linux/drivers/base/power/main.c
<<
>>
Prefs
   1/*
   2 * drivers/base/power/main.c - Where the driver meets power management.
   3 *
   4 * Copyright (c) 2003 Patrick Mochel
   5 * Copyright (c) 2003 Open Source Development Lab
   6 *
   7 * This file is released under the GPLv2
   8 *
   9 *
  10 * The driver model core calls device_pm_add() when a device is registered.
  11 * This will initialize the embedded device_pm_info object in the device
  12 * and add it to the list of power-controlled devices. sysfs entries for
  13 * controlling device power management will also be added.
  14 *
  15 * A separate list is used for keeping track of power info, because the power
  16 * domain dependencies may differ from the ancestral dependencies that the
  17 * subsystem list maintains.
  18 */
  19
  20#include <linux/device.h>
  21#include <linux/kallsyms.h>
  22#include <linux/export.h>
  23#include <linux/mutex.h>
  24#include <linux/pm.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/pm-trace.h>
  27#include <linux/pm_wakeirq.h>
  28#include <linux/interrupt.h>
  29#include <linux/sched.h>
  30#include <linux/async.h>
  31#include <linux/suspend.h>
  32#include <trace/events/power.h>
  33#include <linux/cpufreq.h>
  34#include <linux/cpuidle.h>
  35#include <linux/timer.h>
  36
  37#include "../base.h"
  38#include "power.h"
  39
  40typedef int (*pm_callback_t)(struct device *);
  41
  42/*
  43 * The entries in the dpm_list list are in a depth first order, simply
  44 * because children are guaranteed to be discovered after parents, and
  45 * are inserted at the back of the list on discovery.
  46 *
  47 * Since device_pm_add() may be called with a device lock held,
  48 * we must never try to acquire a device lock while holding
  49 * dpm_list_mutex.
  50 */
  51
  52LIST_HEAD(dpm_list);
  53static LIST_HEAD(dpm_prepared_list);
  54static LIST_HEAD(dpm_suspended_list);
  55static LIST_HEAD(dpm_late_early_list);
  56static LIST_HEAD(dpm_noirq_list);
  57
  58struct suspend_stats suspend_stats;
  59static DEFINE_MUTEX(dpm_list_mtx);
  60static pm_message_t pm_transition;
  61
  62static int async_error;
  63
  64static char *pm_verb(int event)
  65{
  66        switch (event) {
  67        case PM_EVENT_SUSPEND:
  68                return "suspend";
  69        case PM_EVENT_RESUME:
  70                return "resume";
  71        case PM_EVENT_FREEZE:
  72                return "freeze";
  73        case PM_EVENT_QUIESCE:
  74                return "quiesce";
  75        case PM_EVENT_HIBERNATE:
  76                return "hibernate";
  77        case PM_EVENT_THAW:
  78                return "thaw";
  79        case PM_EVENT_RESTORE:
  80                return "restore";
  81        case PM_EVENT_RECOVER:
  82                return "recover";
  83        default:
  84                return "(unknown PM event)";
  85        }
  86}
  87
  88/**
  89 * device_pm_sleep_init - Initialize system suspend-related device fields.
  90 * @dev: Device object being initialized.
  91 */
  92void device_pm_sleep_init(struct device *dev)
  93{
  94        dev->power.is_prepared = false;
  95        dev->power.is_suspended = false;
  96        dev->power.is_noirq_suspended = false;
  97        dev->power.is_late_suspended = false;
  98        init_completion(&dev->power.completion);
  99        complete_all(&dev->power.completion);
 100        dev->power.wakeup = NULL;
 101        INIT_LIST_HEAD(&dev->power.entry);
 102}
 103
 104/**
 105 * device_pm_lock - Lock the list of active devices used by the PM core.
 106 */
 107void device_pm_lock(void)
 108{
 109        mutex_lock(&dpm_list_mtx);
 110}
 111
 112/**
 113 * device_pm_unlock - Unlock the list of active devices used by the PM core.
 114 */
 115void device_pm_unlock(void)
 116{
 117        mutex_unlock(&dpm_list_mtx);
 118}
 119
 120/**
 121 * device_pm_add - Add a device to the PM core's list of active devices.
 122 * @dev: Device to add to the list.
 123 */
 124void device_pm_add(struct device *dev)
 125{
 126        pr_debug("PM: Adding info for %s:%s\n",
 127                 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 128        device_pm_check_callbacks(dev);
 129        mutex_lock(&dpm_list_mtx);
 130        if (dev->parent && dev->parent->power.is_prepared)
 131                dev_warn(dev, "parent %s should not be sleeping\n",
 132                        dev_name(dev->parent));
 133        list_add_tail(&dev->power.entry, &dpm_list);
 134        dev->power.in_dpm_list = true;
 135        mutex_unlock(&dpm_list_mtx);
 136}
 137
 138/**
 139 * device_pm_remove - Remove a device from the PM core's list of active devices.
 140 * @dev: Device to be removed from the list.
 141 */
 142void device_pm_remove(struct device *dev)
 143{
 144        pr_debug("PM: Removing info for %s:%s\n",
 145                 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 146        complete_all(&dev->power.completion);
 147        mutex_lock(&dpm_list_mtx);
 148        list_del_init(&dev->power.entry);
 149        dev->power.in_dpm_list = false;
 150        mutex_unlock(&dpm_list_mtx);
 151        device_wakeup_disable(dev);
 152        pm_runtime_remove(dev);
 153        device_pm_check_callbacks(dev);
 154}
 155
 156/**
 157 * device_pm_move_before - Move device in the PM core's list of active devices.
 158 * @deva: Device to move in dpm_list.
 159 * @devb: Device @deva should come before.
 160 */
 161void device_pm_move_before(struct device *deva, struct device *devb)
 162{
 163        pr_debug("PM: Moving %s:%s before %s:%s\n",
 164                 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 165                 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 166        /* Delete deva from dpm_list and reinsert before devb. */
 167        list_move_tail(&deva->power.entry, &devb->power.entry);
 168}
 169
 170/**
 171 * device_pm_move_after - Move device in the PM core's list of active devices.
 172 * @deva: Device to move in dpm_list.
 173 * @devb: Device @deva should come after.
 174 */
 175void device_pm_move_after(struct device *deva, struct device *devb)
 176{
 177        pr_debug("PM: Moving %s:%s after %s:%s\n",
 178                 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 179                 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 180        /* Delete deva from dpm_list and reinsert after devb. */
 181        list_move(&deva->power.entry, &devb->power.entry);
 182}
 183
 184/**
 185 * device_pm_move_last - Move device to end of the PM core's list of devices.
 186 * @dev: Device to move in dpm_list.
 187 */
 188void device_pm_move_last(struct device *dev)
 189{
 190        pr_debug("PM: Moving %s:%s to end of list\n",
 191                 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 192        list_move_tail(&dev->power.entry, &dpm_list);
 193}
 194
 195static ktime_t initcall_debug_start(struct device *dev)
 196{
 197        ktime_t calltime = 0;
 198
 199        if (pm_print_times_enabled) {
 200                pr_info("calling  %s+ @ %i, parent: %s\n",
 201                        dev_name(dev), task_pid_nr(current),
 202                        dev->parent ? dev_name(dev->parent) : "none");
 203                calltime = ktime_get();
 204        }
 205
 206        return calltime;
 207}
 208
 209static void initcall_debug_report(struct device *dev, ktime_t calltime,
 210                                  int error, pm_message_t state, char *info)
 211{
 212        ktime_t rettime;
 213        s64 nsecs;
 214
 215        rettime = ktime_get();
 216        nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
 217
 218        if (pm_print_times_enabled) {
 219                pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
 220                        error, (unsigned long long)nsecs >> 10);
 221        }
 222}
 223
 224/**
 225 * dpm_wait - Wait for a PM operation to complete.
 226 * @dev: Device to wait for.
 227 * @async: If unset, wait only if the device's power.async_suspend flag is set.
 228 */
 229static void dpm_wait(struct device *dev, bool async)
 230{
 231        if (!dev)
 232                return;
 233
 234        if (async || (pm_async_enabled && dev->power.async_suspend))
 235                wait_for_completion(&dev->power.completion);
 236}
 237
 238static int dpm_wait_fn(struct device *dev, void *async_ptr)
 239{
 240        dpm_wait(dev, *((bool *)async_ptr));
 241        return 0;
 242}
 243
 244static void dpm_wait_for_children(struct device *dev, bool async)
 245{
 246       device_for_each_child(dev, &async, dpm_wait_fn);
 247}
 248
 249static void dpm_wait_for_suppliers(struct device *dev, bool async)
 250{
 251        struct device_link *link;
 252        int idx;
 253
 254        idx = device_links_read_lock();
 255
 256        /*
 257         * If the supplier goes away right after we've checked the link to it,
 258         * we'll wait for its completion to change the state, but that's fine,
 259         * because the only things that will block as a result are the SRCU
 260         * callbacks freeing the link objects for the links in the list we're
 261         * walking.
 262         */
 263        list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
 264                if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 265                        dpm_wait(link->supplier, async);
 266
 267        device_links_read_unlock(idx);
 268}
 269
 270static void dpm_wait_for_superior(struct device *dev, bool async)
 271{
 272        dpm_wait(dev->parent, async);
 273        dpm_wait_for_suppliers(dev, async);
 274}
 275
 276static void dpm_wait_for_consumers(struct device *dev, bool async)
 277{
 278        struct device_link *link;
 279        int idx;
 280
 281        idx = device_links_read_lock();
 282
 283        /*
 284         * The status of a device link can only be changed from "dormant" by a
 285         * probe, but that cannot happen during system suspend/resume.  In
 286         * theory it can change to "dormant" at that time, but then it is
 287         * reasonable to wait for the target device anyway (eg. if it goes
 288         * away, it's better to wait for it to go away completely and then
 289         * continue instead of trying to continue in parallel with its
 290         * unregistration).
 291         */
 292        list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
 293                if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 294                        dpm_wait(link->consumer, async);
 295
 296        device_links_read_unlock(idx);
 297}
 298
 299static void dpm_wait_for_subordinate(struct device *dev, bool async)
 300{
 301        dpm_wait_for_children(dev, async);
 302        dpm_wait_for_consumers(dev, async);
 303}
 304
 305/**
 306 * pm_op - Return the PM operation appropriate for given PM event.
 307 * @ops: PM operations to choose from.
 308 * @state: PM transition of the system being carried out.
 309 */
 310static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
 311{
 312        switch (state.event) {
 313#ifdef CONFIG_SUSPEND
 314        case PM_EVENT_SUSPEND:
 315                return ops->suspend;
 316        case PM_EVENT_RESUME:
 317                return ops->resume;
 318#endif /* CONFIG_SUSPEND */
 319#ifdef CONFIG_HIBERNATE_CALLBACKS
 320        case PM_EVENT_FREEZE:
 321        case PM_EVENT_QUIESCE:
 322                return ops->freeze;
 323        case PM_EVENT_HIBERNATE:
 324                return ops->poweroff;
 325        case PM_EVENT_THAW:
 326        case PM_EVENT_RECOVER:
 327                return ops->thaw;
 328                break;
 329        case PM_EVENT_RESTORE:
 330                return ops->restore;
 331#endif /* CONFIG_HIBERNATE_CALLBACKS */
 332        }
 333
 334        return NULL;
 335}
 336
 337/**
 338 * pm_late_early_op - Return the PM operation appropriate for given PM event.
 339 * @ops: PM operations to choose from.
 340 * @state: PM transition of the system being carried out.
 341 *
 342 * Runtime PM is disabled for @dev while this function is being executed.
 343 */
 344static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
 345                                      pm_message_t state)
 346{
 347        switch (state.event) {
 348#ifdef CONFIG_SUSPEND
 349        case PM_EVENT_SUSPEND:
 350                return ops->suspend_late;
 351        case PM_EVENT_RESUME:
 352                return ops->resume_early;
 353#endif /* CONFIG_SUSPEND */
 354#ifdef CONFIG_HIBERNATE_CALLBACKS
 355        case PM_EVENT_FREEZE:
 356        case PM_EVENT_QUIESCE:
 357                return ops->freeze_late;
 358        case PM_EVENT_HIBERNATE:
 359                return ops->poweroff_late;
 360        case PM_EVENT_THAW:
 361        case PM_EVENT_RECOVER:
 362                return ops->thaw_early;
 363        case PM_EVENT_RESTORE:
 364                return ops->restore_early;
 365#endif /* CONFIG_HIBERNATE_CALLBACKS */
 366        }
 367
 368        return NULL;
 369}
 370
 371/**
 372 * pm_noirq_op - Return the PM operation appropriate for given PM event.
 373 * @ops: PM operations to choose from.
 374 * @state: PM transition of the system being carried out.
 375 *
 376 * The driver of @dev will not receive interrupts while this function is being
 377 * executed.
 378 */
 379static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
 380{
 381        switch (state.event) {
 382#ifdef CONFIG_SUSPEND
 383        case PM_EVENT_SUSPEND:
 384                return ops->suspend_noirq;
 385        case PM_EVENT_RESUME:
 386                return ops->resume_noirq;
 387#endif /* CONFIG_SUSPEND */
 388#ifdef CONFIG_HIBERNATE_CALLBACKS
 389        case PM_EVENT_FREEZE:
 390        case PM_EVENT_QUIESCE:
 391                return ops->freeze_noirq;
 392        case PM_EVENT_HIBERNATE:
 393                return ops->poweroff_noirq;
 394        case PM_EVENT_THAW:
 395        case PM_EVENT_RECOVER:
 396                return ops->thaw_noirq;
 397        case PM_EVENT_RESTORE:
 398                return ops->restore_noirq;
 399#endif /* CONFIG_HIBERNATE_CALLBACKS */
 400        }
 401
 402        return NULL;
 403}
 404
 405static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
 406{
 407        dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
 408                ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
 409                ", may wakeup" : "");
 410}
 411
 412static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
 413                        int error)
 414{
 415        printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
 416                dev_name(dev), pm_verb(state.event), info, error);
 417}
 418
 419static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
 420{
 421        ktime_t calltime;
 422        u64 usecs64;
 423        int usecs;
 424
 425        calltime = ktime_get();
 426        usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
 427        do_div(usecs64, NSEC_PER_USEC);
 428        usecs = usecs64;
 429        if (usecs == 0)
 430                usecs = 1;
 431        pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
 432                info ?: "", info ? " " : "", pm_verb(state.event),
 433                usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
 434}
 435
 436static int dpm_run_callback(pm_callback_t cb, struct device *dev,
 437                            pm_message_t state, char *info)
 438{
 439        ktime_t calltime;
 440        int error;
 441
 442        if (!cb)
 443                return 0;
 444
 445        calltime = initcall_debug_start(dev);
 446
 447        pm_dev_dbg(dev, state, info);
 448        trace_device_pm_callback_start(dev, info, state.event);
 449        error = cb(dev);
 450        trace_device_pm_callback_end(dev, error);
 451        suspend_report_result(cb, error);
 452
 453        initcall_debug_report(dev, calltime, error, state, info);
 454
 455        return error;
 456}
 457
 458#ifdef CONFIG_DPM_WATCHDOG
 459struct dpm_watchdog {
 460        struct device           *dev;
 461        struct task_struct      *tsk;
 462        struct timer_list       timer;
 463};
 464
 465#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
 466        struct dpm_watchdog wd
 467
 468/**
 469 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
 470 * @data: Watchdog object address.
 471 *
 472 * Called when a driver has timed out suspending or resuming.
 473 * There's not much we can do here to recover so panic() to
 474 * capture a crash-dump in pstore.
 475 */
 476static void dpm_watchdog_handler(unsigned long data)
 477{
 478        struct dpm_watchdog *wd = (void *)data;
 479
 480        dev_emerg(wd->dev, "**** DPM device timeout ****\n");
 481        show_stack(wd->tsk, NULL);
 482        panic("%s %s: unrecoverable failure\n",
 483                dev_driver_string(wd->dev), dev_name(wd->dev));
 484}
 485
 486/**
 487 * dpm_watchdog_set - Enable pm watchdog for given device.
 488 * @wd: Watchdog. Must be allocated on the stack.
 489 * @dev: Device to handle.
 490 */
 491static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
 492{
 493        struct timer_list *timer = &wd->timer;
 494
 495        wd->dev = dev;
 496        wd->tsk = current;
 497
 498        init_timer_on_stack(timer);
 499        /* use same timeout value for both suspend and resume */
 500        timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
 501        timer->function = dpm_watchdog_handler;
 502        timer->data = (unsigned long)wd;
 503        add_timer(timer);
 504}
 505
 506/**
 507 * dpm_watchdog_clear - Disable suspend/resume watchdog.
 508 * @wd: Watchdog to disable.
 509 */
 510static void dpm_watchdog_clear(struct dpm_watchdog *wd)
 511{
 512        struct timer_list *timer = &wd->timer;
 513
 514        del_timer_sync(timer);
 515        destroy_timer_on_stack(timer);
 516}
 517#else
 518#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
 519#define dpm_watchdog_set(x, y)
 520#define dpm_watchdog_clear(x)
 521#endif
 522
 523/*------------------------- Resume routines -------------------------*/
 524
 525/**
 526 * device_resume_noirq - Execute an "early resume" callback for given device.
 527 * @dev: Device to handle.
 528 * @state: PM transition of the system being carried out.
 529 * @async: If true, the device is being resumed asynchronously.
 530 *
 531 * The driver of @dev will not receive interrupts while this function is being
 532 * executed.
 533 */
 534static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
 535{
 536        pm_callback_t callback = NULL;
 537        char *info = NULL;
 538        int error = 0;
 539
 540        TRACE_DEVICE(dev);
 541        TRACE_RESUME(0);
 542
 543        if (dev->power.syscore || dev->power.direct_complete)
 544                goto Out;
 545
 546        if (!dev->power.is_noirq_suspended)
 547                goto Out;
 548
 549        dpm_wait_for_superior(dev, async);
 550
 551        if (dev->pm_domain) {
 552                info = "noirq power domain ";
 553                callback = pm_noirq_op(&dev->pm_domain->ops, state);
 554        } else if (dev->type && dev->type->pm) {
 555                info = "noirq type ";
 556                callback = pm_noirq_op(dev->type->pm, state);
 557        } else if (dev->class && dev->class->pm) {
 558                info = "noirq class ";
 559                callback = pm_noirq_op(dev->class->pm, state);
 560        } else if (dev->bus && dev->bus->pm) {
 561                info = "noirq bus ";
 562                callback = pm_noirq_op(dev->bus->pm, state);
 563        }
 564
 565        if (!callback && dev->driver && dev->driver->pm) {
 566                info = "noirq driver ";
 567                callback = pm_noirq_op(dev->driver->pm, state);
 568        }
 569
 570        error = dpm_run_callback(callback, dev, state, info);
 571        dev->power.is_noirq_suspended = false;
 572
 573 Out:
 574        complete_all(&dev->power.completion);
 575        TRACE_RESUME(error);
 576        return error;
 577}
 578
 579static bool is_async(struct device *dev)
 580{
 581        return dev->power.async_suspend && pm_async_enabled
 582                && !pm_trace_is_enabled();
 583}
 584
 585static void async_resume_noirq(void *data, async_cookie_t cookie)
 586{
 587        struct device *dev = (struct device *)data;
 588        int error;
 589
 590        error = device_resume_noirq(dev, pm_transition, true);
 591        if (error)
 592                pm_dev_err(dev, pm_transition, " async", error);
 593
 594        put_device(dev);
 595}
 596
 597/**
 598 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
 599 * @state: PM transition of the system being carried out.
 600 *
 601 * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
 602 * enable device drivers to receive interrupts.
 603 */
 604void dpm_resume_noirq(pm_message_t state)
 605{
 606        struct device *dev;
 607        ktime_t starttime = ktime_get();
 608
 609        trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
 610        mutex_lock(&dpm_list_mtx);
 611        pm_transition = state;
 612
 613        /*
 614         * Advanced the async threads upfront,
 615         * in case the starting of async threads is
 616         * delayed by non-async resuming devices.
 617         */
 618        list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
 619                reinit_completion(&dev->power.completion);
 620                if (is_async(dev)) {
 621                        get_device(dev);
 622                        async_schedule(async_resume_noirq, dev);
 623                }
 624        }
 625
 626        while (!list_empty(&dpm_noirq_list)) {
 627                dev = to_device(dpm_noirq_list.next);
 628                get_device(dev);
 629                list_move_tail(&dev->power.entry, &dpm_late_early_list);
 630                mutex_unlock(&dpm_list_mtx);
 631
 632                if (!is_async(dev)) {
 633                        int error;
 634
 635                        error = device_resume_noirq(dev, state, false);
 636                        if (error) {
 637                                suspend_stats.failed_resume_noirq++;
 638                                dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
 639                                dpm_save_failed_dev(dev_name(dev));
 640                                pm_dev_err(dev, state, " noirq", error);
 641                        }
 642                }
 643
 644                mutex_lock(&dpm_list_mtx);
 645                put_device(dev);
 646        }
 647        mutex_unlock(&dpm_list_mtx);
 648        async_synchronize_full();
 649        dpm_show_time(starttime, state, "noirq");
 650        resume_device_irqs();
 651        device_wakeup_disarm_wake_irqs();
 652        cpuidle_resume();
 653        trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
 654}
 655
 656/**
 657 * device_resume_early - Execute an "early resume" callback for given device.
 658 * @dev: Device to handle.
 659 * @state: PM transition of the system being carried out.
 660 * @async: If true, the device is being resumed asynchronously.
 661 *
 662 * Runtime PM is disabled for @dev while this function is being executed.
 663 */
 664static int device_resume_early(struct device *dev, pm_message_t state, bool async)
 665{
 666        pm_callback_t callback = NULL;
 667        char *info = NULL;
 668        int error = 0;
 669
 670        TRACE_DEVICE(dev);
 671        TRACE_RESUME(0);
 672
 673        if (dev->power.syscore || dev->power.direct_complete)
 674                goto Out;
 675
 676        if (!dev->power.is_late_suspended)
 677                goto Out;
 678
 679        dpm_wait_for_superior(dev, async);
 680
 681        if (dev->pm_domain) {
 682                info = "early power domain ";
 683                callback = pm_late_early_op(&dev->pm_domain->ops, state);
 684        } else if (dev->type && dev->type->pm) {
 685                info = "early type ";
 686                callback = pm_late_early_op(dev->type->pm, state);
 687        } else if (dev->class && dev->class->pm) {
 688                info = "early class ";
 689                callback = pm_late_early_op(dev->class->pm, state);
 690        } else if (dev->bus && dev->bus->pm) {
 691                info = "early bus ";
 692                callback = pm_late_early_op(dev->bus->pm, state);
 693        }
 694
 695        if (!callback && dev->driver && dev->driver->pm) {
 696                info = "early driver ";
 697                callback = pm_late_early_op(dev->driver->pm, state);
 698        }
 699
 700        error = dpm_run_callback(callback, dev, state, info);
 701        dev->power.is_late_suspended = false;
 702
 703 Out:
 704        TRACE_RESUME(error);
 705
 706        pm_runtime_enable(dev);
 707        complete_all(&dev->power.completion);
 708        return error;
 709}
 710
 711static void async_resume_early(void *data, async_cookie_t cookie)
 712{
 713        struct device *dev = (struct device *)data;
 714        int error;
 715
 716        error = device_resume_early(dev, pm_transition, true);
 717        if (error)
 718                pm_dev_err(dev, pm_transition, " async", error);
 719
 720        put_device(dev);
 721}
 722
 723/**
 724 * dpm_resume_early - Execute "early resume" callbacks for all devices.
 725 * @state: PM transition of the system being carried out.
 726 */
 727void dpm_resume_early(pm_message_t state)
 728{
 729        struct device *dev;
 730        ktime_t starttime = ktime_get();
 731
 732        trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
 733        mutex_lock(&dpm_list_mtx);
 734        pm_transition = state;
 735
 736        /*
 737         * Advanced the async threads upfront,
 738         * in case the starting of async threads is
 739         * delayed by non-async resuming devices.
 740         */
 741        list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
 742                reinit_completion(&dev->power.completion);
 743                if (is_async(dev)) {
 744                        get_device(dev);
 745                        async_schedule(async_resume_early, dev);
 746                }
 747        }
 748
 749        while (!list_empty(&dpm_late_early_list)) {
 750                dev = to_device(dpm_late_early_list.next);
 751                get_device(dev);
 752                list_move_tail(&dev->power.entry, &dpm_suspended_list);
 753                mutex_unlock(&dpm_list_mtx);
 754
 755                if (!is_async(dev)) {
 756                        int error;
 757
 758                        error = device_resume_early(dev, state, false);
 759                        if (error) {
 760                                suspend_stats.failed_resume_early++;
 761                                dpm_save_failed_step(SUSPEND_RESUME_EARLY);
 762                                dpm_save_failed_dev(dev_name(dev));
 763                                pm_dev_err(dev, state, " early", error);
 764                        }
 765                }
 766                mutex_lock(&dpm_list_mtx);
 767                put_device(dev);
 768        }
 769        mutex_unlock(&dpm_list_mtx);
 770        async_synchronize_full();
 771        dpm_show_time(starttime, state, "early");
 772        trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
 773}
 774
 775/**
 776 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
 777 * @state: PM transition of the system being carried out.
 778 */
 779void dpm_resume_start(pm_message_t state)
 780{
 781        dpm_resume_noirq(state);
 782        dpm_resume_early(state);
 783}
 784EXPORT_SYMBOL_GPL(dpm_resume_start);
 785
 786/**
 787 * device_resume - Execute "resume" callbacks for given device.
 788 * @dev: Device to handle.
 789 * @state: PM transition of the system being carried out.
 790 * @async: If true, the device is being resumed asynchronously.
 791 */
 792static int device_resume(struct device *dev, pm_message_t state, bool async)
 793{
 794        pm_callback_t callback = NULL;
 795        char *info = NULL;
 796        int error = 0;
 797        DECLARE_DPM_WATCHDOG_ON_STACK(wd);
 798
 799        TRACE_DEVICE(dev);
 800        TRACE_RESUME(0);
 801
 802        if (dev->power.syscore)
 803                goto Complete;
 804
 805        if (dev->power.direct_complete) {
 806                /* Match the pm_runtime_disable() in __device_suspend(). */
 807                pm_runtime_enable(dev);
 808                goto Complete;
 809        }
 810
 811        dpm_wait_for_superior(dev, async);
 812        dpm_watchdog_set(&wd, dev);
 813        device_lock(dev);
 814
 815        /*
 816         * This is a fib.  But we'll allow new children to be added below
 817         * a resumed device, even if the device hasn't been completed yet.
 818         */
 819        dev->power.is_prepared = false;
 820
 821        if (!dev->power.is_suspended)
 822                goto Unlock;
 823
 824        if (dev->pm_domain) {
 825                info = "power domain ";
 826                callback = pm_op(&dev->pm_domain->ops, state);
 827                goto Driver;
 828        }
 829
 830        if (dev->type && dev->type->pm) {
 831                info = "type ";
 832                callback = pm_op(dev->type->pm, state);
 833                goto Driver;
 834        }
 835
 836        if (dev->class) {
 837                if (dev->class->pm) {
 838                        info = "class ";
 839                        callback = pm_op(dev->class->pm, state);
 840                        goto Driver;
 841                } else if (dev->class->resume) {
 842                        info = "legacy class ";
 843                        callback = dev->class->resume;
 844                        goto End;
 845                }
 846        }
 847
 848        if (dev->bus) {
 849                if (dev->bus->pm) {
 850                        info = "bus ";
 851                        callback = pm_op(dev->bus->pm, state);
 852                } else if (dev->bus->resume) {
 853                        info = "legacy bus ";
 854                        callback = dev->bus->resume;
 855                        goto End;
 856                }
 857        }
 858
 859 Driver:
 860        if (!callback && dev->driver && dev->driver->pm) {
 861                info = "driver ";
 862                callback = pm_op(dev->driver->pm, state);
 863        }
 864
 865 End:
 866        error = dpm_run_callback(callback, dev, state, info);
 867        dev->power.is_suspended = false;
 868
 869 Unlock:
 870        device_unlock(dev);
 871        dpm_watchdog_clear(&wd);
 872
 873 Complete:
 874        complete_all(&dev->power.completion);
 875
 876        TRACE_RESUME(error);
 877
 878        return error;
 879}
 880
 881static void async_resume(void *data, async_cookie_t cookie)
 882{
 883        struct device *dev = (struct device *)data;
 884        int error;
 885
 886        error = device_resume(dev, pm_transition, true);
 887        if (error)
 888                pm_dev_err(dev, pm_transition, " async", error);
 889        put_device(dev);
 890}
 891
 892/**
 893 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
 894 * @state: PM transition of the system being carried out.
 895 *
 896 * Execute the appropriate "resume" callback for all devices whose status
 897 * indicates that they are suspended.
 898 */
 899void dpm_resume(pm_message_t state)
 900{
 901        struct device *dev;
 902        ktime_t starttime = ktime_get();
 903
 904        trace_suspend_resume(TPS("dpm_resume"), state.event, true);
 905        might_sleep();
 906
 907        mutex_lock(&dpm_list_mtx);
 908        pm_transition = state;
 909        async_error = 0;
 910
 911        list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
 912                reinit_completion(&dev->power.completion);
 913                if (is_async(dev)) {
 914                        get_device(dev);
 915                        async_schedule(async_resume, dev);
 916                }
 917        }
 918
 919        while (!list_empty(&dpm_suspended_list)) {
 920                dev = to_device(dpm_suspended_list.next);
 921                get_device(dev);
 922                if (!is_async(dev)) {
 923                        int error;
 924
 925                        mutex_unlock(&dpm_list_mtx);
 926
 927                        error = device_resume(dev, state, false);
 928                        if (error) {
 929                                suspend_stats.failed_resume++;
 930                                dpm_save_failed_step(SUSPEND_RESUME);
 931                                dpm_save_failed_dev(dev_name(dev));
 932                                pm_dev_err(dev, state, "", error);
 933                        }
 934
 935                        mutex_lock(&dpm_list_mtx);
 936                }
 937                if (!list_empty(&dev->power.entry))
 938                        list_move_tail(&dev->power.entry, &dpm_prepared_list);
 939                put_device(dev);
 940        }
 941        mutex_unlock(&dpm_list_mtx);
 942        async_synchronize_full();
 943        dpm_show_time(starttime, state, NULL);
 944
 945        cpufreq_resume();
 946        trace_suspend_resume(TPS("dpm_resume"), state.event, false);
 947}
 948
 949/**
 950 * device_complete - Complete a PM transition for given device.
 951 * @dev: Device to handle.
 952 * @state: PM transition of the system being carried out.
 953 */
 954static void device_complete(struct device *dev, pm_message_t state)
 955{
 956        void (*callback)(struct device *) = NULL;
 957        char *info = NULL;
 958
 959        if (dev->power.syscore)
 960                return;
 961
 962        device_lock(dev);
 963
 964        if (dev->pm_domain) {
 965                info = "completing power domain ";
 966                callback = dev->pm_domain->ops.complete;
 967        } else if (dev->type && dev->type->pm) {
 968                info = "completing type ";
 969                callback = dev->type->pm->complete;
 970        } else if (dev->class && dev->class->pm) {
 971                info = "completing class ";
 972                callback = dev->class->pm->complete;
 973        } else if (dev->bus && dev->bus->pm) {
 974                info = "completing bus ";
 975                callback = dev->bus->pm->complete;
 976        }
 977
 978        if (!callback && dev->driver && dev->driver->pm) {
 979                info = "completing driver ";
 980                callback = dev->driver->pm->complete;
 981        }
 982
 983        if (callback) {
 984                pm_dev_dbg(dev, state, info);
 985                callback(dev);
 986        }
 987
 988        device_unlock(dev);
 989
 990        pm_runtime_put(dev);
 991}
 992
 993/**
 994 * dpm_complete - Complete a PM transition for all non-sysdev devices.
 995 * @state: PM transition of the system being carried out.
 996 *
 997 * Execute the ->complete() callbacks for all devices whose PM status is not
 998 * DPM_ON (this allows new devices to be registered).
 999 */
1000void dpm_complete(pm_message_t state)
1001{
1002        struct list_head list;
1003
1004        trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1005        might_sleep();
1006
1007        INIT_LIST_HEAD(&list);
1008        mutex_lock(&dpm_list_mtx);
1009        while (!list_empty(&dpm_prepared_list)) {
1010                struct device *dev = to_device(dpm_prepared_list.prev);
1011
1012                get_device(dev);
1013                dev->power.is_prepared = false;
1014                list_move(&dev->power.entry, &list);
1015                mutex_unlock(&dpm_list_mtx);
1016
1017                trace_device_pm_callback_start(dev, "", state.event);
1018                device_complete(dev, state);
1019                trace_device_pm_callback_end(dev, 0);
1020
1021                mutex_lock(&dpm_list_mtx);
1022                put_device(dev);
1023        }
1024        list_splice(&list, &dpm_list);
1025        mutex_unlock(&dpm_list_mtx);
1026
1027        /* Allow device probing and trigger re-probing of deferred devices */
1028        device_unblock_probing();
1029        trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1030}
1031
1032/**
1033 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1034 * @state: PM transition of the system being carried out.
1035 *
1036 * Execute "resume" callbacks for all devices and complete the PM transition of
1037 * the system.
1038 */
1039void dpm_resume_end(pm_message_t state)
1040{
1041        dpm_resume(state);
1042        dpm_complete(state);
1043}
1044EXPORT_SYMBOL_GPL(dpm_resume_end);
1045
1046
1047/*------------------------- Suspend routines -------------------------*/
1048
1049/**
1050 * resume_event - Return a "resume" message for given "suspend" sleep state.
1051 * @sleep_state: PM message representing a sleep state.
1052 *
1053 * Return a PM message representing the resume event corresponding to given
1054 * sleep state.
1055 */
1056static pm_message_t resume_event(pm_message_t sleep_state)
1057{
1058        switch (sleep_state.event) {
1059        case PM_EVENT_SUSPEND:
1060                return PMSG_RESUME;
1061        case PM_EVENT_FREEZE:
1062        case PM_EVENT_QUIESCE:
1063                return PMSG_RECOVER;
1064        case PM_EVENT_HIBERNATE:
1065                return PMSG_RESTORE;
1066        }
1067        return PMSG_ON;
1068}
1069
1070/**
1071 * device_suspend_noirq - Execute a "late suspend" callback for given device.
1072 * @dev: Device to handle.
1073 * @state: PM transition of the system being carried out.
1074 * @async: If true, the device is being suspended asynchronously.
1075 *
1076 * The driver of @dev will not receive interrupts while this function is being
1077 * executed.
1078 */
1079static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1080{
1081        pm_callback_t callback = NULL;
1082        char *info = NULL;
1083        int error = 0;
1084
1085        TRACE_DEVICE(dev);
1086        TRACE_SUSPEND(0);
1087
1088        dpm_wait_for_subordinate(dev, async);
1089
1090        if (async_error)
1091                goto Complete;
1092
1093        if (pm_wakeup_pending()) {
1094                async_error = -EBUSY;
1095                goto Complete;
1096        }
1097
1098        if (dev->power.syscore || dev->power.direct_complete)
1099                goto Complete;
1100
1101        if (dev->pm_domain) {
1102                info = "noirq power domain ";
1103                callback = pm_noirq_op(&dev->pm_domain->ops, state);
1104        } else if (dev->type && dev->type->pm) {
1105                info = "noirq type ";
1106                callback = pm_noirq_op(dev->type->pm, state);
1107        } else if (dev->class && dev->class->pm) {
1108                info = "noirq class ";
1109                callback = pm_noirq_op(dev->class->pm, state);
1110        } else if (dev->bus && dev->bus->pm) {
1111                info = "noirq bus ";
1112                callback = pm_noirq_op(dev->bus->pm, state);
1113        }
1114
1115        if (!callback && dev->driver && dev->driver->pm) {
1116                info = "noirq driver ";
1117                callback = pm_noirq_op(dev->driver->pm, state);
1118        }
1119
1120        error = dpm_run_callback(callback, dev, state, info);
1121        if (!error)
1122                dev->power.is_noirq_suspended = true;
1123        else
1124                async_error = error;
1125
1126Complete:
1127        complete_all(&dev->power.completion);
1128        TRACE_SUSPEND(error);
1129        return error;
1130}
1131
1132static void async_suspend_noirq(void *data, async_cookie_t cookie)
1133{
1134        struct device *dev = (struct device *)data;
1135        int error;
1136
1137        error = __device_suspend_noirq(dev, pm_transition, true);
1138        if (error) {
1139                dpm_save_failed_dev(dev_name(dev));
1140                pm_dev_err(dev, pm_transition, " async", error);
1141        }
1142
1143        put_device(dev);
1144}
1145
1146static int device_suspend_noirq(struct device *dev)
1147{
1148        reinit_completion(&dev->power.completion);
1149
1150        if (is_async(dev)) {
1151                get_device(dev);
1152                async_schedule(async_suspend_noirq, dev);
1153                return 0;
1154        }
1155        return __device_suspend_noirq(dev, pm_transition, false);
1156}
1157
1158/**
1159 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1160 * @state: PM transition of the system being carried out.
1161 *
1162 * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1163 * handlers for all non-sysdev devices.
1164 */
1165int dpm_suspend_noirq(pm_message_t state)
1166{
1167        ktime_t starttime = ktime_get();
1168        int error = 0;
1169
1170        trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1171        cpuidle_pause();
1172        device_wakeup_arm_wake_irqs();
1173        suspend_device_irqs();
1174        mutex_lock(&dpm_list_mtx);
1175        pm_transition = state;
1176        async_error = 0;
1177
1178        while (!list_empty(&dpm_late_early_list)) {
1179                struct device *dev = to_device(dpm_late_early_list.prev);
1180
1181                get_device(dev);
1182                mutex_unlock(&dpm_list_mtx);
1183
1184                error = device_suspend_noirq(dev);
1185
1186                mutex_lock(&dpm_list_mtx);
1187                if (error) {
1188                        pm_dev_err(dev, state, " noirq", error);
1189                        dpm_save_failed_dev(dev_name(dev));
1190                        put_device(dev);
1191                        break;
1192                }
1193                if (!list_empty(&dev->power.entry))
1194                        list_move(&dev->power.entry, &dpm_noirq_list);
1195                put_device(dev);
1196
1197                if (async_error)
1198                        break;
1199        }
1200        mutex_unlock(&dpm_list_mtx);
1201        async_synchronize_full();
1202        if (!error)
1203                error = async_error;
1204
1205        if (error) {
1206                suspend_stats.failed_suspend_noirq++;
1207                dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1208                dpm_resume_noirq(resume_event(state));
1209        } else {
1210                dpm_show_time(starttime, state, "noirq");
1211        }
1212        trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1213        return error;
1214}
1215
1216/**
1217 * device_suspend_late - Execute a "late suspend" callback for given device.
1218 * @dev: Device to handle.
1219 * @state: PM transition of the system being carried out.
1220 * @async: If true, the device is being suspended asynchronously.
1221 *
1222 * Runtime PM is disabled for @dev while this function is being executed.
1223 */
1224static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1225{
1226        pm_callback_t callback = NULL;
1227        char *info = NULL;
1228        int error = 0;
1229
1230        TRACE_DEVICE(dev);
1231        TRACE_SUSPEND(0);
1232
1233        __pm_runtime_disable(dev, false);
1234
1235        dpm_wait_for_subordinate(dev, async);
1236
1237        if (async_error)
1238                goto Complete;
1239
1240        if (pm_wakeup_pending()) {
1241                async_error = -EBUSY;
1242                goto Complete;
1243        }
1244
1245        if (dev->power.syscore || dev->power.direct_complete)
1246                goto Complete;
1247
1248        if (dev->pm_domain) {
1249                info = "late power domain ";
1250                callback = pm_late_early_op(&dev->pm_domain->ops, state);
1251        } else if (dev->type && dev->type->pm) {
1252                info = "late type ";
1253                callback = pm_late_early_op(dev->type->pm, state);
1254        } else if (dev->class && dev->class->pm) {
1255                info = "late class ";
1256                callback = pm_late_early_op(dev->class->pm, state);
1257        } else if (dev->bus && dev->bus->pm) {
1258                info = "late bus ";
1259                callback = pm_late_early_op(dev->bus->pm, state);
1260        }
1261
1262        if (!callback && dev->driver && dev->driver->pm) {
1263                info = "late driver ";
1264                callback = pm_late_early_op(dev->driver->pm, state);
1265        }
1266
1267        error = dpm_run_callback(callback, dev, state, info);
1268        if (!error)
1269                dev->power.is_late_suspended = true;
1270        else
1271                async_error = error;
1272
1273Complete:
1274        TRACE_SUSPEND(error);
1275        complete_all(&dev->power.completion);
1276        return error;
1277}
1278
1279static void async_suspend_late(void *data, async_cookie_t cookie)
1280{
1281        struct device *dev = (struct device *)data;
1282        int error;
1283
1284        error = __device_suspend_late(dev, pm_transition, true);
1285        if (error) {
1286                dpm_save_failed_dev(dev_name(dev));
1287                pm_dev_err(dev, pm_transition, " async", error);
1288        }
1289        put_device(dev);
1290}
1291
1292static int device_suspend_late(struct device *dev)
1293{
1294        reinit_completion(&dev->power.completion);
1295
1296        if (is_async(dev)) {
1297                get_device(dev);
1298                async_schedule(async_suspend_late, dev);
1299                return 0;
1300        }
1301
1302        return __device_suspend_late(dev, pm_transition, false);
1303}
1304
1305/**
1306 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1307 * @state: PM transition of the system being carried out.
1308 */
1309int dpm_suspend_late(pm_message_t state)
1310{
1311        ktime_t starttime = ktime_get();
1312        int error = 0;
1313
1314        trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1315        mutex_lock(&dpm_list_mtx);
1316        pm_transition = state;
1317        async_error = 0;
1318
1319        while (!list_empty(&dpm_suspended_list)) {
1320                struct device *dev = to_device(dpm_suspended_list.prev);
1321
1322                get_device(dev);
1323                mutex_unlock(&dpm_list_mtx);
1324
1325                error = device_suspend_late(dev);
1326
1327                mutex_lock(&dpm_list_mtx);
1328                if (!list_empty(&dev->power.entry))
1329                        list_move(&dev->power.entry, &dpm_late_early_list);
1330
1331                if (error) {
1332                        pm_dev_err(dev, state, " late", error);
1333                        dpm_save_failed_dev(dev_name(dev));
1334                        put_device(dev);
1335                        break;
1336                }
1337                put_device(dev);
1338
1339                if (async_error)
1340                        break;
1341        }
1342        mutex_unlock(&dpm_list_mtx);
1343        async_synchronize_full();
1344        if (!error)
1345                error = async_error;
1346        if (error) {
1347                suspend_stats.failed_suspend_late++;
1348                dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1349                dpm_resume_early(resume_event(state));
1350        } else {
1351                dpm_show_time(starttime, state, "late");
1352        }
1353        trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1354        return error;
1355}
1356
1357/**
1358 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1359 * @state: PM transition of the system being carried out.
1360 */
1361int dpm_suspend_end(pm_message_t state)
1362{
1363        int error = dpm_suspend_late(state);
1364        if (error)
1365                return error;
1366
1367        error = dpm_suspend_noirq(state);
1368        if (error) {
1369                dpm_resume_early(resume_event(state));
1370                return error;
1371        }
1372
1373        return 0;
1374}
1375EXPORT_SYMBOL_GPL(dpm_suspend_end);
1376
1377/**
1378 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1379 * @dev: Device to suspend.
1380 * @state: PM transition of the system being carried out.
1381 * @cb: Suspend callback to execute.
1382 * @info: string description of caller.
1383 */
1384static int legacy_suspend(struct device *dev, pm_message_t state,
1385                          int (*cb)(struct device *dev, pm_message_t state),
1386                          char *info)
1387{
1388        int error;
1389        ktime_t calltime;
1390
1391        calltime = initcall_debug_start(dev);
1392
1393        trace_device_pm_callback_start(dev, info, state.event);
1394        error = cb(dev, state);
1395        trace_device_pm_callback_end(dev, error);
1396        suspend_report_result(cb, error);
1397
1398        initcall_debug_report(dev, calltime, error, state, info);
1399
1400        return error;
1401}
1402
1403static void dpm_clear_suppliers_direct_complete(struct device *dev)
1404{
1405        struct device_link *link;
1406        int idx;
1407
1408        idx = device_links_read_lock();
1409
1410        list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1411                spin_lock_irq(&link->supplier->power.lock);
1412                link->supplier->power.direct_complete = false;
1413                spin_unlock_irq(&link->supplier->power.lock);
1414        }
1415
1416        device_links_read_unlock(idx);
1417}
1418
1419/**
1420 * device_suspend - Execute "suspend" callbacks for given device.
1421 * @dev: Device to handle.
1422 * @state: PM transition of the system being carried out.
1423 * @async: If true, the device is being suspended asynchronously.
1424 */
1425static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1426{
1427        pm_callback_t callback = NULL;
1428        char *info = NULL;
1429        int error = 0;
1430        DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1431
1432        TRACE_DEVICE(dev);
1433        TRACE_SUSPEND(0);
1434
1435        dpm_wait_for_subordinate(dev, async);
1436
1437        if (async_error)
1438                goto Complete;
1439
1440        /*
1441         * If a device configured to wake up the system from sleep states
1442         * has been suspended at run time and there's a resume request pending
1443         * for it, this is equivalent to the device signaling wakeup, so the
1444         * system suspend operation should be aborted.
1445         */
1446        if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1447                pm_wakeup_event(dev, 0);
1448
1449        if (pm_wakeup_pending()) {
1450                async_error = -EBUSY;
1451                goto Complete;
1452        }
1453
1454        if (dev->power.syscore)
1455                goto Complete;
1456
1457        if (dev->power.direct_complete) {
1458                if (pm_runtime_status_suspended(dev)) {
1459                        pm_runtime_disable(dev);
1460                        if (pm_runtime_status_suspended(dev))
1461                                goto Complete;
1462
1463                        pm_runtime_enable(dev);
1464                }
1465                dev->power.direct_complete = false;
1466        }
1467
1468        dpm_watchdog_set(&wd, dev);
1469        device_lock(dev);
1470
1471        if (dev->pm_domain) {
1472                info = "power domain ";
1473                callback = pm_op(&dev->pm_domain->ops, state);
1474                goto Run;
1475        }
1476
1477        if (dev->type && dev->type->pm) {
1478                info = "type ";
1479                callback = pm_op(dev->type->pm, state);
1480                goto Run;
1481        }
1482
1483        if (dev->class) {
1484                if (dev->class->pm) {
1485                        info = "class ";
1486                        callback = pm_op(dev->class->pm, state);
1487                        goto Run;
1488                } else if (dev->class->suspend) {
1489                        pm_dev_dbg(dev, state, "legacy class ");
1490                        error = legacy_suspend(dev, state, dev->class->suspend,
1491                                                "legacy class ");
1492                        goto End;
1493                }
1494        }
1495
1496        if (dev->bus) {
1497                if (dev->bus->pm) {
1498                        info = "bus ";
1499                        callback = pm_op(dev->bus->pm, state);
1500                } else if (dev->bus->suspend) {
1501                        pm_dev_dbg(dev, state, "legacy bus ");
1502                        error = legacy_suspend(dev, state, dev->bus->suspend,
1503                                                "legacy bus ");
1504                        goto End;
1505                }
1506        }
1507
1508 Run:
1509        if (!callback && dev->driver && dev->driver->pm) {
1510                info = "driver ";
1511                callback = pm_op(dev->driver->pm, state);
1512        }
1513
1514        error = dpm_run_callback(callback, dev, state, info);
1515
1516 End:
1517        if (!error) {
1518                struct device *parent = dev->parent;
1519
1520                dev->power.is_suspended = true;
1521                if (parent) {
1522                        spin_lock_irq(&parent->power.lock);
1523
1524                        dev->parent->power.direct_complete = false;
1525                        if (dev->power.wakeup_path
1526                            && !dev->parent->power.ignore_children)
1527                                dev->parent->power.wakeup_path = true;
1528
1529                        spin_unlock_irq(&parent->power.lock);
1530                }
1531                dpm_clear_suppliers_direct_complete(dev);
1532        }
1533
1534        device_unlock(dev);
1535        dpm_watchdog_clear(&wd);
1536
1537 Complete:
1538        if (error)
1539                async_error = error;
1540
1541        complete_all(&dev->power.completion);
1542        TRACE_SUSPEND(error);
1543        return error;
1544}
1545
1546static void async_suspend(void *data, async_cookie_t cookie)
1547{
1548        struct device *dev = (struct device *)data;
1549        int error;
1550
1551        error = __device_suspend(dev, pm_transition, true);
1552        if (error) {
1553                dpm_save_failed_dev(dev_name(dev));
1554                pm_dev_err(dev, pm_transition, " async", error);
1555        }
1556
1557        put_device(dev);
1558}
1559
1560static int device_suspend(struct device *dev)
1561{
1562        reinit_completion(&dev->power.completion);
1563
1564        if (is_async(dev)) {
1565                get_device(dev);
1566                async_schedule(async_suspend, dev);
1567                return 0;
1568        }
1569
1570        return __device_suspend(dev, pm_transition, false);
1571}
1572
1573/**
1574 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1575 * @state: PM transition of the system being carried out.
1576 */
1577int dpm_suspend(pm_message_t state)
1578{
1579        ktime_t starttime = ktime_get();
1580        int error = 0;
1581
1582        trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1583        might_sleep();
1584
1585        cpufreq_suspend();
1586
1587        mutex_lock(&dpm_list_mtx);
1588        pm_transition = state;
1589        async_error = 0;
1590        while (!list_empty(&dpm_prepared_list)) {
1591                struct device *dev = to_device(dpm_prepared_list.prev);
1592
1593                get_device(dev);
1594                mutex_unlock(&dpm_list_mtx);
1595
1596                error = device_suspend(dev);
1597
1598                mutex_lock(&dpm_list_mtx);
1599                if (error) {
1600                        pm_dev_err(dev, state, "", error);
1601                        dpm_save_failed_dev(dev_name(dev));
1602                        put_device(dev);
1603                        break;
1604                }
1605                if (!list_empty(&dev->power.entry))
1606                        list_move(&dev->power.entry, &dpm_suspended_list);
1607                put_device(dev);
1608                if (async_error)
1609                        break;
1610        }
1611        mutex_unlock(&dpm_list_mtx);
1612        async_synchronize_full();
1613        if (!error)
1614                error = async_error;
1615        if (error) {
1616                suspend_stats.failed_suspend++;
1617                dpm_save_failed_step(SUSPEND_SUSPEND);
1618        } else
1619                dpm_show_time(starttime, state, NULL);
1620        trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1621        return error;
1622}
1623
1624/**
1625 * device_prepare - Prepare a device for system power transition.
1626 * @dev: Device to handle.
1627 * @state: PM transition of the system being carried out.
1628 *
1629 * Execute the ->prepare() callback(s) for given device.  No new children of the
1630 * device may be registered after this function has returned.
1631 */
1632static int device_prepare(struct device *dev, pm_message_t state)
1633{
1634        int (*callback)(struct device *) = NULL;
1635        int ret = 0;
1636
1637        if (dev->power.syscore)
1638                return 0;
1639
1640        /*
1641         * If a device's parent goes into runtime suspend at the wrong time,
1642         * it won't be possible to resume the device.  To prevent this we
1643         * block runtime suspend here, during the prepare phase, and allow
1644         * it again during the complete phase.
1645         */
1646        pm_runtime_get_noresume(dev);
1647
1648        device_lock(dev);
1649
1650        dev->power.wakeup_path = device_may_wakeup(dev);
1651
1652        if (dev->power.no_pm_callbacks) {
1653                ret = 1;        /* Let device go direct_complete */
1654                goto unlock;
1655        }
1656
1657        if (dev->pm_domain)
1658                callback = dev->pm_domain->ops.prepare;
1659        else if (dev->type && dev->type->pm)
1660                callback = dev->type->pm->prepare;
1661        else if (dev->class && dev->class->pm)
1662                callback = dev->class->pm->prepare;
1663        else if (dev->bus && dev->bus->pm)
1664                callback = dev->bus->pm->prepare;
1665
1666        if (!callback && dev->driver && dev->driver->pm)
1667                callback = dev->driver->pm->prepare;
1668
1669        if (callback)
1670                ret = callback(dev);
1671
1672unlock:
1673        device_unlock(dev);
1674
1675        if (ret < 0) {
1676                suspend_report_result(callback, ret);
1677                pm_runtime_put(dev);
1678                return ret;
1679        }
1680        /*
1681         * A positive return value from ->prepare() means "this device appears
1682         * to be runtime-suspended and its state is fine, so if it really is
1683         * runtime-suspended, you can leave it in that state provided that you
1684         * will do the same thing with all of its descendants".  This only
1685         * applies to suspend transitions, however.
1686         */
1687        spin_lock_irq(&dev->power.lock);
1688        dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1689        spin_unlock_irq(&dev->power.lock);
1690        return 0;
1691}
1692
1693/**
1694 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1695 * @state: PM transition of the system being carried out.
1696 *
1697 * Execute the ->prepare() callback(s) for all devices.
1698 */
1699int dpm_prepare(pm_message_t state)
1700{
1701        int error = 0;
1702
1703        trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1704        might_sleep();
1705
1706        /*
1707         * Give a chance for the known devices to complete their probes, before
1708         * disable probing of devices. This sync point is important at least
1709         * at boot time + hibernation restore.
1710         */
1711        wait_for_device_probe();
1712        /*
1713         * It is unsafe if probing of devices will happen during suspend or
1714         * hibernation and system behavior will be unpredictable in this case.
1715         * So, let's prohibit device's probing here and defer their probes
1716         * instead. The normal behavior will be restored in dpm_complete().
1717         */
1718        device_block_probing();
1719
1720        mutex_lock(&dpm_list_mtx);
1721        while (!list_empty(&dpm_list)) {
1722                struct device *dev = to_device(dpm_list.next);
1723
1724                get_device(dev);
1725                mutex_unlock(&dpm_list_mtx);
1726
1727                trace_device_pm_callback_start(dev, "", state.event);
1728                error = device_prepare(dev, state);
1729                trace_device_pm_callback_end(dev, error);
1730
1731                mutex_lock(&dpm_list_mtx);
1732                if (error) {
1733                        if (error == -EAGAIN) {
1734                                put_device(dev);
1735                                error = 0;
1736                                continue;
1737                        }
1738                        printk(KERN_INFO "PM: Device %s not prepared "
1739                                "for power transition: code %d\n",
1740                                dev_name(dev), error);
1741                        put_device(dev);
1742                        break;
1743                }
1744                dev->power.is_prepared = true;
1745                if (!list_empty(&dev->power.entry))
1746                        list_move_tail(&dev->power.entry, &dpm_prepared_list);
1747                put_device(dev);
1748        }
1749        mutex_unlock(&dpm_list_mtx);
1750        trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1751        return error;
1752}
1753
1754/**
1755 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1756 * @state: PM transition of the system being carried out.
1757 *
1758 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1759 * callbacks for them.
1760 */
1761int dpm_suspend_start(pm_message_t state)
1762{
1763        int error;
1764
1765        error = dpm_prepare(state);
1766        if (error) {
1767                suspend_stats.failed_prepare++;
1768                dpm_save_failed_step(SUSPEND_PREPARE);
1769        } else
1770                error = dpm_suspend(state);
1771        return error;
1772}
1773EXPORT_SYMBOL_GPL(dpm_suspend_start);
1774
1775void __suspend_report_result(const char *function, void *fn, int ret)
1776{
1777        if (ret)
1778                printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1779}
1780EXPORT_SYMBOL_GPL(__suspend_report_result);
1781
1782/**
1783 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1784 * @dev: Device to wait for.
1785 * @subordinate: Device that needs to wait for @dev.
1786 */
1787int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1788{
1789        dpm_wait(dev, subordinate->power.async_suspend);
1790        return async_error;
1791}
1792EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1793
1794/**
1795 * dpm_for_each_dev - device iterator.
1796 * @data: data for the callback.
1797 * @fn: function to be called for each device.
1798 *
1799 * Iterate over devices in dpm_list, and call @fn for each device,
1800 * passing it @data.
1801 */
1802void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1803{
1804        struct device *dev;
1805
1806        if (!fn)
1807                return;
1808
1809        device_pm_lock();
1810        list_for_each_entry(dev, &dpm_list, power.entry)
1811                fn(dev, data);
1812        device_pm_unlock();
1813}
1814EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1815
1816static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1817{
1818        if (!ops)
1819                return true;
1820
1821        return !ops->prepare &&
1822               !ops->suspend &&
1823               !ops->suspend_late &&
1824               !ops->suspend_noirq &&
1825               !ops->resume_noirq &&
1826               !ops->resume_early &&
1827               !ops->resume &&
1828               !ops->complete;
1829}
1830
1831void device_pm_check_callbacks(struct device *dev)
1832{
1833        spin_lock_irq(&dev->power.lock);
1834        dev->power.no_pm_callbacks =
1835                (!dev->bus || pm_ops_is_empty(dev->bus->pm)) &&
1836                (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
1837                (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
1838                (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
1839                (!dev->driver || pm_ops_is_empty(dev->driver->pm));
1840        spin_unlock_irq(&dev->power.lock);
1841}
1842