linux/drivers/block/rbd.c
<<
>>
Prefs
   1
   2/*
   3   rbd.c -- Export ceph rados objects as a Linux block device
   4
   5
   6   based on drivers/block/osdblk.c:
   7
   8   Copyright 2009 Red Hat, Inc.
   9
  10   This program is free software; you can redistribute it and/or modify
  11   it under the terms of the GNU General Public License as published by
  12   the Free Software Foundation.
  13
  14   This program is distributed in the hope that it will be useful,
  15   but WITHOUT ANY WARRANTY; without even the implied warranty of
  16   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17   GNU General Public License for more details.
  18
  19   You should have received a copy of the GNU General Public License
  20   along with this program; see the file COPYING.  If not, write to
  21   the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  22
  23
  24
  25   For usage instructions, please refer to:
  26
  27                 Documentation/ABI/testing/sysfs-bus-rbd
  28
  29 */
  30
  31#include <linux/ceph/libceph.h>
  32#include <linux/ceph/osd_client.h>
  33#include <linux/ceph/mon_client.h>
  34#include <linux/ceph/cls_lock_client.h>
  35#include <linux/ceph/decode.h>
  36#include <linux/parser.h>
  37#include <linux/bsearch.h>
  38
  39#include <linux/kernel.h>
  40#include <linux/device.h>
  41#include <linux/module.h>
  42#include <linux/blk-mq.h>
  43#include <linux/fs.h>
  44#include <linux/blkdev.h>
  45#include <linux/slab.h>
  46#include <linux/idr.h>
  47#include <linux/workqueue.h>
  48
  49#include "rbd_types.h"
  50
  51#define RBD_DEBUG       /* Activate rbd_assert() calls */
  52
  53/*
  54 * The basic unit of block I/O is a sector.  It is interpreted in a
  55 * number of contexts in Linux (blk, bio, genhd), but the default is
  56 * universally 512 bytes.  These symbols are just slightly more
  57 * meaningful than the bare numbers they represent.
  58 */
  59#define SECTOR_SHIFT    9
  60#define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
  61
  62/*
  63 * Increment the given counter and return its updated value.
  64 * If the counter is already 0 it will not be incremented.
  65 * If the counter is already at its maximum value returns
  66 * -EINVAL without updating it.
  67 */
  68static int atomic_inc_return_safe(atomic_t *v)
  69{
  70        unsigned int counter;
  71
  72        counter = (unsigned int)__atomic_add_unless(v, 1, 0);
  73        if (counter <= (unsigned int)INT_MAX)
  74                return (int)counter;
  75
  76        atomic_dec(v);
  77
  78        return -EINVAL;
  79}
  80
  81/* Decrement the counter.  Return the resulting value, or -EINVAL */
  82static int atomic_dec_return_safe(atomic_t *v)
  83{
  84        int counter;
  85
  86        counter = atomic_dec_return(v);
  87        if (counter >= 0)
  88                return counter;
  89
  90        atomic_inc(v);
  91
  92        return -EINVAL;
  93}
  94
  95#define RBD_DRV_NAME "rbd"
  96
  97#define RBD_MINORS_PER_MAJOR            256
  98#define RBD_SINGLE_MAJOR_PART_SHIFT     4
  99
 100#define RBD_MAX_PARENT_CHAIN_LEN        16
 101
 102#define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
 103#define RBD_MAX_SNAP_NAME_LEN   \
 104                        (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
 105
 106#define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
 107
 108#define RBD_SNAP_HEAD_NAME      "-"
 109
 110#define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
 111
 112/* This allows a single page to hold an image name sent by OSD */
 113#define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
 114#define RBD_IMAGE_ID_LEN_MAX    64
 115
 116#define RBD_OBJ_PREFIX_LEN_MAX  64
 117
 118#define RBD_NOTIFY_TIMEOUT      5       /* seconds */
 119#define RBD_RETRY_DELAY         msecs_to_jiffies(1000)
 120
 121/* Feature bits */
 122
 123#define RBD_FEATURE_LAYERING    (1<<0)
 124#define RBD_FEATURE_STRIPINGV2  (1<<1)
 125#define RBD_FEATURE_EXCLUSIVE_LOCK (1<<2)
 126#define RBD_FEATURES_ALL        (RBD_FEATURE_LAYERING |         \
 127                                 RBD_FEATURE_STRIPINGV2 |       \
 128                                 RBD_FEATURE_EXCLUSIVE_LOCK)
 129
 130/* Features supported by this (client software) implementation. */
 131
 132#define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
 133
 134/*
 135 * An RBD device name will be "rbd#", where the "rbd" comes from
 136 * RBD_DRV_NAME above, and # is a unique integer identifier.
 137 */
 138#define DEV_NAME_LEN            32
 139
 140/*
 141 * block device image metadata (in-memory version)
 142 */
 143struct rbd_image_header {
 144        /* These six fields never change for a given rbd image */
 145        char *object_prefix;
 146        __u8 obj_order;
 147        __u8 crypt_type;
 148        __u8 comp_type;
 149        u64 stripe_unit;
 150        u64 stripe_count;
 151        u64 features;           /* Might be changeable someday? */
 152
 153        /* The remaining fields need to be updated occasionally */
 154        u64 image_size;
 155        struct ceph_snap_context *snapc;
 156        char *snap_names;       /* format 1 only */
 157        u64 *snap_sizes;        /* format 1 only */
 158};
 159
 160/*
 161 * An rbd image specification.
 162 *
 163 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
 164 * identify an image.  Each rbd_dev structure includes a pointer to
 165 * an rbd_spec structure that encapsulates this identity.
 166 *
 167 * Each of the id's in an rbd_spec has an associated name.  For a
 168 * user-mapped image, the names are supplied and the id's associated
 169 * with them are looked up.  For a layered image, a parent image is
 170 * defined by the tuple, and the names are looked up.
 171 *
 172 * An rbd_dev structure contains a parent_spec pointer which is
 173 * non-null if the image it represents is a child in a layered
 174 * image.  This pointer will refer to the rbd_spec structure used
 175 * by the parent rbd_dev for its own identity (i.e., the structure
 176 * is shared between the parent and child).
 177 *
 178 * Since these structures are populated once, during the discovery
 179 * phase of image construction, they are effectively immutable so
 180 * we make no effort to synchronize access to them.
 181 *
 182 * Note that code herein does not assume the image name is known (it
 183 * could be a null pointer).
 184 */
 185struct rbd_spec {
 186        u64             pool_id;
 187        const char      *pool_name;
 188
 189        const char      *image_id;
 190        const char      *image_name;
 191
 192        u64             snap_id;
 193        const char      *snap_name;
 194
 195        struct kref     kref;
 196};
 197
 198/*
 199 * an instance of the client.  multiple devices may share an rbd client.
 200 */
 201struct rbd_client {
 202        struct ceph_client      *client;
 203        struct kref             kref;
 204        struct list_head        node;
 205};
 206
 207struct rbd_img_request;
 208typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
 209
 210#define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
 211
 212struct rbd_obj_request;
 213typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
 214
 215enum obj_request_type {
 216        OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
 217};
 218
 219enum obj_operation_type {
 220        OBJ_OP_WRITE,
 221        OBJ_OP_READ,
 222        OBJ_OP_DISCARD,
 223};
 224
 225enum obj_req_flags {
 226        OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
 227        OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
 228        OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
 229        OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
 230};
 231
 232struct rbd_obj_request {
 233        const char              *object_name;
 234        u64                     offset;         /* object start byte */
 235        u64                     length;         /* bytes from offset */
 236        unsigned long           flags;
 237
 238        /*
 239         * An object request associated with an image will have its
 240         * img_data flag set; a standalone object request will not.
 241         *
 242         * A standalone object request will have which == BAD_WHICH
 243         * and a null obj_request pointer.
 244         *
 245         * An object request initiated in support of a layered image
 246         * object (to check for its existence before a write) will
 247         * have which == BAD_WHICH and a non-null obj_request pointer.
 248         *
 249         * Finally, an object request for rbd image data will have
 250         * which != BAD_WHICH, and will have a non-null img_request
 251         * pointer.  The value of which will be in the range
 252         * 0..(img_request->obj_request_count-1).
 253         */
 254        union {
 255                struct rbd_obj_request  *obj_request;   /* STAT op */
 256                struct {
 257                        struct rbd_img_request  *img_request;
 258                        u64                     img_offset;
 259                        /* links for img_request->obj_requests list */
 260                        struct list_head        links;
 261                };
 262        };
 263        u32                     which;          /* posn image request list */
 264
 265        enum obj_request_type   type;
 266        union {
 267                struct bio      *bio_list;
 268                struct {
 269                        struct page     **pages;
 270                        u32             page_count;
 271                };
 272        };
 273        struct page             **copyup_pages;
 274        u32                     copyup_page_count;
 275
 276        struct ceph_osd_request *osd_req;
 277
 278        u64                     xferred;        /* bytes transferred */
 279        int                     result;
 280
 281        rbd_obj_callback_t      callback;
 282        struct completion       completion;
 283
 284        struct kref             kref;
 285};
 286
 287enum img_req_flags {
 288        IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
 289        IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
 290        IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
 291        IMG_REQ_DISCARD,        /* discard: normal = 0, discard request = 1 */
 292};
 293
 294struct rbd_img_request {
 295        struct rbd_device       *rbd_dev;
 296        u64                     offset; /* starting image byte offset */
 297        u64                     length; /* byte count from offset */
 298        unsigned long           flags;
 299        union {
 300                u64                     snap_id;        /* for reads */
 301                struct ceph_snap_context *snapc;        /* for writes */
 302        };
 303        union {
 304                struct request          *rq;            /* block request */
 305                struct rbd_obj_request  *obj_request;   /* obj req initiator */
 306        };
 307        struct page             **copyup_pages;
 308        u32                     copyup_page_count;
 309        spinlock_t              completion_lock;/* protects next_completion */
 310        u32                     next_completion;
 311        rbd_img_callback_t      callback;
 312        u64                     xferred;/* aggregate bytes transferred */
 313        int                     result; /* first nonzero obj_request result */
 314
 315        u32                     obj_request_count;
 316        struct list_head        obj_requests;   /* rbd_obj_request structs */
 317
 318        struct kref             kref;
 319};
 320
 321#define for_each_obj_request(ireq, oreq) \
 322        list_for_each_entry(oreq, &(ireq)->obj_requests, links)
 323#define for_each_obj_request_from(ireq, oreq) \
 324        list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
 325#define for_each_obj_request_safe(ireq, oreq, n) \
 326        list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
 327
 328enum rbd_watch_state {
 329        RBD_WATCH_STATE_UNREGISTERED,
 330        RBD_WATCH_STATE_REGISTERED,
 331        RBD_WATCH_STATE_ERROR,
 332};
 333
 334enum rbd_lock_state {
 335        RBD_LOCK_STATE_UNLOCKED,
 336        RBD_LOCK_STATE_LOCKED,
 337        RBD_LOCK_STATE_RELEASING,
 338};
 339
 340/* WatchNotify::ClientId */
 341struct rbd_client_id {
 342        u64 gid;
 343        u64 handle;
 344};
 345
 346struct rbd_mapping {
 347        u64                     size;
 348        u64                     features;
 349        bool                    read_only;
 350};
 351
 352/*
 353 * a single device
 354 */
 355struct rbd_device {
 356        int                     dev_id;         /* blkdev unique id */
 357
 358        int                     major;          /* blkdev assigned major */
 359        int                     minor;
 360        struct gendisk          *disk;          /* blkdev's gendisk and rq */
 361
 362        u32                     image_format;   /* Either 1 or 2 */
 363        struct rbd_client       *rbd_client;
 364
 365        char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
 366
 367        spinlock_t              lock;           /* queue, flags, open_count */
 368
 369        struct rbd_image_header header;
 370        unsigned long           flags;          /* possibly lock protected */
 371        struct rbd_spec         *spec;
 372        struct rbd_options      *opts;
 373        char                    *config_info;   /* add{,_single_major} string */
 374
 375        struct ceph_object_id   header_oid;
 376        struct ceph_object_locator header_oloc;
 377
 378        struct ceph_file_layout layout;         /* used for all rbd requests */
 379
 380        struct mutex            watch_mutex;
 381        enum rbd_watch_state    watch_state;
 382        struct ceph_osd_linger_request *watch_handle;
 383        u64                     watch_cookie;
 384        struct delayed_work     watch_dwork;
 385
 386        struct rw_semaphore     lock_rwsem;
 387        enum rbd_lock_state     lock_state;
 388        struct rbd_client_id    owner_cid;
 389        struct work_struct      acquired_lock_work;
 390        struct work_struct      released_lock_work;
 391        struct delayed_work     lock_dwork;
 392        struct work_struct      unlock_work;
 393        wait_queue_head_t       lock_waitq;
 394
 395        struct workqueue_struct *task_wq;
 396
 397        struct rbd_spec         *parent_spec;
 398        u64                     parent_overlap;
 399        atomic_t                parent_ref;
 400        struct rbd_device       *parent;
 401
 402        /* Block layer tags. */
 403        struct blk_mq_tag_set   tag_set;
 404
 405        /* protects updating the header */
 406        struct rw_semaphore     header_rwsem;
 407
 408        struct rbd_mapping      mapping;
 409
 410        struct list_head        node;
 411
 412        /* sysfs related */
 413        struct device           dev;
 414        unsigned long           open_count;     /* protected by lock */
 415};
 416
 417/*
 418 * Flag bits for rbd_dev->flags:
 419 * - REMOVING (which is coupled with rbd_dev->open_count) is protected
 420 *   by rbd_dev->lock
 421 * - BLACKLISTED is protected by rbd_dev->lock_rwsem
 422 */
 423enum rbd_dev_flags {
 424        RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
 425        RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
 426        RBD_DEV_FLAG_BLACKLISTED, /* our ceph_client is blacklisted */
 427};
 428
 429static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
 430
 431static LIST_HEAD(rbd_dev_list);    /* devices */
 432static DEFINE_SPINLOCK(rbd_dev_list_lock);
 433
 434static LIST_HEAD(rbd_client_list);              /* clients */
 435static DEFINE_SPINLOCK(rbd_client_list_lock);
 436
 437/* Slab caches for frequently-allocated structures */
 438
 439static struct kmem_cache        *rbd_img_request_cache;
 440static struct kmem_cache        *rbd_obj_request_cache;
 441static struct kmem_cache        *rbd_segment_name_cache;
 442
 443static int rbd_major;
 444static DEFINE_IDA(rbd_dev_id_ida);
 445
 446static struct workqueue_struct *rbd_wq;
 447
 448/*
 449 * Default to false for now, as single-major requires >= 0.75 version of
 450 * userspace rbd utility.
 451 */
 452static bool single_major = false;
 453module_param(single_major, bool, S_IRUGO);
 454MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
 455
 456static int rbd_img_request_submit(struct rbd_img_request *img_request);
 457
 458static ssize_t rbd_add(struct bus_type *bus, const char *buf,
 459                       size_t count);
 460static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
 461                          size_t count);
 462static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
 463                                    size_t count);
 464static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
 465                                       size_t count);
 466static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
 467static void rbd_spec_put(struct rbd_spec *spec);
 468
 469static int rbd_dev_id_to_minor(int dev_id)
 470{
 471        return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
 472}
 473
 474static int minor_to_rbd_dev_id(int minor)
 475{
 476        return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
 477}
 478
 479static bool rbd_is_lock_supported(struct rbd_device *rbd_dev)
 480{
 481        return (rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK) &&
 482               rbd_dev->spec->snap_id == CEPH_NOSNAP &&
 483               !rbd_dev->mapping.read_only;
 484}
 485
 486static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
 487{
 488        return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
 489               rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
 490}
 491
 492static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
 493{
 494        bool is_lock_owner;
 495
 496        down_read(&rbd_dev->lock_rwsem);
 497        is_lock_owner = __rbd_is_lock_owner(rbd_dev);
 498        up_read(&rbd_dev->lock_rwsem);
 499        return is_lock_owner;
 500}
 501
 502static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
 503static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
 504static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
 505static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
 506
 507static struct attribute *rbd_bus_attrs[] = {
 508        &bus_attr_add.attr,
 509        &bus_attr_remove.attr,
 510        &bus_attr_add_single_major.attr,
 511        &bus_attr_remove_single_major.attr,
 512        NULL,
 513};
 514
 515static umode_t rbd_bus_is_visible(struct kobject *kobj,
 516                                  struct attribute *attr, int index)
 517{
 518        if (!single_major &&
 519            (attr == &bus_attr_add_single_major.attr ||
 520             attr == &bus_attr_remove_single_major.attr))
 521                return 0;
 522
 523        return attr->mode;
 524}
 525
 526static const struct attribute_group rbd_bus_group = {
 527        .attrs = rbd_bus_attrs,
 528        .is_visible = rbd_bus_is_visible,
 529};
 530__ATTRIBUTE_GROUPS(rbd_bus);
 531
 532static struct bus_type rbd_bus_type = {
 533        .name           = "rbd",
 534        .bus_groups     = rbd_bus_groups,
 535};
 536
 537static void rbd_root_dev_release(struct device *dev)
 538{
 539}
 540
 541static struct device rbd_root_dev = {
 542        .init_name =    "rbd",
 543        .release =      rbd_root_dev_release,
 544};
 545
 546static __printf(2, 3)
 547void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
 548{
 549        struct va_format vaf;
 550        va_list args;
 551
 552        va_start(args, fmt);
 553        vaf.fmt = fmt;
 554        vaf.va = &args;
 555
 556        if (!rbd_dev)
 557                printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
 558        else if (rbd_dev->disk)
 559                printk(KERN_WARNING "%s: %s: %pV\n",
 560                        RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
 561        else if (rbd_dev->spec && rbd_dev->spec->image_name)
 562                printk(KERN_WARNING "%s: image %s: %pV\n",
 563                        RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
 564        else if (rbd_dev->spec && rbd_dev->spec->image_id)
 565                printk(KERN_WARNING "%s: id %s: %pV\n",
 566                        RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
 567        else    /* punt */
 568                printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
 569                        RBD_DRV_NAME, rbd_dev, &vaf);
 570        va_end(args);
 571}
 572
 573#ifdef RBD_DEBUG
 574#define rbd_assert(expr)                                                \
 575                if (unlikely(!(expr))) {                                \
 576                        printk(KERN_ERR "\nAssertion failure in %s() "  \
 577                                                "at line %d:\n\n"       \
 578                                        "\trbd_assert(%s);\n\n",        \
 579                                        __func__, __LINE__, #expr);     \
 580                        BUG();                                          \
 581                }
 582#else /* !RBD_DEBUG */
 583#  define rbd_assert(expr)      ((void) 0)
 584#endif /* !RBD_DEBUG */
 585
 586static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
 587static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
 588static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
 589static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
 590
 591static int rbd_dev_refresh(struct rbd_device *rbd_dev);
 592static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
 593static int rbd_dev_header_info(struct rbd_device *rbd_dev);
 594static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
 595static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
 596                                        u64 snap_id);
 597static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
 598                                u8 *order, u64 *snap_size);
 599static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
 600                u64 *snap_features);
 601
 602static int rbd_open(struct block_device *bdev, fmode_t mode)
 603{
 604        struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
 605        bool removing = false;
 606
 607        if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
 608                return -EROFS;
 609
 610        spin_lock_irq(&rbd_dev->lock);
 611        if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
 612                removing = true;
 613        else
 614                rbd_dev->open_count++;
 615        spin_unlock_irq(&rbd_dev->lock);
 616        if (removing)
 617                return -ENOENT;
 618
 619        (void) get_device(&rbd_dev->dev);
 620
 621        return 0;
 622}
 623
 624static void rbd_release(struct gendisk *disk, fmode_t mode)
 625{
 626        struct rbd_device *rbd_dev = disk->private_data;
 627        unsigned long open_count_before;
 628
 629        spin_lock_irq(&rbd_dev->lock);
 630        open_count_before = rbd_dev->open_count--;
 631        spin_unlock_irq(&rbd_dev->lock);
 632        rbd_assert(open_count_before > 0);
 633
 634        put_device(&rbd_dev->dev);
 635}
 636
 637static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
 638{
 639        int ret = 0;
 640        int val;
 641        bool ro;
 642        bool ro_changed = false;
 643
 644        /* get_user() may sleep, so call it before taking rbd_dev->lock */
 645        if (get_user(val, (int __user *)(arg)))
 646                return -EFAULT;
 647
 648        ro = val ? true : false;
 649        /* Snapshot doesn't allow to write*/
 650        if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
 651                return -EROFS;
 652
 653        spin_lock_irq(&rbd_dev->lock);
 654        /* prevent others open this device */
 655        if (rbd_dev->open_count > 1) {
 656                ret = -EBUSY;
 657                goto out;
 658        }
 659
 660        if (rbd_dev->mapping.read_only != ro) {
 661                rbd_dev->mapping.read_only = ro;
 662                ro_changed = true;
 663        }
 664
 665out:
 666        spin_unlock_irq(&rbd_dev->lock);
 667        /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
 668        if (ret == 0 && ro_changed)
 669                set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
 670
 671        return ret;
 672}
 673
 674static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
 675                        unsigned int cmd, unsigned long arg)
 676{
 677        struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
 678        int ret = 0;
 679
 680        switch (cmd) {
 681        case BLKROSET:
 682                ret = rbd_ioctl_set_ro(rbd_dev, arg);
 683                break;
 684        default:
 685                ret = -ENOTTY;
 686        }
 687
 688        return ret;
 689}
 690
 691#ifdef CONFIG_COMPAT
 692static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
 693                                unsigned int cmd, unsigned long arg)
 694{
 695        return rbd_ioctl(bdev, mode, cmd, arg);
 696}
 697#endif /* CONFIG_COMPAT */
 698
 699static const struct block_device_operations rbd_bd_ops = {
 700        .owner                  = THIS_MODULE,
 701        .open                   = rbd_open,
 702        .release                = rbd_release,
 703        .ioctl                  = rbd_ioctl,
 704#ifdef CONFIG_COMPAT
 705        .compat_ioctl           = rbd_compat_ioctl,
 706#endif
 707};
 708
 709/*
 710 * Initialize an rbd client instance.  Success or not, this function
 711 * consumes ceph_opts.  Caller holds client_mutex.
 712 */
 713static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
 714{
 715        struct rbd_client *rbdc;
 716        int ret = -ENOMEM;
 717
 718        dout("%s:\n", __func__);
 719        rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
 720        if (!rbdc)
 721                goto out_opt;
 722
 723        kref_init(&rbdc->kref);
 724        INIT_LIST_HEAD(&rbdc->node);
 725
 726        rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
 727        if (IS_ERR(rbdc->client))
 728                goto out_rbdc;
 729        ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
 730
 731        ret = ceph_open_session(rbdc->client);
 732        if (ret < 0)
 733                goto out_client;
 734
 735        spin_lock(&rbd_client_list_lock);
 736        list_add_tail(&rbdc->node, &rbd_client_list);
 737        spin_unlock(&rbd_client_list_lock);
 738
 739        dout("%s: rbdc %p\n", __func__, rbdc);
 740
 741        return rbdc;
 742out_client:
 743        ceph_destroy_client(rbdc->client);
 744out_rbdc:
 745        kfree(rbdc);
 746out_opt:
 747        if (ceph_opts)
 748                ceph_destroy_options(ceph_opts);
 749        dout("%s: error %d\n", __func__, ret);
 750
 751        return ERR_PTR(ret);
 752}
 753
 754static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
 755{
 756        kref_get(&rbdc->kref);
 757
 758        return rbdc;
 759}
 760
 761/*
 762 * Find a ceph client with specific addr and configuration.  If
 763 * found, bump its reference count.
 764 */
 765static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
 766{
 767        struct rbd_client *client_node;
 768        bool found = false;
 769
 770        if (ceph_opts->flags & CEPH_OPT_NOSHARE)
 771                return NULL;
 772
 773        spin_lock(&rbd_client_list_lock);
 774        list_for_each_entry(client_node, &rbd_client_list, node) {
 775                if (!ceph_compare_options(ceph_opts, client_node->client)) {
 776                        __rbd_get_client(client_node);
 777
 778                        found = true;
 779                        break;
 780                }
 781        }
 782        spin_unlock(&rbd_client_list_lock);
 783
 784        return found ? client_node : NULL;
 785}
 786
 787/*
 788 * (Per device) rbd map options
 789 */
 790enum {
 791        Opt_queue_depth,
 792        Opt_last_int,
 793        /* int args above */
 794        Opt_last_string,
 795        /* string args above */
 796        Opt_read_only,
 797        Opt_read_write,
 798        Opt_lock_on_read,
 799        Opt_err
 800};
 801
 802static match_table_t rbd_opts_tokens = {
 803        {Opt_queue_depth, "queue_depth=%d"},
 804        /* int args above */
 805        /* string args above */
 806        {Opt_read_only, "read_only"},
 807        {Opt_read_only, "ro"},          /* Alternate spelling */
 808        {Opt_read_write, "read_write"},
 809        {Opt_read_write, "rw"},         /* Alternate spelling */
 810        {Opt_lock_on_read, "lock_on_read"},
 811        {Opt_err, NULL}
 812};
 813
 814struct rbd_options {
 815        int     queue_depth;
 816        bool    read_only;
 817        bool    lock_on_read;
 818};
 819
 820#define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
 821#define RBD_READ_ONLY_DEFAULT   false
 822#define RBD_LOCK_ON_READ_DEFAULT false
 823
 824static int parse_rbd_opts_token(char *c, void *private)
 825{
 826        struct rbd_options *rbd_opts = private;
 827        substring_t argstr[MAX_OPT_ARGS];
 828        int token, intval, ret;
 829
 830        token = match_token(c, rbd_opts_tokens, argstr);
 831        if (token < Opt_last_int) {
 832                ret = match_int(&argstr[0], &intval);
 833                if (ret < 0) {
 834                        pr_err("bad mount option arg (not int) at '%s'\n", c);
 835                        return ret;
 836                }
 837                dout("got int token %d val %d\n", token, intval);
 838        } else if (token > Opt_last_int && token < Opt_last_string) {
 839                dout("got string token %d val %s\n", token, argstr[0].from);
 840        } else {
 841                dout("got token %d\n", token);
 842        }
 843
 844        switch (token) {
 845        case Opt_queue_depth:
 846                if (intval < 1) {
 847                        pr_err("queue_depth out of range\n");
 848                        return -EINVAL;
 849                }
 850                rbd_opts->queue_depth = intval;
 851                break;
 852        case Opt_read_only:
 853                rbd_opts->read_only = true;
 854                break;
 855        case Opt_read_write:
 856                rbd_opts->read_only = false;
 857                break;
 858        case Opt_lock_on_read:
 859                rbd_opts->lock_on_read = true;
 860                break;
 861        default:
 862                /* libceph prints "bad option" msg */
 863                return -EINVAL;
 864        }
 865
 866        return 0;
 867}
 868
 869static char* obj_op_name(enum obj_operation_type op_type)
 870{
 871        switch (op_type) {
 872        case OBJ_OP_READ:
 873                return "read";
 874        case OBJ_OP_WRITE:
 875                return "write";
 876        case OBJ_OP_DISCARD:
 877                return "discard";
 878        default:
 879                return "???";
 880        }
 881}
 882
 883/*
 884 * Get a ceph client with specific addr and configuration, if one does
 885 * not exist create it.  Either way, ceph_opts is consumed by this
 886 * function.
 887 */
 888static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
 889{
 890        struct rbd_client *rbdc;
 891
 892        mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
 893        rbdc = rbd_client_find(ceph_opts);
 894        if (rbdc)       /* using an existing client */
 895                ceph_destroy_options(ceph_opts);
 896        else
 897                rbdc = rbd_client_create(ceph_opts);
 898        mutex_unlock(&client_mutex);
 899
 900        return rbdc;
 901}
 902
 903/*
 904 * Destroy ceph client
 905 *
 906 * Caller must hold rbd_client_list_lock.
 907 */
 908static void rbd_client_release(struct kref *kref)
 909{
 910        struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
 911
 912        dout("%s: rbdc %p\n", __func__, rbdc);
 913        spin_lock(&rbd_client_list_lock);
 914        list_del(&rbdc->node);
 915        spin_unlock(&rbd_client_list_lock);
 916
 917        ceph_destroy_client(rbdc->client);
 918        kfree(rbdc);
 919}
 920
 921/*
 922 * Drop reference to ceph client node. If it's not referenced anymore, release
 923 * it.
 924 */
 925static void rbd_put_client(struct rbd_client *rbdc)
 926{
 927        if (rbdc)
 928                kref_put(&rbdc->kref, rbd_client_release);
 929}
 930
 931static bool rbd_image_format_valid(u32 image_format)
 932{
 933        return image_format == 1 || image_format == 2;
 934}
 935
 936static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
 937{
 938        size_t size;
 939        u32 snap_count;
 940
 941        /* The header has to start with the magic rbd header text */
 942        if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
 943                return false;
 944
 945        /* The bio layer requires at least sector-sized I/O */
 946
 947        if (ondisk->options.order < SECTOR_SHIFT)
 948                return false;
 949
 950        /* If we use u64 in a few spots we may be able to loosen this */
 951
 952        if (ondisk->options.order > 8 * sizeof (int) - 1)
 953                return false;
 954
 955        /*
 956         * The size of a snapshot header has to fit in a size_t, and
 957         * that limits the number of snapshots.
 958         */
 959        snap_count = le32_to_cpu(ondisk->snap_count);
 960        size = SIZE_MAX - sizeof (struct ceph_snap_context);
 961        if (snap_count > size / sizeof (__le64))
 962                return false;
 963
 964        /*
 965         * Not only that, but the size of the entire the snapshot
 966         * header must also be representable in a size_t.
 967         */
 968        size -= snap_count * sizeof (__le64);
 969        if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
 970                return false;
 971
 972        return true;
 973}
 974
 975/*
 976 * Fill an rbd image header with information from the given format 1
 977 * on-disk header.
 978 */
 979static int rbd_header_from_disk(struct rbd_device *rbd_dev,
 980                                 struct rbd_image_header_ondisk *ondisk)
 981{
 982        struct rbd_image_header *header = &rbd_dev->header;
 983        bool first_time = header->object_prefix == NULL;
 984        struct ceph_snap_context *snapc;
 985        char *object_prefix = NULL;
 986        char *snap_names = NULL;
 987        u64 *snap_sizes = NULL;
 988        u32 snap_count;
 989        int ret = -ENOMEM;
 990        u32 i;
 991
 992        /* Allocate this now to avoid having to handle failure below */
 993
 994        if (first_time) {
 995                size_t len;
 996
 997                len = strnlen(ondisk->object_prefix,
 998                                sizeof (ondisk->object_prefix));
 999                object_prefix = kmalloc(len + 1, GFP_KERNEL);
1000                if (!object_prefix)
1001                        return -ENOMEM;
1002                memcpy(object_prefix, ondisk->object_prefix, len);
1003                object_prefix[len] = '\0';
1004        }
1005
1006        /* Allocate the snapshot context and fill it in */
1007
1008        snap_count = le32_to_cpu(ondisk->snap_count);
1009        snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1010        if (!snapc)
1011                goto out_err;
1012        snapc->seq = le64_to_cpu(ondisk->snap_seq);
1013        if (snap_count) {
1014                struct rbd_image_snap_ondisk *snaps;
1015                u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1016
1017                /* We'll keep a copy of the snapshot names... */
1018
1019                if (snap_names_len > (u64)SIZE_MAX)
1020                        goto out_2big;
1021                snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1022                if (!snap_names)
1023                        goto out_err;
1024
1025                /* ...as well as the array of their sizes. */
1026                snap_sizes = kmalloc_array(snap_count,
1027                                           sizeof(*header->snap_sizes),
1028                                           GFP_KERNEL);
1029                if (!snap_sizes)
1030                        goto out_err;
1031
1032                /*
1033                 * Copy the names, and fill in each snapshot's id
1034                 * and size.
1035                 *
1036                 * Note that rbd_dev_v1_header_info() guarantees the
1037                 * ondisk buffer we're working with has
1038                 * snap_names_len bytes beyond the end of the
1039                 * snapshot id array, this memcpy() is safe.
1040                 */
1041                memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1042                snaps = ondisk->snaps;
1043                for (i = 0; i < snap_count; i++) {
1044                        snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1045                        snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1046                }
1047        }
1048
1049        /* We won't fail any more, fill in the header */
1050
1051        if (first_time) {
1052                header->object_prefix = object_prefix;
1053                header->obj_order = ondisk->options.order;
1054                header->crypt_type = ondisk->options.crypt_type;
1055                header->comp_type = ondisk->options.comp_type;
1056                /* The rest aren't used for format 1 images */
1057                header->stripe_unit = 0;
1058                header->stripe_count = 0;
1059                header->features = 0;
1060        } else {
1061                ceph_put_snap_context(header->snapc);
1062                kfree(header->snap_names);
1063                kfree(header->snap_sizes);
1064        }
1065
1066        /* The remaining fields always get updated (when we refresh) */
1067
1068        header->image_size = le64_to_cpu(ondisk->image_size);
1069        header->snapc = snapc;
1070        header->snap_names = snap_names;
1071        header->snap_sizes = snap_sizes;
1072
1073        return 0;
1074out_2big:
1075        ret = -EIO;
1076out_err:
1077        kfree(snap_sizes);
1078        kfree(snap_names);
1079        ceph_put_snap_context(snapc);
1080        kfree(object_prefix);
1081
1082        return ret;
1083}
1084
1085static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1086{
1087        const char *snap_name;
1088
1089        rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1090
1091        /* Skip over names until we find the one we are looking for */
1092
1093        snap_name = rbd_dev->header.snap_names;
1094        while (which--)
1095                snap_name += strlen(snap_name) + 1;
1096
1097        return kstrdup(snap_name, GFP_KERNEL);
1098}
1099
1100/*
1101 * Snapshot id comparison function for use with qsort()/bsearch().
1102 * Note that result is for snapshots in *descending* order.
1103 */
1104static int snapid_compare_reverse(const void *s1, const void *s2)
1105{
1106        u64 snap_id1 = *(u64 *)s1;
1107        u64 snap_id2 = *(u64 *)s2;
1108
1109        if (snap_id1 < snap_id2)
1110                return 1;
1111        return snap_id1 == snap_id2 ? 0 : -1;
1112}
1113
1114/*
1115 * Search a snapshot context to see if the given snapshot id is
1116 * present.
1117 *
1118 * Returns the position of the snapshot id in the array if it's found,
1119 * or BAD_SNAP_INDEX otherwise.
1120 *
1121 * Note: The snapshot array is in kept sorted (by the osd) in
1122 * reverse order, highest snapshot id first.
1123 */
1124static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1125{
1126        struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1127        u64 *found;
1128
1129        found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1130                                sizeof (snap_id), snapid_compare_reverse);
1131
1132        return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1133}
1134
1135static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1136                                        u64 snap_id)
1137{
1138        u32 which;
1139        const char *snap_name;
1140
1141        which = rbd_dev_snap_index(rbd_dev, snap_id);
1142        if (which == BAD_SNAP_INDEX)
1143                return ERR_PTR(-ENOENT);
1144
1145        snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1146        return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1147}
1148
1149static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1150{
1151        if (snap_id == CEPH_NOSNAP)
1152                return RBD_SNAP_HEAD_NAME;
1153
1154        rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1155        if (rbd_dev->image_format == 1)
1156                return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1157
1158        return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1159}
1160
1161static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1162                                u64 *snap_size)
1163{
1164        rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1165        if (snap_id == CEPH_NOSNAP) {
1166                *snap_size = rbd_dev->header.image_size;
1167        } else if (rbd_dev->image_format == 1) {
1168                u32 which;
1169
1170                which = rbd_dev_snap_index(rbd_dev, snap_id);
1171                if (which == BAD_SNAP_INDEX)
1172                        return -ENOENT;
1173
1174                *snap_size = rbd_dev->header.snap_sizes[which];
1175        } else {
1176                u64 size = 0;
1177                int ret;
1178
1179                ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1180                if (ret)
1181                        return ret;
1182
1183                *snap_size = size;
1184        }
1185        return 0;
1186}
1187
1188static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1189                        u64 *snap_features)
1190{
1191        rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1192        if (snap_id == CEPH_NOSNAP) {
1193                *snap_features = rbd_dev->header.features;
1194        } else if (rbd_dev->image_format == 1) {
1195                *snap_features = 0;     /* No features for format 1 */
1196        } else {
1197                u64 features = 0;
1198                int ret;
1199
1200                ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1201                if (ret)
1202                        return ret;
1203
1204                *snap_features = features;
1205        }
1206        return 0;
1207}
1208
1209static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1210{
1211        u64 snap_id = rbd_dev->spec->snap_id;
1212        u64 size = 0;
1213        u64 features = 0;
1214        int ret;
1215
1216        ret = rbd_snap_size(rbd_dev, snap_id, &size);
1217        if (ret)
1218                return ret;
1219        ret = rbd_snap_features(rbd_dev, snap_id, &features);
1220        if (ret)
1221                return ret;
1222
1223        rbd_dev->mapping.size = size;
1224        rbd_dev->mapping.features = features;
1225
1226        return 0;
1227}
1228
1229static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1230{
1231        rbd_dev->mapping.size = 0;
1232        rbd_dev->mapping.features = 0;
1233}
1234
1235static void rbd_segment_name_free(const char *name)
1236{
1237        /* The explicit cast here is needed to drop the const qualifier */
1238
1239        kmem_cache_free(rbd_segment_name_cache, (void *)name);
1240}
1241
1242static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1243{
1244        char *name;
1245        u64 segment;
1246        int ret;
1247        char *name_format;
1248
1249        name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1250        if (!name)
1251                return NULL;
1252        segment = offset >> rbd_dev->header.obj_order;
1253        name_format = "%s.%012llx";
1254        if (rbd_dev->image_format == 2)
1255                name_format = "%s.%016llx";
1256        ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1257                        rbd_dev->header.object_prefix, segment);
1258        if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1259                pr_err("error formatting segment name for #%llu (%d)\n",
1260                        segment, ret);
1261                rbd_segment_name_free(name);
1262                name = NULL;
1263        }
1264
1265        return name;
1266}
1267
1268static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1269{
1270        u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1271
1272        return offset & (segment_size - 1);
1273}
1274
1275static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1276                                u64 offset, u64 length)
1277{
1278        u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1279
1280        offset &= segment_size - 1;
1281
1282        rbd_assert(length <= U64_MAX - offset);
1283        if (offset + length > segment_size)
1284                length = segment_size - offset;
1285
1286        return length;
1287}
1288
1289/*
1290 * returns the size of an object in the image
1291 */
1292static u64 rbd_obj_bytes(struct rbd_image_header *header)
1293{
1294        return 1 << header->obj_order;
1295}
1296
1297/*
1298 * bio helpers
1299 */
1300
1301static void bio_chain_put(struct bio *chain)
1302{
1303        struct bio *tmp;
1304
1305        while (chain) {
1306                tmp = chain;
1307                chain = chain->bi_next;
1308                bio_put(tmp);
1309        }
1310}
1311
1312/*
1313 * zeros a bio chain, starting at specific offset
1314 */
1315static void zero_bio_chain(struct bio *chain, int start_ofs)
1316{
1317        struct bio_vec bv;
1318        struct bvec_iter iter;
1319        unsigned long flags;
1320        void *buf;
1321        int pos = 0;
1322
1323        while (chain) {
1324                bio_for_each_segment(bv, chain, iter) {
1325                        if (pos + bv.bv_len > start_ofs) {
1326                                int remainder = max(start_ofs - pos, 0);
1327                                buf = bvec_kmap_irq(&bv, &flags);
1328                                memset(buf + remainder, 0,
1329                                       bv.bv_len - remainder);
1330                                flush_dcache_page(bv.bv_page);
1331                                bvec_kunmap_irq(buf, &flags);
1332                        }
1333                        pos += bv.bv_len;
1334                }
1335
1336                chain = chain->bi_next;
1337        }
1338}
1339
1340/*
1341 * similar to zero_bio_chain(), zeros data defined by a page array,
1342 * starting at the given byte offset from the start of the array and
1343 * continuing up to the given end offset.  The pages array is
1344 * assumed to be big enough to hold all bytes up to the end.
1345 */
1346static void zero_pages(struct page **pages, u64 offset, u64 end)
1347{
1348        struct page **page = &pages[offset >> PAGE_SHIFT];
1349
1350        rbd_assert(end > offset);
1351        rbd_assert(end - offset <= (u64)SIZE_MAX);
1352        while (offset < end) {
1353                size_t page_offset;
1354                size_t length;
1355                unsigned long flags;
1356                void *kaddr;
1357
1358                page_offset = offset & ~PAGE_MASK;
1359                length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1360                local_irq_save(flags);
1361                kaddr = kmap_atomic(*page);
1362                memset(kaddr + page_offset, 0, length);
1363                flush_dcache_page(*page);
1364                kunmap_atomic(kaddr);
1365                local_irq_restore(flags);
1366
1367                offset += length;
1368                page++;
1369        }
1370}
1371
1372/*
1373 * Clone a portion of a bio, starting at the given byte offset
1374 * and continuing for the number of bytes indicated.
1375 */
1376static struct bio *bio_clone_range(struct bio *bio_src,
1377                                        unsigned int offset,
1378                                        unsigned int len,
1379                                        gfp_t gfpmask)
1380{
1381        struct bio *bio;
1382
1383        bio = bio_clone(bio_src, gfpmask);
1384        if (!bio)
1385                return NULL;    /* ENOMEM */
1386
1387        bio_advance(bio, offset);
1388        bio->bi_iter.bi_size = len;
1389
1390        return bio;
1391}
1392
1393/*
1394 * Clone a portion of a bio chain, starting at the given byte offset
1395 * into the first bio in the source chain and continuing for the
1396 * number of bytes indicated.  The result is another bio chain of
1397 * exactly the given length, or a null pointer on error.
1398 *
1399 * The bio_src and offset parameters are both in-out.  On entry they
1400 * refer to the first source bio and the offset into that bio where
1401 * the start of data to be cloned is located.
1402 *
1403 * On return, bio_src is updated to refer to the bio in the source
1404 * chain that contains first un-cloned byte, and *offset will
1405 * contain the offset of that byte within that bio.
1406 */
1407static struct bio *bio_chain_clone_range(struct bio **bio_src,
1408                                        unsigned int *offset,
1409                                        unsigned int len,
1410                                        gfp_t gfpmask)
1411{
1412        struct bio *bi = *bio_src;
1413        unsigned int off = *offset;
1414        struct bio *chain = NULL;
1415        struct bio **end;
1416
1417        /* Build up a chain of clone bios up to the limit */
1418
1419        if (!bi || off >= bi->bi_iter.bi_size || !len)
1420                return NULL;            /* Nothing to clone */
1421
1422        end = &chain;
1423        while (len) {
1424                unsigned int bi_size;
1425                struct bio *bio;
1426
1427                if (!bi) {
1428                        rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1429                        goto out_err;   /* EINVAL; ran out of bio's */
1430                }
1431                bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1432                bio = bio_clone_range(bi, off, bi_size, gfpmask);
1433                if (!bio)
1434                        goto out_err;   /* ENOMEM */
1435
1436                *end = bio;
1437                end = &bio->bi_next;
1438
1439                off += bi_size;
1440                if (off == bi->bi_iter.bi_size) {
1441                        bi = bi->bi_next;
1442                        off = 0;
1443                }
1444                len -= bi_size;
1445        }
1446        *bio_src = bi;
1447        *offset = off;
1448
1449        return chain;
1450out_err:
1451        bio_chain_put(chain);
1452
1453        return NULL;
1454}
1455
1456/*
1457 * The default/initial value for all object request flags is 0.  For
1458 * each flag, once its value is set to 1 it is never reset to 0
1459 * again.
1460 */
1461static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1462{
1463        if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1464                struct rbd_device *rbd_dev;
1465
1466                rbd_dev = obj_request->img_request->rbd_dev;
1467                rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1468                        obj_request);
1469        }
1470}
1471
1472static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1473{
1474        smp_mb();
1475        return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1476}
1477
1478static void obj_request_done_set(struct rbd_obj_request *obj_request)
1479{
1480        if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1481                struct rbd_device *rbd_dev = NULL;
1482
1483                if (obj_request_img_data_test(obj_request))
1484                        rbd_dev = obj_request->img_request->rbd_dev;
1485                rbd_warn(rbd_dev, "obj_request %p already marked done",
1486                        obj_request);
1487        }
1488}
1489
1490static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1491{
1492        smp_mb();
1493        return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1494}
1495
1496/*
1497 * This sets the KNOWN flag after (possibly) setting the EXISTS
1498 * flag.  The latter is set based on the "exists" value provided.
1499 *
1500 * Note that for our purposes once an object exists it never goes
1501 * away again.  It's possible that the response from two existence
1502 * checks are separated by the creation of the target object, and
1503 * the first ("doesn't exist") response arrives *after* the second
1504 * ("does exist").  In that case we ignore the second one.
1505 */
1506static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1507                                bool exists)
1508{
1509        if (exists)
1510                set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1511        set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1512        smp_mb();
1513}
1514
1515static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1516{
1517        smp_mb();
1518        return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1519}
1520
1521static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1522{
1523        smp_mb();
1524        return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1525}
1526
1527static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1528{
1529        struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1530
1531        return obj_request->img_offset <
1532            round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1533}
1534
1535static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1536{
1537        dout("%s: obj %p (was %d)\n", __func__, obj_request,
1538                atomic_read(&obj_request->kref.refcount));
1539        kref_get(&obj_request->kref);
1540}
1541
1542static void rbd_obj_request_destroy(struct kref *kref);
1543static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1544{
1545        rbd_assert(obj_request != NULL);
1546        dout("%s: obj %p (was %d)\n", __func__, obj_request,
1547                atomic_read(&obj_request->kref.refcount));
1548        kref_put(&obj_request->kref, rbd_obj_request_destroy);
1549}
1550
1551static void rbd_img_request_get(struct rbd_img_request *img_request)
1552{
1553        dout("%s: img %p (was %d)\n", __func__, img_request,
1554             atomic_read(&img_request->kref.refcount));
1555        kref_get(&img_request->kref);
1556}
1557
1558static bool img_request_child_test(struct rbd_img_request *img_request);
1559static void rbd_parent_request_destroy(struct kref *kref);
1560static void rbd_img_request_destroy(struct kref *kref);
1561static void rbd_img_request_put(struct rbd_img_request *img_request)
1562{
1563        rbd_assert(img_request != NULL);
1564        dout("%s: img %p (was %d)\n", __func__, img_request,
1565                atomic_read(&img_request->kref.refcount));
1566        if (img_request_child_test(img_request))
1567                kref_put(&img_request->kref, rbd_parent_request_destroy);
1568        else
1569                kref_put(&img_request->kref, rbd_img_request_destroy);
1570}
1571
1572static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1573                                        struct rbd_obj_request *obj_request)
1574{
1575        rbd_assert(obj_request->img_request == NULL);
1576
1577        /* Image request now owns object's original reference */
1578        obj_request->img_request = img_request;
1579        obj_request->which = img_request->obj_request_count;
1580        rbd_assert(!obj_request_img_data_test(obj_request));
1581        obj_request_img_data_set(obj_request);
1582        rbd_assert(obj_request->which != BAD_WHICH);
1583        img_request->obj_request_count++;
1584        list_add_tail(&obj_request->links, &img_request->obj_requests);
1585        dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1586                obj_request->which);
1587}
1588
1589static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1590                                        struct rbd_obj_request *obj_request)
1591{
1592        rbd_assert(obj_request->which != BAD_WHICH);
1593
1594        dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1595                obj_request->which);
1596        list_del(&obj_request->links);
1597        rbd_assert(img_request->obj_request_count > 0);
1598        img_request->obj_request_count--;
1599        rbd_assert(obj_request->which == img_request->obj_request_count);
1600        obj_request->which = BAD_WHICH;
1601        rbd_assert(obj_request_img_data_test(obj_request));
1602        rbd_assert(obj_request->img_request == img_request);
1603        obj_request->img_request = NULL;
1604        obj_request->callback = NULL;
1605        rbd_obj_request_put(obj_request);
1606}
1607
1608static bool obj_request_type_valid(enum obj_request_type type)
1609{
1610        switch (type) {
1611        case OBJ_REQUEST_NODATA:
1612        case OBJ_REQUEST_BIO:
1613        case OBJ_REQUEST_PAGES:
1614                return true;
1615        default:
1616                return false;
1617        }
1618}
1619
1620static void rbd_img_obj_callback(struct rbd_obj_request *obj_request);
1621
1622static void rbd_obj_request_submit(struct rbd_obj_request *obj_request)
1623{
1624        struct ceph_osd_request *osd_req = obj_request->osd_req;
1625
1626        dout("%s %p osd_req %p\n", __func__, obj_request, osd_req);
1627        if (obj_request_img_data_test(obj_request)) {
1628                WARN_ON(obj_request->callback != rbd_img_obj_callback);
1629                rbd_img_request_get(obj_request->img_request);
1630        }
1631        ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1632}
1633
1634static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1635{
1636        dout("%s %p\n", __func__, obj_request);
1637        ceph_osdc_cancel_request(obj_request->osd_req);
1638}
1639
1640/*
1641 * Wait for an object request to complete.  If interrupted, cancel the
1642 * underlying osd request.
1643 *
1644 * @timeout: in jiffies, 0 means "wait forever"
1645 */
1646static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1647                                  unsigned long timeout)
1648{
1649        long ret;
1650
1651        dout("%s %p\n", __func__, obj_request);
1652        ret = wait_for_completion_interruptible_timeout(
1653                                        &obj_request->completion,
1654                                        ceph_timeout_jiffies(timeout));
1655        if (ret <= 0) {
1656                if (ret == 0)
1657                        ret = -ETIMEDOUT;
1658                rbd_obj_request_end(obj_request);
1659        } else {
1660                ret = 0;
1661        }
1662
1663        dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1664        return ret;
1665}
1666
1667static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1668{
1669        return __rbd_obj_request_wait(obj_request, 0);
1670}
1671
1672static void rbd_img_request_complete(struct rbd_img_request *img_request)
1673{
1674
1675        dout("%s: img %p\n", __func__, img_request);
1676
1677        /*
1678         * If no error occurred, compute the aggregate transfer
1679         * count for the image request.  We could instead use
1680         * atomic64_cmpxchg() to update it as each object request
1681         * completes; not clear which way is better off hand.
1682         */
1683        if (!img_request->result) {
1684                struct rbd_obj_request *obj_request;
1685                u64 xferred = 0;
1686
1687                for_each_obj_request(img_request, obj_request)
1688                        xferred += obj_request->xferred;
1689                img_request->xferred = xferred;
1690        }
1691
1692        if (img_request->callback)
1693                img_request->callback(img_request);
1694        else
1695                rbd_img_request_put(img_request);
1696}
1697
1698/*
1699 * The default/initial value for all image request flags is 0.  Each
1700 * is conditionally set to 1 at image request initialization time
1701 * and currently never change thereafter.
1702 */
1703static void img_request_write_set(struct rbd_img_request *img_request)
1704{
1705        set_bit(IMG_REQ_WRITE, &img_request->flags);
1706        smp_mb();
1707}
1708
1709static bool img_request_write_test(struct rbd_img_request *img_request)
1710{
1711        smp_mb();
1712        return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1713}
1714
1715/*
1716 * Set the discard flag when the img_request is an discard request
1717 */
1718static void img_request_discard_set(struct rbd_img_request *img_request)
1719{
1720        set_bit(IMG_REQ_DISCARD, &img_request->flags);
1721        smp_mb();
1722}
1723
1724static bool img_request_discard_test(struct rbd_img_request *img_request)
1725{
1726        smp_mb();
1727        return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1728}
1729
1730static void img_request_child_set(struct rbd_img_request *img_request)
1731{
1732        set_bit(IMG_REQ_CHILD, &img_request->flags);
1733        smp_mb();
1734}
1735
1736static void img_request_child_clear(struct rbd_img_request *img_request)
1737{
1738        clear_bit(IMG_REQ_CHILD, &img_request->flags);
1739        smp_mb();
1740}
1741
1742static bool img_request_child_test(struct rbd_img_request *img_request)
1743{
1744        smp_mb();
1745        return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1746}
1747
1748static void img_request_layered_set(struct rbd_img_request *img_request)
1749{
1750        set_bit(IMG_REQ_LAYERED, &img_request->flags);
1751        smp_mb();
1752}
1753
1754static void img_request_layered_clear(struct rbd_img_request *img_request)
1755{
1756        clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1757        smp_mb();
1758}
1759
1760static bool img_request_layered_test(struct rbd_img_request *img_request)
1761{
1762        smp_mb();
1763        return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1764}
1765
1766static enum obj_operation_type
1767rbd_img_request_op_type(struct rbd_img_request *img_request)
1768{
1769        if (img_request_write_test(img_request))
1770                return OBJ_OP_WRITE;
1771        else if (img_request_discard_test(img_request))
1772                return OBJ_OP_DISCARD;
1773        else
1774                return OBJ_OP_READ;
1775}
1776
1777static void
1778rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1779{
1780        u64 xferred = obj_request->xferred;
1781        u64 length = obj_request->length;
1782
1783        dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1784                obj_request, obj_request->img_request, obj_request->result,
1785                xferred, length);
1786        /*
1787         * ENOENT means a hole in the image.  We zero-fill the entire
1788         * length of the request.  A short read also implies zero-fill
1789         * to the end of the request.  An error requires the whole
1790         * length of the request to be reported finished with an error
1791         * to the block layer.  In each case we update the xferred
1792         * count to indicate the whole request was satisfied.
1793         */
1794        rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1795        if (obj_request->result == -ENOENT) {
1796                if (obj_request->type == OBJ_REQUEST_BIO)
1797                        zero_bio_chain(obj_request->bio_list, 0);
1798                else
1799                        zero_pages(obj_request->pages, 0, length);
1800                obj_request->result = 0;
1801        } else if (xferred < length && !obj_request->result) {
1802                if (obj_request->type == OBJ_REQUEST_BIO)
1803                        zero_bio_chain(obj_request->bio_list, xferred);
1804                else
1805                        zero_pages(obj_request->pages, xferred, length);
1806        }
1807        obj_request->xferred = length;
1808        obj_request_done_set(obj_request);
1809}
1810
1811static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1812{
1813        dout("%s: obj %p cb %p\n", __func__, obj_request,
1814                obj_request->callback);
1815        if (obj_request->callback)
1816                obj_request->callback(obj_request);
1817        else
1818                complete_all(&obj_request->completion);
1819}
1820
1821static void rbd_obj_request_error(struct rbd_obj_request *obj_request, int err)
1822{
1823        obj_request->result = err;
1824        obj_request->xferred = 0;
1825        /*
1826         * kludge - mirror rbd_obj_request_submit() to match a put in
1827         * rbd_img_obj_callback()
1828         */
1829        if (obj_request_img_data_test(obj_request)) {
1830                WARN_ON(obj_request->callback != rbd_img_obj_callback);
1831                rbd_img_request_get(obj_request->img_request);
1832        }
1833        obj_request_done_set(obj_request);
1834        rbd_obj_request_complete(obj_request);
1835}
1836
1837static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1838{
1839        struct rbd_img_request *img_request = NULL;
1840        struct rbd_device *rbd_dev = NULL;
1841        bool layered = false;
1842
1843        if (obj_request_img_data_test(obj_request)) {
1844                img_request = obj_request->img_request;
1845                layered = img_request && img_request_layered_test(img_request);
1846                rbd_dev = img_request->rbd_dev;
1847        }
1848
1849        dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1850                obj_request, img_request, obj_request->result,
1851                obj_request->xferred, obj_request->length);
1852        if (layered && obj_request->result == -ENOENT &&
1853                        obj_request->img_offset < rbd_dev->parent_overlap)
1854                rbd_img_parent_read(obj_request);
1855        else if (img_request)
1856                rbd_img_obj_request_read_callback(obj_request);
1857        else
1858                obj_request_done_set(obj_request);
1859}
1860
1861static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1862{
1863        dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1864                obj_request->result, obj_request->length);
1865        /*
1866         * There is no such thing as a successful short write.  Set
1867         * it to our originally-requested length.
1868         */
1869        obj_request->xferred = obj_request->length;
1870        obj_request_done_set(obj_request);
1871}
1872
1873static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1874{
1875        dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1876                obj_request->result, obj_request->length);
1877        /*
1878         * There is no such thing as a successful short discard.  Set
1879         * it to our originally-requested length.
1880         */
1881        obj_request->xferred = obj_request->length;
1882        /* discarding a non-existent object is not a problem */
1883        if (obj_request->result == -ENOENT)
1884                obj_request->result = 0;
1885        obj_request_done_set(obj_request);
1886}
1887
1888/*
1889 * For a simple stat call there's nothing to do.  We'll do more if
1890 * this is part of a write sequence for a layered image.
1891 */
1892static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1893{
1894        dout("%s: obj %p\n", __func__, obj_request);
1895        obj_request_done_set(obj_request);
1896}
1897
1898static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1899{
1900        dout("%s: obj %p\n", __func__, obj_request);
1901
1902        if (obj_request_img_data_test(obj_request))
1903                rbd_osd_copyup_callback(obj_request);
1904        else
1905                obj_request_done_set(obj_request);
1906}
1907
1908static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1909{
1910        struct rbd_obj_request *obj_request = osd_req->r_priv;
1911        u16 opcode;
1912
1913        dout("%s: osd_req %p\n", __func__, osd_req);
1914        rbd_assert(osd_req == obj_request->osd_req);
1915        if (obj_request_img_data_test(obj_request)) {
1916                rbd_assert(obj_request->img_request);
1917                rbd_assert(obj_request->which != BAD_WHICH);
1918        } else {
1919                rbd_assert(obj_request->which == BAD_WHICH);
1920        }
1921
1922        if (osd_req->r_result < 0)
1923                obj_request->result = osd_req->r_result;
1924
1925        /*
1926         * We support a 64-bit length, but ultimately it has to be
1927         * passed to the block layer, which just supports a 32-bit
1928         * length field.
1929         */
1930        obj_request->xferred = osd_req->r_ops[0].outdata_len;
1931        rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1932
1933        opcode = osd_req->r_ops[0].op;
1934        switch (opcode) {
1935        case CEPH_OSD_OP_READ:
1936                rbd_osd_read_callback(obj_request);
1937                break;
1938        case CEPH_OSD_OP_SETALLOCHINT:
1939                rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1940                           osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1941                /* fall through */
1942        case CEPH_OSD_OP_WRITE:
1943        case CEPH_OSD_OP_WRITEFULL:
1944                rbd_osd_write_callback(obj_request);
1945                break;
1946        case CEPH_OSD_OP_STAT:
1947                rbd_osd_stat_callback(obj_request);
1948                break;
1949        case CEPH_OSD_OP_DELETE:
1950        case CEPH_OSD_OP_TRUNCATE:
1951        case CEPH_OSD_OP_ZERO:
1952                rbd_osd_discard_callback(obj_request);
1953                break;
1954        case CEPH_OSD_OP_CALL:
1955                rbd_osd_call_callback(obj_request);
1956                break;
1957        default:
1958                rbd_warn(NULL, "%s: unsupported op %hu",
1959                        obj_request->object_name, (unsigned short) opcode);
1960                break;
1961        }
1962
1963        if (obj_request_done_test(obj_request))
1964                rbd_obj_request_complete(obj_request);
1965}
1966
1967static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1968{
1969        struct ceph_osd_request *osd_req = obj_request->osd_req;
1970
1971        rbd_assert(obj_request_img_data_test(obj_request));
1972        osd_req->r_snapid = obj_request->img_request->snap_id;
1973}
1974
1975static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1976{
1977        struct ceph_osd_request *osd_req = obj_request->osd_req;
1978
1979        osd_req->r_mtime = CURRENT_TIME;
1980        osd_req->r_data_offset = obj_request->offset;
1981}
1982
1983/*
1984 * Create an osd request.  A read request has one osd op (read).
1985 * A write request has either one (watch) or two (hint+write) osd ops.
1986 * (All rbd data writes are prefixed with an allocation hint op, but
1987 * technically osd watch is a write request, hence this distinction.)
1988 */
1989static struct ceph_osd_request *rbd_osd_req_create(
1990                                        struct rbd_device *rbd_dev,
1991                                        enum obj_operation_type op_type,
1992                                        unsigned int num_ops,
1993                                        struct rbd_obj_request *obj_request)
1994{
1995        struct ceph_snap_context *snapc = NULL;
1996        struct ceph_osd_client *osdc;
1997        struct ceph_osd_request *osd_req;
1998
1999        if (obj_request_img_data_test(obj_request) &&
2000                (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
2001                struct rbd_img_request *img_request = obj_request->img_request;
2002                if (op_type == OBJ_OP_WRITE) {
2003                        rbd_assert(img_request_write_test(img_request));
2004                } else {
2005                        rbd_assert(img_request_discard_test(img_request));
2006                }
2007                snapc = img_request->snapc;
2008        }
2009
2010        rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
2011
2012        /* Allocate and initialize the request, for the num_ops ops */
2013
2014        osdc = &rbd_dev->rbd_client->client->osdc;
2015        osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
2016                                          GFP_NOIO);
2017        if (!osd_req)
2018                goto fail;
2019
2020        if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2021                osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2022        else
2023                osd_req->r_flags = CEPH_OSD_FLAG_READ;
2024
2025        osd_req->r_callback = rbd_osd_req_callback;
2026        osd_req->r_priv = obj_request;
2027
2028        osd_req->r_base_oloc.pool = rbd_dev->layout.pool_id;
2029        if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s",
2030                             obj_request->object_name))
2031                goto fail;
2032
2033        if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO))
2034                goto fail;
2035
2036        return osd_req;
2037
2038fail:
2039        ceph_osdc_put_request(osd_req);
2040        return NULL;
2041}
2042
2043/*
2044 * Create a copyup osd request based on the information in the object
2045 * request supplied.  A copyup request has two or three osd ops, a
2046 * copyup method call, potentially a hint op, and a write or truncate
2047 * or zero op.
2048 */
2049static struct ceph_osd_request *
2050rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
2051{
2052        struct rbd_img_request *img_request;
2053        struct ceph_snap_context *snapc;
2054        struct rbd_device *rbd_dev;
2055        struct ceph_osd_client *osdc;
2056        struct ceph_osd_request *osd_req;
2057        int num_osd_ops = 3;
2058
2059        rbd_assert(obj_request_img_data_test(obj_request));
2060        img_request = obj_request->img_request;
2061        rbd_assert(img_request);
2062        rbd_assert(img_request_write_test(img_request) ||
2063                        img_request_discard_test(img_request));
2064
2065        if (img_request_discard_test(img_request))
2066                num_osd_ops = 2;
2067
2068        /* Allocate and initialize the request, for all the ops */
2069
2070        snapc = img_request->snapc;
2071        rbd_dev = img_request->rbd_dev;
2072        osdc = &rbd_dev->rbd_client->client->osdc;
2073        osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
2074                                                false, GFP_NOIO);
2075        if (!osd_req)
2076                goto fail;
2077
2078        osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2079        osd_req->r_callback = rbd_osd_req_callback;
2080        osd_req->r_priv = obj_request;
2081
2082        osd_req->r_base_oloc.pool = rbd_dev->layout.pool_id;
2083        if (ceph_oid_aprintf(&osd_req->r_base_oid, GFP_NOIO, "%s",
2084                             obj_request->object_name))
2085                goto fail;
2086
2087        if (ceph_osdc_alloc_messages(osd_req, GFP_NOIO))
2088                goto fail;
2089
2090        return osd_req;
2091
2092fail:
2093        ceph_osdc_put_request(osd_req);
2094        return NULL;
2095}
2096
2097
2098static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2099{
2100        ceph_osdc_put_request(osd_req);
2101}
2102
2103/* object_name is assumed to be a non-null pointer and NUL-terminated */
2104
2105static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2106                                                u64 offset, u64 length,
2107                                                enum obj_request_type type)
2108{
2109        struct rbd_obj_request *obj_request;
2110        size_t size;
2111        char *name;
2112
2113        rbd_assert(obj_request_type_valid(type));
2114
2115        size = strlen(object_name) + 1;
2116        name = kmalloc(size, GFP_NOIO);
2117        if (!name)
2118                return NULL;
2119
2120        obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2121        if (!obj_request) {
2122                kfree(name);
2123                return NULL;
2124        }
2125
2126        obj_request->object_name = memcpy(name, object_name, size);
2127        obj_request->offset = offset;
2128        obj_request->length = length;
2129        obj_request->flags = 0;
2130        obj_request->which = BAD_WHICH;
2131        obj_request->type = type;
2132        INIT_LIST_HEAD(&obj_request->links);
2133        init_completion(&obj_request->completion);
2134        kref_init(&obj_request->kref);
2135
2136        dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2137                offset, length, (int)type, obj_request);
2138
2139        return obj_request;
2140}
2141
2142static void rbd_obj_request_destroy(struct kref *kref)
2143{
2144        struct rbd_obj_request *obj_request;
2145
2146        obj_request = container_of(kref, struct rbd_obj_request, kref);
2147
2148        dout("%s: obj %p\n", __func__, obj_request);
2149
2150        rbd_assert(obj_request->img_request == NULL);
2151        rbd_assert(obj_request->which == BAD_WHICH);
2152
2153        if (obj_request->osd_req)
2154                rbd_osd_req_destroy(obj_request->osd_req);
2155
2156        rbd_assert(obj_request_type_valid(obj_request->type));
2157        switch (obj_request->type) {
2158        case OBJ_REQUEST_NODATA:
2159                break;          /* Nothing to do */
2160        case OBJ_REQUEST_BIO:
2161                if (obj_request->bio_list)
2162                        bio_chain_put(obj_request->bio_list);
2163                break;
2164        case OBJ_REQUEST_PAGES:
2165                /* img_data requests don't own their page array */
2166                if (obj_request->pages &&
2167                    !obj_request_img_data_test(obj_request))
2168                        ceph_release_page_vector(obj_request->pages,
2169                                                obj_request->page_count);
2170                break;
2171        }
2172
2173        kfree(obj_request->object_name);
2174        obj_request->object_name = NULL;
2175        kmem_cache_free(rbd_obj_request_cache, obj_request);
2176}
2177
2178/* It's OK to call this for a device with no parent */
2179
2180static void rbd_spec_put(struct rbd_spec *spec);
2181static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2182{
2183        rbd_dev_remove_parent(rbd_dev);
2184        rbd_spec_put(rbd_dev->parent_spec);
2185        rbd_dev->parent_spec = NULL;
2186        rbd_dev->parent_overlap = 0;
2187}
2188
2189/*
2190 * Parent image reference counting is used to determine when an
2191 * image's parent fields can be safely torn down--after there are no
2192 * more in-flight requests to the parent image.  When the last
2193 * reference is dropped, cleaning them up is safe.
2194 */
2195static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2196{
2197        int counter;
2198
2199        if (!rbd_dev->parent_spec)
2200                return;
2201
2202        counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2203        if (counter > 0)
2204                return;
2205
2206        /* Last reference; clean up parent data structures */
2207
2208        if (!counter)
2209                rbd_dev_unparent(rbd_dev);
2210        else
2211                rbd_warn(rbd_dev, "parent reference underflow");
2212}
2213
2214/*
2215 * If an image has a non-zero parent overlap, get a reference to its
2216 * parent.
2217 *
2218 * Returns true if the rbd device has a parent with a non-zero
2219 * overlap and a reference for it was successfully taken, or
2220 * false otherwise.
2221 */
2222static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2223{
2224        int counter = 0;
2225
2226        if (!rbd_dev->parent_spec)
2227                return false;
2228
2229        down_read(&rbd_dev->header_rwsem);
2230        if (rbd_dev->parent_overlap)
2231                counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2232        up_read(&rbd_dev->header_rwsem);
2233
2234        if (counter < 0)
2235                rbd_warn(rbd_dev, "parent reference overflow");
2236
2237        return counter > 0;
2238}
2239
2240/*
2241 * Caller is responsible for filling in the list of object requests
2242 * that comprises the image request, and the Linux request pointer
2243 * (if there is one).
2244 */
2245static struct rbd_img_request *rbd_img_request_create(
2246                                        struct rbd_device *rbd_dev,
2247                                        u64 offset, u64 length,
2248                                        enum obj_operation_type op_type,
2249                                        struct ceph_snap_context *snapc)
2250{
2251        struct rbd_img_request *img_request;
2252
2253        img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2254        if (!img_request)
2255                return NULL;
2256
2257        img_request->rq = NULL;
2258        img_request->rbd_dev = rbd_dev;
2259        img_request->offset = offset;
2260        img_request->length = length;
2261        img_request->flags = 0;
2262        if (op_type == OBJ_OP_DISCARD) {
2263                img_request_discard_set(img_request);
2264                img_request->snapc = snapc;
2265        } else if (op_type == OBJ_OP_WRITE) {
2266                img_request_write_set(img_request);
2267                img_request->snapc = snapc;
2268        } else {
2269                img_request->snap_id = rbd_dev->spec->snap_id;
2270        }
2271        if (rbd_dev_parent_get(rbd_dev))
2272                img_request_layered_set(img_request);
2273        spin_lock_init(&img_request->completion_lock);
2274        img_request->next_completion = 0;
2275        img_request->callback = NULL;
2276        img_request->result = 0;
2277        img_request->obj_request_count = 0;
2278        INIT_LIST_HEAD(&img_request->obj_requests);
2279        kref_init(&img_request->kref);
2280
2281        dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2282                obj_op_name(op_type), offset, length, img_request);
2283
2284        return img_request;
2285}
2286
2287static void rbd_img_request_destroy(struct kref *kref)
2288{
2289        struct rbd_img_request *img_request;
2290        struct rbd_obj_request *obj_request;
2291        struct rbd_obj_request *next_obj_request;
2292
2293        img_request = container_of(kref, struct rbd_img_request, kref);
2294
2295        dout("%s: img %p\n", __func__, img_request);
2296
2297        for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2298                rbd_img_obj_request_del(img_request, obj_request);
2299        rbd_assert(img_request->obj_request_count == 0);
2300
2301        if (img_request_layered_test(img_request)) {
2302                img_request_layered_clear(img_request);
2303                rbd_dev_parent_put(img_request->rbd_dev);
2304        }
2305
2306        if (img_request_write_test(img_request) ||
2307                img_request_discard_test(img_request))
2308                ceph_put_snap_context(img_request->snapc);
2309
2310        kmem_cache_free(rbd_img_request_cache, img_request);
2311}
2312
2313static struct rbd_img_request *rbd_parent_request_create(
2314                                        struct rbd_obj_request *obj_request,
2315                                        u64 img_offset, u64 length)
2316{
2317        struct rbd_img_request *parent_request;
2318        struct rbd_device *rbd_dev;
2319
2320        rbd_assert(obj_request->img_request);
2321        rbd_dev = obj_request->img_request->rbd_dev;
2322
2323        parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2324                                                length, OBJ_OP_READ, NULL);
2325        if (!parent_request)
2326                return NULL;
2327
2328        img_request_child_set(parent_request);
2329        rbd_obj_request_get(obj_request);
2330        parent_request->obj_request = obj_request;
2331
2332        return parent_request;
2333}
2334
2335static void rbd_parent_request_destroy(struct kref *kref)
2336{
2337        struct rbd_img_request *parent_request;
2338        struct rbd_obj_request *orig_request;
2339
2340        parent_request = container_of(kref, struct rbd_img_request, kref);
2341        orig_request = parent_request->obj_request;
2342
2343        parent_request->obj_request = NULL;
2344        rbd_obj_request_put(orig_request);
2345        img_request_child_clear(parent_request);
2346
2347        rbd_img_request_destroy(kref);
2348}
2349
2350static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2351{
2352        struct rbd_img_request *img_request;
2353        unsigned int xferred;
2354        int result;
2355        bool more;
2356
2357        rbd_assert(obj_request_img_data_test(obj_request));
2358        img_request = obj_request->img_request;
2359
2360        rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2361        xferred = (unsigned int)obj_request->xferred;
2362        result = obj_request->result;
2363        if (result) {
2364                struct rbd_device *rbd_dev = img_request->rbd_dev;
2365                enum obj_operation_type op_type;
2366
2367                if (img_request_discard_test(img_request))
2368                        op_type = OBJ_OP_DISCARD;
2369                else if (img_request_write_test(img_request))
2370                        op_type = OBJ_OP_WRITE;
2371                else
2372                        op_type = OBJ_OP_READ;
2373
2374                rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2375                        obj_op_name(op_type), obj_request->length,
2376                        obj_request->img_offset, obj_request->offset);
2377                rbd_warn(rbd_dev, "  result %d xferred %x",
2378                        result, xferred);
2379                if (!img_request->result)
2380                        img_request->result = result;
2381                /*
2382                 * Need to end I/O on the entire obj_request worth of
2383                 * bytes in case of error.
2384                 */
2385                xferred = obj_request->length;
2386        }
2387
2388        if (img_request_child_test(img_request)) {
2389                rbd_assert(img_request->obj_request != NULL);
2390                more = obj_request->which < img_request->obj_request_count - 1;
2391        } else {
2392                rbd_assert(img_request->rq != NULL);
2393
2394                more = blk_update_request(img_request->rq, result, xferred);
2395                if (!more)
2396                        __blk_mq_end_request(img_request->rq, result);
2397        }
2398
2399        return more;
2400}
2401
2402static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2403{
2404        struct rbd_img_request *img_request;
2405        u32 which = obj_request->which;
2406        bool more = true;
2407
2408        rbd_assert(obj_request_img_data_test(obj_request));
2409        img_request = obj_request->img_request;
2410
2411        dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2412        rbd_assert(img_request != NULL);
2413        rbd_assert(img_request->obj_request_count > 0);
2414        rbd_assert(which != BAD_WHICH);
2415        rbd_assert(which < img_request->obj_request_count);
2416
2417        spin_lock_irq(&img_request->completion_lock);
2418        if (which != img_request->next_completion)
2419                goto out;
2420
2421        for_each_obj_request_from(img_request, obj_request) {
2422                rbd_assert(more);
2423                rbd_assert(which < img_request->obj_request_count);
2424
2425                if (!obj_request_done_test(obj_request))
2426                        break;
2427                more = rbd_img_obj_end_request(obj_request);
2428                which++;
2429        }
2430
2431        rbd_assert(more ^ (which == img_request->obj_request_count));
2432        img_request->next_completion = which;
2433out:
2434        spin_unlock_irq(&img_request->completion_lock);
2435        rbd_img_request_put(img_request);
2436
2437        if (!more)
2438                rbd_img_request_complete(img_request);
2439}
2440
2441/*
2442 * Add individual osd ops to the given ceph_osd_request and prepare
2443 * them for submission. num_ops is the current number of
2444 * osd operations already to the object request.
2445 */
2446static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2447                                struct ceph_osd_request *osd_request,
2448                                enum obj_operation_type op_type,
2449                                unsigned int num_ops)
2450{
2451        struct rbd_img_request *img_request = obj_request->img_request;
2452        struct rbd_device *rbd_dev = img_request->rbd_dev;
2453        u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2454        u64 offset = obj_request->offset;
2455        u64 length = obj_request->length;
2456        u64 img_end;
2457        u16 opcode;
2458
2459        if (op_type == OBJ_OP_DISCARD) {
2460                if (!offset && length == object_size &&
2461                    (!img_request_layered_test(img_request) ||
2462                     !obj_request_overlaps_parent(obj_request))) {
2463                        opcode = CEPH_OSD_OP_DELETE;
2464                } else if ((offset + length == object_size)) {
2465                        opcode = CEPH_OSD_OP_TRUNCATE;
2466                } else {
2467                        down_read(&rbd_dev->header_rwsem);
2468                        img_end = rbd_dev->header.image_size;
2469                        up_read(&rbd_dev->header_rwsem);
2470
2471                        if (obj_request->img_offset + length == img_end)
2472                                opcode = CEPH_OSD_OP_TRUNCATE;
2473                        else
2474                                opcode = CEPH_OSD_OP_ZERO;
2475                }
2476        } else if (op_type == OBJ_OP_WRITE) {
2477                if (!offset && length == object_size)
2478                        opcode = CEPH_OSD_OP_WRITEFULL;
2479                else
2480                        opcode = CEPH_OSD_OP_WRITE;
2481                osd_req_op_alloc_hint_init(osd_request, num_ops,
2482                                        object_size, object_size);
2483                num_ops++;
2484        } else {
2485                opcode = CEPH_OSD_OP_READ;
2486        }
2487
2488        if (opcode == CEPH_OSD_OP_DELETE)
2489                osd_req_op_init(osd_request, num_ops, opcode, 0);
2490        else
2491                osd_req_op_extent_init(osd_request, num_ops, opcode,
2492                                       offset, length, 0, 0);
2493
2494        if (obj_request->type == OBJ_REQUEST_BIO)
2495                osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2496                                        obj_request->bio_list, length);
2497        else if (obj_request->type == OBJ_REQUEST_PAGES)
2498                osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2499                                        obj_request->pages, length,
2500                                        offset & ~PAGE_MASK, false, false);
2501
2502        /* Discards are also writes */
2503        if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2504                rbd_osd_req_format_write(obj_request);
2505        else
2506                rbd_osd_req_format_read(obj_request);
2507}
2508
2509/*
2510 * Split up an image request into one or more object requests, each
2511 * to a different object.  The "type" parameter indicates whether
2512 * "data_desc" is the pointer to the head of a list of bio
2513 * structures, or the base of a page array.  In either case this
2514 * function assumes data_desc describes memory sufficient to hold
2515 * all data described by the image request.
2516 */
2517static int rbd_img_request_fill(struct rbd_img_request *img_request,
2518                                        enum obj_request_type type,
2519                                        void *data_desc)
2520{
2521        struct rbd_device *rbd_dev = img_request->rbd_dev;
2522        struct rbd_obj_request *obj_request = NULL;
2523        struct rbd_obj_request *next_obj_request;
2524        struct bio *bio_list = NULL;
2525        unsigned int bio_offset = 0;
2526        struct page **pages = NULL;
2527        enum obj_operation_type op_type;
2528        u64 img_offset;
2529        u64 resid;
2530
2531        dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2532                (int)type, data_desc);
2533
2534        img_offset = img_request->offset;
2535        resid = img_request->length;
2536        rbd_assert(resid > 0);
2537        op_type = rbd_img_request_op_type(img_request);
2538
2539        if (type == OBJ_REQUEST_BIO) {
2540                bio_list = data_desc;
2541                rbd_assert(img_offset ==
2542                           bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2543        } else if (type == OBJ_REQUEST_PAGES) {
2544                pages = data_desc;
2545        }
2546
2547        while (resid) {
2548                struct ceph_osd_request *osd_req;
2549                const char *object_name;
2550                u64 offset;
2551                u64 length;
2552
2553                object_name = rbd_segment_name(rbd_dev, img_offset);
2554                if (!object_name)
2555                        goto out_unwind;
2556                offset = rbd_segment_offset(rbd_dev, img_offset);
2557                length = rbd_segment_length(rbd_dev, img_offset, resid);
2558                obj_request = rbd_obj_request_create(object_name,
2559                                                offset, length, type);
2560                /* object request has its own copy of the object name */
2561                rbd_segment_name_free(object_name);
2562                if (!obj_request)
2563                        goto out_unwind;
2564
2565                /*
2566                 * set obj_request->img_request before creating the
2567                 * osd_request so that it gets the right snapc
2568                 */
2569                rbd_img_obj_request_add(img_request, obj_request);
2570
2571                if (type == OBJ_REQUEST_BIO) {
2572                        unsigned int clone_size;
2573
2574                        rbd_assert(length <= (u64)UINT_MAX);
2575                        clone_size = (unsigned int)length;
2576                        obj_request->bio_list =
2577                                        bio_chain_clone_range(&bio_list,
2578                                                                &bio_offset,
2579                                                                clone_size,
2580                                                                GFP_NOIO);
2581                        if (!obj_request->bio_list)
2582                                goto out_unwind;
2583                } else if (type == OBJ_REQUEST_PAGES) {
2584                        unsigned int page_count;
2585
2586                        obj_request->pages = pages;
2587                        page_count = (u32)calc_pages_for(offset, length);
2588                        obj_request->page_count = page_count;
2589                        if ((offset + length) & ~PAGE_MASK)
2590                                page_count--;   /* more on last page */
2591                        pages += page_count;
2592                }
2593
2594                osd_req = rbd_osd_req_create(rbd_dev, op_type,
2595                                        (op_type == OBJ_OP_WRITE) ? 2 : 1,
2596                                        obj_request);
2597                if (!osd_req)
2598                        goto out_unwind;
2599
2600                obj_request->osd_req = osd_req;
2601                obj_request->callback = rbd_img_obj_callback;
2602                obj_request->img_offset = img_offset;
2603
2604                rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2605
2606                img_offset += length;
2607                resid -= length;
2608        }
2609
2610        return 0;
2611
2612out_unwind:
2613        for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2614                rbd_img_obj_request_del(img_request, obj_request);
2615
2616        return -ENOMEM;
2617}
2618
2619static void
2620rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2621{
2622        struct rbd_img_request *img_request;
2623        struct rbd_device *rbd_dev;
2624        struct page **pages;
2625        u32 page_count;
2626
2627        dout("%s: obj %p\n", __func__, obj_request);
2628
2629        rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2630                obj_request->type == OBJ_REQUEST_NODATA);
2631        rbd_assert(obj_request_img_data_test(obj_request));
2632        img_request = obj_request->img_request;
2633        rbd_assert(img_request);
2634
2635        rbd_dev = img_request->rbd_dev;
2636        rbd_assert(rbd_dev);
2637
2638        pages = obj_request->copyup_pages;
2639        rbd_assert(pages != NULL);
2640        obj_request->copyup_pages = NULL;
2641        page_count = obj_request->copyup_page_count;
2642        rbd_assert(page_count);
2643        obj_request->copyup_page_count = 0;
2644        ceph_release_page_vector(pages, page_count);
2645
2646        /*
2647         * We want the transfer count to reflect the size of the
2648         * original write request.  There is no such thing as a
2649         * successful short write, so if the request was successful
2650         * we can just set it to the originally-requested length.
2651         */
2652        if (!obj_request->result)
2653                obj_request->xferred = obj_request->length;
2654
2655        obj_request_done_set(obj_request);
2656}
2657
2658static void
2659rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2660{
2661        struct rbd_obj_request *orig_request;
2662        struct ceph_osd_request *osd_req;
2663        struct rbd_device *rbd_dev;
2664        struct page **pages;
2665        enum obj_operation_type op_type;
2666        u32 page_count;
2667        int img_result;
2668        u64 parent_length;
2669
2670        rbd_assert(img_request_child_test(img_request));
2671
2672        /* First get what we need from the image request */
2673
2674        pages = img_request->copyup_pages;
2675        rbd_assert(pages != NULL);
2676        img_request->copyup_pages = NULL;
2677        page_count = img_request->copyup_page_count;
2678        rbd_assert(page_count);
2679        img_request->copyup_page_count = 0;
2680
2681        orig_request = img_request->obj_request;
2682        rbd_assert(orig_request != NULL);
2683        rbd_assert(obj_request_type_valid(orig_request->type));
2684        img_result = img_request->result;
2685        parent_length = img_request->length;
2686        rbd_assert(img_result || parent_length == img_request->xferred);
2687        rbd_img_request_put(img_request);
2688
2689        rbd_assert(orig_request->img_request);
2690        rbd_dev = orig_request->img_request->rbd_dev;
2691        rbd_assert(rbd_dev);
2692
2693        /*
2694         * If the overlap has become 0 (most likely because the
2695         * image has been flattened) we need to free the pages
2696         * and re-submit the original write request.
2697         */
2698        if (!rbd_dev->parent_overlap) {
2699                ceph_release_page_vector(pages, page_count);
2700                rbd_obj_request_submit(orig_request);
2701                return;
2702        }
2703
2704        if (img_result)
2705                goto out_err;
2706
2707        /*
2708         * The original osd request is of no use to use any more.
2709         * We need a new one that can hold the three ops in a copyup
2710         * request.  Allocate the new copyup osd request for the
2711         * original request, and release the old one.
2712         */
2713        img_result = -ENOMEM;
2714        osd_req = rbd_osd_req_create_copyup(orig_request);
2715        if (!osd_req)
2716                goto out_err;
2717        rbd_osd_req_destroy(orig_request->osd_req);
2718        orig_request->osd_req = osd_req;
2719        orig_request->copyup_pages = pages;
2720        orig_request->copyup_page_count = page_count;
2721
2722        /* Initialize the copyup op */
2723
2724        osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2725        osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2726                                                false, false);
2727
2728        /* Add the other op(s) */
2729
2730        op_type = rbd_img_request_op_type(orig_request->img_request);
2731        rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2732
2733        /* All set, send it off. */
2734
2735        rbd_obj_request_submit(orig_request);
2736        return;
2737
2738out_err:
2739        ceph_release_page_vector(pages, page_count);
2740        rbd_obj_request_error(orig_request, img_result);
2741}
2742
2743/*
2744 * Read from the parent image the range of data that covers the
2745 * entire target of the given object request.  This is used for
2746 * satisfying a layered image write request when the target of an
2747 * object request from the image request does not exist.
2748 *
2749 * A page array big enough to hold the returned data is allocated
2750 * and supplied to rbd_img_request_fill() as the "data descriptor."
2751 * When the read completes, this page array will be transferred to
2752 * the original object request for the copyup operation.
2753 *
2754 * If an error occurs, it is recorded as the result of the original
2755 * object request in rbd_img_obj_exists_callback().
2756 */
2757static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2758{
2759        struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2760        struct rbd_img_request *parent_request = NULL;
2761        u64 img_offset;
2762        u64 length;
2763        struct page **pages = NULL;
2764        u32 page_count;
2765        int result;
2766
2767        rbd_assert(rbd_dev->parent != NULL);
2768
2769        /*
2770         * Determine the byte range covered by the object in the
2771         * child image to which the original request was to be sent.
2772         */
2773        img_offset = obj_request->img_offset - obj_request->offset;
2774        length = (u64)1 << rbd_dev->header.obj_order;
2775
2776        /*
2777         * There is no defined parent data beyond the parent
2778         * overlap, so limit what we read at that boundary if
2779         * necessary.
2780         */
2781        if (img_offset + length > rbd_dev->parent_overlap) {
2782                rbd_assert(img_offset < rbd_dev->parent_overlap);
2783                length = rbd_dev->parent_overlap - img_offset;
2784        }
2785
2786        /*
2787         * Allocate a page array big enough to receive the data read
2788         * from the parent.
2789         */
2790        page_count = (u32)calc_pages_for(0, length);
2791        pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2792        if (IS_ERR(pages)) {
2793                result = PTR_ERR(pages);
2794                pages = NULL;
2795                goto out_err;
2796        }
2797
2798        result = -ENOMEM;
2799        parent_request = rbd_parent_request_create(obj_request,
2800                                                img_offset, length);
2801        if (!parent_request)
2802                goto out_err;
2803
2804        result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2805        if (result)
2806                goto out_err;
2807
2808        parent_request->copyup_pages = pages;
2809        parent_request->copyup_page_count = page_count;
2810        parent_request->callback = rbd_img_obj_parent_read_full_callback;
2811
2812        result = rbd_img_request_submit(parent_request);
2813        if (!result)
2814                return 0;
2815
2816        parent_request->copyup_pages = NULL;
2817        parent_request->copyup_page_count = 0;
2818        parent_request->obj_request = NULL;
2819        rbd_obj_request_put(obj_request);
2820out_err:
2821        if (pages)
2822                ceph_release_page_vector(pages, page_count);
2823        if (parent_request)
2824                rbd_img_request_put(parent_request);
2825        return result;
2826}
2827
2828static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2829{
2830        struct rbd_obj_request *orig_request;
2831        struct rbd_device *rbd_dev;
2832        int result;
2833
2834        rbd_assert(!obj_request_img_data_test(obj_request));
2835
2836        /*
2837         * All we need from the object request is the original
2838         * request and the result of the STAT op.  Grab those, then
2839         * we're done with the request.
2840         */
2841        orig_request = obj_request->obj_request;
2842        obj_request->obj_request = NULL;
2843        rbd_obj_request_put(orig_request);
2844        rbd_assert(orig_request);
2845        rbd_assert(orig_request->img_request);
2846
2847        result = obj_request->result;
2848        obj_request->result = 0;
2849
2850        dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2851                obj_request, orig_request, result,
2852                obj_request->xferred, obj_request->length);
2853        rbd_obj_request_put(obj_request);
2854
2855        /*
2856         * If the overlap has become 0 (most likely because the
2857         * image has been flattened) we need to re-submit the
2858         * original request.
2859         */
2860        rbd_dev = orig_request->img_request->rbd_dev;
2861        if (!rbd_dev->parent_overlap) {
2862                rbd_obj_request_submit(orig_request);
2863                return;
2864        }
2865
2866        /*
2867         * Our only purpose here is to determine whether the object
2868         * exists, and we don't want to treat the non-existence as
2869         * an error.  If something else comes back, transfer the
2870         * error to the original request and complete it now.
2871         */
2872        if (!result) {
2873                obj_request_existence_set(orig_request, true);
2874        } else if (result == -ENOENT) {
2875                obj_request_existence_set(orig_request, false);
2876        } else {
2877                goto fail_orig_request;
2878        }
2879
2880        /*
2881         * Resubmit the original request now that we have recorded
2882         * whether the target object exists.
2883         */
2884        result = rbd_img_obj_request_submit(orig_request);
2885        if (result)
2886                goto fail_orig_request;
2887
2888        return;
2889
2890fail_orig_request:
2891        rbd_obj_request_error(orig_request, result);
2892}
2893
2894static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2895{
2896        struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
2897        struct rbd_obj_request *stat_request;
2898        struct page **pages;
2899        u32 page_count;
2900        size_t size;
2901        int ret;
2902
2903        stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2904                                              OBJ_REQUEST_PAGES);
2905        if (!stat_request)
2906                return -ENOMEM;
2907
2908        stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2909                                                   stat_request);
2910        if (!stat_request->osd_req) {
2911                ret = -ENOMEM;
2912                goto fail_stat_request;
2913        }
2914
2915        /*
2916         * The response data for a STAT call consists of:
2917         *     le64 length;
2918         *     struct {
2919         *         le32 tv_sec;
2920         *         le32 tv_nsec;
2921         *     } mtime;
2922         */
2923        size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2924        page_count = (u32)calc_pages_for(0, size);
2925        pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2926        if (IS_ERR(pages)) {
2927                ret = PTR_ERR(pages);
2928                goto fail_stat_request;
2929        }
2930
2931        osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2932        osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2933                                     false, false);
2934
2935        rbd_obj_request_get(obj_request);
2936        stat_request->obj_request = obj_request;
2937        stat_request->pages = pages;
2938        stat_request->page_count = page_count;
2939        stat_request->callback = rbd_img_obj_exists_callback;
2940
2941        rbd_obj_request_submit(stat_request);
2942        return 0;
2943
2944fail_stat_request:
2945        rbd_obj_request_put(stat_request);
2946        return ret;
2947}
2948
2949static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2950{
2951        struct rbd_img_request *img_request = obj_request->img_request;
2952        struct rbd_device *rbd_dev = img_request->rbd_dev;
2953
2954        /* Reads */
2955        if (!img_request_write_test(img_request) &&
2956            !img_request_discard_test(img_request))
2957                return true;
2958
2959        /* Non-layered writes */
2960        if (!img_request_layered_test(img_request))
2961                return true;
2962
2963        /*
2964         * Layered writes outside of the parent overlap range don't
2965         * share any data with the parent.
2966         */
2967        if (!obj_request_overlaps_parent(obj_request))
2968                return true;
2969
2970        /*
2971         * Entire-object layered writes - we will overwrite whatever
2972         * parent data there is anyway.
2973         */
2974        if (!obj_request->offset &&
2975            obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2976                return true;
2977
2978        /*
2979         * If the object is known to already exist, its parent data has
2980         * already been copied.
2981         */
2982        if (obj_request_known_test(obj_request) &&
2983            obj_request_exists_test(obj_request))
2984                return true;
2985
2986        return false;
2987}
2988
2989static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2990{
2991        rbd_assert(obj_request_img_data_test(obj_request));
2992        rbd_assert(obj_request_type_valid(obj_request->type));
2993        rbd_assert(obj_request->img_request);
2994
2995        if (img_obj_request_simple(obj_request)) {
2996                rbd_obj_request_submit(obj_request);
2997                return 0;
2998        }
2999
3000        /*
3001         * It's a layered write.  The target object might exist but
3002         * we may not know that yet.  If we know it doesn't exist,
3003         * start by reading the data for the full target object from
3004         * the parent so we can use it for a copyup to the target.
3005         */
3006        if (obj_request_known_test(obj_request))
3007                return rbd_img_obj_parent_read_full(obj_request);
3008
3009        /* We don't know whether the target exists.  Go find out. */
3010
3011        return rbd_img_obj_exists_submit(obj_request);
3012}
3013
3014static int rbd_img_request_submit(struct rbd_img_request *img_request)
3015{
3016        struct rbd_obj_request *obj_request;
3017        struct rbd_obj_request *next_obj_request;
3018        int ret = 0;
3019
3020        dout("%s: img %p\n", __func__, img_request);
3021
3022        rbd_img_request_get(img_request);
3023        for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
3024                ret = rbd_img_obj_request_submit(obj_request);
3025                if (ret)
3026                        goto out_put_ireq;
3027        }
3028
3029out_put_ireq:
3030        rbd_img_request_put(img_request);
3031        return ret;
3032}
3033
3034static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
3035{
3036        struct rbd_obj_request *obj_request;
3037        struct rbd_device *rbd_dev;
3038        u64 obj_end;
3039        u64 img_xferred;
3040        int img_result;
3041
3042        rbd_assert(img_request_child_test(img_request));
3043
3044        /* First get what we need from the image request and release it */
3045
3046        obj_request = img_request->obj_request;
3047        img_xferred = img_request->xferred;
3048        img_result = img_request->result;
3049        rbd_img_request_put(img_request);
3050
3051        /*
3052         * If the overlap has become 0 (most likely because the
3053         * image has been flattened) we need to re-submit the
3054         * original request.
3055         */
3056        rbd_assert(obj_request);
3057        rbd_assert(obj_request->img_request);
3058        rbd_dev = obj_request->img_request->rbd_dev;
3059        if (!rbd_dev->parent_overlap) {
3060                rbd_obj_request_submit(obj_request);
3061                return;
3062        }
3063
3064        obj_request->result = img_result;
3065        if (obj_request->result)
3066                goto out;
3067
3068        /*
3069         * We need to zero anything beyond the parent overlap
3070         * boundary.  Since rbd_img_obj_request_read_callback()
3071         * will zero anything beyond the end of a short read, an
3072         * easy way to do this is to pretend the data from the
3073         * parent came up short--ending at the overlap boundary.
3074         */
3075        rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3076        obj_end = obj_request->img_offset + obj_request->length;
3077        if (obj_end > rbd_dev->parent_overlap) {
3078                u64 xferred = 0;
3079
3080                if (obj_request->img_offset < rbd_dev->parent_overlap)
3081                        xferred = rbd_dev->parent_overlap -
3082                                        obj_request->img_offset;
3083
3084                obj_request->xferred = min(img_xferred, xferred);
3085        } else {
3086                obj_request->xferred = img_xferred;
3087        }
3088out:
3089        rbd_img_obj_request_read_callback(obj_request);
3090        rbd_obj_request_complete(obj_request);
3091}
3092
3093static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3094{
3095        struct rbd_img_request *img_request;
3096        int result;
3097
3098        rbd_assert(obj_request_img_data_test(obj_request));
3099        rbd_assert(obj_request->img_request != NULL);
3100        rbd_assert(obj_request->result == (s32) -ENOENT);
3101        rbd_assert(obj_request_type_valid(obj_request->type));
3102
3103        /* rbd_read_finish(obj_request, obj_request->length); */
3104        img_request = rbd_parent_request_create(obj_request,
3105                                                obj_request->img_offset,
3106                                                obj_request->length);
3107        result = -ENOMEM;
3108        if (!img_request)
3109                goto out_err;
3110
3111        if (obj_request->type == OBJ_REQUEST_BIO)
3112                result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3113                                                obj_request->bio_list);
3114        else
3115                result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3116                                                obj_request->pages);
3117        if (result)
3118                goto out_err;
3119
3120        img_request->callback = rbd_img_parent_read_callback;
3121        result = rbd_img_request_submit(img_request);
3122        if (result)
3123                goto out_err;
3124
3125        return;
3126out_err:
3127        if (img_request)
3128                rbd_img_request_put(img_request);
3129        obj_request->result = result;
3130        obj_request->xferred = 0;
3131        obj_request_done_set(obj_request);
3132}
3133
3134static const struct rbd_client_id rbd_empty_cid;
3135
3136static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3137                          const struct rbd_client_id *rhs)
3138{
3139        return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3140}
3141
3142static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3143{
3144        struct rbd_client_id cid;
3145
3146        mutex_lock(&rbd_dev->watch_mutex);
3147        cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3148        cid.handle = rbd_dev->watch_cookie;
3149        mutex_unlock(&rbd_dev->watch_mutex);
3150        return cid;
3151}
3152
3153/*
3154 * lock_rwsem must be held for write
3155 */
3156static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3157                              const struct rbd_client_id *cid)
3158{
3159        dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3160             rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3161             cid->gid, cid->handle);
3162        rbd_dev->owner_cid = *cid; /* struct */
3163}
3164
3165static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3166{
3167        mutex_lock(&rbd_dev->watch_mutex);
3168        sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3169        mutex_unlock(&rbd_dev->watch_mutex);
3170}
3171
3172/*
3173 * lock_rwsem must be held for write
3174 */
3175static int rbd_lock(struct rbd_device *rbd_dev)
3176{
3177        struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3178        struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3179        char cookie[32];
3180        int ret;
3181
3182        WARN_ON(__rbd_is_lock_owner(rbd_dev));
3183
3184        format_lock_cookie(rbd_dev, cookie);
3185        ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3186                            RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3187                            RBD_LOCK_TAG, "", 0);
3188        if (ret)
3189                return ret;
3190
3191        rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3192        rbd_set_owner_cid(rbd_dev, &cid);
3193        queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3194        return 0;
3195}
3196
3197/*
3198 * lock_rwsem must be held for write
3199 */
3200static int rbd_unlock(struct rbd_device *rbd_dev)
3201{
3202        struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3203        char cookie[32];
3204        int ret;
3205
3206        WARN_ON(!__rbd_is_lock_owner(rbd_dev));
3207
3208        rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3209
3210        format_lock_cookie(rbd_dev, cookie);
3211        ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3212                              RBD_LOCK_NAME, cookie);
3213        if (ret && ret != -ENOENT) {
3214                rbd_warn(rbd_dev, "cls_unlock failed: %d", ret);
3215                return ret;
3216        }
3217
3218        rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3219        queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3220        return 0;
3221}
3222
3223static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3224                                enum rbd_notify_op notify_op,
3225                                struct page ***preply_pages,
3226                                size_t *preply_len)
3227{
3228        struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3229        struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3230        int buf_size = 4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN;
3231        char buf[buf_size];
3232        void *p = buf;
3233
3234        dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3235
3236        /* encode *LockPayload NotifyMessage (op + ClientId) */
3237        ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3238        ceph_encode_32(&p, notify_op);
3239        ceph_encode_64(&p, cid.gid);
3240        ceph_encode_64(&p, cid.handle);
3241
3242        return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3243                                &rbd_dev->header_oloc, buf, buf_size,
3244                                RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3245}
3246
3247static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3248                               enum rbd_notify_op notify_op)
3249{
3250        struct page **reply_pages;
3251        size_t reply_len;
3252
3253        __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
3254        ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3255}
3256
3257static void rbd_notify_acquired_lock(struct work_struct *work)
3258{
3259        struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3260                                                  acquired_lock_work);
3261
3262        rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3263}
3264
3265static void rbd_notify_released_lock(struct work_struct *work)
3266{
3267        struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3268                                                  released_lock_work);
3269
3270        rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3271}
3272
3273static int rbd_request_lock(struct rbd_device *rbd_dev)
3274{
3275        struct page **reply_pages;
3276        size_t reply_len;
3277        bool lock_owner_responded = false;
3278        int ret;
3279
3280        dout("%s rbd_dev %p\n", __func__, rbd_dev);
3281
3282        ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3283                                   &reply_pages, &reply_len);
3284        if (ret && ret != -ETIMEDOUT) {
3285                rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3286                goto out;
3287        }
3288
3289        if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3290                void *p = page_address(reply_pages[0]);
3291                void *const end = p + reply_len;
3292                u32 n;
3293
3294                ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3295                while (n--) {
3296                        u8 struct_v;
3297                        u32 len;
3298
3299                        ceph_decode_need(&p, end, 8 + 8, e_inval);
3300                        p += 8 + 8; /* skip gid and cookie */
3301
3302                        ceph_decode_32_safe(&p, end, len, e_inval);
3303                        if (!len)
3304                                continue;
3305
3306                        if (lock_owner_responded) {
3307                                rbd_warn(rbd_dev,
3308                                         "duplicate lock owners detected");
3309                                ret = -EIO;
3310                                goto out;
3311                        }
3312
3313                        lock_owner_responded = true;
3314                        ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3315                                                  &struct_v, &len);
3316                        if (ret) {
3317                                rbd_warn(rbd_dev,
3318                                         "failed to decode ResponseMessage: %d",
3319                                         ret);
3320                                goto e_inval;
3321                        }
3322
3323                        ret = ceph_decode_32(&p);
3324                }
3325        }
3326
3327        if (!lock_owner_responded) {
3328                rbd_warn(rbd_dev, "no lock owners detected");
3329                ret = -ETIMEDOUT;
3330        }
3331
3332out:
3333        ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3334        return ret;
3335
3336e_inval:
3337        ret = -EINVAL;
3338        goto out;
3339}
3340
3341static void wake_requests(struct rbd_device *rbd_dev, bool wake_all)
3342{
3343        dout("%s rbd_dev %p wake_all %d\n", __func__, rbd_dev, wake_all);
3344
3345        cancel_delayed_work(&rbd_dev->lock_dwork);
3346        if (wake_all)
3347                wake_up_all(&rbd_dev->lock_waitq);
3348        else
3349                wake_up(&rbd_dev->lock_waitq);
3350}
3351
3352static int get_lock_owner_info(struct rbd_device *rbd_dev,
3353                               struct ceph_locker **lockers, u32 *num_lockers)
3354{
3355        struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3356        u8 lock_type;
3357        char *lock_tag;
3358        int ret;
3359
3360        dout("%s rbd_dev %p\n", __func__, rbd_dev);
3361
3362        ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3363                                 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3364                                 &lock_type, &lock_tag, lockers, num_lockers);
3365        if (ret)
3366                return ret;
3367
3368        if (*num_lockers == 0) {
3369                dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3370                goto out;
3371        }
3372
3373        if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3374                rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3375                         lock_tag);
3376                ret = -EBUSY;
3377                goto out;
3378        }
3379
3380        if (lock_type == CEPH_CLS_LOCK_SHARED) {
3381                rbd_warn(rbd_dev, "shared lock type detected");
3382                ret = -EBUSY;
3383                goto out;
3384        }
3385
3386        if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
3387                    strlen(RBD_LOCK_COOKIE_PREFIX))) {
3388                rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3389                         (*lockers)[0].id.cookie);
3390                ret = -EBUSY;
3391                goto out;
3392        }
3393
3394out:
3395        kfree(lock_tag);
3396        return ret;
3397}
3398
3399static int find_watcher(struct rbd_device *rbd_dev,
3400                        const struct ceph_locker *locker)
3401{
3402        struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3403        struct ceph_watch_item *watchers;
3404        u32 num_watchers;
3405        u64 cookie;
3406        int i;
3407        int ret;
3408
3409        ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3410                                      &rbd_dev->header_oloc, &watchers,
3411                                      &num_watchers);
3412        if (ret)
3413                return ret;
3414
3415        sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3416        for (i = 0; i < num_watchers; i++) {
3417                if (!memcmp(&watchers[i].addr, &locker->info.addr,
3418                            sizeof(locker->info.addr)) &&
3419                    watchers[i].cookie == cookie) {
3420                        struct rbd_client_id cid = {
3421                                .gid = le64_to_cpu(watchers[i].name.num),
3422                                .handle = cookie,
3423                        };
3424
3425                        dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3426                             rbd_dev, cid.gid, cid.handle);
3427                        rbd_set_owner_cid(rbd_dev, &cid);
3428                        ret = 1;
3429                        goto out;
3430                }
3431        }
3432
3433        dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3434        ret = 0;
3435out:
3436        kfree(watchers);
3437        return ret;
3438}
3439
3440/*
3441 * lock_rwsem must be held for write
3442 */
3443static int rbd_try_lock(struct rbd_device *rbd_dev)
3444{
3445        struct ceph_client *client = rbd_dev->rbd_client->client;
3446        struct ceph_locker *lockers;
3447        u32 num_lockers;
3448        int ret;
3449
3450        for (;;) {
3451                ret = rbd_lock(rbd_dev);
3452                if (ret != -EBUSY)
3453                        return ret;
3454
3455                /* determine if the current lock holder is still alive */
3456                ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
3457                if (ret)
3458                        return ret;
3459
3460                if (num_lockers == 0)
3461                        goto again;
3462
3463                ret = find_watcher(rbd_dev, lockers);
3464                if (ret) {
3465                        if (ret > 0)
3466                                ret = 0; /* have to request lock */
3467                        goto out;
3468                }
3469
3470                rbd_warn(rbd_dev, "%s%llu seems dead, breaking lock",
3471                         ENTITY_NAME(lockers[0].id.name));
3472
3473                ret = ceph_monc_blacklist_add(&client->monc,
3474                                              &lockers[0].info.addr);
3475                if (ret) {
3476                        rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
3477                                 ENTITY_NAME(lockers[0].id.name), ret);
3478                        goto out;
3479                }
3480
3481                ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
3482                                          &rbd_dev->header_oloc, RBD_LOCK_NAME,
3483                                          lockers[0].id.cookie,
3484                                          &lockers[0].id.name);
3485                if (ret && ret != -ENOENT)
3486                        goto out;
3487
3488again:
3489                ceph_free_lockers(lockers, num_lockers);
3490        }
3491
3492out:
3493        ceph_free_lockers(lockers, num_lockers);
3494        return ret;
3495}
3496
3497/*
3498 * ret is set only if lock_state is RBD_LOCK_STATE_UNLOCKED
3499 */
3500static enum rbd_lock_state rbd_try_acquire_lock(struct rbd_device *rbd_dev,
3501                                                int *pret)
3502{
3503        enum rbd_lock_state lock_state;
3504
3505        down_read(&rbd_dev->lock_rwsem);
3506        dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3507             rbd_dev->lock_state);
3508        if (__rbd_is_lock_owner(rbd_dev)) {
3509                lock_state = rbd_dev->lock_state;
3510                up_read(&rbd_dev->lock_rwsem);
3511                return lock_state;
3512        }
3513
3514        up_read(&rbd_dev->lock_rwsem);
3515        down_write(&rbd_dev->lock_rwsem);
3516        dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3517             rbd_dev->lock_state);
3518        if (!__rbd_is_lock_owner(rbd_dev)) {
3519                *pret = rbd_try_lock(rbd_dev);
3520                if (*pret)
3521                        rbd_warn(rbd_dev, "failed to acquire lock: %d", *pret);
3522        }
3523
3524        lock_state = rbd_dev->lock_state;
3525        up_write(&rbd_dev->lock_rwsem);
3526        return lock_state;
3527}
3528
3529static void rbd_acquire_lock(struct work_struct *work)
3530{
3531        struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3532                                            struct rbd_device, lock_dwork);
3533        enum rbd_lock_state lock_state;
3534        int ret;
3535
3536        dout("%s rbd_dev %p\n", __func__, rbd_dev);
3537again:
3538        lock_state = rbd_try_acquire_lock(rbd_dev, &ret);
3539        if (lock_state != RBD_LOCK_STATE_UNLOCKED || ret == -EBLACKLISTED) {
3540                if (lock_state == RBD_LOCK_STATE_LOCKED)
3541                        wake_requests(rbd_dev, true);
3542                dout("%s rbd_dev %p lock_state %d ret %d - done\n", __func__,
3543                     rbd_dev, lock_state, ret);
3544                return;
3545        }
3546
3547        ret = rbd_request_lock(rbd_dev);
3548        if (ret == -ETIMEDOUT) {
3549                goto again; /* treat this as a dead client */
3550        } else if (ret < 0) {
3551                rbd_warn(rbd_dev, "error requesting lock: %d", ret);
3552                mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3553                                 RBD_RETRY_DELAY);
3554        } else {
3555                /*
3556                 * lock owner acked, but resend if we don't see them
3557                 * release the lock
3558                 */
3559                dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
3560                     rbd_dev);
3561                mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
3562                    msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
3563        }
3564}
3565
3566/*
3567 * lock_rwsem must be held for write
3568 */
3569static bool rbd_release_lock(struct rbd_device *rbd_dev)
3570{
3571        dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
3572             rbd_dev->lock_state);
3573        if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
3574                return false;
3575
3576        rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
3577        downgrade_write(&rbd_dev->lock_rwsem);
3578        /*
3579         * Ensure that all in-flight IO is flushed.
3580         *
3581         * FIXME: ceph_osdc_sync() flushes the entire OSD client, which
3582         * may be shared with other devices.
3583         */
3584        ceph_osdc_sync(&rbd_dev->rbd_client->client->osdc);
3585        up_read(&rbd_dev->lock_rwsem);
3586
3587        down_write(&rbd_dev->lock_rwsem);
3588        dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
3589             rbd_dev->lock_state);
3590        if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
3591                return false;
3592
3593        if (!rbd_unlock(rbd_dev))
3594                /*
3595                 * Give others a chance to grab the lock - we would re-acquire
3596                 * almost immediately if we got new IO during ceph_osdc_sync()
3597                 * otherwise.  We need to ack our own notifications, so this
3598                 * lock_dwork will be requeued from rbd_wait_state_locked()
3599                 * after wake_requests() in rbd_handle_released_lock().
3600                 */
3601                cancel_delayed_work(&rbd_dev->lock_dwork);
3602
3603        return true;
3604}
3605
3606static void rbd_release_lock_work(struct work_struct *work)
3607{
3608        struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3609                                                  unlock_work);
3610
3611        down_write(&rbd_dev->lock_rwsem);
3612        rbd_release_lock(rbd_dev);
3613        up_write(&rbd_dev->lock_rwsem);
3614}
3615
3616static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
3617                                     void **p)
3618{
3619        struct rbd_client_id cid = { 0 };
3620
3621        if (struct_v >= 2) {
3622                cid.gid = ceph_decode_64(p);
3623                cid.handle = ceph_decode_64(p);
3624        }
3625
3626        dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3627             cid.handle);
3628        if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3629                down_write(&rbd_dev->lock_rwsem);
3630                if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3631                        /*
3632                         * we already know that the remote client is
3633                         * the owner
3634                         */
3635                        up_write(&rbd_dev->lock_rwsem);
3636                        return;
3637                }
3638
3639                rbd_set_owner_cid(rbd_dev, &cid);
3640                downgrade_write(&rbd_dev->lock_rwsem);
3641        } else {
3642                down_read(&rbd_dev->lock_rwsem);
3643        }
3644
3645        if (!__rbd_is_lock_owner(rbd_dev))
3646                wake_requests(rbd_dev, false);
3647        up_read(&rbd_dev->lock_rwsem);
3648}
3649
3650static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
3651                                     void **p)
3652{
3653        struct rbd_client_id cid = { 0 };
3654
3655        if (struct_v >= 2) {
3656                cid.gid = ceph_decode_64(p);
3657                cid.handle = ceph_decode_64(p);
3658        }
3659
3660        dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3661             cid.handle);
3662        if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
3663                down_write(&rbd_dev->lock_rwsem);
3664                if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
3665                        dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
3666                             __func__, rbd_dev, cid.gid, cid.handle,
3667                             rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
3668                        up_write(&rbd_dev->lock_rwsem);
3669                        return;
3670                }
3671
3672                rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3673                downgrade_write(&rbd_dev->lock_rwsem);
3674        } else {
3675                down_read(&rbd_dev->lock_rwsem);
3676        }
3677
3678        if (!__rbd_is_lock_owner(rbd_dev))
3679                wake_requests(rbd_dev, false);
3680        up_read(&rbd_dev->lock_rwsem);
3681}
3682
3683static bool rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
3684                                    void **p)
3685{
3686        struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
3687        struct rbd_client_id cid = { 0 };
3688        bool need_to_send;
3689
3690        if (struct_v >= 2) {
3691                cid.gid = ceph_decode_64(p);
3692                cid.handle = ceph_decode_64(p);
3693        }
3694
3695        dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
3696             cid.handle);
3697        if (rbd_cid_equal(&cid, &my_cid))
3698                return false;
3699
3700        down_read(&rbd_dev->lock_rwsem);
3701        need_to_send = __rbd_is_lock_owner(rbd_dev);
3702        if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
3703                if (!rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid)) {
3704                        dout("%s rbd_dev %p queueing unlock_work\n", __func__,
3705                             rbd_dev);
3706                        queue_work(rbd_dev->task_wq, &rbd_dev->unlock_work);
3707                }
3708        }
3709        up_read(&rbd_dev->lock_rwsem);
3710        return need_to_send;
3711}
3712
3713static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
3714                                     u64 notify_id, u64 cookie, s32 *result)
3715{
3716        struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3717        int buf_size = 4 + CEPH_ENCODING_START_BLK_LEN;
3718        char buf[buf_size];
3719        int ret;
3720
3721        if (result) {
3722                void *p = buf;
3723
3724                /* encode ResponseMessage */
3725                ceph_start_encoding(&p, 1, 1,
3726                                    buf_size - CEPH_ENCODING_START_BLK_LEN);
3727                ceph_encode_32(&p, *result);
3728        } else {
3729                buf_size = 0;
3730        }
3731
3732        ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
3733                                   &rbd_dev->header_oloc, notify_id, cookie,
3734                                   buf, buf_size);
3735        if (ret)
3736                rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
3737}
3738
3739static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
3740                                   u64 cookie)
3741{
3742        dout("%s rbd_dev %p\n", __func__, rbd_dev);
3743        __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
3744}
3745
3746static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
3747                                          u64 notify_id, u64 cookie, s32 result)
3748{
3749        dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3750        __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
3751}
3752
3753static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
3754                         u64 notifier_id, void *data, size_t data_len)
3755{
3756        struct rbd_device *rbd_dev = arg;
3757        void *p = data;
3758        void *const end = p + data_len;
3759        u8 struct_v = 0;
3760        u32 len;
3761        u32 notify_op;
3762        int ret;
3763
3764        dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
3765             __func__, rbd_dev, cookie, notify_id, data_len);
3766        if (data_len) {
3767                ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
3768                                          &struct_v, &len);
3769                if (ret) {
3770                        rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
3771                                 ret);
3772                        return;
3773                }
3774
3775                notify_op = ceph_decode_32(&p);
3776        } else {
3777                /* legacy notification for header updates */
3778                notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
3779                len = 0;
3780        }
3781
3782        dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
3783        switch (notify_op) {
3784        case RBD_NOTIFY_OP_ACQUIRED_LOCK:
3785                rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
3786                rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3787                break;
3788        case RBD_NOTIFY_OP_RELEASED_LOCK:
3789                rbd_handle_released_lock(rbd_dev, struct_v, &p);
3790                rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3791                break;
3792        case RBD_NOTIFY_OP_REQUEST_LOCK:
3793                if (rbd_handle_request_lock(rbd_dev, struct_v, &p))
3794                        /*
3795                         * send ResponseMessage(0) back so the client
3796                         * can detect a missing owner
3797                         */
3798                        rbd_acknowledge_notify_result(rbd_dev, notify_id,
3799                                                      cookie, 0);
3800                else
3801                        rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3802                break;
3803        case RBD_NOTIFY_OP_HEADER_UPDATE:
3804                ret = rbd_dev_refresh(rbd_dev);
3805                if (ret)
3806                        rbd_warn(rbd_dev, "refresh failed: %d", ret);
3807
3808                rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3809                break;
3810        default:
3811                if (rbd_is_lock_owner(rbd_dev))
3812                        rbd_acknowledge_notify_result(rbd_dev, notify_id,
3813                                                      cookie, -EOPNOTSUPP);
3814                else
3815                        rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
3816                break;
3817        }
3818}
3819
3820static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
3821
3822static void rbd_watch_errcb(void *arg, u64 cookie, int err)
3823{
3824        struct rbd_device *rbd_dev = arg;
3825
3826        rbd_warn(rbd_dev, "encountered watch error: %d", err);
3827
3828        down_write(&rbd_dev->lock_rwsem);
3829        rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3830        up_write(&rbd_dev->lock_rwsem);
3831
3832        mutex_lock(&rbd_dev->watch_mutex);
3833        if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
3834                __rbd_unregister_watch(rbd_dev);
3835                rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
3836
3837                queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
3838        }
3839        mutex_unlock(&rbd_dev->watch_mutex);
3840}
3841
3842/*
3843 * watch_mutex must be locked
3844 */
3845static int __rbd_register_watch(struct rbd_device *rbd_dev)
3846{
3847        struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3848        struct ceph_osd_linger_request *handle;
3849
3850        rbd_assert(!rbd_dev->watch_handle);
3851        dout("%s rbd_dev %p\n", __func__, rbd_dev);
3852
3853        handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
3854                                 &rbd_dev->header_oloc, rbd_watch_cb,
3855                                 rbd_watch_errcb, rbd_dev);
3856        if (IS_ERR(handle))
3857                return PTR_ERR(handle);
3858
3859        rbd_dev->watch_handle = handle;
3860        return 0;
3861}
3862
3863/*
3864 * watch_mutex must be locked
3865 */
3866static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
3867{
3868        struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3869        int ret;
3870
3871        rbd_assert(rbd_dev->watch_handle);
3872        dout("%s rbd_dev %p\n", __func__, rbd_dev);
3873
3874        ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
3875        if (ret)
3876                rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
3877
3878        rbd_dev->watch_handle = NULL;
3879}
3880
3881static int rbd_register_watch(struct rbd_device *rbd_dev)
3882{
3883        int ret;
3884
3885        mutex_lock(&rbd_dev->watch_mutex);
3886        rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
3887        ret = __rbd_register_watch(rbd_dev);
3888        if (ret)
3889                goto out;
3890
3891        rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3892        rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3893
3894out:
3895        mutex_unlock(&rbd_dev->watch_mutex);
3896        return ret;
3897}
3898
3899static void cancel_tasks_sync(struct rbd_device *rbd_dev)
3900{
3901        dout("%s rbd_dev %p\n", __func__, rbd_dev);
3902
3903        cancel_delayed_work_sync(&rbd_dev->watch_dwork);
3904        cancel_work_sync(&rbd_dev->acquired_lock_work);
3905        cancel_work_sync(&rbd_dev->released_lock_work);
3906        cancel_delayed_work_sync(&rbd_dev->lock_dwork);
3907        cancel_work_sync(&rbd_dev->unlock_work);
3908}
3909
3910static void rbd_unregister_watch(struct rbd_device *rbd_dev)
3911{
3912        WARN_ON(waitqueue_active(&rbd_dev->lock_waitq));
3913        cancel_tasks_sync(rbd_dev);
3914
3915        mutex_lock(&rbd_dev->watch_mutex);
3916        if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
3917                __rbd_unregister_watch(rbd_dev);
3918        rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
3919        mutex_unlock(&rbd_dev->watch_mutex);
3920
3921        ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3922}
3923
3924static void rbd_reregister_watch(struct work_struct *work)
3925{
3926        struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
3927                                            struct rbd_device, watch_dwork);
3928        bool was_lock_owner = false;
3929        bool need_to_wake = false;
3930        int ret;
3931
3932        dout("%s rbd_dev %p\n", __func__, rbd_dev);
3933
3934        down_write(&rbd_dev->lock_rwsem);
3935        if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
3936                was_lock_owner = rbd_release_lock(rbd_dev);
3937
3938        mutex_lock(&rbd_dev->watch_mutex);
3939        if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
3940                mutex_unlock(&rbd_dev->watch_mutex);
3941                goto out;
3942        }
3943
3944        ret = __rbd_register_watch(rbd_dev);
3945        if (ret) {
3946                rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
3947                if (ret == -EBLACKLISTED || ret == -ENOENT) {
3948                        set_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags);
3949                        need_to_wake = true;
3950                } else {
3951                        queue_delayed_work(rbd_dev->task_wq,
3952                                           &rbd_dev->watch_dwork,
3953                                           RBD_RETRY_DELAY);
3954                }
3955                mutex_unlock(&rbd_dev->watch_mutex);
3956                goto out;
3957        }
3958
3959        need_to_wake = true;
3960        rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
3961        rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
3962        mutex_unlock(&rbd_dev->watch_mutex);
3963
3964        ret = rbd_dev_refresh(rbd_dev);
3965        if (ret)
3966                rbd_warn(rbd_dev, "reregisteration refresh failed: %d", ret);
3967
3968        if (was_lock_owner) {
3969                ret = rbd_try_lock(rbd_dev);
3970                if (ret)
3971                        rbd_warn(rbd_dev, "reregisteration lock failed: %d",
3972                                 ret);
3973        }
3974
3975out:
3976        up_write(&rbd_dev->lock_rwsem);
3977        if (need_to_wake)
3978                wake_requests(rbd_dev, true);
3979}
3980
3981/*
3982 * Synchronous osd object method call.  Returns the number of bytes
3983 * returned in the outbound buffer, or a negative error code.
3984 */
3985static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3986                             const char *object_name,
3987                             const char *class_name,
3988                             const char *method_name,
3989                             const void *outbound,
3990                             size_t outbound_size,
3991                             void *inbound,
3992                             size_t inbound_size)
3993{
3994        struct rbd_obj_request *obj_request;
3995        struct page **pages;
3996        u32 page_count;
3997        int ret;
3998
3999        /*
4000         * Method calls are ultimately read operations.  The result
4001         * should placed into the inbound buffer provided.  They
4002         * also supply outbound data--parameters for the object
4003         * method.  Currently if this is present it will be a
4004         * snapshot id.
4005         */
4006        page_count = (u32)calc_pages_for(0, inbound_size);
4007        pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
4008        if (IS_ERR(pages))
4009                return PTR_ERR(pages);
4010
4011        ret = -ENOMEM;
4012        obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
4013                                                        OBJ_REQUEST_PAGES);
4014        if (!obj_request)
4015                goto out;
4016
4017        obj_request->pages = pages;
4018        obj_request->page_count = page_count;
4019
4020        obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
4021                                                  obj_request);
4022        if (!obj_request->osd_req)
4023                goto out;
4024
4025        osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
4026                                        class_name, method_name);
4027        if (outbound_size) {
4028                struct ceph_pagelist *pagelist;
4029
4030                pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
4031                if (!pagelist)
4032                        goto out;
4033
4034                ceph_pagelist_init(pagelist);
4035                ceph_pagelist_append(pagelist, outbound, outbound_size);
4036                osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
4037                                                pagelist);
4038        }
4039        osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
4040                                        obj_request->pages, inbound_size,
4041                                        0, false, false);
4042
4043        rbd_obj_request_submit(obj_request);
4044        ret = rbd_obj_request_wait(obj_request);
4045        if (ret)
4046                goto out;
4047
4048        ret = obj_request->result;
4049        if (ret < 0)
4050                goto out;
4051
4052        rbd_assert(obj_request->xferred < (u64)INT_MAX);
4053        ret = (int)obj_request->xferred;
4054        ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
4055out:
4056        if (obj_request)
4057                rbd_obj_request_put(obj_request);
4058        else
4059                ceph_release_page_vector(pages, page_count);
4060
4061        return ret;
4062}
4063
4064/*
4065 * lock_rwsem must be held for read
4066 */
4067static void rbd_wait_state_locked(struct rbd_device *rbd_dev)
4068{
4069        DEFINE_WAIT(wait);
4070
4071        do {
4072                /*
4073                 * Note the use of mod_delayed_work() in rbd_acquire_lock()
4074                 * and cancel_delayed_work() in wake_requests().
4075                 */
4076                dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
4077                queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4078                prepare_to_wait_exclusive(&rbd_dev->lock_waitq, &wait,
4079                                          TASK_UNINTERRUPTIBLE);
4080                up_read(&rbd_dev->lock_rwsem);
4081                schedule();
4082                down_read(&rbd_dev->lock_rwsem);
4083        } while (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
4084                 !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags));
4085
4086        finish_wait(&rbd_dev->lock_waitq, &wait);
4087}
4088
4089static void rbd_queue_workfn(struct work_struct *work)
4090{
4091        struct request *rq = blk_mq_rq_from_pdu(work);
4092        struct rbd_device *rbd_dev = rq->q->queuedata;
4093        struct rbd_img_request *img_request;
4094        struct ceph_snap_context *snapc = NULL;
4095        u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4096        u64 length = blk_rq_bytes(rq);
4097        enum obj_operation_type op_type;
4098        u64 mapping_size;
4099        bool must_be_locked;
4100        int result;
4101
4102        if (rq->cmd_type != REQ_TYPE_FS) {
4103                dout("%s: non-fs request type %d\n", __func__,
4104                        (int) rq->cmd_type);
4105                result = -EIO;
4106                goto err;
4107        }
4108
4109        if (req_op(rq) == REQ_OP_DISCARD)
4110                op_type = OBJ_OP_DISCARD;
4111        else if (req_op(rq) == REQ_OP_WRITE)
4112                op_type = OBJ_OP_WRITE;
4113        else
4114                op_type = OBJ_OP_READ;
4115
4116        /* Ignore/skip any zero-length requests */
4117
4118        if (!length) {
4119                dout("%s: zero-length request\n", __func__);
4120                result = 0;
4121                goto err_rq;
4122        }
4123
4124        /* Only reads are allowed to a read-only device */
4125
4126        if (op_type != OBJ_OP_READ) {
4127                if (rbd_dev->mapping.read_only) {
4128                        result = -EROFS;
4129                        goto err_rq;
4130                }
4131                rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
4132        }
4133
4134        /*
4135         * Quit early if the mapped snapshot no longer exists.  It's
4136         * still possible the snapshot will have disappeared by the
4137         * time our request arrives at the osd, but there's no sense in
4138         * sending it if we already know.
4139         */
4140        if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
4141                dout("request for non-existent snapshot");
4142                rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
4143                result = -ENXIO;
4144                goto err_rq;
4145        }
4146
4147        if (offset && length > U64_MAX - offset + 1) {
4148                rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
4149                         length);
4150                result = -EINVAL;
4151                goto err_rq;    /* Shouldn't happen */
4152        }
4153
4154        blk_mq_start_request(rq);
4155
4156        down_read(&rbd_dev->header_rwsem);
4157        mapping_size = rbd_dev->mapping.size;
4158        if (op_type != OBJ_OP_READ) {
4159                snapc = rbd_dev->header.snapc;
4160                ceph_get_snap_context(snapc);
4161                must_be_locked = rbd_is_lock_supported(rbd_dev);
4162        } else {
4163                must_be_locked = rbd_dev->opts->lock_on_read &&
4164                                        rbd_is_lock_supported(rbd_dev);
4165        }
4166        up_read(&rbd_dev->header_rwsem);
4167
4168        if (offset + length > mapping_size) {
4169                rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4170                         length, mapping_size);
4171                result = -EIO;
4172                goto err_rq;
4173        }
4174
4175        if (must_be_locked) {
4176                down_read(&rbd_dev->lock_rwsem);
4177                if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED &&
4178                    !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags))
4179                        rbd_wait_state_locked(rbd_dev);
4180
4181                WARN_ON((rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) ^
4182                        !test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags));
4183                if (test_bit(RBD_DEV_FLAG_BLACKLISTED, &rbd_dev->flags)) {
4184                        result = -EBLACKLISTED;
4185                        goto err_unlock;
4186                }
4187        }
4188
4189        img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
4190                                             snapc);
4191        if (!img_request) {
4192                result = -ENOMEM;
4193                goto err_unlock;
4194        }
4195        img_request->rq = rq;
4196        snapc = NULL; /* img_request consumes a ref */
4197
4198        if (op_type == OBJ_OP_DISCARD)
4199                result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
4200                                              NULL);
4201        else
4202                result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
4203                                              rq->bio);
4204        if (result)
4205                goto err_img_request;
4206
4207        result = rbd_img_request_submit(img_request);
4208        if (result)
4209                goto err_img_request;
4210
4211        if (must_be_locked)
4212                up_read(&rbd_dev->lock_rwsem);
4213        return;
4214
4215err_img_request:
4216        rbd_img_request_put(img_request);
4217err_unlock:
4218        if (must_be_locked)
4219                up_read(&rbd_dev->lock_rwsem);
4220err_rq:
4221        if (result)
4222                rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4223                         obj_op_name(op_type), length, offset, result);
4224        ceph_put_snap_context(snapc);
4225err:
4226        blk_mq_end_request(rq, result);
4227}
4228
4229static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4230                const struct blk_mq_queue_data *bd)
4231{
4232        struct request *rq = bd->rq;
4233        struct work_struct *work = blk_mq_rq_to_pdu(rq);
4234
4235        queue_work(rbd_wq, work);
4236        return BLK_MQ_RQ_QUEUE_OK;
4237}
4238
4239static void rbd_free_disk(struct rbd_device *rbd_dev)
4240{
4241        struct gendisk *disk = rbd_dev->disk;
4242
4243        if (!disk)
4244                return;
4245
4246        rbd_dev->disk = NULL;
4247        if (disk->flags & GENHD_FL_UP) {
4248                del_gendisk(disk);
4249                if (disk->queue)
4250                        blk_cleanup_queue(disk->queue);
4251                blk_mq_free_tag_set(&rbd_dev->tag_set);
4252        }
4253        put_disk(disk);
4254}
4255
4256static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4257                                const char *object_name,
4258                                u64 offset, u64 length, void *buf)
4259
4260{
4261        struct rbd_obj_request *obj_request;
4262        struct page **pages = NULL;
4263        u32 page_count;
4264        size_t size;
4265        int ret;
4266
4267        page_count = (u32) calc_pages_for(offset, length);
4268        pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
4269        if (IS_ERR(pages))
4270                return PTR_ERR(pages);
4271
4272        ret = -ENOMEM;
4273        obj_request = rbd_obj_request_create(object_name, offset, length,
4274                                                        OBJ_REQUEST_PAGES);
4275        if (!obj_request)
4276                goto out;
4277
4278        obj_request->pages = pages;
4279        obj_request->page_count = page_count;
4280
4281        obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
4282                                                  obj_request);
4283        if (!obj_request->osd_req)
4284                goto out;
4285
4286        osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
4287                                        offset, length, 0, 0);
4288        osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
4289                                        obj_request->pages,
4290                                        obj_request->length,
4291                                        obj_request->offset & ~PAGE_MASK,
4292                                        false, false);
4293
4294        rbd_obj_request_submit(obj_request);
4295        ret = rbd_obj_request_wait(obj_request);
4296        if (ret)
4297                goto out;
4298
4299        ret = obj_request->result;
4300        if (ret < 0)
4301                goto out;
4302
4303        rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
4304        size = (size_t) obj_request->xferred;
4305        ceph_copy_from_page_vector(pages, buf, 0, size);
4306        rbd_assert(size <= (size_t)INT_MAX);
4307        ret = (int)size;
4308out:
4309        if (obj_request)
4310                rbd_obj_request_put(obj_request);
4311        else
4312                ceph_release_page_vector(pages, page_count);
4313
4314        return ret;
4315}
4316
4317/*
4318 * Read the complete header for the given rbd device.  On successful
4319 * return, the rbd_dev->header field will contain up-to-date
4320 * information about the image.
4321 */
4322static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4323{
4324        struct rbd_image_header_ondisk *ondisk = NULL;
4325        u32 snap_count = 0;
4326        u64 names_size = 0;
4327        u32 want_count;
4328        int ret;
4329
4330        /*
4331         * The complete header will include an array of its 64-bit
4332         * snapshot ids, followed by the names of those snapshots as
4333         * a contiguous block of NUL-terminated strings.  Note that
4334         * the number of snapshots could change by the time we read
4335         * it in, in which case we re-read it.
4336         */
4337        do {
4338                size_t size;
4339
4340                kfree(ondisk);
4341
4342                size = sizeof (*ondisk);
4343                size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4344                size += names_size;
4345                ondisk = kmalloc(size, GFP_KERNEL);
4346                if (!ondisk)
4347                        return -ENOMEM;
4348
4349                ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_oid.name,
4350                                       0, size, ondisk);
4351                if (ret < 0)
4352                        goto out;
4353                if ((size_t)ret < size) {
4354                        ret = -ENXIO;
4355                        rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4356                                size, ret);
4357                        goto out;
4358                }
4359                if (!rbd_dev_ondisk_valid(ondisk)) {
4360                        ret = -ENXIO;
4361                        rbd_warn(rbd_dev, "invalid header");
4362                        goto out;
4363                }
4364
4365                names_size = le64_to_cpu(ondisk->snap_names_len);
4366                want_count = snap_count;
4367                snap_count = le32_to_cpu(ondisk->snap_count);
4368        } while (snap_count != want_count);
4369
4370        ret = rbd_header_from_disk(rbd_dev, ondisk);
4371out:
4372        kfree(ondisk);
4373
4374        return ret;
4375}
4376
4377/*
4378 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
4379 * has disappeared from the (just updated) snapshot context.
4380 */
4381static void rbd_exists_validate(struct rbd_device *rbd_dev)
4382{
4383        u64 snap_id;
4384
4385        if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
4386                return;
4387
4388        snap_id = rbd_dev->spec->snap_id;
4389        if (snap_id == CEPH_NOSNAP)
4390                return;
4391
4392        if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
4393                clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4394}
4395
4396static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4397{
4398        sector_t size;
4399
4400        /*
4401         * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4402         * try to update its size.  If REMOVING is set, updating size
4403         * is just useless work since the device can't be opened.
4404         */
4405        if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4406            !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4407                size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4408                dout("setting size to %llu sectors", (unsigned long long)size);
4409                set_capacity(rbd_dev->disk, size);
4410                revalidate_disk(rbd_dev->disk);
4411        }
4412}
4413
4414static int rbd_dev_refresh(struct rbd_device *rbd_dev)
4415{
4416        u64 mapping_size;
4417        int ret;
4418
4419        down_write(&rbd_dev->header_rwsem);
4420        mapping_size = rbd_dev->mapping.size;
4421
4422        ret = rbd_dev_header_info(rbd_dev);
4423        if (ret)
4424                goto out;
4425
4426        /*
4427         * If there is a parent, see if it has disappeared due to the
4428         * mapped image getting flattened.
4429         */
4430        if (rbd_dev->parent) {
4431                ret = rbd_dev_v2_parent_info(rbd_dev);
4432                if (ret)
4433                        goto out;
4434        }
4435
4436        if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
4437                rbd_dev->mapping.size = rbd_dev->header.image_size;
4438        } else {
4439                /* validate mapped snapshot's EXISTS flag */
4440                rbd_exists_validate(rbd_dev);
4441        }
4442
4443out:
4444        up_write(&rbd_dev->header_rwsem);
4445        if (!ret && mapping_size != rbd_dev->mapping.size)
4446                rbd_dev_update_size(rbd_dev);
4447
4448        return ret;
4449}
4450
4451static int rbd_init_request(void *data, struct request *rq,
4452                unsigned int hctx_idx, unsigned int request_idx,
4453                unsigned int numa_node)
4454{
4455        struct work_struct *work = blk_mq_rq_to_pdu(rq);
4456
4457        INIT_WORK(work, rbd_queue_workfn);
4458        return 0;
4459}
4460
4461static struct blk_mq_ops rbd_mq_ops = {
4462        .queue_rq       = rbd_queue_rq,
4463        .init_request   = rbd_init_request,
4464};
4465
4466static int rbd_init_disk(struct rbd_device *rbd_dev)
4467{
4468        struct gendisk *disk;
4469        struct request_queue *q;
4470        u64 segment_size;
4471        int err;
4472
4473        /* create gendisk info */
4474        disk = alloc_disk(single_major ?
4475                          (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
4476                          RBD_MINORS_PER_MAJOR);
4477        if (!disk)
4478                return -ENOMEM;
4479
4480        snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4481                 rbd_dev->dev_id);
4482        disk->major = rbd_dev->major;
4483        disk->first_minor = rbd_dev->minor;
4484        if (single_major)
4485                disk->flags |= GENHD_FL_EXT_DEVT;
4486        disk->fops = &rbd_bd_ops;
4487        disk->private_data = rbd_dev;
4488
4489        memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4490        rbd_dev->tag_set.ops = &rbd_mq_ops;
4491        rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4492        rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4493        rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
4494        rbd_dev->tag_set.nr_hw_queues = 1;
4495        rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
4496
4497        err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4498        if (err)
4499                goto out_disk;
4500
4501        q = blk_mq_init_queue(&rbd_dev->tag_set);
4502        if (IS_ERR(q)) {
4503                err = PTR_ERR(q);
4504                goto out_tag_set;
4505        }
4506
4507        queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
4508        /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4509
4510        /* set io sizes to object size */
4511        segment_size = rbd_obj_bytes(&rbd_dev->header);
4512        blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
4513        q->limits.max_sectors = queue_max_hw_sectors(q);
4514        blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
4515        blk_queue_max_segment_size(q, segment_size);
4516        blk_queue_io_min(q, segment_size);
4517        blk_queue_io_opt(q, segment_size);
4518
4519        /* enable the discard support */
4520        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
4521        q->limits.discard_granularity = segment_size;
4522        q->limits.discard_alignment = segment_size;
4523        blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
4524        q->limits.discard_zeroes_data = 1;
4525
4526        if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4527                q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
4528
4529        disk->queue = q;
4530
4531        q->queuedata = rbd_dev;
4532
4533        rbd_dev->disk = disk;
4534
4535        return 0;
4536out_tag_set:
4537        blk_mq_free_tag_set(&rbd_dev->tag_set);
4538out_disk:
4539        put_disk(disk);
4540        return err;
4541}
4542
4543/*
4544  sysfs
4545*/
4546
4547static struct rbd_device *dev_to_rbd_dev(struct device *dev)
4548{
4549        return container_of(dev, struct rbd_device, dev);
4550}
4551
4552static ssize_t rbd_size_show(struct device *dev,
4553                             struct device_attribute *attr, char *buf)
4554{
4555        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4556
4557        return sprintf(buf, "%llu\n",
4558                (unsigned long long)rbd_dev->mapping.size);
4559}
4560
4561/*
4562 * Note this shows the features for whatever's mapped, which is not
4563 * necessarily the base image.
4564 */
4565static ssize_t rbd_features_show(struct device *dev,
4566                             struct device_attribute *attr, char *buf)
4567{
4568        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4569
4570        return sprintf(buf, "0x%016llx\n",
4571                        (unsigned long long)rbd_dev->mapping.features);
4572}
4573
4574static ssize_t rbd_major_show(struct device *dev,
4575                              struct device_attribute *attr, char *buf)
4576{
4577        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4578
4579        if (rbd_dev->major)
4580                return sprintf(buf, "%d\n", rbd_dev->major);
4581
4582        return sprintf(buf, "(none)\n");
4583}
4584
4585static ssize_t rbd_minor_show(struct device *dev,
4586                              struct device_attribute *attr, char *buf)
4587{
4588        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4589
4590        return sprintf(buf, "%d\n", rbd_dev->minor);
4591}
4592
4593static ssize_t rbd_client_addr_show(struct device *dev,
4594                                    struct device_attribute *attr, char *buf)
4595{
4596        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4597        struct ceph_entity_addr *client_addr =
4598            ceph_client_addr(rbd_dev->rbd_client->client);
4599
4600        return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
4601                       le32_to_cpu(client_addr->nonce));
4602}
4603
4604static ssize_t rbd_client_id_show(struct device *dev,
4605                                  struct device_attribute *attr, char *buf)
4606{
4607        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4608
4609        return sprintf(buf, "client%lld\n",
4610                       ceph_client_gid(rbd_dev->rbd_client->client));
4611}
4612
4613static ssize_t rbd_cluster_fsid_show(struct device *dev,
4614                                     struct device_attribute *attr, char *buf)
4615{
4616        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4617
4618        return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
4619}
4620
4621static ssize_t rbd_config_info_show(struct device *dev,
4622                                    struct device_attribute *attr, char *buf)
4623{
4624        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4625
4626        return sprintf(buf, "%s\n", rbd_dev->config_info);
4627}
4628
4629static ssize_t rbd_pool_show(struct device *dev,
4630                             struct device_attribute *attr, char *buf)
4631{
4632        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4633
4634        return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
4635}
4636
4637static ssize_t rbd_pool_id_show(struct device *dev,
4638                             struct device_attribute *attr, char *buf)
4639{
4640        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4641
4642        return sprintf(buf, "%llu\n",
4643                        (unsigned long long) rbd_dev->spec->pool_id);
4644}
4645
4646static ssize_t rbd_name_show(struct device *dev,
4647                             struct device_attribute *attr, char *buf)
4648{
4649        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4650
4651        if (rbd_dev->spec->image_name)
4652                return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
4653
4654        return sprintf(buf, "(unknown)\n");
4655}
4656
4657static ssize_t rbd_image_id_show(struct device *dev,
4658                             struct device_attribute *attr, char *buf)
4659{
4660        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4661
4662        return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
4663}
4664
4665/*
4666 * Shows the name of the currently-mapped snapshot (or
4667 * RBD_SNAP_HEAD_NAME for the base image).
4668 */
4669static ssize_t rbd_snap_show(struct device *dev,
4670                             struct device_attribute *attr,
4671                             char *buf)
4672{
4673        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4674
4675        return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
4676}
4677
4678static ssize_t rbd_snap_id_show(struct device *dev,
4679                                struct device_attribute *attr, char *buf)
4680{
4681        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4682
4683        return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
4684}
4685
4686/*
4687 * For a v2 image, shows the chain of parent images, separated by empty
4688 * lines.  For v1 images or if there is no parent, shows "(no parent
4689 * image)".
4690 */
4691static ssize_t rbd_parent_show(struct device *dev,
4692                               struct device_attribute *attr,
4693                               char *buf)
4694{
4695        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4696        ssize_t count = 0;
4697
4698        if (!rbd_dev->parent)
4699                return sprintf(buf, "(no parent image)\n");
4700
4701        for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
4702                struct rbd_spec *spec = rbd_dev->parent_spec;
4703
4704                count += sprintf(&buf[count], "%s"
4705                            "pool_id %llu\npool_name %s\n"
4706                            "image_id %s\nimage_name %s\n"
4707                            "snap_id %llu\nsnap_name %s\n"
4708                            "overlap %llu\n",
4709                            !count ? "" : "\n", /* first? */
4710                            spec->pool_id, spec->pool_name,
4711                            spec->image_id, spec->image_name ?: "(unknown)",
4712                            spec->snap_id, spec->snap_name,
4713                            rbd_dev->parent_overlap);
4714        }
4715
4716        return count;
4717}
4718
4719static ssize_t rbd_image_refresh(struct device *dev,
4720                                 struct device_attribute *attr,
4721                                 const char *buf,
4722                                 size_t size)
4723{
4724        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4725        int ret;
4726
4727        ret = rbd_dev_refresh(rbd_dev);
4728        if (ret)
4729                return ret;
4730
4731        return size;
4732}
4733
4734static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
4735static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
4736static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
4737static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
4738static DEVICE_ATTR(client_addr, S_IRUGO, rbd_client_addr_show, NULL);
4739static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
4740static DEVICE_ATTR(cluster_fsid, S_IRUGO, rbd_cluster_fsid_show, NULL);
4741static DEVICE_ATTR(config_info, S_IRUSR, rbd_config_info_show, NULL);
4742static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
4743static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
4744static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
4745static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
4746static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
4747static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
4748static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
4749static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
4750
4751static struct attribute *rbd_attrs[] = {
4752        &dev_attr_size.attr,
4753        &dev_attr_features.attr,
4754        &dev_attr_major.attr,
4755        &dev_attr_minor.attr,
4756        &dev_attr_client_addr.attr,
4757        &dev_attr_client_id.attr,
4758        &dev_attr_cluster_fsid.attr,
4759        &dev_attr_config_info.attr,
4760        &dev_attr_pool.attr,
4761        &dev_attr_pool_id.attr,
4762        &dev_attr_name.attr,
4763        &dev_attr_image_id.attr,
4764        &dev_attr_current_snap.attr,
4765        &dev_attr_snap_id.attr,
4766        &dev_attr_parent.attr,
4767        &dev_attr_refresh.attr,
4768        NULL
4769};
4770
4771static struct attribute_group rbd_attr_group = {
4772        .attrs = rbd_attrs,
4773};
4774
4775static const struct attribute_group *rbd_attr_groups[] = {
4776        &rbd_attr_group,
4777        NULL
4778};
4779
4780static void rbd_dev_release(struct device *dev);
4781
4782static struct device_type rbd_device_type = {
4783        .name           = "rbd",
4784        .groups         = rbd_attr_groups,
4785        .release        = rbd_dev_release,
4786};
4787
4788static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
4789{
4790        kref_get(&spec->kref);
4791
4792        return spec;
4793}
4794
4795static void rbd_spec_free(struct kref *kref);
4796static void rbd_spec_put(struct rbd_spec *spec)
4797{
4798        if (spec)
4799                kref_put(&spec->kref, rbd_spec_free);
4800}
4801
4802static struct rbd_spec *rbd_spec_alloc(void)
4803{
4804        struct rbd_spec *spec;
4805
4806        spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4807        if (!spec)
4808                return NULL;
4809
4810        spec->pool_id = CEPH_NOPOOL;
4811        spec->snap_id = CEPH_NOSNAP;
4812        kref_init(&spec->kref);
4813
4814        return spec;
4815}
4816
4817static void rbd_spec_free(struct kref *kref)
4818{
4819        struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4820
4821        kfree(spec->pool_name);
4822        kfree(spec->image_id);
4823        kfree(spec->image_name);
4824        kfree(spec->snap_name);
4825        kfree(spec);
4826}
4827
4828static void rbd_dev_free(struct rbd_device *rbd_dev)
4829{
4830        WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
4831        WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
4832
4833        ceph_oid_destroy(&rbd_dev->header_oid);
4834        ceph_oloc_destroy(&rbd_dev->header_oloc);
4835        kfree(rbd_dev->config_info);
4836
4837        rbd_put_client(rbd_dev->rbd_client);
4838        rbd_spec_put(rbd_dev->spec);
4839        kfree(rbd_dev->opts);
4840        kfree(rbd_dev);
4841}
4842
4843static void rbd_dev_release(struct device *dev)
4844{
4845        struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4846        bool need_put = !!rbd_dev->opts;
4847
4848        if (need_put) {
4849                destroy_workqueue(rbd_dev->task_wq);
4850                ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4851        }
4852
4853        rbd_dev_free(rbd_dev);
4854
4855        /*
4856         * This is racy, but way better than putting module outside of
4857         * the release callback.  The race window is pretty small, so
4858         * doing something similar to dm (dm-builtin.c) is overkill.
4859         */
4860        if (need_put)
4861                module_put(THIS_MODULE);
4862}
4863
4864static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
4865                                           struct rbd_spec *spec)
4866{
4867        struct rbd_device *rbd_dev;
4868
4869        rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
4870        if (!rbd_dev)
4871                return NULL;
4872
4873        spin_lock_init(&rbd_dev->lock);
4874        INIT_LIST_HEAD(&rbd_dev->node);
4875        init_rwsem(&rbd_dev->header_rwsem);
4876
4877        ceph_oid_init(&rbd_dev->header_oid);
4878        ceph_oloc_init(&rbd_dev->header_oloc);
4879
4880        mutex_init(&rbd_dev->watch_mutex);
4881        rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4882        INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
4883
4884        init_rwsem(&rbd_dev->lock_rwsem);
4885        rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
4886        INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
4887        INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
4888        INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
4889        INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
4890        init_waitqueue_head(&rbd_dev->lock_waitq);
4891
4892        rbd_dev->dev.bus = &rbd_bus_type;
4893        rbd_dev->dev.type = &rbd_device_type;
4894        rbd_dev->dev.parent = &rbd_root_dev;
4895        device_initialize(&rbd_dev->dev);
4896
4897        rbd_dev->rbd_client = rbdc;
4898        rbd_dev->spec = spec;
4899
4900        rbd_dev->layout.stripe_unit = 1 << RBD_MAX_OBJ_ORDER;
4901        rbd_dev->layout.stripe_count = 1;
4902        rbd_dev->layout.object_size = 1 << RBD_MAX_OBJ_ORDER;
4903        rbd_dev->layout.pool_id = spec->pool_id;
4904        RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
4905
4906        return rbd_dev;
4907}
4908
4909/*
4910 * Create a mapping rbd_dev.
4911 */
4912static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4913                                         struct rbd_spec *spec,
4914                                         struct rbd_options *opts)
4915{
4916        struct rbd_device *rbd_dev;
4917
4918        rbd_dev = __rbd_dev_create(rbdc, spec);
4919        if (!rbd_dev)
4920                return NULL;
4921
4922        rbd_dev->opts = opts;
4923
4924        /* get an id and fill in device name */
4925        rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
4926                                         minor_to_rbd_dev_id(1 << MINORBITS),
4927                                         GFP_KERNEL);
4928        if (rbd_dev->dev_id < 0)
4929                goto fail_rbd_dev;
4930
4931        sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
4932        rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
4933                                                   rbd_dev->name);
4934        if (!rbd_dev->task_wq)
4935                goto fail_dev_id;
4936
4937        /* we have a ref from do_rbd_add() */
4938        __module_get(THIS_MODULE);
4939
4940        dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
4941        return rbd_dev;
4942
4943fail_dev_id:
4944        ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4945fail_rbd_dev:
4946        rbd_dev_free(rbd_dev);
4947        return NULL;
4948}
4949
4950static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4951{
4952        if (rbd_dev)
4953                put_device(&rbd_dev->dev);
4954}
4955
4956/*
4957 * Get the size and object order for an image snapshot, or if
4958 * snap_id is CEPH_NOSNAP, gets this information for the base
4959 * image.
4960 */
4961static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4962                                u8 *order, u64 *snap_size)
4963{
4964        __le64 snapid = cpu_to_le64(snap_id);
4965        int ret;
4966        struct {
4967                u8 order;
4968                __le64 size;
4969        } __attribute__ ((packed)) size_buf = { 0 };
4970
4971        ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
4972                                "rbd", "get_size",
4973                                &snapid, sizeof (snapid),
4974                                &size_buf, sizeof (size_buf));
4975        dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4976        if (ret < 0)
4977                return ret;
4978        if (ret < sizeof (size_buf))
4979                return -ERANGE;
4980
4981        if (order) {
4982                *order = size_buf.order;
4983                dout("  order %u", (unsigned int)*order);
4984        }
4985        *snap_size = le64_to_cpu(size_buf.size);
4986
4987        dout("  snap_id 0x%016llx snap_size = %llu\n",
4988                (unsigned long long)snap_id,
4989                (unsigned long long)*snap_size);
4990
4991        return 0;
4992}
4993
4994static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4995{
4996        return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4997                                        &rbd_dev->header.obj_order,
4998                                        &rbd_dev->header.image_size);
4999}
5000
5001static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5002{
5003        void *reply_buf;
5004        int ret;
5005        void *p;
5006
5007        reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
5008        if (!reply_buf)
5009                return -ENOMEM;
5010
5011        ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5012                                "rbd", "get_object_prefix", NULL, 0,
5013                                reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
5014        dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5015        if (ret < 0)
5016                goto out;
5017
5018        p = reply_buf;
5019        rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5020                                                p + ret, NULL, GFP_NOIO);
5021        ret = 0;
5022
5023        if (IS_ERR(rbd_dev->header.object_prefix)) {
5024                ret = PTR_ERR(rbd_dev->header.object_prefix);
5025                rbd_dev->header.object_prefix = NULL;
5026        } else {
5027                dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
5028        }
5029out:
5030        kfree(reply_buf);
5031
5032        return ret;
5033}
5034
5035static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5036                u64 *snap_features)
5037{
5038        __le64 snapid = cpu_to_le64(snap_id);
5039        struct {
5040                __le64 features;
5041                __le64 incompat;
5042        } __attribute__ ((packed)) features_buf = { 0 };
5043        u64 unsup;
5044        int ret;
5045
5046        ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5047                                "rbd", "get_features",
5048                                &snapid, sizeof (snapid),
5049                                &features_buf, sizeof (features_buf));
5050        dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5051        if (ret < 0)
5052                return ret;
5053        if (ret < sizeof (features_buf))
5054                return -ERANGE;
5055
5056        unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5057        if (unsup) {
5058                rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5059                         unsup);
5060                return -ENXIO;
5061        }
5062
5063        *snap_features = le64_to_cpu(features_buf.features);
5064
5065        dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5066                (unsigned long long)snap_id,
5067                (unsigned long long)*snap_features,
5068                (unsigned long long)le64_to_cpu(features_buf.incompat));
5069
5070        return 0;
5071}
5072
5073static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5074{
5075        return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5076                                                &rbd_dev->header.features);
5077}
5078
5079static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5080{
5081        struct rbd_spec *parent_spec;
5082        size_t size;
5083        void *reply_buf = NULL;
5084        __le64 snapid;
5085        void *p;
5086        void *end;
5087        u64 pool_id;
5088        char *image_id;
5089        u64 snap_id;
5090        u64 overlap;
5091        int ret;
5092
5093        parent_spec = rbd_spec_alloc();
5094        if (!parent_spec)
5095                return -ENOMEM;
5096
5097        size = sizeof (__le64) +                                /* pool_id */
5098                sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
5099                sizeof (__le64) +                               /* snap_id */
5100                sizeof (__le64);                                /* overlap */
5101        reply_buf = kmalloc(size, GFP_KERNEL);
5102        if (!reply_buf) {
5103                ret = -ENOMEM;
5104                goto out_err;
5105        }
5106
5107        snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5108        ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5109                                "rbd", "get_parent",
5110                                &snapid, sizeof (snapid),
5111                                reply_buf, size);
5112        dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5113        if (ret < 0)
5114                goto out_err;
5115
5116        p = reply_buf;
5117        end = reply_buf + ret;
5118        ret = -ERANGE;
5119        ceph_decode_64_safe(&p, end, pool_id, out_err);
5120        if (pool_id == CEPH_NOPOOL) {
5121                /*
5122                 * Either the parent never existed, or we have
5123                 * record of it but the image got flattened so it no
5124                 * longer has a parent.  When the parent of a
5125                 * layered image disappears we immediately set the
5126                 * overlap to 0.  The effect of this is that all new
5127                 * requests will be treated as if the image had no
5128                 * parent.
5129                 */
5130                if (rbd_dev->parent_overlap) {
5131                        rbd_dev->parent_overlap = 0;
5132                        rbd_dev_parent_put(rbd_dev);
5133                        pr_info("%s: clone image has been flattened\n",
5134                                rbd_dev->disk->disk_name);
5135                }
5136
5137                goto out;       /* No parent?  No problem. */
5138        }
5139
5140        /* The ceph file layout needs to fit pool id in 32 bits */
5141
5142        ret = -EIO;
5143        if (pool_id > (u64)U32_MAX) {
5144                rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5145                        (unsigned long long)pool_id, U32_MAX);
5146                goto out_err;
5147        }
5148
5149        image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5150        if (IS_ERR(image_id)) {
5151                ret = PTR_ERR(image_id);
5152                goto out_err;
5153        }
5154        ceph_decode_64_safe(&p, end, snap_id, out_err);
5155        ceph_decode_64_safe(&p, end, overlap, out_err);
5156
5157        /*
5158         * The parent won't change (except when the clone is
5159         * flattened, already handled that).  So we only need to
5160         * record the parent spec we have not already done so.
5161         */
5162        if (!rbd_dev->parent_spec) {
5163                parent_spec->pool_id = pool_id;
5164                parent_spec->image_id = image_id;
5165                parent_spec->snap_id = snap_id;
5166                rbd_dev->parent_spec = parent_spec;
5167                parent_spec = NULL;     /* rbd_dev now owns this */
5168        } else {
5169                kfree(image_id);
5170        }
5171
5172        /*
5173         * We always update the parent overlap.  If it's zero we issue
5174         * a warning, as we will proceed as if there was no parent.
5175         */
5176        if (!overlap) {
5177                if (parent_spec) {
5178                        /* refresh, careful to warn just once */
5179                        if (rbd_dev->parent_overlap)
5180                                rbd_warn(rbd_dev,
5181                                    "clone now standalone (overlap became 0)");
5182                } else {
5183                        /* initial probe */
5184                        rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5185                }
5186        }
5187        rbd_dev->parent_overlap = overlap;
5188
5189out:
5190        ret = 0;
5191out_err:
5192        kfree(reply_buf);
5193        rbd_spec_put(parent_spec);
5194
5195        return ret;
5196}
5197
5198static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
5199{
5200        struct {
5201                __le64 stripe_unit;
5202                __le64 stripe_count;
5203        } __attribute__ ((packed)) striping_info_buf = { 0 };
5204        size_t size = sizeof (striping_info_buf);
5205        void *p;
5206        u64 obj_size;
5207        u64 stripe_unit;
5208        u64 stripe_count;
5209        int ret;
5210
5211        ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5212                                "rbd", "get_stripe_unit_count", NULL, 0,
5213                                (char *)&striping_info_buf, size);
5214        dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5215        if (ret < 0)
5216                return ret;
5217        if (ret < size)
5218                return -ERANGE;
5219
5220        /*
5221         * We don't actually support the "fancy striping" feature
5222         * (STRIPINGV2) yet, but if the striping sizes are the
5223         * defaults the behavior is the same as before.  So find
5224         * out, and only fail if the image has non-default values.
5225         */
5226        ret = -EINVAL;
5227        obj_size = (u64)1 << rbd_dev->header.obj_order;
5228        p = &striping_info_buf;
5229        stripe_unit = ceph_decode_64(&p);
5230        if (stripe_unit != obj_size) {
5231                rbd_warn(rbd_dev, "unsupported stripe unit "
5232                                "(got %llu want %llu)",
5233                                stripe_unit, obj_size);
5234                return -EINVAL;
5235        }
5236        stripe_count = ceph_decode_64(&p);
5237        if (stripe_count != 1) {
5238                rbd_warn(rbd_dev, "unsupported stripe count "
5239                                "(got %llu want 1)", stripe_count);
5240                return -EINVAL;
5241        }
5242        rbd_dev->header.stripe_unit = stripe_unit;
5243        rbd_dev->header.stripe_count = stripe_count;
5244
5245        return 0;
5246}
5247
5248static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5249{
5250        size_t image_id_size;
5251        char *image_id;
5252        void *p;
5253        void *end;
5254        size_t size;
5255        void *reply_buf = NULL;
5256        size_t len = 0;
5257        char *image_name = NULL;
5258        int ret;
5259
5260        rbd_assert(!rbd_dev->spec->image_name);
5261
5262        len = strlen(rbd_dev->spec->image_id);
5263        image_id_size = sizeof (__le32) + len;
5264        image_id = kmalloc(image_id_size, GFP_KERNEL);
5265        if (!image_id)
5266                return NULL;
5267
5268        p = image_id;
5269        end = image_id + image_id_size;
5270        ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5271
5272        size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5273        reply_buf = kmalloc(size, GFP_KERNEL);
5274        if (!reply_buf)
5275                goto out;
5276
5277        ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
5278                                "rbd", "dir_get_name",
5279                                image_id, image_id_size,
5280                                reply_buf, size);
5281        if (ret < 0)
5282                goto out;
5283        p = reply_buf;
5284        end = reply_buf + ret;
5285
5286        image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5287        if (IS_ERR(image_name))
5288                image_name = NULL;
5289        else
5290                dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5291out:
5292        kfree(reply_buf);
5293        kfree(image_id);
5294
5295        return image_name;
5296}
5297
5298static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5299{
5300        struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5301        const char *snap_name;
5302        u32 which = 0;
5303
5304        /* Skip over names until we find the one we are looking for */
5305
5306        snap_name = rbd_dev->header.snap_names;
5307        while (which < snapc->num_snaps) {
5308                if (!strcmp(name, snap_name))
5309                        return snapc->snaps[which];
5310                snap_name += strlen(snap_name) + 1;
5311                which++;
5312        }
5313        return CEPH_NOSNAP;
5314}
5315
5316static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5317{
5318        struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5319        u32 which;
5320        bool found = false;
5321        u64 snap_id;
5322
5323        for (which = 0; !found && which < snapc->num_snaps; which++) {
5324                const char *snap_name;
5325
5326                snap_id = snapc->snaps[which];
5327                snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5328                if (IS_ERR(snap_name)) {
5329                        /* ignore no-longer existing snapshots */
5330                        if (PTR_ERR(snap_name) == -ENOENT)
5331                                continue;
5332                        else
5333                                break;
5334                }
5335                found = !strcmp(name, snap_name);
5336                kfree(snap_name);
5337        }
5338        return found ? snap_id : CEPH_NOSNAP;
5339}
5340
5341/*
5342 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5343 * no snapshot by that name is found, or if an error occurs.
5344 */
5345static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5346{
5347        if (rbd_dev->image_format == 1)
5348                return rbd_v1_snap_id_by_name(rbd_dev, name);
5349
5350        return rbd_v2_snap_id_by_name(rbd_dev, name);
5351}
5352
5353/*
5354 * An image being mapped will have everything but the snap id.
5355 */
5356static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5357{
5358        struct rbd_spec *spec = rbd_dev->spec;
5359
5360        rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5361        rbd_assert(spec->image_id && spec->image_name);
5362        rbd_assert(spec->snap_name);
5363
5364        if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5365                u64 snap_id;
5366
5367                snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5368                if (snap_id == CEPH_NOSNAP)
5369                        return -ENOENT;
5370
5371                spec->snap_id = snap_id;
5372        } else {
5373                spec->snap_id = CEPH_NOSNAP;
5374        }
5375
5376        return 0;
5377}
5378
5379/*
5380 * A parent image will have all ids but none of the names.
5381 *
5382 * All names in an rbd spec are dynamically allocated.  It's OK if we
5383 * can't figure out the name for an image id.
5384 */
5385static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
5386{
5387        struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5388        struct rbd_spec *spec = rbd_dev->spec;
5389        const char *pool_name;
5390        const char *image_name;
5391        const char *snap_name;
5392        int ret;
5393
5394        rbd_assert(spec->pool_id != CEPH_NOPOOL);
5395        rbd_assert(spec->image_id);
5396        rbd_assert(spec->snap_id != CEPH_NOSNAP);
5397
5398        /* Get the pool name; we have to make our own copy of this */
5399
5400        pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
5401        if (!pool_name) {
5402                rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
5403                return -EIO;
5404        }
5405        pool_name = kstrdup(pool_name, GFP_KERNEL);
5406        if (!pool_name)
5407                return -ENOMEM;
5408
5409        /* Fetch the image name; tolerate failure here */
5410
5411        image_name = rbd_dev_image_name(rbd_dev);
5412        if (!image_name)
5413                rbd_warn(rbd_dev, "unable to get image name");
5414
5415        /* Fetch the snapshot name */
5416
5417        snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
5418        if (IS_ERR(snap_name)) {
5419                ret = PTR_ERR(snap_name);
5420                goto out_err;
5421        }
5422
5423        spec->pool_name = pool_name;
5424        spec->image_name = image_name;
5425        spec->snap_name = snap_name;
5426
5427        return 0;
5428
5429out_err:
5430        kfree(image_name);
5431        kfree(pool_name);
5432        return ret;
5433}
5434
5435static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
5436{
5437        size_t size;
5438        int ret;
5439        void *reply_buf;
5440        void *p;
5441        void *end;
5442        u64 seq;
5443        u32 snap_count;
5444        struct ceph_snap_context *snapc;
5445        u32 i;
5446
5447        /*
5448         * We'll need room for the seq value (maximum snapshot id),
5449         * snapshot count, and array of that many snapshot ids.
5450         * For now we have a fixed upper limit on the number we're
5451         * prepared to receive.
5452         */
5453        size = sizeof (__le64) + sizeof (__le32) +
5454                        RBD_MAX_SNAP_COUNT * sizeof (__le64);
5455        reply_buf = kzalloc(size, GFP_KERNEL);
5456        if (!reply_buf)
5457                return -ENOMEM;
5458
5459        ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5460                                "rbd", "get_snapcontext", NULL, 0,
5461                                reply_buf, size);
5462        dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5463        if (ret < 0)
5464                goto out;
5465
5466        p = reply_buf;
5467        end = reply_buf + ret;
5468        ret = -ERANGE;
5469        ceph_decode_64_safe(&p, end, seq, out);
5470        ceph_decode_32_safe(&p, end, snap_count, out);
5471
5472        /*
5473         * Make sure the reported number of snapshot ids wouldn't go
5474         * beyond the end of our buffer.  But before checking that,
5475         * make sure the computed size of the snapshot context we
5476         * allocate is representable in a size_t.
5477         */
5478        if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
5479                                 / sizeof (u64)) {
5480                ret = -EINVAL;
5481                goto out;
5482        }
5483        if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
5484                goto out;
5485        ret = 0;
5486
5487        snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
5488        if (!snapc) {
5489                ret = -ENOMEM;
5490                goto out;
5491        }
5492        snapc->seq = seq;
5493        for (i = 0; i < snap_count; i++)
5494                snapc->snaps[i] = ceph_decode_64(&p);
5495
5496        ceph_put_snap_context(rbd_dev->header.snapc);
5497        rbd_dev->header.snapc = snapc;
5498
5499        dout("  snap context seq = %llu, snap_count = %u\n",
5500                (unsigned long long)seq, (unsigned int)snap_count);
5501out:
5502        kfree(reply_buf);
5503
5504        return ret;
5505}
5506
5507static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
5508                                        u64 snap_id)
5509{
5510        size_t size;
5511        void *reply_buf;
5512        __le64 snapid;
5513        int ret;
5514        void *p;
5515        void *end;
5516        char *snap_name;
5517
5518        size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
5519        reply_buf = kmalloc(size, GFP_KERNEL);
5520        if (!reply_buf)
5521                return ERR_PTR(-ENOMEM);
5522
5523        snapid = cpu_to_le64(snap_id);
5524        ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_oid.name,
5525                                "rbd", "get_snapshot_name",
5526                                &snapid, sizeof (snapid),
5527                                reply_buf, size);
5528        dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5529        if (ret < 0) {
5530                snap_name = ERR_PTR(ret);
5531                goto out;
5532        }
5533
5534        p = reply_buf;
5535        end = reply_buf + ret;
5536        snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5537        if (IS_ERR(snap_name))
5538                goto out;
5539
5540        dout("  snap_id 0x%016llx snap_name = %s\n",
5541                (unsigned long long)snap_id, snap_name);
5542out:
5543        kfree(reply_buf);
5544
5545        return snap_name;
5546}
5547
5548static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
5549{
5550        bool first_time = rbd_dev->header.object_prefix == NULL;
5551        int ret;
5552
5553        ret = rbd_dev_v2_image_size(rbd_dev);
5554        if (ret)
5555                return ret;
5556
5557        if (first_time) {
5558                ret = rbd_dev_v2_header_onetime(rbd_dev);
5559                if (ret)
5560                        return ret;
5561        }
5562
5563        ret = rbd_dev_v2_snap_context(rbd_dev);
5564        if (ret && first_time) {
5565                kfree(rbd_dev->header.object_prefix);
5566                rbd_dev->header.object_prefix = NULL;
5567        }
5568
5569        return ret;
5570}
5571
5572static int rbd_dev_header_info(struct rbd_device *rbd_dev)
5573{
5574        rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5575
5576        if (rbd_dev->image_format == 1)
5577                return rbd_dev_v1_header_info(rbd_dev);
5578
5579        return rbd_dev_v2_header_info(rbd_dev);
5580}
5581
5582/*
5583 * Skips over white space at *buf, and updates *buf to point to the
5584 * first found non-space character (if any). Returns the length of
5585 * the token (string of non-white space characters) found.  Note
5586 * that *buf must be terminated with '\0'.
5587 */
5588static inline size_t next_token(const char **buf)
5589{
5590        /*
5591        * These are the characters that produce nonzero for
5592        * isspace() in the "C" and "POSIX" locales.
5593        */
5594        const char *spaces = " \f\n\r\t\v";
5595
5596        *buf += strspn(*buf, spaces);   /* Find start of token */
5597
5598        return strcspn(*buf, spaces);   /* Return token length */
5599}
5600
5601/*
5602 * Finds the next token in *buf, dynamically allocates a buffer big
5603 * enough to hold a copy of it, and copies the token into the new
5604 * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
5605 * that a duplicate buffer is created even for a zero-length token.
5606 *
5607 * Returns a pointer to the newly-allocated duplicate, or a null
5608 * pointer if memory for the duplicate was not available.  If
5609 * the lenp argument is a non-null pointer, the length of the token
5610 * (not including the '\0') is returned in *lenp.
5611 *
5612 * If successful, the *buf pointer will be updated to point beyond
5613 * the end of the found token.
5614 *
5615 * Note: uses GFP_KERNEL for allocation.
5616 */
5617static inline char *dup_token(const char **buf, size_t *lenp)
5618{
5619        char *dup;
5620        size_t len;
5621
5622        len = next_token(buf);
5623        dup = kmemdup(*buf, len + 1, GFP_KERNEL);
5624        if (!dup)
5625                return NULL;
5626        *(dup + len) = '\0';
5627        *buf += len;
5628
5629        if (lenp)
5630                *lenp = len;
5631
5632        return dup;
5633}
5634
5635/*
5636 * Parse the options provided for an "rbd add" (i.e., rbd image
5637 * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
5638 * and the data written is passed here via a NUL-terminated buffer.
5639 * Returns 0 if successful or an error code otherwise.
5640 *
5641 * The information extracted from these options is recorded in
5642 * the other parameters which return dynamically-allocated
5643 * structures:
5644 *  ceph_opts
5645 *      The address of a pointer that will refer to a ceph options
5646 *      structure.  Caller must release the returned pointer using
5647 *      ceph_destroy_options() when it is no longer needed.
5648 *  rbd_opts
5649 *      Address of an rbd options pointer.  Fully initialized by
5650 *      this function; caller must release with kfree().
5651 *  spec
5652 *      Address of an rbd image specification pointer.  Fully
5653 *      initialized by this function based on parsed options.
5654 *      Caller must release with rbd_spec_put().
5655 *
5656 * The options passed take this form:
5657 *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
5658 * where:
5659 *  <mon_addrs>
5660 *      A comma-separated list of one or more monitor addresses.
5661 *      A monitor address is an ip address, optionally followed
5662 *      by a port number (separated by a colon).
5663 *        I.e.:  ip1[:port1][,ip2[:port2]...]
5664 *  <options>
5665 *      A comma-separated list of ceph and/or rbd options.
5666 *  <pool_name>
5667 *      The name of the rados pool containing the rbd image.
5668 *  <image_name>
5669 *      The name of the image in that pool to map.
5670 *  <snap_id>
5671 *      An optional snapshot id.  If provided, the mapping will
5672 *      present data from the image at the time that snapshot was
5673 *      created.  The image head is used if no snapshot id is
5674 *      provided.  Snapshot mappings are always read-only.
5675 */
5676static int rbd_add_parse_args(const char *buf,
5677                                struct ceph_options **ceph_opts,
5678                                struct rbd_options **opts,
5679                                struct rbd_spec **rbd_spec)
5680{
5681        size_t len;
5682        char *options;
5683        const char *mon_addrs;
5684        char *snap_name;
5685        size_t mon_addrs_size;
5686        struct rbd_spec *spec = NULL;
5687        struct rbd_options *rbd_opts = NULL;
5688        struct ceph_options *copts;
5689        int ret;
5690
5691        /* The first four tokens are required */
5692
5693        len = next_token(&buf);
5694        if (!len) {
5695                rbd_warn(NULL, "no monitor address(es) provided");
5696                return -EINVAL;
5697        }
5698        mon_addrs = buf;
5699        mon_addrs_size = len + 1;
5700        buf += len;
5701
5702        ret = -EINVAL;
5703        options = dup_token(&buf, NULL);
5704        if (!options)
5705                return -ENOMEM;
5706        if (!*options) {
5707                rbd_warn(NULL, "no options provided");
5708                goto out_err;
5709        }
5710
5711        spec = rbd_spec_alloc();
5712        if (!spec)
5713                goto out_mem;
5714
5715        spec->pool_name = dup_token(&buf, NULL);
5716        if (!spec->pool_name)
5717                goto out_mem;
5718        if (!*spec->pool_name) {
5719                rbd_warn(NULL, "no pool name provided");
5720                goto out_err;
5721        }
5722
5723        spec->image_name = dup_token(&buf, NULL);
5724        if (!spec->image_name)
5725                goto out_mem;
5726        if (!*spec->image_name) {
5727                rbd_warn(NULL, "no image name provided");
5728                goto out_err;
5729        }
5730
5731        /*
5732         * Snapshot name is optional; default is to use "-"
5733         * (indicating the head/no snapshot).
5734         */
5735        len = next_token(&buf);
5736        if (!len) {
5737                buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
5738                len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
5739        } else if (len > RBD_MAX_SNAP_NAME_LEN) {
5740                ret = -ENAMETOOLONG;
5741                goto out_err;
5742        }
5743        snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
5744        if (!snap_name)
5745                goto out_mem;
5746        *(snap_name + len) = '\0';
5747        spec->snap_name = snap_name;
5748
5749        /* Initialize all rbd options to the defaults */
5750
5751        rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
5752        if (!rbd_opts)
5753                goto out_mem;
5754
5755        rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
5756        rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
5757        rbd_opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
5758
5759        copts = ceph_parse_options(options, mon_addrs,
5760                                        mon_addrs + mon_addrs_size - 1,
5761                                        parse_rbd_opts_token, rbd_opts);
5762        if (IS_ERR(copts)) {
5763                ret = PTR_ERR(copts);
5764                goto out_err;
5765        }
5766        kfree(options);
5767
5768        *ceph_opts = copts;
5769        *opts = rbd_opts;
5770        *rbd_spec = spec;
5771
5772        return 0;
5773out_mem:
5774        ret = -ENOMEM;
5775out_err:
5776        kfree(rbd_opts);
5777        rbd_spec_put(spec);
5778        kfree(options);
5779
5780        return ret;
5781}
5782
5783/*
5784 * Return pool id (>= 0) or a negative error code.
5785 */
5786static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
5787{
5788        struct ceph_options *opts = rbdc->client->options;
5789        u64 newest_epoch;
5790        int tries = 0;
5791        int ret;
5792
5793again:
5794        ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
5795        if (ret == -ENOENT && tries++ < 1) {
5796                ret = ceph_monc_get_version(&rbdc->client->monc, "osdmap",
5797                                            &newest_epoch);
5798                if (ret < 0)
5799                        return ret;
5800
5801                if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
5802                        ceph_osdc_maybe_request_map(&rbdc->client->osdc);
5803                        (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
5804                                                     newest_epoch,
5805                                                     opts->mount_timeout);
5806                        goto again;
5807                } else {
5808                        /* the osdmap we have is new enough */
5809                        return -ENOENT;
5810                }
5811        }
5812
5813        return ret;
5814}
5815
5816/*
5817 * An rbd format 2 image has a unique identifier, distinct from the
5818 * name given to it by the user.  Internally, that identifier is
5819 * what's used to specify the names of objects related to the image.
5820 *
5821 * A special "rbd id" object is used to map an rbd image name to its
5822 * id.  If that object doesn't exist, then there is no v2 rbd image
5823 * with the supplied name.
5824 *
5825 * This function will record the given rbd_dev's image_id field if
5826 * it can be determined, and in that case will return 0.  If any
5827 * errors occur a negative errno will be returned and the rbd_dev's
5828 * image_id field will be unchanged (and should be NULL).
5829 */
5830static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5831{
5832        int ret;
5833        size_t size;
5834        char *object_name;
5835        void *response;
5836        char *image_id;
5837
5838        /*
5839         * When probing a parent image, the image id is already
5840         * known (and the image name likely is not).  There's no
5841         * need to fetch the image id again in this case.  We
5842         * do still need to set the image format though.
5843         */
5844        if (rbd_dev->spec->image_id) {
5845                rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5846
5847                return 0;
5848        }
5849
5850        /*
5851         * First, see if the format 2 image id file exists, and if
5852         * so, get the image's persistent id from it.
5853         */
5854        size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5855        object_name = kmalloc(size, GFP_NOIO);
5856        if (!object_name)
5857                return -ENOMEM;
5858        sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5859        dout("rbd id object name is %s\n", object_name);
5860
5861        /* Response will be an encoded string, which includes a length */
5862
5863        size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5864        response = kzalloc(size, GFP_NOIO);
5865        if (!response) {
5866                ret = -ENOMEM;
5867                goto out;
5868        }
5869
5870        /* If it doesn't exist we'll assume it's a format 1 image */
5871
5872        ret = rbd_obj_method_sync(rbd_dev, object_name,
5873                                "rbd", "get_id", NULL, 0,
5874                                response, RBD_IMAGE_ID_LEN_MAX);
5875        dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5876        if (ret == -ENOENT) {
5877                image_id = kstrdup("", GFP_KERNEL);
5878                ret = image_id ? 0 : -ENOMEM;
5879                if (!ret)
5880                        rbd_dev->image_format = 1;
5881        } else if (ret >= 0) {
5882                void *p = response;
5883
5884                image_id = ceph_extract_encoded_string(&p, p + ret,
5885                                                NULL, GFP_NOIO);
5886                ret = PTR_ERR_OR_ZERO(image_id);
5887                if (!ret)
5888                        rbd_dev->image_format = 2;
5889        }
5890
5891        if (!ret) {
5892                rbd_dev->spec->image_id = image_id;
5893                dout("image_id is %s\n", image_id);
5894        }
5895out:
5896        kfree(response);
5897        kfree(object_name);
5898
5899        return ret;
5900}
5901
5902/*
5903 * Undo whatever state changes are made by v1 or v2 header info
5904 * call.
5905 */
5906static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5907{
5908        struct rbd_image_header *header;
5909
5910        rbd_dev_parent_put(rbd_dev);
5911
5912        /* Free dynamic fields from the header, then zero it out */
5913
5914        header = &rbd_dev->header;
5915        ceph_put_snap_context(header->snapc);
5916        kfree(header->snap_sizes);
5917        kfree(header->snap_names);
5918        kfree(header->object_prefix);
5919        memset(header, 0, sizeof (*header));
5920}
5921
5922static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5923{
5924        int ret;
5925
5926        ret = rbd_dev_v2_object_prefix(rbd_dev);
5927        if (ret)
5928                goto out_err;
5929
5930        /*
5931         * Get the and check features for the image.  Currently the
5932         * features are assumed to never change.
5933         */
5934        ret = rbd_dev_v2_features(rbd_dev);
5935        if (ret)
5936                goto out_err;
5937
5938        /* If the image supports fancy striping, get its parameters */
5939
5940        if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5941                ret = rbd_dev_v2_striping_info(rbd_dev);
5942                if (ret < 0)
5943                        goto out_err;
5944        }
5945        /* No support for crypto and compression type format 2 images */
5946
5947        return 0;
5948out_err:
5949        rbd_dev->header.features = 0;
5950        kfree(rbd_dev->header.object_prefix);
5951        rbd_dev->header.object_prefix = NULL;
5952
5953        return ret;
5954}
5955
5956/*
5957 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5958 * rbd_dev_image_probe() recursion depth, which means it's also the
5959 * length of the already discovered part of the parent chain.
5960 */
5961static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5962{
5963        struct rbd_device *parent = NULL;
5964        int ret;
5965
5966        if (!rbd_dev->parent_spec)
5967                return 0;
5968
5969        if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5970                pr_info("parent chain is too long (%d)\n", depth);
5971                ret = -EINVAL;
5972                goto out_err;
5973        }
5974
5975        parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
5976        if (!parent) {
5977                ret = -ENOMEM;
5978                goto out_err;
5979        }
5980
5981        /*
5982         * Images related by parent/child relationships always share
5983         * rbd_client and spec/parent_spec, so bump their refcounts.
5984         */
5985        __rbd_get_client(rbd_dev->rbd_client);
5986        rbd_spec_get(rbd_dev->parent_spec);
5987
5988        ret = rbd_dev_image_probe(parent, depth);
5989        if (ret < 0)
5990                goto out_err;
5991
5992        rbd_dev->parent = parent;
5993        atomic_set(&rbd_dev->parent_ref, 1);
5994        return 0;
5995
5996out_err:
5997        rbd_dev_unparent(rbd_dev);
5998        rbd_dev_destroy(parent);
5999        return ret;
6000}
6001
6002/*
6003 * rbd_dev->header_rwsem must be locked for write and will be unlocked
6004 * upon return.
6005 */
6006static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6007{
6008        int ret;
6009
6010        /* Record our major and minor device numbers. */
6011
6012        if (!single_major) {
6013                ret = register_blkdev(0, rbd_dev->name);
6014                if (ret < 0)
6015                        goto err_out_unlock;
6016
6017                rbd_dev->major = ret;
6018                rbd_dev->minor = 0;
6019        } else {
6020                rbd_dev->major = rbd_major;
6021                rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6022        }
6023
6024        /* Set up the blkdev mapping. */
6025
6026        ret = rbd_init_disk(rbd_dev);
6027        if (ret)
6028                goto err_out_blkdev;
6029
6030        ret = rbd_dev_mapping_set(rbd_dev);
6031        if (ret)
6032                goto err_out_disk;
6033
6034        set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6035        set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
6036
6037        dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6038        ret = device_add(&rbd_dev->dev);
6039        if (ret)
6040                goto err_out_mapping;
6041
6042        /* Everything's ready.  Announce the disk to the world. */
6043
6044        set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6045        up_write(&rbd_dev->header_rwsem);
6046
6047        spin_lock(&rbd_dev_list_lock);
6048        list_add_tail(&rbd_dev->node, &rbd_dev_list);
6049        spin_unlock(&rbd_dev_list_lock);
6050
6051        add_disk(rbd_dev->disk);
6052        pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
6053                (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
6054                rbd_dev->header.features);
6055
6056        return ret;
6057
6058err_out_mapping:
6059        rbd_dev_mapping_clear(rbd_dev);
6060err_out_disk:
6061        rbd_free_disk(rbd_dev);
6062err_out_blkdev:
6063        if (!single_major)
6064                unregister_blkdev(rbd_dev->major, rbd_dev->name);
6065err_out_unlock:
6066        up_write(&rbd_dev->header_rwsem);
6067        return ret;
6068}
6069
6070static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6071{
6072        struct rbd_spec *spec = rbd_dev->spec;
6073        int ret;
6074
6075        /* Record the header object name for this rbd image. */
6076
6077        rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6078
6079        rbd_dev->header_oloc.pool = rbd_dev->layout.pool_id;
6080        if (rbd_dev->image_format == 1)
6081                ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6082                                       spec->image_name, RBD_SUFFIX);
6083        else
6084                ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6085                                       RBD_HEADER_PREFIX, spec->image_id);
6086
6087        return ret;
6088}
6089
6090static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6091{
6092        rbd_dev_unprobe(rbd_dev);
6093        rbd_dev->image_format = 0;
6094        kfree(rbd_dev->spec->image_id);
6095        rbd_dev->spec->image_id = NULL;
6096
6097        rbd_dev_destroy(rbd_dev);
6098}
6099
6100/*
6101 * Probe for the existence of the header object for the given rbd
6102 * device.  If this image is the one being mapped (i.e., not a
6103 * parent), initiate a watch on its header object before using that
6104 * object to get detailed information about the rbd image.
6105 */
6106static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6107{
6108        int ret;
6109
6110        /*
6111         * Get the id from the image id object.  Unless there's an
6112         * error, rbd_dev->spec->image_id will be filled in with
6113         * a dynamically-allocated string, and rbd_dev->image_format
6114         * will be set to either 1 or 2.
6115         */
6116        ret = rbd_dev_image_id(rbd_dev);
6117        if (ret)
6118                return ret;
6119
6120        ret = rbd_dev_header_name(rbd_dev);
6121        if (ret)
6122                goto err_out_format;
6123
6124        if (!depth) {
6125                ret = rbd_register_watch(rbd_dev);
6126                if (ret) {
6127                        if (ret == -ENOENT)
6128                                pr_info("image %s/%s does not exist\n",
6129                                        rbd_dev->spec->pool_name,
6130                                        rbd_dev->spec->image_name);
6131                        goto err_out_format;
6132                }
6133        }
6134
6135        ret = rbd_dev_header_info(rbd_dev);
6136        if (ret)
6137                goto err_out_watch;
6138
6139        /*
6140         * If this image is the one being mapped, we have pool name and
6141         * id, image name and id, and snap name - need to fill snap id.
6142         * Otherwise this is a parent image, identified by pool, image
6143         * and snap ids - need to fill in names for those ids.
6144         */
6145        if (!depth)
6146                ret = rbd_spec_fill_snap_id(rbd_dev);
6147        else
6148                ret = rbd_spec_fill_names(rbd_dev);
6149        if (ret) {
6150                if (ret == -ENOENT)
6151                        pr_info("snap %s/%s@%s does not exist\n",
6152                                rbd_dev->spec->pool_name,
6153                                rbd_dev->spec->image_name,
6154                                rbd_dev->spec->snap_name);
6155                goto err_out_probe;
6156        }
6157
6158        if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6159                ret = rbd_dev_v2_parent_info(rbd_dev);
6160                if (ret)
6161                        goto err_out_probe;
6162
6163                /*
6164                 * Need to warn users if this image is the one being
6165                 * mapped and has a parent.
6166                 */
6167                if (!depth && rbd_dev->parent_spec)
6168                        rbd_warn(rbd_dev,
6169                                 "WARNING: kernel layering is EXPERIMENTAL!");
6170        }
6171
6172        ret = rbd_dev_probe_parent(rbd_dev, depth);
6173        if (ret)
6174                goto err_out_probe;
6175
6176        dout("discovered format %u image, header name is %s\n",
6177                rbd_dev->image_format, rbd_dev->header_oid.name);
6178        return 0;
6179
6180err_out_probe:
6181        rbd_dev_unprobe(rbd_dev);
6182err_out_watch:
6183        if (!depth)
6184                rbd_unregister_watch(rbd_dev);
6185err_out_format:
6186        rbd_dev->image_format = 0;
6187        kfree(rbd_dev->spec->image_id);
6188        rbd_dev->spec->image_id = NULL;
6189        return ret;
6190}
6191
6192static ssize_t do_rbd_add(struct bus_type *bus,
6193                          const char *buf,
6194                          size_t count)
6195{
6196        struct rbd_device *rbd_dev = NULL;
6197        struct ceph_options *ceph_opts = NULL;
6198        struct rbd_options *rbd_opts = NULL;
6199        struct rbd_spec *spec = NULL;
6200        struct rbd_client *rbdc;
6201        bool read_only;
6202        int rc;
6203
6204        if (!try_module_get(THIS_MODULE))
6205                return -ENODEV;
6206
6207        /* parse add command */
6208        rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
6209        if (rc < 0)
6210                goto out;
6211
6212        rbdc = rbd_get_client(ceph_opts);
6213        if (IS_ERR(rbdc)) {
6214                rc = PTR_ERR(rbdc);
6215                goto err_out_args;
6216        }
6217
6218        /* pick the pool */
6219        rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
6220        if (rc < 0) {
6221                if (rc == -ENOENT)
6222                        pr_info("pool %s does not exist\n", spec->pool_name);
6223                goto err_out_client;
6224        }
6225        spec->pool_id = (u64)rc;
6226
6227        rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
6228        if (!rbd_dev) {
6229                rc = -ENOMEM;
6230                goto err_out_client;
6231        }
6232        rbdc = NULL;            /* rbd_dev now owns this */
6233        spec = NULL;            /* rbd_dev now owns this */
6234        rbd_opts = NULL;        /* rbd_dev now owns this */
6235
6236        rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
6237        if (!rbd_dev->config_info) {
6238                rc = -ENOMEM;
6239                goto err_out_rbd_dev;
6240        }
6241
6242        down_write(&rbd_dev->header_rwsem);
6243        rc = rbd_dev_image_probe(rbd_dev, 0);
6244        if (rc < 0) {
6245                up_write(&rbd_dev->header_rwsem);
6246                goto err_out_rbd_dev;
6247        }
6248
6249        /* If we are mapping a snapshot it must be marked read-only */
6250
6251        read_only = rbd_dev->opts->read_only;
6252        if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
6253                read_only = true;
6254        rbd_dev->mapping.read_only = read_only;
6255
6256        rc = rbd_dev_device_setup(rbd_dev);
6257        if (rc) {
6258                /*
6259                 * rbd_unregister_watch() can't be moved into
6260                 * rbd_dev_image_release() without refactoring, see
6261                 * commit 1f3ef78861ac.
6262                 */
6263                rbd_unregister_watch(rbd_dev);
6264                rbd_dev_image_release(rbd_dev);
6265                goto out;
6266        }
6267
6268        rc = count;
6269out:
6270        module_put(THIS_MODULE);
6271        return rc;
6272
6273err_out_rbd_dev:
6274        rbd_dev_destroy(rbd_dev);
6275err_out_client:
6276        rbd_put_client(rbdc);
6277err_out_args:
6278        rbd_spec_put(spec);
6279        kfree(rbd_opts);
6280        goto out;
6281}
6282
6283static ssize_t rbd_add(struct bus_type *bus,
6284                       const char *buf,
6285                       size_t count)
6286{
6287        if (single_major)
6288                return -EINVAL;
6289
6290        return do_rbd_add(bus, buf, count);
6291}
6292
6293static ssize_t rbd_add_single_major(struct bus_type *bus,
6294                                    const char *buf,
6295                                    size_t count)
6296{
6297        return do_rbd_add(bus, buf, count);
6298}
6299
6300static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6301{
6302        rbd_free_disk(rbd_dev);
6303
6304        spin_lock(&rbd_dev_list_lock);
6305        list_del_init(&rbd_dev->node);
6306        spin_unlock(&rbd_dev_list_lock);
6307
6308        clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6309        device_del(&rbd_dev->dev);
6310        rbd_dev_mapping_clear(rbd_dev);
6311        if (!single_major)
6312                unregister_blkdev(rbd_dev->major, rbd_dev->name);
6313}
6314
6315static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
6316{
6317        while (rbd_dev->parent) {
6318                struct rbd_device *first = rbd_dev;
6319                struct rbd_device *second = first->parent;
6320                struct rbd_device *third;
6321
6322                /*
6323                 * Follow to the parent with no grandparent and
6324                 * remove it.
6325                 */
6326                while (second && (third = second->parent)) {
6327                        first = second;
6328                        second = third;
6329                }
6330                rbd_assert(second);
6331                rbd_dev_image_release(second);
6332                first->parent = NULL;
6333                first->parent_overlap = 0;
6334
6335                rbd_assert(first->parent_spec);
6336                rbd_spec_put(first->parent_spec);
6337                first->parent_spec = NULL;
6338        }
6339}
6340
6341static ssize_t do_rbd_remove(struct bus_type *bus,
6342                             const char *buf,
6343                             size_t count)
6344{
6345        struct rbd_device *rbd_dev = NULL;
6346        struct list_head *tmp;
6347        int dev_id;
6348        char opt_buf[6];
6349        bool already = false;
6350        bool force = false;
6351        int ret;
6352
6353        dev_id = -1;
6354        opt_buf[0] = '\0';
6355        sscanf(buf, "%d %5s", &dev_id, opt_buf);
6356        if (dev_id < 0) {
6357                pr_err("dev_id out of range\n");
6358                return -EINVAL;
6359        }
6360        if (opt_buf[0] != '\0') {
6361                if (!strcmp(opt_buf, "force")) {
6362                        force = true;
6363                } else {
6364                        pr_err("bad remove option at '%s'\n", opt_buf);
6365                        return -EINVAL;
6366                }
6367        }
6368
6369        ret = -ENOENT;
6370        spin_lock(&rbd_dev_list_lock);
6371        list_for_each(tmp, &rbd_dev_list) {
6372                rbd_dev = list_entry(tmp, struct rbd_device, node);
6373                if (rbd_dev->dev_id == dev_id) {
6374                        ret = 0;
6375                        break;
6376                }
6377        }
6378        if (!ret) {
6379                spin_lock_irq(&rbd_dev->lock);
6380                if (rbd_dev->open_count && !force)
6381                        ret = -EBUSY;
6382                else
6383                        already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
6384                                                        &rbd_dev->flags);
6385                spin_unlock_irq(&rbd_dev->lock);
6386        }
6387        spin_unlock(&rbd_dev_list_lock);
6388        if (ret < 0 || already)
6389                return ret;
6390
6391        if (force) {
6392                /*
6393                 * Prevent new IO from being queued and wait for existing
6394                 * IO to complete/fail.
6395                 */
6396                blk_mq_freeze_queue(rbd_dev->disk->queue);
6397                blk_set_queue_dying(rbd_dev->disk->queue);
6398        }
6399
6400        down_write(&rbd_dev->lock_rwsem);
6401        if (__rbd_is_lock_owner(rbd_dev))
6402                rbd_unlock(rbd_dev);
6403        up_write(&rbd_dev->lock_rwsem);
6404        rbd_unregister_watch(rbd_dev);
6405
6406        /*
6407         * Don't free anything from rbd_dev->disk until after all
6408         * notifies are completely processed. Otherwise
6409         * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
6410         * in a potential use after free of rbd_dev->disk or rbd_dev.
6411         */
6412        rbd_dev_device_release(rbd_dev);
6413        rbd_dev_image_release(rbd_dev);
6414
6415        return count;
6416}
6417
6418static ssize_t rbd_remove(struct bus_type *bus,
6419                          const char *buf,
6420                          size_t count)
6421{
6422        if (single_major)
6423                return -EINVAL;
6424
6425        return do_rbd_remove(bus, buf, count);
6426}
6427
6428static ssize_t rbd_remove_single_major(struct bus_type *bus,
6429                                       const char *buf,
6430                                       size_t count)
6431{
6432        return do_rbd_remove(bus, buf, count);
6433}
6434
6435/*
6436 * create control files in sysfs
6437 * /sys/bus/rbd/...
6438 */
6439static int rbd_sysfs_init(void)
6440{
6441        int ret;
6442
6443        ret = device_register(&rbd_root_dev);
6444        if (ret < 0)
6445                return ret;
6446
6447        ret = bus_register(&rbd_bus_type);
6448        if (ret < 0)
6449                device_unregister(&rbd_root_dev);
6450
6451        return ret;
6452}
6453
6454static void rbd_sysfs_cleanup(void)
6455{
6456        bus_unregister(&rbd_bus_type);
6457        device_unregister(&rbd_root_dev);
6458}
6459
6460static int rbd_slab_init(void)
6461{
6462        rbd_assert(!rbd_img_request_cache);
6463        rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
6464        if (!rbd_img_request_cache)
6465                return -ENOMEM;
6466
6467        rbd_assert(!rbd_obj_request_cache);
6468        rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
6469        if (!rbd_obj_request_cache)
6470                goto out_err;
6471
6472        rbd_assert(!rbd_segment_name_cache);
6473        rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
6474                                        CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
6475        if (rbd_segment_name_cache)
6476                return 0;
6477out_err:
6478        kmem_cache_destroy(rbd_obj_request_cache);
6479        rbd_obj_request_cache = NULL;
6480
6481        kmem_cache_destroy(rbd_img_request_cache);
6482        rbd_img_request_cache = NULL;
6483
6484        return -ENOMEM;
6485}
6486
6487static void rbd_slab_exit(void)
6488{
6489        rbd_assert(rbd_segment_name_cache);
6490        kmem_cache_destroy(rbd_segment_name_cache);
6491        rbd_segment_name_cache = NULL;
6492
6493        rbd_assert(rbd_obj_request_cache);
6494        kmem_cache_destroy(rbd_obj_request_cache);
6495        rbd_obj_request_cache = NULL;
6496
6497        rbd_assert(rbd_img_request_cache);
6498        kmem_cache_destroy(rbd_img_request_cache);
6499        rbd_img_request_cache = NULL;
6500}
6501
6502static int __init rbd_init(void)
6503{
6504        int rc;
6505
6506        if (!libceph_compatible(NULL)) {
6507                rbd_warn(NULL, "libceph incompatibility (quitting)");
6508                return -EINVAL;
6509        }
6510
6511        rc = rbd_slab_init();
6512        if (rc)
6513                return rc;
6514
6515        /*
6516         * The number of active work items is limited by the number of
6517         * rbd devices * queue depth, so leave @max_active at default.
6518         */
6519        rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
6520        if (!rbd_wq) {
6521                rc = -ENOMEM;
6522                goto err_out_slab;
6523        }
6524
6525        if (single_major) {
6526                rbd_major = register_blkdev(0, RBD_DRV_NAME);
6527                if (rbd_major < 0) {
6528                        rc = rbd_major;
6529                        goto err_out_wq;
6530                }
6531        }
6532
6533        rc = rbd_sysfs_init();
6534        if (rc)
6535                goto err_out_blkdev;
6536
6537        if (single_major)
6538                pr_info("loaded (major %d)\n", rbd_major);
6539        else
6540                pr_info("loaded\n");
6541
6542        return 0;
6543
6544err_out_blkdev:
6545        if (single_major)
6546                unregister_blkdev(rbd_major, RBD_DRV_NAME);
6547err_out_wq:
6548        destroy_workqueue(rbd_wq);
6549err_out_slab:
6550        rbd_slab_exit();
6551        return rc;
6552}
6553
6554static void __exit rbd_exit(void)
6555{
6556        ida_destroy(&rbd_dev_id_ida);
6557        rbd_sysfs_cleanup();
6558        if (single_major)
6559                unregister_blkdev(rbd_major, RBD_DRV_NAME);
6560        destroy_workqueue(rbd_wq);
6561        rbd_slab_exit();
6562}
6563
6564module_init(rbd_init);
6565module_exit(rbd_exit);
6566
6567MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
6568MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
6569MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
6570/* following authorship retained from original osdblk.c */
6571MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
6572
6573MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
6574MODULE_LICENSE("GPL");
6575