode.
3214         */
3215
3216        if (!(s = ata_timing_find_mode(speed)))
3217                return -EINVAL;
3218
3219        memcpy(t, s, sizeof(*s));
3220
3221        /*
3222         * If the drive is an EIDE drive, it can tell us it needs extended
3223         * PIO/MW_DMA cycle timing.
3224         */
3225
3226        if (id[ATA_ID_FIELD_VALID] & 2) {       /* EIDE drive */
3227                memset(&p, 0, sizeof(p));
3228
3229                if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3230                        if (speed <= XFER_PIO_2)
3231                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3232                        else if ((speed <= XFER_PIO_4) ||
3233                                 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3234                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3235                } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3236                        p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3237
3238                ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3239        }
3240
3241        /*
3242         * Convert the timing to bus clock counts.
3243         */
3244
3245        ata_timing_quantize(t, t, T, UT);
3246
3247        /*
3248         * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3249         * S.M.A.R.T * and some other commands. We have to ensure that the
3250         * DMA cycle timing is slower/equal than the fastest PIO timing.
3251         */
3252
3253        if (speed > XFER_PIO_6) {
3254                ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3255                ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3256        }
3257
3258        /*
3259         * Lengthen active & recovery time so that cycle time is correct.
3260         */
3261
3262        if (t->act8b + t->rec8b < t->cyc8b) {
3263                t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3264                t->rec8b = t->cyc8b - t->act8b;
3265        }
3266
3267        if (t->active + t->recover < t->cycle) {
3268                t->active += (t->cycle - (t->active + t->recover)) / 2;
3269                t->recover = t->cycle - t->active;
3270        }
3271
3272        /* In a few cases quantisation may produce enough errors to
3273           leave t->cycle too low for the sum of active and recovery
3274           if so we must correct this */
3275        if (t->active + t->recover > t->cycle)
3276                t->cycle = t->active + t->recover;
3277
3278        return 0;
3279}
3280
3281/**
3282 *      ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3283 *      @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3284 *      @cycle: cycle duration in ns
3285 *
3286 *      Return matching xfer mode for @cycle.  The returned mode is of
3287 *      the transfer type specified by @xfer_shift.  If @cycle is too
3288 *      slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3289 *      than the fastest known mode, the fasted mode is returned.
3290 *
3291 *      LOCKING:
3292 *      None.
3293 *
3294 *      RETURNS:
3295 *      Matching xfer_mode, 0xff if no match found.
3296 */
3297u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3298{
3299        u8 base_mode = 0xff, last_mode = 0xff;
3300        const struct ata_xfer_ent *ent;
3301        const struct ata_timing *t;
3302
3303        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3304                if (ent->shift == xfer_shift)
3305                        base_mode = ent->base;
3306
3307        for (t = ata_timing_find_mode(base_mode);
3308             t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3309                unsigned short this_cycle;
3310
3311                switch (xfer_shift) {
3312                case ATA_SHIFT_PIO:
3313                case ATA_SHIFT_MWDMA:
3314                        this_cycle = t->cycle;
3315                        break;
3316                case ATA_SHIFT_UDMA:
3317                        this_cycle = t->udma;
3318                        break;
3319                default:
3320                        return 0xff;
3321                }
3322
3323                if (cycle > this_cycle)
3324                        break;
3325
3326                last_mode = t->mode;
3327        }
3328
3329        return last_mode;
3330}
3331
3332/**
3333 *      ata_down_xfermask_limit - adjust dev xfer masks downward
3334 *      @dev: Device to adjust xfer masks
3335 *      @sel: ATA_DNXFER_* selector
3336 *
3337 *      Adjust xfer masks of @dev downward.  Note that this function
3338 *      does not apply the change.  Invoking ata_set_mode() afterwards
3339 *      will apply the limit.
3340 *
3341 *      LOCKING:
3342 *      Inherited from caller.
3343 *
3344 *      RETURNS:
3345 *      0 on success, negative errno on failure
3346 */
3347int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3348{
3349        char buf[32];
3350        unsigned long orig_mask, xfer_mask;
3351        unsigned long pio_mask, mwdma_mask, udma_mask;
3352        int quiet, highbit;
3353
3354        quiet = !!(sel & ATA_DNXFER_QUIET);
3355        sel &= ~ATA_DNXFER_QUIET;
3356
3357        xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3358                                                  dev->mwdma_mask,
3359                                                  dev->udma_mask);
3360        ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3361
3362        switch (sel) {
3363        case ATA_DNXFER_PIO:
3364                highbit = fls(pio_mask) - 1;
3365                pio_mask &= ~(1 << highbit);
3366                break;
3367
3368        case ATA_DNXFER_DMA:
3369                if (udma_mask) {
3370                        highbit = fls(udma_mask) - 1;
3371                        udma_mask &= ~(1 << highbit);
3372                        if (!udma_mask)
3373                                return -ENOENT;
3374                } else if (mwdma_mask) {
3375                        highbit = fls(mwdma_mask) - 1;
3376                        mwdma_mask &= ~(1 << highbit);
3377                        if (!mwdma_mask)
3378                                return -ENOENT;
3379                }
3380                break;
3381
3382        case ATA_DNXFER_40C:
3383                udma_mask &= ATA_UDMA_MASK_40C;
3384                break;
3385
3386        case ATA_DNXFER_FORCE_PIO0:
3387                pio_mask &= 1;
3388        case ATA_DNXFER_FORCE_PIO:
3389                mwdma_mask = 0;
3390                udma_mask = 0;
3391                break;
3392
3393        default:
3394                BUG();
3395        }
3396
3397        xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3398
3399        if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3400                return -ENOENT;
3401
3402        if (!quiet) {
3403                if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3404                        snprintf(buf, sizeof(buf), "%s:%s",
3405                                 ata_mode_string(xfer_mask),
3406                                 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3407                else
3408                        snprintf(buf, sizeof(buf), "%s",
3409                                 ata_mode_string(xfer_mask));
3410
3411                ata_dev_warn(dev, "limiting speed to %s\n", buf);
3412        }
3413
3414        ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3415                            &dev->udma_mask);
3416
3417        return 0;
3418}
3419
3420static int ata_dev_set_mode(struct ata_device *dev)
3421{
3422        struct ata_port *ap = dev->link->ap;
3423        struct ata_eh_context *ehc = &dev->link->eh_context;
3424        const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3425        const char *dev_err_whine = "";
3426        int ign_dev_err = 0;
3427        unsigned int err_mask = 0;
3428        int rc;
3429
3430        dev->flags &= ~ATA_DFLAG_PIO;
3431        if (dev->xfer_shift == ATA_SHIFT_PIO)
3432                dev->flags |= ATA_DFLAG_PIO;
3433
3434        if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3435                dev_err_whine = " (SET_XFERMODE skipped)";
3436        else {
3437                if (nosetxfer)
3438                        ata_dev_warn(dev,
3439                                     "NOSETXFER but PATA detected - can't "
3440                                     "skip SETXFER, might malfunction\n");
3441                err_mask = ata_dev_set_xfermode(dev);
3442        }
3443
3444        if (err_mask & ~AC_ERR_DEV)
3445                goto fail;
3446
3447        /* revalidate */
3448        ehc->i.flags |= ATA_EHI_POST_SETMODE;
3449        rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3450        ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3451        if (rc)
3452                return rc;
3453
3454        if (dev->xfer_shift == ATA_SHIFT_PIO) {
3455                /* Old CFA may refuse this command, which is just fine */
3456                if (ata_id_is_cfa(dev->id))
3457                        ign_dev_err = 1;
3458                /* Catch several broken garbage emulations plus some pre
3459                   ATA devices */
3460                if (ata_id_major_version(dev->id) == 0 &&
3461                                        dev->pio_mode <= XFER_PIO_2)
3462                        ign_dev_err = 1;
3463                /* Some very old devices and some bad newer ones fail
3464                   any kind of SET_XFERMODE request but support PIO0-2
3465                   timings and no IORDY */
3466                if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3467                        ign_dev_err = 1;
3468        }
3469        /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3470           Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3471        if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3472            dev->dma_mode == XFER_MW_DMA_0 &&
3473            (dev->id[63] >> 8) & 1)
3474                ign_dev_err = 1;
3475
3476        /* if the device is actually configured correctly, ignore dev err */
3477        if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3478                ign_dev_err = 1;
3479
3480        if (err_mask & AC_ERR_DEV) {
3481                if (!ign_dev_err)
3482                        goto fail;
3483                else
3484                        dev_err_whine = " (device error ignored)";
3485        }
3486
3487        DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3488                dev->xfer_shift, (int)dev->xfer_mode);
3489
3490        ata_dev_info(dev, "configured for %s%s\n",
3491                     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3492                     dev_err_whine);
3493
3494        return 0;
3495
3496 fail:
3497        ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3498        return -EIO;
3499}
3500
3501/**
3502 *      ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3503 *      @link: link on which timings will be programmed
3504 *      @r_failed_dev: out parameter for failed device
3505 *
3506 *      Standard implementation of the function used to tune and set
3507 *      ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3508 *      ata_dev_set_mode() fails, pointer to the failing device is
3509 *      returned in @r_failed_dev.
3510 *
3511 *      LOCKING:
3512 *      PCI/etc. bus probe sem.
3513 *
3514 *      RETURNS:
3515 *      0 on success, negative errno otherwise
3516 */
3517
3518int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3519{
3520        struct ata_port *ap = link->ap;
3521        struct ata_device *dev;
3522        int rc = 0, used_dma = 0, found = 0;
3523
3524        /* step 1: calculate xfer_mask */
3525        ata_for_each_dev(dev, link, ENABLED) {
3526                unsigned long pio_mask, dma_mask;
3527                unsigned int mode_mask;
3528
3529                mode_mask = ATA_DMA_MASK_ATA;
3530                if (dev->class == ATA_DEV_ATAPI)
3531                        mode_mask = ATA_DMA_MASK_ATAPI;
3532                else if (ata_id_is_cfa(dev->id))
3533                        mode_mask = ATA_DMA_MASK_CFA;
3534
3535                ata_dev_xfermask(dev);
3536                ata_force_xfermask(dev);
3537
3538                pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3539
3540                if (libata_dma_mask & mode_mask)
3541                        dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3542                                                     dev->udma_mask);
3543                else
3544                        dma_mask = 0;
3545
3546                dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3547                dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3548
3549                found = 1;
3550                if (ata_dma_enabled(dev))
3551                        used_dma = 1;
3552        }
3553        if (!found)
3554                goto out;
3555
3556        /* step 2: always set host PIO timings */
3557        ata_for_each_dev(dev, link, ENABLED) {
3558                if (dev->pio_mode == 0xff) {
3559                        ata_dev_warn(dev, "no PIO support\n");
3560                        rc = -EINVAL;
3561                        goto out;
3562                }
3563
3564                dev->xfer_mode = dev->pio_mode;
3565                dev->xfer_shift = ATA_SHIFT_PIO;
3566                if (ap->ops->set_piomode)
3567                        ap->ops->set_piomode(ap, dev);
3568        }
3569
3570        /* step 3: set host DMA timings */
3571        ata_for_each_dev(dev, link, ENABLED) {
3572                if (!ata_dma_enabled(dev))
3573                        continue;
3574
3575                dev->xfer_mode = dev->dma_mode;
3576                dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3577                if (ap->ops->set_dmamode)
3578                        ap->ops->set_dmamode(ap, dev);
3579        }
3580
3581        /* step 4: update devices' xfer mode */
3582        ata_for_each_dev(dev, link, ENABLED) {
3583                rc = ata_dev_set_mode(dev);
3584                if (rc)
3585                        goto out;
3586        }
3587
3588        /* Record simplex status. If we selected DMA then the other
3589         * host channels are not permitted to do so.
3590         */
3591        if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3592                ap->host->simplex_claimed = ap;
3593
3594 out:
3595        if (rc)
3596                *r_failed_dev = dev;
3597        return rc;
3598}
3599
3600/**
3601 *      ata_wait_ready - wait for link to become ready
3602 *      @link: link to be waited on
3603 *      @deadline: deadline jiffies for the operation
3604 *      @check_ready: callback to check link readiness
3605 *
3606 *      Wait for @link to become ready.  @check_ready should return
3607 *      positive number if @link is ready, 0 if it isn't, -ENODEV if
3608 *      link doesn't seem to be occupied, other errno for other error
3609 *      conditions.
3610 *
3611 *      Transient -ENODEV conditions are allowed for
3612 *      ATA_TMOUT_FF_WAIT.
3613 *
3614 *      LOCKING:
3615 *      EH context.
3616 *
3617 *      RETURNS:
3618 *      0 if @link is ready before @deadline; otherwise, -errno.
3619 */
3620int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3621                   int (*check_ready)(struct ata_link *link))
3622{
3623        unsigned long start = jiffies;
3624        unsigned long nodev_deadline;
3625        int warned = 0;
3626
3627        /* choose which 0xff timeout to use, read comment in libata.h */
3628        if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3629                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3630        else
3631                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3632
3633        /* Slave readiness can't be tested separately from master.  On
3634         * M/S emulation configuration, this function should be called
3635         * only on the master and it will handle both master and slave.
3636         */
3637        WARN_ON(link == link->ap->slave_link);
3638
3639        if (time_after(nodev_deadline, deadline))
3640                nodev_deadline = deadline;
3641
3642        while (1) {
3643                unsigned long now = jiffies;
3644                int ready, tmp;
3645
3646                ready = tmp = check_ready(link);
3647                if (ready > 0)
3648                        return 0;
3649
3650                /*
3651                 * -ENODEV could be transient.  Ignore -ENODEV if link
3652                 * is online.  Also, some SATA devices take a long
3653                 * time to clear 0xff after reset.  Wait for
3654                 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3655                 * offline.
3656                 *
3657                 * Note that some PATA controllers (pata_ali) explode
3658                 * if status register is read more than once when
3659                 * there's no device attached.
3660                 */
3661                if (ready == -ENODEV) {
3662                        if (ata_link_online(link))
3663                                ready = 0;
3664                        else if ((link->ap->flags & ATA_FLAG_SATA) &&
3665                                 !ata_link_offline(link) &&
3666                                 time_before(now, nodev_deadline))
3667                                ready = 0;
3668                }
3669
3670                if (ready)
3671                        return ready;
3672                if (time_after(now, deadline))
3673                        return -EBUSY;
3674
3675                if (!warned && time_after(now, start + 5 * HZ) &&
3676                    (deadline - now > 3 * HZ)) {
3677                        ata_link_warn(link,
3678                                "link is slow to respond, please be patient "
3679                                "(ready=%d)\n", tmp);
3680                        warned = 1;
3681                }
3682
3683                ata_msleep(link->ap, 50);
3684        }
3685}
3686
3687/**
3688 *      ata_wait_after_reset - wait for link to become ready after reset
3689 *      @link: link to be waited on
3690 *      @deadline: deadline jiffies for the operation
3691 *      @check_ready: callback to check link readiness
3692 *
3693 *      Wait for @link to become ready after reset.
3694 *
3695 *      LOCKING:
3696 *      EH context.
3697 *
3698 *      RETURNS:
3699 *      0 if @link is ready before @deadline; otherwise, -errno.
3700 */
3701int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3702                                int (*check_ready)(struct ata_link *link))
3703{
3704        ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3705
3706        return ata_wait_ready(link, deadline, check_ready);
3707}
3708
3709/**
3710 *      sata_link_debounce - debounce SATA phy status
3711 *      @link: ATA link to debounce SATA phy status for
3712 *      @params: timing parameters { interval, duration, timeout } in msec
3713 *      @deadline: deadline jiffies for the operation
3714 *
3715 *      Make sure SStatus of @link reaches stable state, determined by
3716 *      holding the same value where DET is not 1 for @duration polled
3717 *      every @interval, before @timeout.  Timeout constraints the
3718 *      beginning of the stable state.  Because DET gets stuck at 1 on
3719 *      some controllers after hot unplugging, this functions waits
3720 *      until timeout then returns 0 if DET is stable at 1.
3721 *
3722 *      @timeout is further limited by @deadline.  The sooner of the
3723 *      two is used.
3724 *
3725 *      LOCKING:
3726 *      Kernel thread context (may sleep)
3727 *
3728 *      RETURNS:
3729 *      0 on success, -errno on failure.
3730 */
3731int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3732                       unsigned long deadline)
3733{
3734        unsigned long interval = params[0];
3735        unsigned long duration = params[1];
3736        unsigned long last_jiffies, t;
3737        u32 last, cur;
3738        int rc;
3739
3740        t = ata_deadline(jiffies, params[2]);
3741        if (time_before(t, deadline))
3742                deadline = t;
3743
3744        if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3745                return rc;
3746        cur &= 0xf;
3747
3748        last = cur;
3749        last_jiffies = jiffies;
3750
3751        while (1) {
3752                ata_msleep(link->ap, interval);
3753                if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3754                        return rc;
3755                cur &= 0xf;
3756
3757                /* DET stable? */
3758                if (cur == last) {
3759                        if (cur == 1 && time_before(jiffies, deadline))
3760                                continue;
3761                        if (time_after(jiffies,
3762                                       ata_deadline(last_jiffies, duration)))
3763                                return 0;
3764                        continue;
3765                }
3766
3767                /* unstable, start over */
3768                last = cur;
3769                last_jiffies = jiffies;
3770
3771                /* Check deadline.  If debouncing failed, return
3772                 * -EPIPE to tell upper layer to lower link speed.
3773                 */
3774                if (time_after(jiffies, deadline))
3775                        return -EPIPE;
3776        }
3777}
3778
3779/**
3780 *      sata_link_resume - resume SATA link
3781 *      @link: ATA link to resume SATA
3782 *      @params: timing parameters { interval, duration, timeout } in msec
3783 *      @deadline: deadline jiffies for the operation
3784 *
3785 *      Resume SATA phy @link and debounce it.
3786 *
3787 *      LOCKING:
3788 *      Kernel thread context (may sleep)
3789 *
3790 *      RETURNS:
3791 *      0 on success, -errno on failure.
3792 */
3793int sata_link_resume(struct ata_link *link, const unsigned long *params,
3794                     unsigned long deadline)
3795{
3796        int tries = ATA_LINK_RESUME_TRIES;
3797        u32 scontrol, serror;
3798        int rc;
3799
3800        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3801                return rc;
3802
3803        /*
3804         * Writes to SControl sometimes get ignored under certain
3805         * controllers (ata_piix SIDPR).  Make sure DET actually is
3806         * cleared.
3807         */
3808        do {
3809                scontrol = (scontrol & 0x0f0) | 0x300;
3810                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3811                        return rc;
3812                /*
3813                 * Some PHYs react badly if SStatus is pounded
3814                 * immediately after resuming.  Delay 200ms before
3815                 * debouncing.
3816                 */
3817                if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3818                        ata_msleep(link->ap, 200);
3819
3820                /* is SControl restored correctly? */
3821                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3822                        return rc;
3823        } while ((scontrol & 0xf0f) != 0x300 && --tries);
3824
3825        if ((scontrol & 0xf0f) != 0x300) {
3826                ata_link_warn(link, "failed to resume link (SControl %X)\n",
3827                             scontrol);
3828                return 0;
3829        }
3830
3831        if (tries < ATA_LINK_RESUME_TRIES)
3832                ata_link_warn(link, "link resume succeeded after %d retries\n",
3833                              ATA_LINK_RESUME_TRIES - tries);
3834
3835        if ((rc = sata_link_debounce(link, params, deadline)))
3836                return rc;
3837
3838        /* clear SError, some PHYs require this even for SRST to work */
3839        if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3840                rc = sata_scr_write(link, SCR_ERROR, serror);
3841
3842        return rc != -EINVAL ? rc : 0;
3843}
3844
3845/**
3846 *      sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3847 *      @link: ATA link to manipulate SControl for
3848 *      @policy: LPM policy to configure
3849 *      @spm_wakeup: initiate LPM transition to active state
3850 *
3851 *      Manipulate the IPM field of the SControl register of @link
3852 *      according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3853 *      @spm_wakeup is %true, the SPM field is manipulated to wake up
3854 *      the link.  This function also clears PHYRDY_CHG before
3855 *      returning.
3856 *
3857 *      LOCKING:
3858 *      EH context.
3859 *
3860 *      RETURNS:
3861 *      0 on success, -errno otherwise.
3862 */
3863int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3864                      bool spm_wakeup)
3865{
3866        struct ata_eh_context *ehc = &link->eh_context;
3867        bool woken_up = false;
3868        u32 scontrol;
3869        int rc;
3870
3871        rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3872        if (rc)
3873                return rc;
3874
3875        switch (policy) {
3876        case ATA_LPM_MAX_POWER:
3877                /* disable all LPM transitions */
3878                scontrol |= (0x7 << 8);
3879                /* initiate transition to active state */
3880                if (spm_wakeup) {
3881                        scontrol |= (0x4 << 12);
3882                        woken_up = true;
3883                }
3884                break;
3885        case ATA_LPM_MED_POWER:
3886                /* allow LPM to PARTIAL */
3887                scontrol &= ~(0x1 << 8);
3888                scontrol |= (0x6 << 8);
3889                break;
3890        case ATA_LPM_MIN_POWER:
3891                if (ata_link_nr_enabled(link) > 0)
3892                        /* no restrictions on LPM transitions */
3893                        scontrol &= ~(0x7 << 8);
3894                else {
3895                        /* empty port, power off */
3896                        scontrol &= ~0xf;
3897                        scontrol |= (0x1 << 2);
3898                }
3899                break;
3900        default:
3901                WARN_ON(1);
3902        }
3903
3904        rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3905        if (rc)
3906                return rc;
3907
3908        /* give the link time to transit out of LPM state */
3909        if (woken_up)
3910                msleep(10);
3911
3912        /* clear PHYRDY_CHG from SError */
3913        ehc->i.serror &= ~SERR_PHYRDY_CHG;
3914        return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3915}
3916
3917/**
3918 *      ata_std_prereset - prepare for reset
3919 *      @link: ATA link to be reset
3920 *      @deadline: deadline jiffies for the operation
3921 *
3922 *      @link is about to be reset.  Initialize it.  Failure from
3923 *      prereset makes libata abort whole reset sequence and give up
3924 *      that port, so prereset should be best-effort.  It does its
3925 *      best to prepare for reset sequence but if things go wrong, it
3926 *      should just whine, not fail.
3927 *
3928 *      LOCKING:
3929 *      Kernel thread context (may sleep)
3930 *
3931 *      RETURNS:
3932 *      0 on success, -errno otherwise.
3933 */
3934int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3935{
3936        struct ata_port *ap = link->ap;
3937        struct ata_eh_context *ehc = &link->eh_context;
3938        const unsigned long *timing = sata_ehc_deb_timing(ehc);
3939        int rc;
3940
3941        /* if we're about to do hardreset, nothing more to do */
3942        if (ehc->i.action & ATA_EH_HARDRESET)
3943                return 0;
3944
3945        /* if SATA, resume link */
3946        if (ap->flags & ATA_FLAG_SATA) {
3947                rc = sata_link_resume(link, timing, deadline);
3948                /* whine about phy resume failure but proceed */
3949                if (rc && rc != -EOPNOTSUPP)
3950                        ata_link_warn(link,
3951                                      "failed to resume link for reset (errno=%d)\n",
3952                                      rc);
3953        }
3954
3955        /* no point in trying softreset on offline link */
3956        if (ata_phys_link_offline(link))
3957                ehc->i.action &= ~ATA_EH_SOFTRESET;
3958
3959        return 0;
3960}
3961
3962/**
3963 *      sata_link_hardreset - reset link via SATA phy reset
3964 *      @link: link to reset
3965 *      @timing: timing parameters { interval, duration, timeout } in msec
3966 *      @deadline: deadline jiffies for the operation
3967 *      @online: optional out parameter indicating link onlineness
3968 *      @check_ready: optional callback to check link readiness
3969 *
3970 *      SATA phy-reset @link using DET bits of SControl register.
3971 *      After hardreset, link readiness is waited upon using
3972 *      ata_wait_ready() if @check_ready is specified.  LLDs are
3973 *      allowed to not specify @check_ready and wait itself after this
3974 *      function returns.  Device classification is LLD's
3975 *      responsibility.
3976 *
3977 *      *@online is set to one iff reset succeeded and @link is online
3978 *      after reset.
3979 *
3980 *      LOCKING:
3981 *      Kernel thread context (may sleep)
3982 *
3983 *      RETURNS:
3984 *      0 on success, -errno otherwise.
3985 */
3986int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3987                        unsigned long deadline,
3988                        bool *online, int (*check_ready)(struct ata_link *))
3989{
3990        u32 scontrol;
3991        int rc;
3992
3993        DPRINTK("ENTER\n");
3994
3995        if (online)
3996                *online = false;
3997
3998        if (sata_set_spd_needed(link)) {
3999                /* SATA spec says nothing about how to reconfigure
4000                 * spd.  To be on the safe side, turn off phy during
4001                 * reconfiguration.  This works for at least ICH7 AHCI
4002                 * and Sil3124.
4003                 */
4004                if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4005                        goto out;
4006
4007                scontrol = (scontrol & 0x0f0) | 0x304;
4008
4009                if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4010                        goto out;
4011
4012                sata_set_spd(link);
4013        }
4014
4015        /* issue phy wake/reset */
4016        if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4017                goto out;
4018
4019        scontrol = (scontrol & 0x0f0) | 0x301;
4020
4021        if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4022                goto out;
4023
4024        /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4025         * 10.4.2 says at least 1 ms.
4026         */
4027        ata_msleep(link->ap, 1);
4028
4029        /* bring link back */
4030        rc = sata_link_resume(link, timing, deadline);
4031        if (rc)
4032                goto out;
4033        /* if link is offline nothing more to do */
4034        if (ata_phys_link_offline(link))
4035                goto out;
4036
4037        /* Link is online.  From this point, -ENODEV too is an error. */
4038        if (online)
4039                *online = true;
4040
4041        if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4042                /* If PMP is supported, we have to do follow-up SRST.
4043                 * Some PMPs don't send D2H Reg FIS after hardreset if
4044                 * the first port is empty.  Wait only for
4045                 * ATA_TMOUT_PMP_SRST_WAIT.
4046                 */
4047                if (check_ready) {
4048                        unsigned long pmp_deadline;
4049
4050                        pmp_deadline = ata_deadline(jiffies,
4051                                                    ATA_TMOUT_PMP_SRST_WAIT);
4052                        if (time_after(pmp_deadline, deadline))
4053                                pmp_deadline = deadline;
4054                        ata_wait_ready(link, pmp_deadline, check_ready);
4055                }
4056                rc = -EAGAIN;
4057                goto out;
4058        }
4059
4060        rc = 0;
4061        if (check_ready)
4062                rc = ata_wait_ready(link, deadline, check_ready);
4063 out:
4064        if (rc && rc != -EAGAIN) {
4065                /* online is set iff link is online && reset succeeded */
4066                if (online)
4067                        *online = false;
4068                ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4069        }
4070        DPRINTK("EXIT, rc=%d\n", rc);
4071        return rc;
4072}
4073
4074/**
4075 *      sata_std_hardreset - COMRESET w/o waiting or classification
4076 *      @link: link to reset
4077 *      @class: resulting class of attached device
4078 *      @deadline: deadline jiffies for the operation
4079 *
4080 *      Standard SATA COMRESET w/o waiting or classification.
4081 *
4082 *      LOCKING:
4083 *      Kernel thread context (may sleep)
4084 *
4085 *      RETURNS:
4086 *      0 if link offline, -EAGAIN if link online, -errno on errors.
4087 */
4088int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4089                       unsigned long deadline)
4090{
4091        const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4092        bool online;
4093        int rc;
4094
4095        /* do hardreset */
4096        rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4097        return online ? -EAGAIN : rc;
4098}
4099
4100/**
4101 *      ata_std_postreset - standard postreset callback
4102 *      @link: the target ata_link
4103 *      @classes: classes of attached devices
4104 *
4105 *      This function is invoked after a successful reset.  Note that
4106 *      the device might have been reset more than once using
4107 *      different reset methods before postreset is invoked.
4108 *
4109 *      LOCKING:
4110 *      Kernel thread context (may sleep)
4111 */
4112void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4113{
4114        u32 serror;
4115
4116        DPRINTK("ENTER\n");
4117
4118        /* reset complete, clear SError */
4119        if (!sata_scr_read(link, SCR_ERROR, &serror))
4120                sata_scr_write(link, SCR_ERROR, serror);
4121
4122        /* print link status */
4123        sata_print_link_status(link);
4124
4125        DPRINTK("EXIT\n");
4126}
4127
4128/**
4129 *      ata_dev_same_device - Determine whether new ID matches configured device
4130 *      @dev: device to compare against
4131 *      @new_class: class of the new device
4132 *      @new_id: IDENTIFY page of the new device
4133 *
4134 *      Compare @new_class and @new_id against @dev and determine
4135 *      whether @dev is the device indicated by @new_class and
4136 *      @new_id.
4137 *
4138 *      LOCKING:
4139 *      None.
4140 *
4141 *      RETURNS:
4142 *      1 if @dev matches @new_class and @new_id, 0 otherwise.
4143 */
4144static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4145                               const u16 *new_id)
4146{
4147        const u16 *old_id = dev->id;
4148        unsigned char model[2][ATA_ID_PROD_LEN + 1];
4149        unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4150
4151        if (dev->class != new_class) {
4152                ata_dev_info(dev, "class mismatch %d != %d\n",
4153                             dev->class, new_class);
4154                return 0;
4155        }
4156
4157        ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4158        ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4159        ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4160        ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4161
4162        if (strcmp(model[0], model[1])) {
4163                ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4164                             model[0], model[1]);
4165                return 0;
4166        }
4167
4168        if (strcmp(serial[0], serial[1])) {
4169                ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4170                             serial[0], serial[1]);
4171                return 0;
4172        }
4173
4174        return 1;
4175}
4176
4177/**
4178 *      ata_dev_reread_id - Re-read IDENTIFY data
4179 *      @dev: target ATA device
4180 *      @readid_flags: read ID flags
4181 *
4182 *      Re-read IDENTIFY page and make sure @dev is still attached to
4183 *      the port.
4184 *
4185 *      LOCKING:
4186 *      Kernel thread context (may sleep)
4187 *
4188 *      RETURNS:
4189 *      0 on success, negative errno otherwise
4190 */
4191int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4192{
4193        unsigned int class = dev->class;
4194        u16 *id = (void *)dev->link->ap->sector_buf;
4195        int rc;
4196
4197        /* read ID data */
4198        rc = ata_dev_read_id(dev, &class, readid_flags, id);
4199        if (rc)
4200                return rc;
4201
4202        /* is the device still there? */
4203        if (!ata_dev_same_device(dev, class, id))
4204                return -ENODEV;
4205
4206        memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4207        return 0;
4208}
4209
4210/**
4211 *      ata_dev_revalidate - Revalidate ATA device
4212 *      @dev: device to revalidate
4213 *      @new_class: new class code
4214 *      @readid_flags: read ID flags
4215 *
4216 *      Re-read IDENTIFY page, make sure @dev is still attached to the
4217 *      port and reconfigure it according to the new IDENTIFY page.
4218 *
4219 *      LOCKING:
4220 *      Kernel thread context (may sleep)
4221 *
4222 *      RETURNS:
4223 *      0 on success, negative errno otherwise
4224 */
4225int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4226                       unsigned int readid_flags)
4227{
4228        u64 n_sectors = dev->n_sectors;
4229        u64 n_native_sectors = dev->n_native_sectors;
4230        int rc;
4231
4232        if (!ata_dev_enabled(dev))
4233                return -ENODEV;
4234
4235        /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4236        if (ata_class_enabled(new_class) &&
4237            new_class != ATA_DEV_ATA &&
4238            new_class != ATA_DEV_ATAPI &&
4239            new_class != ATA_DEV_ZAC &&
4240            new_class != ATA_DEV_SEMB) {
4241                ata_dev_info(dev, "class mismatch %u != %u\n",
4242                             dev->class, new_class);
4243                rc = -ENODEV;
4244                goto fail;
4245        }
4246
4247        /* re-read ID */
4248        rc = ata_dev_reread_id(dev, readid_flags);
4249        if (rc)
4250                goto fail;
4251
4252        /* configure device according to the new ID */
4253        rc = ata_dev_configure(dev);
4254        if (rc)
4255                goto fail;
4256
4257        /* verify n_sectors hasn't changed */
4258        if (dev->class != ATA_DEV_ATA || !n_sectors ||
4259            dev->n_sectors == n_sectors)
4260                return 0;
4261
4262        /* n_sectors has changed */
4263        ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4264                     (unsigned long long)n_sectors,
4265                     (unsigned long long)dev->n_sectors);
4266
4267        /*
4268         * Something could have caused HPA to be unlocked
4269         * involuntarily.  If n_native_sectors hasn't changed and the
4270         * new size matches it, keep the device.
4271         */
4272        if (dev->n_native_sectors == n_native_sectors &&
4273            dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4274                ata_dev_warn(dev,
4275                             "new n_sectors matches native, probably "
4276                             "late HPA unlock, n_sectors updated\n");
4277                /* use the larger n_sectors */
4278                return 0;
4279        }
4280
4281        /*
4282         * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4283         * unlocking HPA in those cases.
4284         *
4285         * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4286         */
4287        if (dev->n_native_sectors == n_native_sectors &&
4288            dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4289            !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4290                ata_dev_warn(dev,
4291                             "old n_sectors matches native, probably "
4292                             "late HPA lock, will try to unlock HPA\n");
4293                /* try unlocking HPA */
4294                dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4295                rc = -EIO;
4296        } else
4297                rc = -ENODEV;
4298
4299        /* restore original n_[native_]sectors and fail */
4300        dev->n_native_sectors = n_native_sectors;
4301        dev->n_sectors = n_sectors;
4302 fail:
4303        ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4304        return rc;
4305}
4306
4307struct ata_blacklist_entry {
4308        const char *model_num;
4309        const char *model_rev;
4310        unsigned long horkage;
4311};
4312
4313static const struct ata_blacklist_entry ata_device_blacklist [] = {
4314        /* Devices with DMA related problems under Linux */
4315        { "WDC AC11000H",       NULL,           ATA_HORKAGE_NODMA },
4316        { "WDC AC22100H",       NULL,           ATA_HORKAGE_NODMA },
4317        { "WDC AC32500H",       NULL,           ATA_HORKAGE_NODMA },
4318        { "WDC AC33100H",       NULL,           ATA_HORKAGE_NODMA },
4319        { "WDC AC31600H",       NULL,           ATA_HORKAGE_NODMA },
4320        { "WDC AC32100H",       "24.09P07",     ATA_HORKAGE_NODMA },
4321        { "WDC AC23200L",       "21.10N21",     ATA_HORKAGE_NODMA },
4322        { "Compaq CRD-8241B",   NULL,           ATA_HORKAGE_NODMA },
4323        { "CRD-8400B",          NULL,           ATA_HORKAGE_NODMA },
4324        { "CRD-848[02]B",       NULL,           ATA_HORKAGE_NODMA },
4325        { "CRD-84",             NULL,           ATA_HORKAGE_NODMA },
4326        { "SanDisk SDP3B",      NULL,           ATA_HORKAGE_NODMA },
4327        { "SanDisk SDP3B-64",   NULL,           ATA_HORKAGE_NODMA },
4328        { "SANYO CD-ROM CRD",   NULL,           ATA_HORKAGE_NODMA },
4329        { "HITACHI CDR-8",      NULL,           ATA_HORKAGE_NODMA },
4330        { "HITACHI CDR-8[34]35",NULL,           ATA_HORKAGE_NODMA },
4331        { "Toshiba CD-ROM XM-6202B", NULL,      ATA_HORKAGE_NODMA },
4332        { "TOSHIBA CD-ROM XM-1702BC", NULL,     ATA_HORKAGE_NODMA },
4333        { "CD-532E-A",          NULL,           ATA_HORKAGE_NODMA },
4334        { "E-IDE CD-ROM CR-840",NULL,           ATA_HORKAGE_NODMA },
4335        { "CD-ROM Drive/F5A",   NULL,           ATA_HORKAGE_NODMA },
4336        { "WPI CDD-820",        NULL,           ATA_HORKAGE_NODMA },
4337        { "SAMSUNG CD-ROM SC-148C", NULL,       ATA_HORKAGE_NODMA },
4338        { "SAMSUNG CD-ROM SC",  NULL,           ATA_HORKAGE_NODMA },
4339        { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4340        { "_NEC DV5800A",       NULL,           ATA_HORKAGE_NODMA },
4341        { "SAMSUNG CD-ROM SN-124", "N001",      ATA_HORKAGE_NODMA },
4342        { "Seagate STT20000A", NULL,            ATA_HORKAGE_NODMA },
4343        { " 2GB ATA Flash Disk", "ADMA428M",    ATA_HORKAGE_NODMA },
4344        { "VRFDFC22048UCHC-TE*", NULL,          ATA_HORKAGE_NODMA },
4345        /* Odd clown on sil3726/4726 PMPs */
4346        { "Config  Disk",       NULL,           ATA_HORKAGE_DISABLE },
4347
4348        /* Weird ATAPI devices */
4349        { "TORiSAN DVD-ROM DRD-N216", NULL,     ATA_HORKAGE_MAX_SEC_128 },
4350        { "QUANTUM DAT    DAT72-000", NULL,     ATA_HORKAGE_ATAPI_MOD16_DMA },
4351        { "Slimtype DVD A  DS8A8SH", NULL,      ATA_HORKAGE_MAX_SEC_LBA48 },
4352        { "Slimtype DVD A  DS8A9SH", NULL,      ATA_HORKAGE_MAX_SEC_LBA48 },
4353
4354        /*
4355         * Causes silent data corruption with higher max sects.
4356         * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4357         */
4358        { "ST380013AS",         "3.20",         ATA_HORKAGE_MAX_SEC_1024 },
4359
4360        /*
4361         * These devices time out with higher max sects.
4362         * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4363         */
4364        { "LITEON CX1-JB*-HP",  NULL,           ATA_HORKAGE_MAX_SEC_1024 },
4365
4366        /* Devices we expect to fail diagnostics */
4367
4368        /* Devices where NCQ should be avoided */
4369        /* NCQ is slow */
4370        { "WDC WD740ADFD-00",   NULL,           ATA_HORKAGE_NONCQ },
4371        { "WDC WD740ADFD-00NLR1", NULL,         ATA_HORKAGE_NONCQ, },
4372        /* http://thread.gmane.org/gmane.linux.ide/14907 */
4373        { "FUJITSU MHT2060BH",  NULL,           ATA_HORKAGE_NONCQ },
4374        /* NCQ is broken */
4375        { "Maxtor *",           "BANC*",        ATA_HORKAGE_NONCQ },
4376        { "Maxtor 7V300F0",     "VA111630",     ATA_HORKAGE_NONCQ },
4377        { "ST380817AS",         "3.42",         ATA_HORKAGE_NONCQ },
4378        { "ST3160023AS",        "3.42",         ATA_HORKAGE_NONCQ },
4379        { "OCZ CORE_SSD",       "02.10104",     ATA_HORKAGE_NONCQ },
4380
4381        /* Seagate NCQ + FLUSH CACHE firmware bug */
4382        { "ST31500341AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4383                                                ATA_HORKAGE_FIRMWARE_WARN },
4384
4385        { "ST31000333AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4386                                                ATA_HORKAGE_FIRMWARE_WARN },
4387
4388        { "ST3640[36]23AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4389                                                ATA_HORKAGE_FIRMWARE_WARN },
4390
4391        { "ST3320[68]13AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
4392                                                ATA_HORKAGE_FIRMWARE_WARN },
4393
4394        /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4395        { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4396        { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4397        { "VB0250EAVER",        "HPG7",         ATA_HORKAGE_BROKEN_FPDMA_AA },
4398
4399        /* Blacklist entries taken from Silicon Image 3124/3132
4400           Windows driver .inf file - also several Linux problem reports */
4401        { "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4402        { "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4403        { "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4404
4405        /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4406        { "C300-CTFDDAC128MAG", "0001",         ATA_HORKAGE_NONCQ, },
4407
4408        /* devices which puke on READ_NATIVE_MAX */
4409        { "HDS724040KLSA80",    "KFAOA20N",     ATA_HORKAGE_BROKEN_HPA, },
4410        { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4411        { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4412        { "MAXTOR 6L080L4",     "A93.0500",     ATA_HORKAGE_BROKEN_HPA },
4413
4414        /* this one allows HPA unlocking but fails IOs on the area */
4415        { "OCZ-VERTEX",             "1.30",     ATA_HORKAGE_BROKEN_HPA },
4416
4417        /* Devices which report 1 sector over size HPA */
4418        { "ST340823A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4419        { "ST320413A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4420        { "ST310211A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
4421
4422        /* Devices which get the IVB wrong */
4423        { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4424        /* Maybe we should just blacklist TSSTcorp... */
4425        { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4426
4427        /* Devices that do not need bridging limits applied */
4428        { "MTRON MSP-SATA*",            NULL,   ATA_HORKAGE_BRIDGE_OK, },
4429        { "BUFFALO HD-QSU2/R5",         NULL,   ATA_HORKAGE_BRIDGE_OK, },
4430
4431        /* Devices which aren't very happy with higher link speeds */
4432        { "WD My Book",                 NULL,   ATA_HORKAGE_1_5_GBPS, },
4433        { "Seagate FreeAgent GoFlex",   NULL,   ATA_HORKAGE_1_5_GBPS, },
4434
4435        /*
4436         * Devices which choke on SETXFER.  Applies only if both the
4437         * device and controller are SATA.
4438         */
4439        { "PIONEER DVD-RW  DVRTD08",    NULL,   ATA_HORKAGE_NOSETXFER },
4440        { "PIONEER DVD-RW  DVRTD08A",   NULL,   ATA_HORKAGE_NOSETXFER },
4441        { "PIONEER DVD-RW  DVR-215",    NULL,   ATA_HORKAGE_NOSETXFER },
4442        { "PIONEER DVD-RW  DVR-212D",   NULL,   ATA_HORKAGE_NOSETXFER },
4443        { "PIONEER DVD-RW  DVR-216D",   NULL,   ATA_HORKAGE_NOSETXFER },
4444
4445        /* devices that don't properly handle queued TRIM commands */
4446        { "Micron_M500_*",              NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4447                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4448        { "Crucial_CT*M500*",           NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4449                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4450        { "Micron_M5[15]0_*",           "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4451                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4452        { "Crucial_CT*M550*",           "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4453                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4454        { "Crucial_CT*MX100*",          "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4455                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4456        { "Samsung SSD 8*",             NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4457                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4458        { "FCCT*M500*",                 NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4459                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4460
4461        /* devices that don't properly handle TRIM commands */
4462        { "SuperSSpeed S238*",          NULL,   ATA_HORKAGE_NOTRIM, },
4463
4464        /*
4465         * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4466         * (Return Zero After Trim) flags in the ATA Command Set are
4467         * unreliable in the sense that they only define what happens if
4468         * the device successfully executed the DSM TRIM command. TRIM
4469         * is only advisory, however, and the device is free to silently
4470         * ignore all or parts of the request.
4471         *
4472         * Whitelist drives that are known to reliably return zeroes
4473         * after TRIM.
4474         */
4475
4476        /*
4477         * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4478         * that model before whitelisting all other intel SSDs.
4479         */
4480        { "INTEL*SSDSC2MH*",            NULL,   0, },
4481
4482        { "Micron*",                    NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4483        { "Crucial*",                   NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4484        { "INTEL*SSD*",                 NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4485        { "SSD*INTEL*",                 NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4486        { "Samsung*SSD*",               NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4487        { "SAMSUNG*SSD*",               NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4488        { "ST[1248][0248]0[FH]*",       NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4489
4490        /*
4491         * Some WD SATA-I drives spin up and down erratically when the link
4492         * is put into the slumber mode.  We don't have full list of the
4493         * affected devices.  Disable LPM if the device matches one of the
4494         * known prefixes and is SATA-1.  As a side effect LPM partial is
4495         * lost too.
4496         *
4497         * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4498         */
4499        { "WDC WD800JD-*",              NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4500        { "WDC WD1200JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4501        { "WDC WD1600JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4502        { "WDC WD2000JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4503        { "WDC WD2500JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4504        { "WDC WD3000JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4505        { "WDC WD3200JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4506
4507        /* End Marker */
4508        { }
4509};
4510
4511static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4512{
4513        unsigned char model_num[ATA_ID_PROD_LEN + 1];
4514        unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4515        const struct ata_blacklist_entry *ad = ata_device_blacklist;
4516
4517        ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4518        ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4519
4520        while (ad->model_num) {
4521                if (glob_match(ad->model_num, model_num)) {
4522                        if (ad->model_rev == NULL)
4523                                return ad->horkage;
4524                        if (glob_match(ad->model_rev, model_rev))
4525                                return ad->horkage;
4526                }
4527                ad++;
4528        }
4529        return 0;
4530}
4531
4532static int ata_dma_blacklisted(const struct ata_device *dev)
4533{
4534        /* We don't support polling DMA.
4535         * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4536         * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4537         */
4538        if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4539            (dev->flags & ATA_DFLAG_CDB_INTR))
4540                return 1;
4541        return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4542}
4543
4544/**
4545 *      ata_is_40wire           -       check drive side detection
4546 *      @dev: device
4547 *
4548 *      Perform drive side detection decoding, allowing for device vendors
4549 *      who can't follow the documentation.
4550 */
4551
4552static int ata_is_40wire(struct ata_device *dev)
4553{
4554        if (dev->horkage & ATA_HORKAGE_IVB)
4555                return ata_drive_40wire_relaxed(dev->id);
4556        return ata_drive_40wire(dev->id);
4557}
4558
4559/**
4560 *      cable_is_40wire         -       40/80/SATA decider
4561 *      @ap: port to consider
4562 *
4563 *      This function encapsulates the policy for speed management
4564 *      in one place. At the moment we don't cache the result but
4565 *      there is a good case for setting ap->cbl to the result when
4566 *      we are called with unknown cables (and figuring out if it
4567 *      impacts hotplug at all).
4568 *
4569 *      Return 1 if the cable appears to be 40 wire.
4570 */
4571
4572static int cable_is_40wire(struct ata_port *ap)
4573{
4574        struct ata_link *link;
4575        struct ata_device *dev;
4576
4577        /* If the controller thinks we are 40 wire, we are. */
4578        if (ap->cbl == ATA_CBL_PATA40)
4579                return 1;
4580
4581        /* If the controller thinks we are 80 wire, we are. */
4582        if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4583                return 0;
4584
4585        /* If the system is known to be 40 wire short cable (eg
4586         * laptop), then we allow 80 wire modes even if the drive
4587         * isn't sure.
4588         */
4589        if (ap->cbl == ATA_CBL_PATA40_SHORT)
4590                return 0;
4591
4592        /* If the controller doesn't know, we scan.
4593         *
4594         * Note: We look for all 40 wire detects at this point.  Any
4595         *       80 wire detect is taken to be 80 wire cable because
4596         * - in many setups only the one drive (slave if present) will
4597         *   give a valid detect
4598         * - if you have a non detect capable drive you don't want it
4599         *   to colour the choice
4600         */
4601        ata_for_each_link(link, ap, EDGE) {
4602                ata_for_each_dev(dev, link, ENABLED) {
4603                        if (!ata_is_40wire(dev))
4604                                return 0;
4605                }
4606        }
4607        return 1;
4608}
4609
4610/**
4611 *      ata_dev_xfermask - Compute supported xfermask of the given device
4612 *      @dev: Device to compute xfermask for
4613 *
4614 *      Compute supported xfermask of @dev and store it in
4615 *      dev->*_mask.  This function is responsible for applying all
4616 *      known limits including host controller limits, device
4617 *      blacklist, etc...
4618 *
4619 *      LOCKING:
4620 *      None.
4621 */
4622static void ata_dev_xfermask(struct ata_device *dev)
4623{
4624        struct ata_link *link = dev->link;
4625        struct ata_port *ap = link->ap;
4626        struct ata_host *host = ap->host;
4627        unsigned long xfer_mask;
4628
4629        /* controller modes available */
4630        xfer_mask = ata_pack_xfermask(ap->pio_mask,
4631                                      ap->mwdma_mask, ap->udma_mask);
4632
4633        /* drive modes available */
4634        xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4635                                       dev->mwdma_mask, dev->udma_mask);
4636        xfer_mask &= ata_id_xfermask(dev->id);
4637
4638        /*
4639         *      CFA Advanced TrueIDE timings are not allowed on a shared
4640         *      cable
4641         */
4642        if (ata_dev_pair(dev)) {
4643                /* No PIO5 or PIO6 */
4644                xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4645                /* No MWDMA3 or MWDMA 4 */
4646                xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4647        }
4648
4649        if (ata_dma_blacklisted(dev)) {
4650                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4651                ata_dev_warn(dev,
4652                             "device is on DMA blacklist, disabling DMA\n");
4653        }
4654
4655        if ((host->flags & ATA_HOST_SIMPLEX) &&
4656            host->simplex_claimed && host->simplex_claimed != ap) {
4657                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4658                ata_dev_warn(dev,
4659                             "simplex DMA is claimed by other device, disabling DMA\n");
4660        }
4661
4662        if (ap->flags & ATA_FLAG_NO_IORDY)
4663                xfer_mask &= ata_pio_mask_no_iordy(dev);
4664
4665        if (ap->ops->mode_filter)
4666                xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4667
4668        /* Apply cable rule here.  Don't apply it early because when
4669         * we handle hot plug the cable type can itself change.
4670         * Check this last so that we know if the transfer rate was
4671         * solely limited by the cable.
4672         * Unknown or 80 wire cables reported host side are checked
4673         * drive side as well. Cases where we know a 40wire cable
4674         * is used safely for 80 are not checked here.
4675         */
4676        if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4677                /* UDMA/44 or higher would be available */
4678                if (cable_is_40wire(ap)) {
4679                        ata_dev_warn(dev,
4680                                     "limited to UDMA/33 due to 40-wire cable\n");
4681                        xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4682                }
4683
4684        ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4685                            &dev->mwdma_mask, &dev->udma_mask);
4686}
4687
4688/**
4689 *      ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4690 *      @dev: Device to which command will be sent
4691 *
4692 *      Issue SET FEATURES - XFER MODE command to device @dev
4693 *      on port @ap.
4694 *
4695 *      LOCKING:
4696 *      PCI/etc. bus probe sem.
4697 *
4698 *      RETURNS:
4699 *      0 on success, AC_ERR_* mask otherwise.
4700 */
4701
4702static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4703{
4704        struct ata_taskfile tf;
4705        unsigned int err_mask;
4706
4707        /* set up set-features taskfile */
4708        DPRINTK("set features - xfer mode\n");
4709
4710        /* Some controllers and ATAPI devices show flaky interrupt
4711         * behavior after setting xfer mode.  Use polling instead.
4712         */
4713        ata_tf_init(dev, &tf);
4714        tf.command = ATA_CMD_SET_FEATURES;
4715        tf.feature = SETFEATURES_XFER;
4716        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4717        tf.protocol = ATA_PROT_NODATA;
4718        /* If we are using IORDY we must send the mode setting command */
4719        if (ata_pio_need_iordy(dev))
4720                tf.nsect = dev->xfer_mode;
4721        /* If the device has IORDY and the controller does not - turn it off */
4722        else if (ata_id_has_iordy(dev->id))
4723                tf.nsect = 0x01;
4724        else /* In the ancient relic department - skip all of this */
4725                return 0;
4726
4727        /* On some disks, this command causes spin-up, so we need longer timeout */
4728        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4729
4730        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4731        return err_mask;
4732}
4733
4734/**
4735 *      ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4736 *      @dev: Device to which command will be sent
4737 *      @enable: Whether to enable or disable the feature
4738 *      @feature: The sector count represents the feature to set
4739 *
4740 *      Issue SET FEATURES - SATA FEATURES command to device @dev
4741 *      on port @ap with sector count
4742 *
4743 *      LOCKING:
4744 *      PCI/etc. bus probe sem.
4745 *
4746 *      RETURNS:
4747 *      0 on success, AC_ERR_* mask otherwise.
4748 */
4749unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4750{
4751        struct ata_taskfile tf;
4752        unsigned int err_mask;
4753        unsigned long timeout = 0;
4754
4755        /* set up set-features taskfile */
4756        DPRINTK("set features - SATA features\n");
4757
4758        ata_tf_init(dev, &tf);
4759        tf.command = ATA_CMD_SET_FEATURES;
4760        tf.feature = enable;
4761        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4762        tf.protocol = ATA_PROT_NODATA;
4763        tf.nsect = feature;
4764
4765        if (enable == SETFEATURES_SPINUP)
4766                timeout = ata_probe_timeout ?
4767                          ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4768        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4769
4770        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4771        return err_mask;
4772}
4773EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4774
4775/**
4776 *      ata_dev_init_params - Issue INIT DEV PARAMS command
4777 *      @dev: Device to which command will be sent
4778 *      @heads: Number of heads (taskfile parameter)
4779 *      @sectors: Number of sectors (taskfile parameter)
4780 *
4781 *      LOCKING:
4782 *      Kernel thread context (may sleep)
4783 *
4784 *      RETURNS:
4785 *      0 on success, AC_ERR_* mask otherwise.
4786 */
4787static unsigned int ata_dev_init_params(struct ata_device *dev,
4788                                        u16 heads, u16 sectors)
4789{
4790        struct ata_taskfile tf;
4791        unsigned int err_mask;
4792
4793        /* Number of sectors per track 1-255. Number of heads 1-16 */
4794        if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4795                return AC_ERR_INVALID;
4796
4797        /* set up init dev params taskfile */
4798        DPRINTK("init dev params \n");
4799
4800        ata_tf_init(dev, &tf);
4801        tf.command = ATA_CMD_INIT_DEV_PARAMS;
4802        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4803        tf.protocol = ATA_PROT_NODATA;
4804        tf.nsect = sectors;
4805        tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4806
4807        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4808        /* A clean abort indicates an original or just out of spec drive
4809           and we should continue as we issue the setup based on the
4810           drive reported working geometry */
4811        if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4812                err_mask = 0;
4813
4814        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4815        return err_mask;
4816}
4817
4818/**
4819 *      ata_sg_clean - Unmap DMA memory associated with command
4820 *      @qc: Command containing DMA memory to be released
4821 *
4822 *      Unmap all mapped DMA memory associated with this command.
4823 *
4824 *      LOCKING:
4825 *      spin_lock_irqsave(host lock)
4826 */
4827void ata_sg_clean(struct ata_queued_cmd *qc)
4828{
4829        struct ata_port *ap = qc->ap;
4830        struct scatterlist *sg = qc->sg;
4831        int dir = qc->dma_dir;
4832
4833        WARN_ON_ONCE(sg == NULL);
4834
4835        VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4836
4837        if (qc->n_elem)
4838                dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4839
4840        qc->flags &= ~ATA_QCFLAG_DMAMAP;
4841        qc->sg = NULL;
4842}
4843
4844/**
4845 *      atapi_check_dma - Check whether ATAPI DMA can be supported
4846 *      @qc: Metadata associated with taskfile to check
4847 *
4848 *      Allow low-level driver to filter ATA PACKET commands, returning
4849 *      a status indicating whether or not it is OK to use DMA for the
4850 *      supplied PACKET command.
4851 *
4852 *      LOCKING:
4853 *      spin_lock_irqsave(host lock)
4854 *
4855 *      RETURNS: 0 when ATAPI DMA can be used
4856 *               nonzero otherwise
4857 */
4858int atapi_check_dma(struct ata_queued_cmd *qc)
4859{
4860        struct ata_port *ap = qc->ap;
4861
4862        /* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4863         * few ATAPI devices choke on such DMA requests.
4864         */
4865        if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4866            unlikely(qc->nbytes & 15))
4867                return 1;
4868
4869        if (ap->ops->check_atapi_dma)
4870                return ap->ops->check_atapi_dma(qc);
4871
4872        return 0;
4873}
4874
4875/**
4876 *      ata_std_qc_defer - Check whether a qc needs to be deferred
4877 *      @qc: ATA command in question
4878 *
4879 *      Non-NCQ commands cannot run with any other command, NCQ or
4880 *      not.  As upper layer only knows the queue depth, we are
4881 *      responsible for maintaining exclusion.  This function checks
4882 *      whether a new command @qc can be issued.
4883 *
4884 *      LOCKING:
4885 *      spin_lock_irqsave(host lock)
4886 *
4887 *      RETURNS:
4888 *      ATA_DEFER_* if deferring is needed, 0 otherwise.
4889 */
4890int ata_std_qc_defer(struct ata_queued_cmd *qc)
4891{
4892        struct ata_link *link = qc->dev->link;
4893
4894        if (ata_is_ncq(qc->tf.protocol)) {
4895                if (!ata_tag_valid(link->active_tag))
4896                        return 0;
4897        } else {
4898                if (!ata_tag_valid(link->active_tag) && !link->sactive)
4899                        return 0;
4900        }
4901
4902        return ATA_DEFER_LINK;
4903}
4904
4905void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4906
4907/**
4908 *      ata_sg_init - Associate command with scatter-gather table.
4909 *      @qc: Command to be associated
4910 *      @sg: Scatter-gather table.
4911 *      @n_elem: Number of elements in s/g table.
4912 *
4913 *      Initialize the data-related elements of queued_cmd @qc
4914 *      to point to a scatter-gather table @sg, containing @n_elem
4915 *      elements.
4916 *
4917 *      LOCKING:
4918 *      spin_lock_irqsave(host lock)
4919 */
4920void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4921                 unsigned int n_elem)
4922{
4923        qc->sg = sg;
4924        qc->n_elem = n_elem;
4925        qc->cursg = qc->sg;
4926}
4927
4928/**
4929 *      ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4930 *      @qc: Command with scatter-gather table to be mapped.
4931 *
4932 *      DMA-map the scatter-gather table associated with queued_cmd @qc.
4933 *
4934 *      LOCKING:
4935 *      spin_lock_irqsave(host lock)
4936 *
4937 *      RETURNS:
4938 *      Zero on success, negative on error.
4939 *
4940 */
4941static int ata_sg_setup(struct ata_queued_cmd *qc)
4942{
4943        struct ata_port *ap = qc->ap;
4944        unsigned int n_elem;
4945
4946        VPRINTK("ENTER, ata%u\n", ap->print_id);
4947
4948        n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4949        if (n_elem < 1)
4950                return -1;
4951
4952        DPRINTK("%d sg elements mapped\n", n_elem);
4953        qc->orig_n_elem = qc->n_elem;
4954        qc->n_elem = n_elem;
4955        qc->flags |= ATA_QCFLAG_DMAMAP;
4956
4957        return 0;
4958}
4959
4960/**
4961 *      swap_buf_le16 - swap halves of 16-bit words in place
4962 *      @buf:  Buffer to swap
4963 *      @buf_words:  Number of 16-bit words in buffer.
4964 *
4965 *      Swap halves of 16-bit words if needed to convert from
4966 *      little-endian byte order to native cpu byte order, or
4967 *      vice-versa.
4968 *
4969 *      LOCKING:
4970 *      Inherited from caller.
4971 */
4972void swap_buf_le16(u16 *buf, unsigned int buf_words)
4973{
4974#ifdef __BIG_ENDIAN
4975        unsigned int i;
4976
4977        for (i = 0; i < buf_words; i++)
4978                buf[i] = le16_to_cpu(buf[i]);
4979#endif /* __BIG_ENDIAN */
4980}
4981
4982/**
4983 *      ata_qc_new_init - Request an available ATA command, and initialize it
4984 *      @dev: Device from whom we request an available command structure
4985 *      @tag: tag
4986 *
4987 *      LOCKING:
4988 *      None.
4989 */
4990
4991struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4992{
4993        struct ata_port *ap = dev->link->ap;
4994        struct ata_queued_cmd *qc;
4995
4996        /* no command while frozen */
4997        if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4998                return NULL;
4999
5000        /* libsas case */
5001        if (ap->flags & ATA_FLAG_SAS_HOST) {
5002                tag = ata_sas_allocate_tag(ap);
5003                if (tag < 0)
5004                        return NULL;
5005        }
5006
5007        qc = __ata_qc_from_tag(ap, tag);
5008        qc->tag = tag;
5009        qc->scsicmd = NULL;
5010        qc->ap = ap;
5011        qc->dev = dev;
5012
5013        ata_qc_reinit(qc);
5014
5015        return qc;
5016}
5017
5018/**
5019 *      ata_qc_free - free unused ata_queued_cmd
5020 *      @qc: Command to complete
5021 *
5022 *      Designed to free unused ata_queued_cmd object
5023 *      in case something prevents using it.
5024 *
5025 *      LOCKING:
5026 *      spin_lock_irqsave(host lock)
5027 */
5028void ata_qc_free(struct ata_queued_cmd *qc)
5029{
5030        struct ata_port *ap;
5031        unsigned int tag;
5032
5033        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5034        ap = qc->ap;
5035
5036        qc->flags = 0;
5037        tag = qc->tag;
5038        if (likely(ata_tag_valid(tag))) {
5039                qc->tag = ATA_TAG_POISON;
5040                if (ap->flags & ATA_FLAG_SAS_HOST)
5041                        ata_sas_free_tag(tag, ap);
5042        }
5043}
5044
5045void __ata_qc_complete(struct ata_queued_cmd *qc)
5046{
5047        struct ata_port *ap;
5048        struct ata_link *link;
5049
5050        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5051        WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5052        ap = qc->ap;
5053        link = qc->dev->link;
5054
5055        if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5056                ata_sg_clean(qc);
5057
5058        /* command should be marked inactive atomically with qc completion */
5059        if (ata_is_ncq(qc->tf.protocol)) {
5060                link->sactive &= ~(1 << qc->tag);
5061                if (!link->sactive)
5062                        ap->nr_active_links--;
5063        } else {
5064                link->active_tag = ATA_TAG_POISON;
5065                ap->nr_active_links--;
5066        }
5067
5068        /* clear exclusive status */
5069        if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5070                     ap->excl_link == link))
5071                ap->excl_link = NULL;
5072
5073        /* atapi: mark qc as inactive to prevent the interrupt handler
5074         * from completing the command twice later, before the error handler
5075         * is called. (when rc != 0 and atapi request sense is needed)
5076         */
5077        qc->flags &= ~ATA_QCFLAG_ACTIVE;
5078        ap->qc_active &= ~(1 << qc->tag);
5079
5080        /* call completion callback */
5081        qc->complete_fn(qc);
5082}
5083
5084static void fill_result_tf(struct ata_queued_cmd *qc)
5085{
5086        struct ata_port *ap = qc->ap;
5087
5088        qc->result_tf.flags = qc->tf.flags;
5089        ap->ops->qc_fill_rtf(qc);
5090}
5091
5092static void ata_verify_xfer(struct ata_queued_cmd *qc)
5093{
5094        struct ata_device *dev = qc->dev;
5095
5096        if (!ata_is_data(qc->tf.protocol))
5097                return;
5098
5099        if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5100                return;
5101
5102        dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5103}
5104
5105/**
5106 *      ata_qc_complete - Complete an active ATA command
5107 *      @qc: Command to complete
5108 *
5109 *      Indicate to the mid and upper layers that an ATA command has
5110 *      completed, with either an ok or not-ok status.
5111 *
5112 *      Refrain from calling this function multiple times when
5113 *      successfully completing multiple NCQ commands.
5114 *      ata_qc_complete_multiple() should be used instead, which will
5115 *      properly update IRQ expect state.
5116 *
5117 *      LOCKING:
5118 *      spin_lock_irqsave(host lock)
5119 */
5120void ata_qc_complete(struct ata_queued_cmd *qc)
5121{
5122        struct ata_port *ap = qc->ap;
5123
5124        /* Trigger the LED (if available) */
5125        ledtrig_disk_activity();
5126
5127        /* XXX: New EH and old EH use different mechanisms to
5128         * synchronize EH with regular execution path.
5129         *
5130         * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5131         * Normal execution path is responsible for not accessing a
5132         * failed qc.  libata core enforces the rule by returning NULL
5133         * from ata_qc_from_tag() for failed qcs.
5134         *
5135         * Old EH depends on ata_qc_complete() nullifying completion
5136         * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
5137         * not synchronize with interrupt handler.  Only PIO task is
5138         * taken care of.
5139         */
5140        if (ap->ops->error_handler) {
5141                struct ata_device *dev = qc->dev;
5142                struct ata_eh_info *ehi = &dev->link->eh_info;
5143
5144                if (unlikely(qc->err_mask))
5145                        qc->flags |= ATA_QCFLAG_FAILED;
5146
5147                /*
5148                 * Finish internal commands without any further processing
5149                 * and always with the result TF filled.
5150                 */
5151                if (unlikely(ata_tag_internal(qc->tag))) {
5152                        fill_result_tf(qc);
5153                        trace_ata_qc_complete_internal(qc);
5154                        __ata_qc_complete(qc);
5155                        return;
5156                }
5157
5158                /*
5159                 * Non-internal qc has failed.  Fill the result TF and
5160                 * summon EH.
5161                 */
5162                if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5163                        fill_result_tf(qc);
5164                        trace_ata_qc_complete_failed(qc);
5165                        ata_qc_schedule_eh(qc);
5166                        return;
5167                }
5168
5169                WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5170
5171                /* read result TF if requested */
5172                if (qc->flags & ATA_QCFLAG_RESULT_TF)
5173                        fill_result_tf(qc);
5174
5175                trace_ata_qc_complete_done(qc);
5176                /* Some commands need post-processing after successful
5177                 * completion.
5178                 */
5179                switch (qc->tf.command) {
5180                case ATA_CMD_SET_FEATURES:
5181                        if (qc->tf.feature != SETFEATURES_WC_ON &&
5182                            qc->tf.feature != SETFEATURES_WC_OFF &&
5183                            qc->tf.feature != SETFEATURES_RA_ON &&
5184                            qc->tf.feature != SETFEATURES_RA_OFF)
5185                                break;
5186                        /* fall through */
5187                case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5188                case ATA_CMD_SET_MULTI: /* multi_count changed */
5189                        /* revalidate device */
5190                        ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5191                        ata_port_schedule_eh(ap);
5192                        break;
5193
5194                case ATA_CMD_SLEEP:
5195                        dev->flags |= ATA_DFLAG_SLEEPING;
5196                        break;
5197                }
5198
5199                if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5200                        ata_verify_xfer(qc);
5201
5202                __ata_qc_complete(qc);
5203        } else {
5204                if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5205                        return;
5206
5207                /* read result TF if failed or requested */
5208                if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5209                        fill_result_tf(qc);
5210
5211                __ata_qc_complete(qc);
5212        }
5213}
5214
5215/**
5216 *      ata_qc_complete_multiple - Complete multiple qcs successfully
5217 *      @ap: port in question
5218 *      @qc_active: new qc_active mask
5219 *
5220 *      Complete in-flight commands.  This functions is meant to be
5221 *      called from low-level driver's interrupt routine to complete
5222 *      requests normally.  ap->qc_active and @qc_active is compared
5223 *      and commands are completed accordingly.
5224 *
5225 *      Always use this function when completing multiple NCQ commands
5226 *      from IRQ handlers instead of calling ata_qc_complete()
5227 *      multiple times to keep IRQ expect status properly in sync.
5228 *
5229 *      LOCKING:
5230 *      spin_lock_irqsave(host lock)
5231 *
5232 *      RETURNS:
5233 *      Number of completed commands on success, -errno otherwise.
5234 */
5235int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5236{
5237        int nr_done = 0;
5238        u32 done_mask;
5239
5240        done_mask = ap->qc_active ^ qc_active;
5241
5242        if (unlikely(done_mask & qc_active)) {
5243                ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5244                             ap->qc_active, qc_active);
5245                return -EINVAL;
5246        }
5247
5248        while (done_mask) {
5249                struct ata_queued_cmd *qc;
5250                unsigned int tag = __ffs(done_mask);
5251
5252                qc = ata_qc_from_tag(ap, tag);
5253                if (qc) {
5254                        ata_qc_complete(qc);
5255                        nr_done++;
5256                }
5257                done_mask &= ~(1 << tag);
5258        }
5259
5260        return nr_done;
5261}
5262
5263/**
5264 *      ata_qc_issue - issue taskfile to device
5265 *      @qc: command to issue to device
5266 *
5267 *      Prepare an ATA command to submission to device.
5268 *      This includes mapping the data into a DMA-able
5269 *      area, filling in the S/G table, and finally
5270 *      writing the taskfile to hardware, starting the command.
5271 *
5272 *      LOCKING:
5273 *      spin_lock_irqsave(host lock)
5274 */
5275void ata_qc_issue(struct ata_queued_cmd *qc)
5276{
5277        struct ata_port *ap = qc->ap;
5278        struct ata_link *link = qc->dev->link;
5279        u8 prot = qc->tf.protocol;
5280
5281        /* Make sure only one non-NCQ command is outstanding.  The
5282         * check is skipped for old EH because it reuses active qc to
5283         * request ATAPI sense.
5284         */
5285        WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5286
5287        if (ata_is_ncq(prot)) {
5288                WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5289
5290                if (!link->sactive)
5291                        ap->nr_active_links++;
5292                link->sactive |= 1 << qc->tag;
5293        } else {
5294                WARN_ON_ONCE(link->sactive);
5295
5296                ap->nr_active_links++;
5297                link->active_tag = qc->tag;
5298        }
5299
5300        qc->flags |= ATA_QCFLAG_ACTIVE;
5301        ap->qc_active |= 1 << qc->tag;
5302
5303        /*
5304         * We guarantee to LLDs that they will have at least one
5305         * non-zero sg if the command is a data command.
5306         */
5307        if (WARN_ON_ONCE(ata_is_data(prot) &&
5308                         (!qc->sg || !qc->n_elem || !qc->nbytes)))
5309                goto sys_err;
5310
5311        if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5312                                 (ap->flags & ATA_FLAG_PIO_DMA)))
5313                if (ata_sg_setup(qc))
5314                        goto sys_err;
5315
5316        /* if device is sleeping, schedule reset and abort the link */
5317        if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5318                link->eh_info.action |= ATA_EH_RESET;
5319                ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5320                ata_link_abort(link);
5321                return;
5322        }
5323
5324        ap->ops->qc_prep(qc);
5325        trace_ata_qc_issue(qc);
5326        qc->err_mask |= ap->ops->qc_issue(qc);
5327        if (unlikely(qc->err_mask))
5328                goto err;
5329        return;
5330
5331sys_err:
5332        qc->err_mask |= AC_ERR_SYSTEM;
5333err:
5334        ata_qc_complete(qc);
5335}
5336
5337/**
5338 *      sata_scr_valid - test whether SCRs are accessible
5339 *      @link: ATA link to test SCR accessibility for
5340 *
5341 *      Test whether SCRs are accessible for @link.
5342 *
5343 *      LOCKING:
5344 *      None.
5345 *
5346 *      RETURNS:
5347 *      1 if SCRs are accessible, 0 otherwise.
5348 */
5349int sata_scr_valid(struct ata_link *link)
5350{
5351        struct ata_port *ap = link->ap;
5352
5353        return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5354}
5355
5356/**
5357 *      sata_scr_read - read SCR register of the specified port
5358 *      @link: ATA link to read SCR for
5359 *      @reg: SCR to read
5360 *      @val: Place to store read value
5361 *
5362 *      Read SCR register @reg of @link into *@val.  This function is
5363 *      guaranteed to succeed if @link is ap->link, the cable type of
5364 *      the port is SATA and the port implements ->scr_read.
5365 *
5366 *      LOCKING:
5367 *      None if @link is ap->link.  Kernel thread context otherwise.
5368 *
5369 *      RETURNS:
5370 *      0 on success, negative errno on failure.
5371 */
5372int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5373{
5374        if (ata_is_host_link(link)) {
5375                if (sata_scr_valid(link))
5376                        return link->ap->ops->scr_read(link, reg, val);
5377                return -EOPNOTSUPP;
5378        }
5379
5380        return sata_pmp_scr_read(link, reg, val);
5381}
5382
5383/**
5384 *      sata_scr_write - write SCR register of the specified port
5385 *      @link: ATA link to write SCR for
5386 *      @reg: SCR to write
5387 *      @val: value to write
5388 *
5389 *      Write @val to SCR register @reg of @link.  This function is
5390 *      guaranteed to succeed if @link is ap->link, the cable type of
5391 *      the port is SATA and the port implements ->scr_read.
5392 *
5393 *      LOCKING:
5394 *      None if @link is ap->link.  Kernel thread context otherwise.
5395 *
5396 *      RETURNS:
5397 *      0 on success, negative errno on failure.
5398 */
5399int sata_scr_write(struct ata_link *link, int reg, u32 val)
5400{
5401        if (ata_is_host_link(link)) {
5402                if (sata_scr_valid(link))
5403                        return link->ap->ops->scr_write(link, reg, val);
5404                return -EOPNOTSUPP;
5405        }
5406
5407        return sata_pmp_scr_write(link, reg, val);
5408}
5409
5410/**
5411 *      sata_scr_write_flush - write SCR register of the specified port and flush
5412 *      @link: ATA link to write SCR for
5413 *      @reg: SCR to write
5414 *      @val: value to write
5415 *
5416 *      This function is identical to sata_scr_write() except that this
5417 *      function performs flush after writing to the register.
5418 *
5419 *      LOCKING:
5420 *      None if @link is ap->link.  Kernel thread context otherwise.
5421 *
5422 *      RETURNS:
5423 *      0 on success, negative errno on failure.
5424 */
5425int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5426{
5427        if (ata_is_host_link(link)) {
5428                int rc;
5429
5430                if (sata_scr_valid(link)) {
5431                        rc = link->ap->ops->scr_write(link, reg, val);
5432                        if (rc == 0)
5433                                rc = link->ap->ops->scr_read(link, reg, &val);
5434                        return rc;
5435                }
5436                return -EOPNOTSUPP;
5437        }
5438
5439        return sata_pmp_scr_write(link, reg, val);
5440}
5441
5442/**
5443 *      ata_phys_link_online - test whether the given link is online
5444 *      @link: ATA link to test
5445 *
5446 *      Test whether @link is online.  Note that this function returns
5447 *      0 if online status of @link cannot be obtained, so
5448 *      ata_link_online(link) != !ata_link_offline(link).
5449 *
5450 *      LOCKING:
5451 *      None.
5452 *
5453 *      RETURNS:
5454 *      True if the port online status is available and online.
5455 */
5456bool ata_phys_link_online(struct ata_link *link)
5457{
5458        u32 sstatus;
5459
5460        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5461            ata_sstatus_online(sstatus))
5462                return true;
5463        return false;
5464}
5465
5466/**
5467 *      ata_phys_link_offline - test whether the given link is offline
5468 *      @link: ATA link to test
5469 *
5470 *      Test whether @link is offline.  Note that this function
5471 *      returns 0 if offline status of @link cannot be obtained, so
5472 *      ata_link_online(link) != !ata_link_offline(link).
5473 *
5474 *      LOCKING:
5475 *      None.
5476 *
5477 *      RETURNS:
5478 *      True if the port offline status is available and offline.
5479 */
5480bool ata_phys_link_offline(struct ata_link *link)
5481{
5482        u32 sstatus;
5483
5484        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5485            !ata_sstatus_online(sstatus))
5486                return true;
5487        return false;
5488}
5489
5490/**
5491 *      ata_link_online - test whether the given link is online
5492 *      @link: ATA link to test
5493 *
5494 *      Test whether @link is online.  This is identical to
5495 *      ata_phys_link_online() when there's no slave link.  When
5496 *      there's a slave link, this function should only be called on
5497 *      the master link and will return true if any of M/S links is
5498 *      online.
5499 *
5500 *      LOCKING:
5501 *      None.
5502 *
5503 *      RETURNS:
5504 *      True if the port online status is available and online.
5505 */
5506bool ata_link_online(struct ata_link *link)
5507{
5508        struct ata_link *slave = link->ap->slave_link;
5509
5510        WARN_ON(link == slave); /* shouldn't be called on slave link */
5511
5512        return ata_phys_link_online(link) ||
5513                (slave && ata_phys_link_online(slave));
5514}
5515
5516/**
5517 *      ata_link_offline - test whether the given link is offline
5518 *      @link: ATA link to test
5519 *
5520 *      Test whether @link is offline.  This is identical to
5521 *      ata_phys_link_offline() when there's no slave link.  When
5522 *      there's a slave link, this function should only be called on
5523 *      the master link and will return true if both M/S links are
5524 *      offline.
5525 *
5526 *      LOCKING:
5527 *      None.
5528 *
5529 *      RETURNS:
5530 *      True if the port offline status is available and offline.
5531 */
5532bool ata_link_offline(struct ata_link *link)
5533{
5534        struct ata_link *slave = link->ap->slave_link;
5535
5536        WARN_ON(link == slave); /* shouldn't be called on slave link */
5537
5538        return ata_phys_link_offline(link) &&
5539                (!slave || ata_phys_link_offline(slave));
5540}
5541
5542#ifdef CONFIG_PM
5543static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5544                                unsigned int action, unsigned int ehi_flags,
5545                                bool async)
5546{
5547        struct ata_link *link;
5548        unsigned long flags;
5549
5550        /* Previous resume operation might still be in
5551         * progress.  Wait for PM_PENDING to clear.
5552         */
5553        if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5554                ata_port_wait_eh(ap);
5555                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5556        }
5557
5558        /* request PM ops to EH */
5559        spin_lock_irqsave(ap->lock, flags);
5560
5561        ap->pm_mesg = mesg;
5562        ap->pflags |= ATA_PFLAG_PM_PENDING;
5563        ata_for_each_link(link, ap, HOST_FIRST) {
5564                link->eh_info.action |= action;
5565                link->eh_info.flags |= ehi_flags;
5566        }
5567
5568        ata_port_schedule_eh(ap);
5569
5570        spin_unlock_irqrestore(ap->lock, flags);
5571
5572        if (!async) {
5573                ata_port_wait_eh(ap);
5574                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5575        }
5576}
5577
5578/*
5579 * On some hardware, device fails to respond after spun down for suspend.  As
5580 * the device won't be used before being resumed, we don't need to touch the
5581 * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5582 *
5583 * http://thread.gmane.org/gmane.linux.ide/46764
5584 */
5585static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5586                                                 | ATA_EHI_NO_AUTOPSY
5587                                                 | ATA_EHI_NO_RECOVERY;
5588
5589static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5590{
5591        ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5592}
5593
5594static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5595{
5596        ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5597}
5598
5599static int ata_port_pm_suspend(struct device *dev)
5600{
5601        struct ata_port *ap = to_ata_port(dev);
5602
5603        if (pm_runtime_suspended(dev))
5604                return 0;
5605
5606        ata_port_suspend(ap, PMSG_SUSPEND);
5607        return 0;
5608}
5609
5610static int ata_port_pm_freeze(struct device *dev)
5611{
5612        struct ata_port *ap = to_ata_port(dev);
5613
5614        if (pm_runtime_suspended(dev))
5615                return 0;
5616
5617        ata_port_suspend(ap, PMSG_FREEZE);
5618        return 0;
5619}
5620
5621static int ata_port_pm_poweroff(struct device *dev)
5622{
5623        ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5624        return 0;
5625}
5626
5627static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5628                                                | ATA_EHI_QUIET;
5629
5630static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5631{
5632        ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5633}
5634
5635static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5636{
5637        ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5638}
5639
5640static int ata_port_pm_resume(struct device *dev)
5641{
5642        ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5643        pm_runtime_disable(dev);
5644        pm_runtime_set_active(dev);
5645        pm_runtime_enable(dev);
5646        return 0;
5647}
5648
5649/*
5650 * For ODDs, the upper layer will poll for media change every few seconds,
5651 * which will make it enter and leave suspend state every few seconds. And
5652 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5653 * is very little and the ODD may malfunction after constantly being reset.
5654 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5655 * ODD is attached to the port.
5656 */
5657static int ata_port_runtime_idle(struct device *dev)
5658{
5659        struct ata_port *ap = to_ata_port(dev);
5660        struct ata_link *link;
5661        struct ata_device *adev;
5662
5663        ata_for_each_link(link, ap, HOST_FIRST) {
5664                ata_for_each_dev(adev, link, ENABLED)
5665                        if (adev->class == ATA_DEV_ATAPI &&
5666                            !zpodd_dev_enabled(adev))
5667                                return -EBUSY;
5668        }
5669
5670        return 0;
5671}
5672
5673static int ata_port_runtime_suspend(struct device *dev)
5674{
5675        ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5676        return 0;
5677}
5678
5679static int ata_port_runtime_resume(struct device *dev)
5680{
5681        ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5682        return 0;
5683}
5684
5685static const struct dev_pm_ops ata_port_pm_ops = {
5686        .suspend = ata_port_pm_suspend,
5687        .resume = ata_port_pm_resume,
5688        .freeze = ata_port_pm_freeze,
5689        .thaw = ata_port_pm_resume,
5690        .poweroff = ata_port_pm_poweroff,
5691        .restore = ata_port_pm_resume,
5692
5693        .runtime_suspend = ata_port_runtime_suspend,
5694        .runtime_resume = ata_port_runtime_resume,
5695        .runtime_idle = ata_port_runtime_idle,
5696};
5697
5698/* sas ports don't participate in pm runtime management of ata_ports,
5699 * and need to resume ata devices at the domain level, not the per-port
5700 * level. sas suspend/resume is async to allow parallel port recovery
5701 * since sas has multiple ata_port instances per Scsi_Host.
5702 */
5703void ata_sas_port_suspend(struct ata_port *ap)
5704{
5705        ata_port_suspend_async(ap, PMSG_SUSPEND);
5706}
5707EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5708
5709void ata_sas_port_resume(struct ata_port *ap)
5710{
5711        ata_port_resume_async(ap, PMSG_RESUME);
5712}
5713EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5714
5715/**
5716 *      ata_host_suspend - suspend host
5717 *      @host: host to suspend
5718 *      @mesg: PM message
5719 *
5720 *      Suspend @host.  Actual operation is performed by port suspend.
5721 */
5722int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5723{
5724        host->dev->power.power_state = mesg;
5725        return 0;
5726}
5727
5728/**
5729 *      ata_host_resume - resume host
5730 *      @host: host to resume
5731 *
5732 *      Resume @host.  Actual operation is performed by port resume.
5733 */
5734void ata_host_resume(struct ata_host *host)
5735{
5736        host->dev->power.power_state = PMSG_ON;
5737}
5738#endif
5739
5740struct device_type ata_port_type = {
5741        .name = "ata_port",
5742#ifdef CONFIG_PM
5743        .pm = &ata_port_pm_ops,
5744#endif
5745};
5746
5747/**
5748 *      ata_dev_init - Initialize an ata_device structure
5749 *      @dev: Device structure to initialize
5750 *
5751 *      Initialize @dev in preparation for probing.
5752 *
5753 *      LOCKING:
5754 *      Inherited from caller.
5755 */
5756void ata_dev_init(struct ata_device *dev)
5757{
5758        struct ata_link *link = ata_dev_phys_link(dev);
5759        struct ata_port *ap = link->ap;
5760        unsigned long flags;
5761
5762        /* SATA spd limit is bound to the attached device, reset together */
5763        link->sata_spd_limit = link->hw_sata_spd_limit;
5764        link->sata_spd = 0;
5765
5766        /* High bits of dev->flags are used to record warm plug
5767         * requests which occur asynchronously.  Synchronize using
5768         * host lock.
5769         */
5770        spin_lock_irqsave(ap->lock, flags);
5771        dev->flags &= ~ATA_DFLAG_INIT_MASK;
5772        dev->horkage = 0;
5773        spin_unlock_irqrestore(ap->lock, flags);
5774
5775        memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5776               ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5777        dev->pio_mask = UINT_MAX;
5778        dev->mwdma_mask = UINT_MAX;
5779        dev->udma_mask = UINT_MAX;
5780}
5781
5782/**
5783 *      ata_link_init - Initialize an ata_link structure
5784 *      @ap: ATA port link is attached to
5785 *      @link: Link structure to initialize
5786 *      @pmp: Port multiplier port number
5787 *
5788 *      Initialize @link.
5789 *
5790 *      LOCKING:
5791 *      Kernel thread context (may sleep)
5792 */
5793void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5794{
5795        int i;
5796
5797        /* clear everything except for devices */
5798        memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5799               ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5800
5801        link->ap = ap;
5802        link->pmp = pmp;
5803        link->active_tag = ATA_TAG_POISON;
5804        link->hw_sata_spd_limit = UINT_MAX;
5805
5806        /* can't use iterator, ap isn't initialized yet */
5807        for (i = 0; i < ATA_MAX_DEVICES; i++) {
5808                struct ata_device *dev = &link->device[i];
5809
5810                dev->link = link;
5811                dev->devno = dev - link->device;
5812#ifdef CONFIG_ATA_ACPI
5813                dev->gtf_filter = ata_acpi_gtf_filter;
5814#endif
5815                ata_dev_init(dev);
5816        }
5817}
5818
5819/**
5820 *      sata_link_init_spd - Initialize link->sata_spd_limit
5821 *      @link: Link to configure sata_spd_limit for
5822 *
5823 *      Initialize @link->[hw_]sata_spd_limit to the currently
5824 *      configured value.
5825 *
5826 *      LOCKING:
5827 *      Kernel thread context (may sleep).
5828 *
5829 *      RETURNS:
5830 *      0 on success, -errno on failure.
5831 */
5832int sata_link_init_spd(struct ata_link *link)
5833{
5834        u8 spd;
5835        int rc;
5836
5837        rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5838        if (rc)
5839                return rc;
5840
5841        spd = (link->saved_scontrol >> 4) & 0xf;
5842        if (spd)
5843                link->hw_sata_spd_limit &= (1 << spd) - 1;
5844
5845        ata_force_link_limits(link);
5846
5847        link->sata_spd_limit = link->hw_sata_spd_limit;
5848
5849        return 0;
5850}
5851
5852/**
5853 *      ata_port_alloc - allocate and initialize basic ATA port resources
5854 *      @host: ATA host this allocated port belongs to
5855 *
5856 *      Allocate and initialize basic ATA port resources.
5857 *
5858 *      RETURNS:
5859 *      Allocate ATA port on success, NULL on failure.
5860 *
5861 *      LOCKING:
5862 *      Inherited from calling layer (may sleep).
5863 */
5864struct ata_port *ata_port_alloc(struct ata_host *host)
5865{
5866        struct ata_port *ap;
5867
5868        DPRINTK("ENTER\n");
5869
5870        ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5871        if (!ap)
5872                return NULL;
5873
5874        ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5875        ap->lock = &host->lock;
5876        ap->print_id = -1;
5877        ap->local_port_no = -1;
5878        ap->host = host;
5879        ap->dev = host->dev;
5880
5881#if defined(ATA_VERBOSE_DEBUG)
5882        /* turn on all debugging levels */
5883        ap->msg_enable = 0x00FF;
5884#elif defined(ATA_DEBUG)
5885        ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5886#else
5887        ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5888#endif
5889
5890        mutex_init(&ap->scsi_scan_mutex);
5891        INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5892        INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5893        INIT_LIST_HEAD(&ap->eh_done_q);
5894        init_waitqueue_head(&ap->eh_wait_q);
5895        init_completion(&ap->park_req_pending);
5896        init_timer_deferrable(&ap->fastdrain_timer);
5897        ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5898        ap->fastdrain_timer.data = (unsigned long)ap;
5899
5900        ap->cbl = ATA_CBL_NONE;
5901
5902        ata_link_init(ap, &ap->link, 0);
5903
5904#ifdef ATA_IRQ_TRAP
5905        ap->stats.unhandled_irq = 1;
5906        ap->stats.idle_irq = 1;
5907#endif
5908        ata_sff_port_init(ap);
5909
5910        return ap;
5911}
5912
5913static void ata_host_release(struct device *gendev, void *res)
5914{
5915        struct ata_host *host = dev_get_drvdata(gendev);
5916        int i;
5917
5918        for (i = 0; i < host->n_ports; i++) {
5919                struct ata_port *ap = host->ports[i];
5920
5921                if (!ap)
5922                        continue;
5923
5924                if (ap->scsi_host)
5925                        scsi_host_put(ap->scsi_host);
5926
5927                kfree(ap->pmp_link);
5928                kfree(ap->slave_link);
5929                kfree(ap);
5930                host->ports[i] = NULL;
5931        }
5932
5933        dev_set_drvdata(gendev, NULL);
5934}
5935
5936/**
5937 *      ata_host_alloc - allocate and init basic ATA host resources
5938 *      @dev: generic device this host is associated with
5939 *      @max_ports: maximum number of ATA ports associated with this host
5940 *
5941 *      Allocate and initialize basic ATA host resources.  LLD calls
5942 *      this function to allocate a host, initializes it fully and
5943 *      attaches it using ata_host_register().
5944 *
5945 *      @max_ports ports are allocated and host->n_ports is
5946 *      initialized to @max_ports.  The caller is allowed to decrease
5947 *      host->n_ports before calling ata_host_register().  The unused
5948 *      ports will be automatically freed on registration.
5949 *
5950 *      RETURNS:
5951 *      Allocate ATA host on success, NULL on failure.
5952 *
5953 *      LOCKING:
5954 *      Inherited from calling layer (may sleep).
5955 */
5956struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5957{
5958        struct ata_host *host;
5959        size_t sz;
5960        int i;
5961
5962        DPRINTK("ENTER\n");
5963
5964        if (!devres_open_group(dev, NULL, GFP_KERNEL))
5965                return NULL;
5966
5967        /* alloc a container for our list of ATA ports (buses) */
5968        sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5969        /* alloc a container for our list of ATA ports (buses) */
5970        host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5971        if (!host)
5972                goto err_out;
5973
5974        devres_add(dev, host);
5975        dev_set_drvdata(dev, host);
5976
5977        spin_lock_init(&host->lock);
5978        mutex_init(&host->eh_mutex);
5979        host->dev = dev;
5980        host->n_ports = max_ports;
5981
5982        /* allocate ports bound to this host */
5983        for (i = 0; i < max_ports; i++) {
5984                struct ata_port *ap;
5985
5986                ap = ata_port_alloc(host);
5987                if (!ap)
5988                        goto err_out;
5989
5990                ap->port_no = i;
5991                host->ports[i] = ap;
5992        }
5993
5994        devres_remove_group(dev, NULL);
5995        return host;
5996
5997 err_out:
5998        devres_release_group(dev, NULL);
5999        return NULL;
6000}
6001
6002/**
6003 *      ata_host_alloc_pinfo - alloc host and init with port_info array
6004 *      @dev: generic device this host is associated with
6005 *      @ppi: array of ATA port_info to initialize host with
6006 *      @n_ports: number of ATA ports attached to this host
6007 *
6008 *      Allocate ATA host and initialize with info from @ppi.  If NULL
6009 *      terminated, @ppi may contain fewer entries than @n_ports.  The
6010 *      last entry will be used for the remaining ports.
6011 *
6012 *      RETURNS:
6013 *      Allocate ATA host on success, NULL on failure.
6014 *
6015 *      LOCKING:
6016 *      Inherited from calling layer (may sleep).
6017 */
6018struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6019                                      const struct ata_port_info * const * ppi,
6020                                      int n_ports)
6021{
6022        const struct ata_port_info *pi;
6023        struct ata_host *host;
6024        int i, j;
6025
6026        host = ata_host_alloc(dev, n_ports);
6027        if (!host)
6028                return NULL;
6029
6030        for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6031                struct ata_port *ap = host->ports[i];
6032
6033                if (ppi[j])
6034                        pi = ppi[j++];
6035
6036                ap->pio_mask = pi->pio_mask;
6037                ap->mwdma_mask = pi->mwdma_mask;
6038                ap->udma_mask = pi->udma_mask;
6039                ap->flags |= pi->flags;
6040                ap->link.flags |= pi->link_flags;
6041                ap->ops = pi->port_ops;
6042
6043                if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6044                        host->ops = pi->port_ops;
6045        }
6046
6047        return host;
6048}
6049
6050/**
6051 *      ata_slave_link_init - initialize slave link
6052 *      @ap: port to initialize slave link for
6053 *
6054 *      Create and initialize slave link for @ap.  This enables slave
6055 *      link handling on the port.
6056 *
6057 *      In libata, a port contains links and a link contains devices.
6058 *      There is single host link but if a PMP is attached to it,
6059 *      there can be multiple fan-out links.  On SATA, there's usually
6060 *      a single device connected to a link but PATA and SATA
6061 *      controllers emulating TF based interface can have two - master
6062 *      and slave.
6063 *
6064 *      However, there are a few controllers which don't fit into this
6065 *      abstraction too well - SATA controllers which emulate TF
6066 *      interface with both master and slave devices but also have
6067 *      separate SCR register sets for each device.  These controllers
6068 *      need separate links for physical link handling
6069 *      (e.g. onlineness, link speed) but should be treated like a
6070 *      traditional M/S controller for everything else (e.g. command
6071 *      issue, softreset).
6072 *
6073 *      slave_link is libata's way of handling this class of
6074 *      controllers without impacting core layer too much.  For
6075 *      anything other than physical link handling, the default host
6076 *      link is used for both master and slave.  For physical link
6077 *      handling, separate @ap->slave_link is used.  All dirty details
6078 *      are implemented inside libata core layer.  From LLD's POV, the
6079 *      only difference is that prereset, hardreset and postreset are
6080 *      called once more for the slave link, so the reset sequence
6081 *      looks like the following.
6082 *
6083 *      prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6084 *      softreset(M) -> postreset(M) -> postreset(S)
6085 *
6086 *      Note that softreset is called only for the master.  Softreset
6087 *      resets both M/S by definition, so SRST on master should handle
6088 *      both (the standard method will work just fine).
6089 *
6090 *      LOCKING:
6091 *      Should be called before host is registered.
6092 *
6093 *      RETURNS:
6094 *      0 on success, -errno on failure.
6095 */
6096int ata_slave_link_init(struct ata_port *ap)
6097{
6098        struct ata_link *link;
6099
6100        WARN_ON(ap->slave_link);
6101        WARN_ON(ap->flags & ATA_FLAG_PMP);
6102
6103        link = kzalloc(sizeof(*link), GFP_KERNEL);
6104        if (!link)
6105                return -ENOMEM;
6106
6107        ata_link_init(ap, link, 1);
6108        ap->slave_link = link;
6109        return 0;
6110}
6111
6112static void ata_host_stop(struct device *gendev, void *res)
6113{
6114        struct ata_host *host = dev_get_drvdata(gendev);
6115        int i;
6116
6117        WARN_ON(!(host->flags & ATA_HOST_STARTED));
6118
6119        for (i = 0; i < host->n_ports; i++) {
6120                struct ata_port *ap = host->ports[i];
6121
6122                if (ap->ops->port_stop)
6123                        ap->ops->port_stop(ap);
6124        }
6125
6126        if (host->ops->host_stop)
6127                host->ops->host_stop(host);
6128}
6129
6130/**
6131 *      ata_finalize_port_ops - finalize ata_port_operations
6132 *      @ops: ata_port_operations to finalize
6133 *
6134 *      An ata_port_operations can inherit from another ops and that
6135 *      ops can again inherit from another.  This can go on as many
6136 *      times as necessary as long as there is no loop in the
6137 *      inheritance chain.
6138 *
6139 *      Ops tables are finalized when the host is started.  NULL or
6140 *      unspecified entries are inherited from the closet ancestor
6141 *      which has the method and the entry is populated with it.
6142 *      After finalization, the ops table directly points to all the
6143 *      methods and ->inherits is no longer necessary and cleared.
6144 *
6145 *      Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6146 *
6147 *      LOCKING:
6148 *      None.
6149 */
6150static void ata_finalize_port_ops(struct ata_port_operations *ops)
6151{
6152        static DEFINE_SPINLOCK(lock);
6153        const struct ata_port_operations *cur;
6154        void **begin = (void **)ops;
6155        void **end = (void **)&ops->inherits;
6156        void **pp;
6157
6158        if (!ops || !ops->inherits)
6159                return;
6160
6161        spin_lock(&lock);
6162
6163        for (cur = ops->inherits; cur; cur = cur->inherits) {
6164                void **inherit = (void **)cur;
6165
6166                for (pp = begin; pp < end; pp++, inherit++)
6167                        if (!*pp)
6168                                *pp = *inherit;
6169        }
6170
6171        for (pp = begin; pp < end; pp++)
6172                if (IS_ERR(*pp))
6173                        *pp = NULL;
6174
6175        ops->inherits = NULL;
6176
6177        spin_unlock(&lock);
6178}
6179
6180/**
6181 *      ata_host_start - start and freeze ports of an ATA host
6182 *      @host: ATA host to start ports for
6183 *
6184 *      Start and then freeze ports of @host.  Started status is
6185 *      recorded in host->flags, so this function can be called
6186 *      multiple times.  Ports are guaranteed to get started only
6187 *      once.  If host->ops isn't initialized yet, its set to the
6188 *      first non-dummy port ops.
6189 *
6190 *      LOCKING:
6191 *      Inherited from calling layer (may sleep).
6192 *
6193 *      RETURNS:
6194 *      0 if all ports are started successfully, -errno otherwise.
6195 */
6196int ata_host_start(struct ata_host *host)
6197{
6198        int have_stop = 0;
6199        void *start_dr = NULL;
6200        int i, rc;
6201
6202        if (host->flags & ATA_HOST_STARTED)
6203                return 0;
6204
6205        ata_finalize_port_ops(host->ops);
6206
6207        for (i = 0; i < host->n_ports; i++) {
6208                struct ata_port *ap = host->ports[i];
6209
6210                ata_finalize_port_ops(ap->ops);
6211
6212                if (!host->ops && !ata_port_is_dummy(ap))
6213                        host->ops = ap->ops;
6214
6215                if (ap->ops->port_stop)
6216                        have_stop = 1;
6217        }
6218
6219        if (host->ops->host_stop)
6220                have_stop = 1;
6221
6222        if (have_stop) {
6223                start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6224                if (!start_dr)
6225                        return -ENOMEM;
6226        }
6227
6228        for (i = 0; i < host->n_ports; i++) {
6229                struct ata_port *ap = host->ports[i];
6230
6231                if (ap->ops->port_start) {
6232                        rc = ap->ops->port_start(ap);
6233                        if (rc) {
6234                                if (rc != -ENODEV)
6235                                        dev_err(host->dev,
6236                                                "failed to start port %d (errno=%d)\n",
6237                                                i, rc);
6238                                goto err_out;
6239                        }
6240                }
6241                ata_eh_freeze_port(ap);
6242        }
6243
6244        if (start_dr)
6245                devres_add(host->dev, start_dr);
6246        host->flags |= ATA_HOST_STARTED;
6247        return 0;
6248
6249 err_out:
6250        while (--i >= 0) {
6251                struct ata_port *ap = host->ports[i];
6252
6253                if (ap->ops->port_stop)
6254                        ap->ops->port_stop(ap);
6255        }
6256        devres_free(start_dr);
6257        return rc;
6258}
6259
6260/**
6261 *      ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6262 *      @host:  host to initialize
6263 *      @dev:   device host is attached to
6264 *      @ops:   port_ops
6265 *
6266 */
6267void ata_host_init(struct ata_host *host, struct device *dev,
6268                   struct ata_port_operations *ops)
6269{
6270        spin_lock_init(&host->lock);
6271        mutex_init(&host->eh_mutex);
6272        host->n_tags = ATA_MAX_QUEUE - 1;
6273        host->dev = dev;
6274        host->ops = ops;
6275}
6276
6277void __ata_port_probe(struct ata_port *ap)
6278{
6279        struct ata_eh_info *ehi = &ap->link.eh_info;
6280        unsigned long flags;
6281
6282        /* kick EH for boot probing */
6283        spin_lock_irqsave(ap->lock, flags);
6284
6285        ehi->probe_mask |= ATA_ALL_DEVICES;
6286        ehi->action |= ATA_EH_RESET;
6287        ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6288
6289        ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6290        ap->pflags |= ATA_PFLAG_LOADING;
6291        ata_port_schedule_eh(ap);
6292
6293        spin_unlock_irqrestore(ap->lock, flags);
6294}
6295
6296int ata_port_probe(struct ata_port *ap)
6297{
6298        int rc = 0;
6299
6300        if (ap->ops->error_handler) {
6301                __ata_port_probe(ap);
6302                ata_port_wait_eh(ap);
6303        } else {
6304                DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6305                rc = ata_bus_probe(ap);
6306                DPRINTK("ata%u: bus probe end\n", ap->print_id);
6307        }
6308        return rc;
6309}
6310
6311
6312static void async_port_probe(void *data, async_cookie_t cookie)
6313{
6314        struct ata_port *ap = data;
6315
6316        /*
6317         * If we're not allowed to scan this host in parallel,
6318         * we need to wait until all previous scans have completed
6319         * before going further.
6320         * Jeff Garzik says this is only within a controller, so we
6321         * don't need to wait for port 0, only for later ports.
6322         */
6323        if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6324                async_synchronize_cookie(cookie);
6325
6326        (void)ata_port_probe(ap);
6327
6328        /* in order to keep device order, we need to synchronize at this point */
6329        async_synchronize_cookie(cookie);
6330
6331        ata_scsi_scan_host(ap, 1);
6332}
6333
6334/**
6335 *      ata_host_register - register initialized ATA host
6336 *      @host: ATA host to register
6337 *      @sht: template for SCSI host
6338 *
6339 *      Register initialized ATA host.  @host is allocated using
6340 *      ata_host_alloc() and fully initialized by LLD.  This function
6341 *      starts ports, registers @host with ATA and SCSI layers and
6342 *      probe registered devices.
6343 *
6344 *      LOCKING:
6345 *      Inherited from calling layer (may sleep).
6346 *
6347 *      RETURNS:
6348 *      0 on success, -errno otherwise.
6349 */
6350int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6351{
6352        int i, rc;
6353
6354        host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6355
6356        /* host must have been started */
6357        if (!(host->flags & ATA_HOST_STARTED)) {
6358                dev_err(host->dev, "BUG: trying to register unstarted host\n");
6359                WARN_ON(1);
6360                return -EINVAL;
6361        }
6362
6363        /* Blow away unused ports.  This happens when LLD can't
6364         * determine the exact number of ports to allocate at
6365         * allocation time.
6366         */
6367        for (i = host->n_ports; host->ports[i]; i++)
6368                kfree(host->ports[i]);
6369
6370        /* give ports names and add SCSI hosts */
6371        for (i = 0; i < host->n_ports; i++) {
6372                host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6373                host->ports[i]->local_port_no = i + 1;
6374        }
6375
6376        /* Create associated sysfs transport objects  */
6377        for (i = 0; i < host->n_ports; i++) {
6378                rc = ata_tport_add(host->dev,host->ports[i]);
6379                if (rc) {
6380                        goto err_tadd;
6381                }
6382        }
6383
6384        rc = ata_scsi_add_hosts(host, sht);
6385        if (rc)
6386                goto err_tadd;
6387
6388        /* set cable, sata_spd_limit and report */
6389        for (i = 0; i < host->n_ports; i++) {
6390                struct ata_port *ap = host->ports[i];
6391                unsigned long xfer_mask;
6392
6393                /* set SATA cable type if still unset */
6394                if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6395                        ap->cbl = ATA_CBL_SATA;
6396
6397                /* init sata_spd_limit to the current value */
6398                sata_link_init_spd(&ap->link);
6399                if (ap->slave_link)
6400                        sata_link_init_spd(ap->slave_link);
6401
6402                /* print per-port info to dmesg */
6403                xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6404                                              ap->udma_mask);
6405
6406                if (!ata_port_is_dummy(ap)) {
6407                        ata_port_info(ap, "%cATA max %s %s\n",
6408                                      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6409                                      ata_mode_string(xfer_mask),
6410                                      ap->link.eh_info.desc);
6411                        ata_ehi_clear_desc(&ap->link.eh_info);
6412                } else
6413                        ata_port_info(ap, "DUMMY\n");
6414        }
6415
6416        /* perform each probe asynchronously */
6417        for (i = 0; i < host->n_ports; i++) {
6418                struct ata_port *ap = host->ports[i];
6419                async_schedule(async_port_probe, ap);
6420        }
6421
6422        return 0;
6423
6424 err_tadd:
6425        while (--i >= 0) {
6426                ata_tport_delete(host->ports[i]);
6427        }
6428        return rc;
6429
6430}
6431
6432/**
6433 *      ata_host_activate - start host, request IRQ and register it
6434 *      @host: target ATA host
6435 *      @irq: IRQ to request
6436 *      @irq_handler: irq_handler used when requesting IRQ
6437 *      @irq_flags: irq_flags used when requesting IRQ
6438 *      @sht: scsi_host_template to use when registering the host
6439 *
6440 *      After allocating an ATA host and initializing it, most libata
6441 *      LLDs perform three steps to activate the host - start host,
6442 *      request IRQ and register it.  This helper takes necessary
6443 *      arguments and performs the three steps in one go.
6444 *
6445 *      An invalid IRQ skips the IRQ registration and expects the host to
6446 *      have set polling mode on the port. In this case, @irq_handler
6447 *      should be NULL.
6448 *
6449 *      LOCKING:
6450 *      Inherited from calling layer (may sleep).
6451 *
6452 *      RETURNS:
6453 *      0 on success, -errno otherwise.
6454 */
6455int ata_host_activate(struct ata_host *host, int irq,
6456                      irq_handler_t irq_handler, unsigned long irq_flags,
6457                      struct scsi_host_template *sht)
6458{
6459        int i, rc;
6460        char *irq_desc;
6461
6462        rc = ata_host_start(host);
6463        if (rc)
6464                return rc;
6465
6466        /* Special case for polling mode */
6467        if (!irq) {
6468                WARN_ON(irq_handler);
6469                return ata_host_register(host, sht);
6470        }
6471
6472        irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6473                                  dev_driver_string(host->dev),
6474                                  dev_name(host->dev));
6475        if (!irq_desc)
6476                return -ENOMEM;
6477
6478        rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6479                              irq_desc, host);
6480        if (rc)
6481                return rc;
6482
6483        for (i = 0; i < host->n_ports; i++)
6484                ata_port_desc(host->ports[i], "irq %d", irq);
6485
6486        rc = ata_host_register(host, sht);
6487        /* if failed, just free the IRQ and leave ports alone */
6488        if (rc)
6489                devm_free_irq(host->dev, irq, host);
6490
6491        return rc;
6492}
6493
6494/**
6495 *      ata_port_detach - Detach ATA port in preparation of device removal
6496 *      @ap: ATA port to be detached
6497 *
6498 *      Detach all ATA devices and the associated SCSI devices of @ap;
6499 *      then, remove the associated SCSI host.  @ap is guaranteed to
6500 *      be quiescent on return from this function.
6501 *
6502 *      LOCKING:
6503 *      Kernel thread context (may sleep).
6504 */
6505static void ata_port_detach(struct ata_port *ap)
6506{
6507        unsigned long flags;
6508        struct ata_link *link;
6509        struct ata_device *dev;
6510
6511        if (!ap->ops->error_handler)
6512                goto skip_eh;
6513
6514        /* tell EH we're leaving & flush EH */
6515        spin_lock_irqsave(ap->lock, flags);
6516        ap->pflags |= ATA_PFLAG_UNLOADING;
6517        ata_port_schedule_eh(ap);
6518        spin_unlock_irqrestore(ap->lock, flags);
6519
6520        /* wait till EH commits suicide */
6521        ata_port_wait_eh(ap);
6522
6523        /* it better be dead now */
6524        WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6525
6526        cancel_delayed_work_sync(&ap->hotplug_task);
6527
6528 skip_eh:
6529        /* clean up zpodd on port removal */
6530        ata_for_each_link(link, ap, HOST_FIRST) {
6531                ata_for_each_dev(dev, link, ALL) {
6532                        if (zpodd_dev_enabled(dev))
6533                                zpodd_exit(dev);
6534                }
6535        }
6536        if (ap->pmp_link) {
6537                int i;
6538                for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6539                        ata_tlink_delete(&ap->pmp_link[i]);
6540        }
6541        /* remove the associated SCSI host */
6542        scsi_remove_host(ap->scsi_host);
6543        ata_tport_delete(ap);
6544}
6545
6546/**
6547 *      ata_host_detach - Detach all ports of an ATA host
6548 *      @host: Host to detach
6549 *
6550 *      Detach all ports of @host.
6551 *
6552 *      LOCKING:
6553 *      Kernel thread context (may sleep).
6554 */
6555void ata_host_detach(struct ata_host *host)
6556{
6557        int i;
6558
6559        for (i = 0; i < host->n_ports; i++)
6560                ata_port_detach(host->ports[i]);
6561
6562        /* the host is dead now, dissociate ACPI */
6563        ata_acpi_dissociate(host);
6564}
6565
6566#ifdef CONFIG_PCI
6567
6568/**
6569 *      ata_pci_remove_one - PCI layer callback for device removal
6570 *      @pdev: PCI device that was removed
6571 *
6572 *      PCI layer indicates to libata via this hook that hot-unplug or
6573 *      module unload event has occurred.  Detach all ports.  Resource
6574 *      release is handled via devres.
6575 *
6576 *      LOCKING:
6577 *      Inherited from PCI layer (may sleep).
6578 */
6579void ata_pci_remove_one(struct pci_dev *pdev)
6580{
6581        struct ata_host *host = pci_get_drvdata(pdev);
6582
6583        ata_host_detach(host);
6584}
6585
6586/* move to PCI subsystem */
6587int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6588{
6589        unsigned long tmp = 0;
6590
6591        switch (bits->width) {
6592        case 1: {
6593                u8 tmp8 = 0;
6594                pci_read_config_byte(pdev, bits->reg, &tmp8);
6595                tmp = tmp8;
6596                break;
6597        }
6598        case 2: {
6599                u16 tmp16 = 0;
6600                pci_read_config_word(pdev, bits->reg, &tmp16);
6601                tmp = tmp16;
6602                break;
6603        }
6604        case 4: {
6605                u32 tmp32 = 0;
6606                pci_read_config_dword(pdev, bits->reg, &tmp32);
6607                tmp = tmp32;
6608                break;
6609        }
6610
6611        default:
6612                return -EINVAL;
6613        }
6614
6615        tmp &= bits->mask;
6616
6617        return (tmp == bits->val) ? 1 : 0;
6618}
6619
6620#ifdef CONFIG_PM
6621void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6622{
6623        pci_save_state(pdev);
6624        pci_disable_device(pdev);
6625
6626        if (mesg.event & PM_EVENT_SLEEP)
6627                pci_set_power_state(pdev, PCI_D3hot);
6628}
6629
6630int ata_pci_device_do_resume(struct pci_dev *pdev)
6631{
6632        int rc;
6633
6634        pci_set_power_state(pdev, PCI_D0);
6635        pci_restore_state(pdev);
6636
6637        rc = pcim_enable_device(pdev);
6638        if (rc) {
6639                dev_err(&pdev->dev,
6640                        "failed to enable device after resume (%d)\n", rc);
6641                return rc;
6642        }
6643
6644        pci_set_master(pdev);
6645        return 0;
6646}
6647
6648int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6649{
6650        struct ata_host *host = pci_get_drvdata(pdev);
6651        int rc = 0;
6652
6653        rc = ata_host_suspend(host, mesg);
6654        if (rc)
6655                return rc;
6656
6657        ata_pci_device_do_suspend(pdev, mesg);
6658
6659        return 0;
6660}
6661
6662int ata_pci_device_resume(struct pci_dev *pdev)
6663{
6664        struct ata_host *host = pci_get_drvdata(pdev);
6665        int rc;
6666
6667        rc = ata_pci_device_do_resume(pdev);
6668        if (rc == 0)
6669                ata_host_resume(host);
6670        return rc;
6671}
6672#endif /* CONFIG_PM */
6673
6674#endif /* CONFIG_PCI */
6675
6676/**
6677 *      ata_platform_remove_one - Platform layer callback for device removal
6678 *      @pdev: Platform device that was removed
6679 *
6680 *      Platform layer indicates to libata via this hook that hot-unplug or
6681 *      module unload event has occurred.  Detach all ports.  Resource
6682 *      release is handled via devres.
6683 *
6684 *      LOCKING:
6685 *      Inherited from platform layer (may sleep).
6686 */
6687int ata_platform_remove_one(struct platform_device *pdev)
6688{
6689        struct ata_host *host = platform_get_drvdata(pdev);
6690
6691        ata_host_detach(host);
6692
6693        return 0;
6694}
6695
6696static int __init ata_parse_force_one(char **cur,
6697                                      struct ata_force_ent *force_ent,
6698                                      const char **reason)
6699{
6700        static const struct ata_force_param force_tbl[] __initconst = {
6701                { "40c",        .cbl            = ATA_CBL_PATA40 },
6702                { "80c",        .cbl            = ATA_CBL_PATA80 },
6703                { "short40c",   .cbl            = ATA_CBL_PATA40_SHORT },
6704                { "unk",        .cbl            = ATA_CBL_PATA_UNK },
6705                { "ign",        .cbl            = ATA_CBL_PATA_IGN },
6706                { "sata",       .cbl            = ATA_CBL_SATA },
6707                { "1.5Gbps",    .spd_limit      = 1 },
6708                { "3.0Gbps",    .spd_limit      = 2 },
6709                { "noncq",      .horkage_on     = ATA_HORKAGE_NONCQ },
6710                { "ncq",        .horkage_off    = ATA_HORKAGE_NONCQ },
6711                { "noncqtrim",  .horkage_on     = ATA_HORKAGE_NO_NCQ_TRIM },
6712                { "ncqtrim",    .horkage_off    = ATA_HORKAGE_NO_NCQ_TRIM },
6713                { "dump_id",    .horkage_on     = ATA_HORKAGE_DUMP_ID },
6714                { "pio0",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 0) },
6715                { "pio1",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 1) },
6716                { "pio2",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 2) },
6717                { "pio3",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 3) },
6718                { "pio4",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 4) },
6719                { "pio5",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 5) },
6720                { "pio6",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 6) },
6721                { "mwdma0",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 0) },
6722                { "mwdma1",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 1) },
6723                { "mwdma2",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 2) },
6724                { "mwdma3",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 3) },
6725                { "mwdma4",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 4) },
6726                { "udma0",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 0) },
6727                { "udma16",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 0) },
6728                { "udma/16",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 0) },
6729                { "udma1",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 1) },
6730                { "udma25",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 1) },
6731                { "udma/25",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 1) },
6732                { "udma2",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 2) },
6733                { "udma33",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 2) },
6734                { "udma/33",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 2) },
6735                { "udma3",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 3) },
6736                { "udma44",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 3) },
6737                { "udma/44",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 3) },
6738                { "udma4",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 4) },
6739                { "udma66",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 4) },
6740                { "udma/66",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 4) },
6741                { "udma5",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 5) },
6742                { "udma100",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 5) },
6743                { "udma/100",   .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 5) },
6744                { "udma6",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 6) },
6745                { "udma133",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 6) },
6746                { "udma/133",   .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 6) },
6747                { "udma7",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 7) },
6748                { "nohrst",     .lflags         = ATA_LFLAG_NO_HRST },
6749                { "nosrst",     .lflags         = ATA_LFLAG_NO_SRST },
6750                { "norst",      .lflags         = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6751                { "rstonce",    .lflags         = ATA_LFLAG_RST_ONCE },
6752                { "atapi_dmadir", .horkage_on   = ATA_HORKAGE_ATAPI_DMADIR },
6753                { "disable",    .horkage_on     = ATA_HORKAGE_DISABLE },
6754        };
6755        char *start = *cur, *p = *cur;
6756        char *id, *val, *endp;
6757        const struct ata_force_param *match_fp = NULL;
6758        int nr_matches = 0, i;
6759
6760        /* find where this param ends and update *cur */
6761        while (*p != '\0' && *p != ',')
6762                p++;
6763
6764        if (*p == '\0')
6765                *cur = p;
6766        else
6767                *cur = p + 1;
6768
6769        *p = '\0';
6770
6771        /* parse */
6772        p = strchr(start, ':');
6773        if (!p) {
6774                val = strstrip(start);
6775                goto parse_val;
6776        }
6777        *p = '\0';
6778
6779        id = strstrip(start);
6780        val = strstrip(p + 1);
6781
6782        /* parse id */
6783        p = strchr(id, '.');
6784        if (p) {
6785                *p++ = '\0';
6786                force_ent->device = simple_strtoul(p, &endp, 10);
6787                if (p == endp || *endp != '\0') {
6788                        *reason = "invalid device";
6789                        return -EINVAL;
6790                }
6791        }
6792
6793        force_ent->port = simple_strtoul(id, &endp, 10);
6794        if (p == endp || *endp != '\0') {
6795                *reason = "invalid port/link";
6796                return -EINVAL;
6797        }
6798
6799 parse_val:
6800        /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6801        for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6802                const struct ata_force_param *fp = &force_tbl[i];
6803
6804                if (strncasecmp(val, fp->name, strlen(val)))
6805                        continue;
6806
6807                nr_matches++;
6808                match_fp = fp;
6809
6810                if (strcasecmp(val, fp->name) == 0) {
6811                        nr_matches = 1;
6812                        break;
6813                }
6814        }
6815
6816        if (!nr_matches) {
6817                *reason = "unknown value";
6818                return -EINVAL;
6819        }
6820        if (nr_matches > 1) {
6821                *reason = "ambigious value";
6822                return -EINVAL;
6823        }
6824
6825        force_ent->param = *match_fp;
6826
6827        return 0;
6828}
6829
6830static void __init ata_parse_force_param(void)
6831{
6832        int idx = 0, size = 1;
6833        int last_port = -1, last_device = -1;
6834        char *p, *cur, *next;
6835
6836        /* calculate maximum number of params and allocate force_tbl */
6837        for (p = ata_force_param_buf; *p; p++)
6838                if (*p == ',')
6839                        size++;
6840
6841        ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6842        if (!ata_force_tbl) {
6843                printk(KERN_WARNING "ata: failed to extend force table, "
6844                       "libata.force ignored\n");
6845                return;
6846        }
6847
6848        /* parse and populate the table */
6849        for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6850                const char *reason = "";
6851                struct ata_force_ent te = { .port = -1, .device = -1 };
6852
6853                next = cur;
6854                if (ata_parse_force_one(&next, &te, &reason)) {
6855                        printk(KERN_WARNING "ata: failed to parse force "
6856                               "parameter \"%s\" (%s)\n",
6857                               cur, reason);
6858                        continue;
6859                }
6860
6861                if (te.port == -1) {
6862                        te.port = last_port;
6863                        te.device = last_device;
6864                }
6865
6866                ata_force_tbl[idx++] = te;
6867
6868                last_port = te.port;
6869                last_device = te.device;
6870        }
6871
6872        ata_force_tbl_size = idx;
6873}
6874
6875static int __init ata_init(void)
6876{
6877        int rc;
6878
6879        ata_parse_force_param();
6880
6881        rc = ata_sff_init();
6882        if (rc) {
6883                kfree(ata_force_tbl);
6884                return rc;
6885        }
6886
6887        libata_transport_init();
6888        ata_scsi_transport_template = ata_attach_transport();
6889        if (!ata_scsi_transport_template) {
6890                ata_sff_exit();
6891                rc = -ENOMEM;
6892                goto err_out;
6893        }
6894
6895        printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6896        return 0;
6897
6898err_out:
6899        return rc;
6900}
6901
6902static void __exit ata_exit(void)
6903{
6904        ata_release_transport(ata_scsi_transport_template);
6905        libata_transport_exit();
6906        ata_sff_exit();
6907        kfree(ata_force_tbl);
6908}
6909
6910subsys_initcall(ata_init);
6911module_exit(ata_exit);
6912
6913static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6914
6915int ata_ratelimit(void)
6916{
6917        return __ratelimit(&ratelimit);
6918}
6919
6920/**
6921 *      ata_msleep - ATA EH owner aware msleep
6922 *      @ap: ATA port to attribute the sleep to
6923 *      @msecs: duration to sleep in milliseconds
6924 *
6925 *      Sleeps @msecs.  If the current task is owner of @ap's EH, the
6926 *      ownership is released before going to sleep and reacquired
6927 *      after the sleep is complete.  IOW, other ports sharing the
6928 *      @ap->host will be allowed to own the EH while this task is
6929 *      sleeping.
6930 *
6931 *      LOCKING:
6932 *      Might sleep.
6933 */
6934void ata_msleep(struct ata_port *ap, unsigned int msecs)
6935{
6936        bool owns_eh = ap && ap->host->eh_owner == current;
6937
6938        if (owns_eh)
6939                ata_eh_release(ap);
6940
6941        if (msecs < 20) {
6942                unsigned long usecs = msecs * USEC_PER_MSEC;
6943                usleep_range(usecs, usecs + 50);
6944        } else {
6945                msleep(msecs);
6946        }
6947
6948        if (owns_eh)
6949                ata_eh_acquire(ap);
6950}
6951
6952/**
6953 *      ata_wait_register - wait until register value changes
6954 *      @ap: ATA port to wait register for, can be NULL
6955 *      @reg: IO-mapped register
6956 *      @mask: Mask to apply to read register value
6957 *      @val: Wait condition
6958 *      @interval: polling interval in milliseconds
6959 *      @timeout: timeout in milliseconds
6960 *
6961 *      Waiting for some bits of register to change is a common
6962 *      operation for ATA controllers.  This function reads 32bit LE
6963 *      IO-mapped register @reg and tests for the following condition.
6964 *
6965 *      (*@reg & mask) != val
6966 *
6967 *      If the condition is met, it returns; otherwise, the process is
6968 *      repeated after @interval_msec until timeout.
6969 *
6970 *      LOCKING:
6971 *      Kernel thread context (may sleep)
6972 *
6973 *      RETURNS:
6974 *      The final register value.
6975 */
6976u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6977                      unsigned long interval, unsigned long timeout)
6978{
6979        unsigned long deadline;
6980        u32 tmp;
6981
6982        tmp = ioread32(reg);
6983
6984        /* Calculate timeout _after_ the first read to make sure
6985         * preceding writes reach the controller before starting to
6986         * eat away the timeout.
6987         */
6988        deadline = ata_deadline(jiffies, timeout);
6989
6990        while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6991                ata_msleep(ap, interval);
6992                tmp = ioread32(reg);
6993        }
6994
6995        return tmp;
6996}
6997
6998/**
6999 *      sata_lpm_ignore_phy_events - test if PHY event should be ignored
7000 *      @link: Link receiving the event
7001 *
7002 *      Test whether the received PHY event has to be ignored or not.
7003 *
7004 *      LOCKING:
7005 *      None:
7006 *
7007 *      RETURNS:
7008 *      True if the event has to be ignored.
7009 */
7010bool sata_lpm_ignore_phy_events(struct ata_link *link)
7011{
7012        unsigned long lpm_timeout = link->last_lpm_change +
7013                                    msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7014
7015        /* if LPM is enabled, PHYRDY doesn't mean anything */
7016        if (link->lpm_policy > ATA_LPM_MAX_POWER)
7017                return true;
7018
7019        /* ignore the first PHY event after the LPM policy changed
7020         * as it is might be spurious
7021         */
7022        if ((link->flags & ATA_LFLAG_CHANGED) &&
7023            time_before(jiffies, lpm_timeout))
7024                return true;
7025
7026        return false;
7027}
7028EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7029
7030/*
7031 * Dummy port_ops
7032 */
7033static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7034{
7035        return AC_ERR_SYSTEM;
7036}
7037
7038static void ata_dummy_error_handler(struct ata_port *ap)
7039{
7040        /* truly dummy */
7041}
7042
7043struct ata_port_operations ata_dummy_port_ops = {
7044        .qc_prep                = ata_noop_qc_prep,
7045        .qc_issue               = ata_dummy_qc_issue,
7046        .error_handler          = ata_dummy_error_handler,
7047        .sched_eh               = ata_std_sched_eh,
7048        .end_eh                 = ata_std_end_eh,
7049};
7050
7051const struct ata_port_info ata_dummy_port_info = {
7052        .port_ops               = &ata_dummy_port_ops,
7053};
7054
7055/*
7056 * Utility print functions
7057 */
7058void ata_port_printk(const struct ata_port *ap, const char *level,
7059                     const char *fmt, ...)
7060{
7061        struct va_format vaf;
7062        va_list args;
7063
7064        va_start(args, fmt);
7065
7066        vaf.fmt = fmt;
7067        vaf.va = &args;
7068
7069        printk("%sata%u: %pV", level, ap->print_id, &vaf);
7070
7071        va_end(args);
7072}
7073EXPORT_SYMBOL(ata_port_printk);
7074
7075void ata_link_printk(const struct ata_link *link, const char *level,
7076                     const char *fmt, ...)
7077{
7078        struct va_format vaf;
7079        va_list args;
7080
7081        va_start(args, fmt);
7082
7083        vaf.fmt = fmt;
7084        vaf.va = &args;
7085
7086        if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7087                printk("%sata%u.%02u: %pV",
7088                       level, link->ap->print_id, link->pmp, &vaf);
7089        else
7090                printk("%sata%u: %pV",
7091                       level, link->ap->print_id, &vaf);
7092
7093        va_end(args);
7094}
7095EXPORT_SYMBOL(ata_link_printk);
7096
7097void ata_dev_printk(const struct ata_device *dev, const char *level,
7098                    const char *fmt, ...)
7099{
7100        struct va_format vaf;
7101        va_list args;
7102
7103        va_start(args, fmt);
7104
7105        vaf.fmt = fmt;
7106        vaf.va = &args;
7107
7108        printk("%sata%u.%02u: %pV",
7109               level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7110               &vaf);
7111
7112        va_end(args);
7113}
7114EXPORT_SYMBOL(ata_dev_printk);
7115
7116void ata_print_version(const struct device *dev, const char *version)
7117{
7118        dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7119}
7120EXPORT_SYMBOL(ata_print_version);
7121
7122/*
7123 * libata is essentially a library of internal helper functions for
7124 * low-level ATA host controller drivers.  As such, the API/ABI is
7125 * likely to change as new drivers are added and updated.
7126 * Do not depend on ABI/API stability.
7127 */
7128EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7129EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7130EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7131EXPORT_SYMBOL_GPL(ata_base_port_ops);
7132EXPORT_SYMBOL_GPL(sata_port_ops);
7133EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7134EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7135EXPORT_SYMBOL_GPL(ata_link_next);
7136EXPORT_SYMBOL_GPL(ata_dev_next);
7137EXPORT_SYMBOL_GPL(ata_std_bios_param);
7138EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7139EXPORT_SYMBOL_GPL(ata_host_init);
7140EXPORT_SYMBOL_GPL(ata_host_alloc);
7141EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7142EXPORT_SYMBOL_GPL(ata_slave_link_init);
7143EXPORT_SYMBOL_GPL(ata_host_start);
7144EXPORT_SYMBOL_GPL(ata_host_register);
7145EXPORT_SYMBOL_GPL(ata_host_activate);
7146EXPORT_SYMBOL_GPL(ata_host_detach);
7147EXPORT_SYMBOL_GPL(ata_sg_init);
7148EXPORT_SYMBOL_GPL(ata_qc_complete);
7149EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7150EXPORT_SYMBOL_GPL(atapi_cmd_type);
7151EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7152EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7153EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7154EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7155EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7156EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7157EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7158EXPORT_SYMBOL_GPL(ata_mode_string);
7159EXPORT_SYMBOL_GPL(ata_id_xfermask);
7160EXPORT_SYMBOL_GPL(ata_do_set_mode);
7161EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7162EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7163EXPORT_SYMBOL_GPL(ata_dev_disable);
7164EXPORT_SYMBOL_GPL(sata_set_spd);
7165EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7166EXPORT_SYMBOL_GPL(sata_link_debounce);
7167EXPORT_SYMBOL_GPL(sata_link_resume);
7168EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7169EXPORT_SYMBOL_GPL(ata_std_prereset);
7170EXPORT_SYMBOL_GPL(sata_link_hardreset);
7171EXPORT_SYMBOL_GPL(sata_std_hardreset);
7172EXPORT_SYMBOL_GPL(ata_std_postreset);
7173EXPORT_SYMBOL_GPL(ata_dev_classify);
7174EXPORT_SYMBOL_GPL(ata_dev_pair);
7175EXPORT_SYMBOL_GPL(ata_ratelimit);
7176EXPORT_SYMBOL_GPL(ata_msleep);
7177EXPORT_SYMBOL_GPL(ata_wait_register);
7178EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7179EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7180EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7181EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7182EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7183EXPORT_SYMBOL_GPL(sata_scr_valid);
7184EXPORT_SYMBOL_GPL(sata_scr_read);
7185EXPORT_SYMBOL_GPL(sata_scr_write);
7186EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7187EXPORT_SYMBOL_GPL(ata_link_online);
7188EXPORT_SYMBOL_GPL(ata_link_offline);
7189#ifdef CONFIG_PM
7190EXPORT_SYMBOL_GPL(ata_host_suspend);
7191EXPORT_SYMBOL_GPL(ata_host_resume);
7192#endif /* CONFIG_PM */
7193EXPORT_SYMBOL_GPL(ata_id_string);
7194EXPORT_SYMBOL_GPL(ata_id_c_string);
7195EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7196EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7197
7198EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7199EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7200EXPORT_SYMBOL_GPL(ata_timing_compute);
7201EXPORT_SYMBOL_GPL(ata_timing_merge);
7202EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7203
7204#ifdef CONFIG_PCI
7205EXPORT_SYMBOL_GPL(pci_test_config_bits);
7206EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7207#ifdef CONFIG_PM
7208EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7209EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7210EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7211EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7212#endif /* CONFIG_PM */
7213#endif /* CONFIG_PCI */
7214
7215EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7216
7217EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7218EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7219EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7220EXPORT_SYMBOL_GPL(ata_port_desc);
7221#ifdef CONFIG_PCI
7222EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7223#endif /* CONFIG_PCI */
7224EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7225EXPORT_SYMBOL_GPL(ata_link_abort);
7226EXPORT_SYMBOL_GPL(ata_port_abort);
7227EXPORT_SYMBOL_GPL(ata_port_freeze);
7228EXPORT_SYMBOL_GPL(sata_async_notification);
7229EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7230EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7231EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7232EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7233EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7234EXPORT_SYMBOL_GPL(ata_do_eh);
7235EXPORT_SYMBOL_GPL(ata_std_error_handler);
7236
7237EXPORT_SYMBOL_GPL(ata_cable_40wire);
7238EXPORT_SYMBOL_GPL(ata_cable_80wire);
7239EXPORT_SYMBOL_GPL(ata_cable_unknown);
7240EXPORT_SYMBOL_GPL(ata_cable_ignore);
7241EXPORT_SYMBOL_GPL(ata_cable_sata);
7242