linux/drivers/firmware/efi/libstub/efi-stub-helper.c
<<
>>
Prefs
   1/*
   2 * Helper functions used by the EFI stub on multiple
   3 * architectures. This should be #included by the EFI stub
   4 * implementation files.
   5 *
   6 * Copyright 2011 Intel Corporation; author Matt Fleming
   7 *
   8 * This file is part of the Linux kernel, and is made available
   9 * under the terms of the GNU General Public License version 2.
  10 *
  11 */
  12
  13#include <linux/efi.h>
  14#include <asm/efi.h>
  15
  16#include "efistub.h"
  17
  18/*
  19 * Some firmware implementations have problems reading files in one go.
  20 * A read chunk size of 1MB seems to work for most platforms.
  21 *
  22 * Unfortunately, reading files in chunks triggers *other* bugs on some
  23 * platforms, so we provide a way to disable this workaround, which can
  24 * be done by passing "efi=nochunk" on the EFI boot stub command line.
  25 *
  26 * If you experience issues with initrd images being corrupt it's worth
  27 * trying efi=nochunk, but chunking is enabled by default because there
  28 * are far more machines that require the workaround than those that
  29 * break with it enabled.
  30 */
  31#define EFI_READ_CHUNK_SIZE     (1024 * 1024)
  32
  33static unsigned long __chunk_size = EFI_READ_CHUNK_SIZE;
  34
  35#define EFI_MMAP_NR_SLACK_SLOTS 8
  36
  37struct file_info {
  38        efi_file_handle_t *handle;
  39        u64 size;
  40};
  41
  42void efi_printk(efi_system_table_t *sys_table_arg, char *str)
  43{
  44        char *s8;
  45
  46        for (s8 = str; *s8; s8++) {
  47                efi_char16_t ch[2] = { 0 };
  48
  49                ch[0] = *s8;
  50                if (*s8 == '\n') {
  51                        efi_char16_t nl[2] = { '\r', 0 };
  52                        efi_char16_printk(sys_table_arg, nl);
  53                }
  54
  55                efi_char16_printk(sys_table_arg, ch);
  56        }
  57}
  58
  59static inline bool mmap_has_headroom(unsigned long buff_size,
  60                                     unsigned long map_size,
  61                                     unsigned long desc_size)
  62{
  63        unsigned long slack = buff_size - map_size;
  64
  65        return slack / desc_size >= EFI_MMAP_NR_SLACK_SLOTS;
  66}
  67
  68efi_status_t efi_get_memory_map(efi_system_table_t *sys_table_arg,
  69                                struct efi_boot_memmap *map)
  70{
  71        efi_memory_desc_t *m = NULL;
  72        efi_status_t status;
  73        unsigned long key;
  74        u32 desc_version;
  75
  76        *map->desc_size =       sizeof(*m);
  77        *map->map_size =        *map->desc_size * 32;
  78        *map->buff_size =       *map->map_size;
  79again:
  80        status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
  81                                *map->map_size, (void **)&m);
  82        if (status != EFI_SUCCESS)
  83                goto fail;
  84
  85        *map->desc_size = 0;
  86        key = 0;
  87        status = efi_call_early(get_memory_map, map->map_size, m,
  88                                &key, map->desc_size, &desc_version);
  89        if (status == EFI_BUFFER_TOO_SMALL ||
  90            !mmap_has_headroom(*map->buff_size, *map->map_size,
  91                               *map->desc_size)) {
  92                efi_call_early(free_pool, m);
  93                /*
  94                 * Make sure there is some entries of headroom so that the
  95                 * buffer can be reused for a new map after allocations are
  96                 * no longer permitted.  Its unlikely that the map will grow to
  97                 * exceed this headroom once we are ready to trigger
  98                 * ExitBootServices()
  99                 */
 100                *map->map_size += *map->desc_size * EFI_MMAP_NR_SLACK_SLOTS;
 101                *map->buff_size = *map->map_size;
 102                goto again;
 103        }
 104
 105        if (status != EFI_SUCCESS)
 106                efi_call_early(free_pool, m);
 107
 108        if (map->key_ptr && status == EFI_SUCCESS)
 109                *map->key_ptr = key;
 110        if (map->desc_ver && status == EFI_SUCCESS)
 111                *map->desc_ver = desc_version;
 112
 113fail:
 114        *map->map = m;
 115        return status;
 116}
 117
 118
 119unsigned long get_dram_base(efi_system_table_t *sys_table_arg)
 120{
 121        efi_status_t status;
 122        unsigned long map_size, buff_size;
 123        unsigned long membase  = EFI_ERROR;
 124        struct efi_memory_map map;
 125        efi_memory_desc_t *md;
 126        struct efi_boot_memmap boot_map;
 127
 128        boot_map.map =          (efi_memory_desc_t **)&map.map;
 129        boot_map.map_size =     &map_size;
 130        boot_map.desc_size =    &map.desc_size;
 131        boot_map.desc_ver =     NULL;
 132        boot_map.key_ptr =      NULL;
 133        boot_map.buff_size =    &buff_size;
 134
 135        status = efi_get_memory_map(sys_table_arg, &boot_map);
 136        if (status != EFI_SUCCESS)
 137                return membase;
 138
 139        map.map_end = map.map + map_size;
 140
 141        for_each_efi_memory_desc_in_map(&map, md) {
 142                if (md->attribute & EFI_MEMORY_WB) {
 143                        if (membase > md->phys_addr)
 144                                membase = md->phys_addr;
 145                }
 146        }
 147
 148        efi_call_early(free_pool, map.map);
 149
 150        return membase;
 151}
 152
 153/*
 154 * Allocate at the highest possible address that is not above 'max'.
 155 */
 156efi_status_t efi_high_alloc(efi_system_table_t *sys_table_arg,
 157                            unsigned long size, unsigned long align,
 158                            unsigned long *addr, unsigned long max)
 159{
 160        unsigned long map_size, desc_size, buff_size;
 161        efi_memory_desc_t *map;
 162        efi_status_t status;
 163        unsigned long nr_pages;
 164        u64 max_addr = 0;
 165        int i;
 166        struct efi_boot_memmap boot_map;
 167
 168        boot_map.map =          &map;
 169        boot_map.map_size =     &map_size;
 170        boot_map.desc_size =    &desc_size;
 171        boot_map.desc_ver =     NULL;
 172        boot_map.key_ptr =      NULL;
 173        boot_map.buff_size =    &buff_size;
 174
 175        status = efi_get_memory_map(sys_table_arg, &boot_map);
 176        if (status != EFI_SUCCESS)
 177                goto fail;
 178
 179        /*
 180         * Enforce minimum alignment that EFI or Linux requires when
 181         * requesting a specific address.  We are doing page-based (or
 182         * larger) allocations, and both the address and size must meet
 183         * alignment constraints.
 184         */
 185        if (align < EFI_ALLOC_ALIGN)
 186                align = EFI_ALLOC_ALIGN;
 187
 188        size = round_up(size, EFI_ALLOC_ALIGN);
 189        nr_pages = size / EFI_PAGE_SIZE;
 190again:
 191        for (i = 0; i < map_size / desc_size; i++) {
 192                efi_memory_desc_t *desc;
 193                unsigned long m = (unsigned long)map;
 194                u64 start, end;
 195
 196                desc = (efi_memory_desc_t *)(m + (i * desc_size));
 197                if (desc->type != EFI_CONVENTIONAL_MEMORY)
 198                        continue;
 199
 200                if (desc->num_pages < nr_pages)
 201                        continue;
 202
 203                start = desc->phys_addr;
 204                end = start + desc->num_pages * EFI_PAGE_SIZE;
 205
 206                if (end > max)
 207                        end = max;
 208
 209                if ((start + size) > end)
 210                        continue;
 211
 212                if (round_down(end - size, align) < start)
 213                        continue;
 214
 215                start = round_down(end - size, align);
 216
 217                /*
 218                 * Don't allocate at 0x0. It will confuse code that
 219                 * checks pointers against NULL.
 220                 */
 221                if (start == 0x0)
 222                        continue;
 223
 224                if (start > max_addr)
 225                        max_addr = start;
 226        }
 227
 228        if (!max_addr)
 229                status = EFI_NOT_FOUND;
 230        else {
 231                status = efi_call_early(allocate_pages,
 232                                        EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
 233                                        nr_pages, &max_addr);
 234                if (status != EFI_SUCCESS) {
 235                        max = max_addr;
 236                        max_addr = 0;
 237                        goto again;
 238                }
 239
 240                *addr = max_addr;
 241        }
 242
 243        efi_call_early(free_pool, map);
 244fail:
 245        return status;
 246}
 247
 248/*
 249 * Allocate at the lowest possible address.
 250 */
 251efi_status_t efi_low_alloc(efi_system_table_t *sys_table_arg,
 252                           unsigned long size, unsigned long align,
 253                           unsigned long *addr)
 254{
 255        unsigned long map_size, desc_size, buff_size;
 256        efi_memory_desc_t *map;
 257        efi_status_t status;
 258        unsigned long nr_pages;
 259        int i;
 260        struct efi_boot_memmap boot_map;
 261
 262        boot_map.map =          &map;
 263        boot_map.map_size =     &map_size;
 264        boot_map.desc_size =    &desc_size;
 265        boot_map.desc_ver =     NULL;
 266        boot_map.key_ptr =      NULL;
 267        boot_map.buff_size =    &buff_size;
 268
 269        status = efi_get_memory_map(sys_table_arg, &boot_map);
 270        if (status != EFI_SUCCESS)
 271                goto fail;
 272
 273        /*
 274         * Enforce minimum alignment that EFI or Linux requires when
 275         * requesting a specific address.  We are doing page-based (or
 276         * larger) allocations, and both the address and size must meet
 277         * alignment constraints.
 278         */
 279        if (align < EFI_ALLOC_ALIGN)
 280                align = EFI_ALLOC_ALIGN;
 281
 282        size = round_up(size, EFI_ALLOC_ALIGN);
 283        nr_pages = size / EFI_PAGE_SIZE;
 284        for (i = 0; i < map_size / desc_size; i++) {
 285                efi_memory_desc_t *desc;
 286                unsigned long m = (unsigned long)map;
 287                u64 start, end;
 288
 289                desc = (efi_memory_desc_t *)(m + (i * desc_size));
 290
 291                if (desc->type != EFI_CONVENTIONAL_MEMORY)
 292                        continue;
 293
 294                if (desc->num_pages < nr_pages)
 295                        continue;
 296
 297                start = desc->phys_addr;
 298                end = start + desc->num_pages * EFI_PAGE_SIZE;
 299
 300                /*
 301                 * Don't allocate at 0x0. It will confuse code that
 302                 * checks pointers against NULL. Skip the first 8
 303                 * bytes so we start at a nice even number.
 304                 */
 305                if (start == 0x0)
 306                        start += 8;
 307
 308                start = round_up(start, align);
 309                if ((start + size) > end)
 310                        continue;
 311
 312                status = efi_call_early(allocate_pages,
 313                                        EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
 314                                        nr_pages, &start);
 315                if (status == EFI_SUCCESS) {
 316                        *addr = start;
 317                        break;
 318                }
 319        }
 320
 321        if (i == map_size / desc_size)
 322                status = EFI_NOT_FOUND;
 323
 324        efi_call_early(free_pool, map);
 325fail:
 326        return status;
 327}
 328
 329void efi_free(efi_system_table_t *sys_table_arg, unsigned long size,
 330              unsigned long addr)
 331{
 332        unsigned long nr_pages;
 333
 334        if (!size)
 335                return;
 336
 337        nr_pages = round_up(size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
 338        efi_call_early(free_pages, addr, nr_pages);
 339}
 340
 341/*
 342 * Parse the ASCII string 'cmdline' for EFI options, denoted by the efi=
 343 * option, e.g. efi=nochunk.
 344 *
 345 * It should be noted that efi= is parsed in two very different
 346 * environments, first in the early boot environment of the EFI boot
 347 * stub, and subsequently during the kernel boot.
 348 */
 349efi_status_t efi_parse_options(char *cmdline)
 350{
 351        char *str;
 352
 353        /*
 354         * If no EFI parameters were specified on the cmdline we've got
 355         * nothing to do.
 356         */
 357        str = strstr(cmdline, "efi=");
 358        if (!str)
 359                return EFI_SUCCESS;
 360
 361        /* Skip ahead to first argument */
 362        str += strlen("efi=");
 363
 364        /*
 365         * Remember, because efi= is also used by the kernel we need to
 366         * skip over arguments we don't understand.
 367         */
 368        while (*str) {
 369                if (!strncmp(str, "nochunk", 7)) {
 370                        str += strlen("nochunk");
 371                        __chunk_size = -1UL;
 372                }
 373
 374                /* Group words together, delimited by "," */
 375                while (*str && *str != ',')
 376                        str++;
 377
 378                if (*str == ',')
 379                        str++;
 380        }
 381
 382        return EFI_SUCCESS;
 383}
 384
 385/*
 386 * Check the cmdline for a LILO-style file= arguments.
 387 *
 388 * We only support loading a file from the same filesystem as
 389 * the kernel image.
 390 */
 391efi_status_t handle_cmdline_files(efi_system_table_t *sys_table_arg,
 392                                  efi_loaded_image_t *image,
 393                                  char *cmd_line, char *option_string,
 394                                  unsigned long max_addr,
 395                                  unsigned long *load_addr,
 396                                  unsigned long *load_size)
 397{
 398        struct file_info *files;
 399        unsigned long file_addr;
 400        u64 file_size_total;
 401        efi_file_handle_t *fh = NULL;
 402        efi_status_t status;
 403        int nr_files;
 404        char *str;
 405        int i, j, k;
 406
 407        file_addr = 0;
 408        file_size_total = 0;
 409
 410        str = cmd_line;
 411
 412        j = 0;                  /* See close_handles */
 413
 414        if (!load_addr || !load_size)
 415                return EFI_INVALID_PARAMETER;
 416
 417        *load_addr = 0;
 418        *load_size = 0;
 419
 420        if (!str || !*str)
 421                return EFI_SUCCESS;
 422
 423        for (nr_files = 0; *str; nr_files++) {
 424                str = strstr(str, option_string);
 425                if (!str)
 426                        break;
 427
 428                str += strlen(option_string);
 429
 430                /* Skip any leading slashes */
 431                while (*str == '/' || *str == '\\')
 432                        str++;
 433
 434                while (*str && *str != ' ' && *str != '\n')
 435                        str++;
 436        }
 437
 438        if (!nr_files)
 439                return EFI_SUCCESS;
 440
 441        status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
 442                                nr_files * sizeof(*files), (void **)&files);
 443        if (status != EFI_SUCCESS) {
 444                pr_efi_err(sys_table_arg, "Failed to alloc mem for file handle list\n");
 445                goto fail;
 446        }
 447
 448        str = cmd_line;
 449        for (i = 0; i < nr_files; i++) {
 450                struct file_info *file;
 451                efi_char16_t filename_16[256];
 452                efi_char16_t *p;
 453
 454                str = strstr(str, option_string);
 455                if (!str)
 456                        break;
 457
 458                str += strlen(option_string);
 459
 460                file = &files[i];
 461                p = filename_16;
 462
 463                /* Skip any leading slashes */
 464                while (*str == '/' || *str == '\\')
 465                        str++;
 466
 467                while (*str && *str != ' ' && *str != '\n') {
 468                        if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16))
 469                                break;
 470
 471                        if (*str == '/') {
 472                                *p++ = '\\';
 473                                str++;
 474                        } else {
 475                                *p++ = *str++;
 476                        }
 477                }
 478
 479                *p = '\0';
 480
 481                /* Only open the volume once. */
 482                if (!i) {
 483                        status = efi_open_volume(sys_table_arg, image,
 484                                                 (void **)&fh);
 485                        if (status != EFI_SUCCESS)
 486                                goto free_files;
 487                }
 488
 489                status = efi_file_size(sys_table_arg, fh, filename_16,
 490                                       (void **)&file->handle, &file->size);
 491                if (status != EFI_SUCCESS)
 492                        goto close_handles;
 493
 494                file_size_total += file->size;
 495        }
 496
 497        if (file_size_total) {
 498                unsigned long addr;
 499
 500                /*
 501                 * Multiple files need to be at consecutive addresses in memory,
 502                 * so allocate enough memory for all the files.  This is used
 503                 * for loading multiple files.
 504                 */
 505                status = efi_high_alloc(sys_table_arg, file_size_total, 0x1000,
 506                                    &file_addr, max_addr);
 507                if (status != EFI_SUCCESS) {
 508                        pr_efi_err(sys_table_arg, "Failed to alloc highmem for files\n");
 509                        goto close_handles;
 510                }
 511
 512                /* We've run out of free low memory. */
 513                if (file_addr > max_addr) {
 514                        pr_efi_err(sys_table_arg, "We've run out of free low memory\n");
 515                        status = EFI_INVALID_PARAMETER;
 516                        goto free_file_total;
 517                }
 518
 519                addr = file_addr;
 520                for (j = 0; j < nr_files; j++) {
 521                        unsigned long size;
 522
 523                        size = files[j].size;
 524                        while (size) {
 525                                unsigned long chunksize;
 526                                if (size > __chunk_size)
 527                                        chunksize = __chunk_size;
 528                                else
 529                                        chunksize = size;
 530
 531                                status = efi_file_read(files[j].handle,
 532                                                       &chunksize,
 533                                                       (void *)addr);
 534                                if (status != EFI_SUCCESS) {
 535                                        pr_efi_err(sys_table_arg, "Failed to read file\n");
 536                                        goto free_file_total;
 537                                }
 538                                addr += chunksize;
 539                                size -= chunksize;
 540                        }
 541
 542                        efi_file_close(files[j].handle);
 543                }
 544
 545        }
 546
 547        efi_call_early(free_pool, files);
 548
 549        *load_addr = file_addr;
 550        *load_size = file_size_total;
 551
 552        return status;
 553
 554free_file_total:
 555        efi_free(sys_table_arg, file_size_total, file_addr);
 556
 557close_handles:
 558        for (k = j; k < i; k++)
 559                efi_file_close(files[k].handle);
 560free_files:
 561        efi_call_early(free_pool, files);
 562fail:
 563        *load_addr = 0;
 564        *load_size = 0;
 565
 566        return status;
 567}
 568/*
 569 * Relocate a kernel image, either compressed or uncompressed.
 570 * In the ARM64 case, all kernel images are currently
 571 * uncompressed, and as such when we relocate it we need to
 572 * allocate additional space for the BSS segment. Any low
 573 * memory that this function should avoid needs to be
 574 * unavailable in the EFI memory map, as if the preferred
 575 * address is not available the lowest available address will
 576 * be used.
 577 */
 578efi_status_t efi_relocate_kernel(efi_system_table_t *sys_table_arg,
 579                                 unsigned long *image_addr,
 580                                 unsigned long image_size,
 581                                 unsigned long alloc_size,
 582                                 unsigned long preferred_addr,
 583                                 unsigned long alignment)
 584{
 585        unsigned long cur_image_addr;
 586        unsigned long new_addr = 0;
 587        efi_status_t status;
 588        unsigned long nr_pages;
 589        efi_physical_addr_t efi_addr = preferred_addr;
 590
 591        if (!image_addr || !image_size || !alloc_size)
 592                return EFI_INVALID_PARAMETER;
 593        if (alloc_size < image_size)
 594                return EFI_INVALID_PARAMETER;
 595
 596        cur_image_addr = *image_addr;
 597
 598        /*
 599         * The EFI firmware loader could have placed the kernel image
 600         * anywhere in memory, but the kernel has restrictions on the
 601         * max physical address it can run at.  Some architectures
 602         * also have a prefered address, so first try to relocate
 603         * to the preferred address.  If that fails, allocate as low
 604         * as possible while respecting the required alignment.
 605         */
 606        nr_pages = round_up(alloc_size, EFI_ALLOC_ALIGN) / EFI_PAGE_SIZE;
 607        status = efi_call_early(allocate_pages,
 608                                EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
 609                                nr_pages, &efi_addr);
 610        new_addr = efi_addr;
 611        /*
 612         * If preferred address allocation failed allocate as low as
 613         * possible.
 614         */
 615        if (status != EFI_SUCCESS) {
 616                status = efi_low_alloc(sys_table_arg, alloc_size, alignment,
 617                                       &new_addr);
 618        }
 619        if (status != EFI_SUCCESS) {
 620                pr_efi_err(sys_table_arg, "Failed to allocate usable memory for kernel.\n");
 621                return status;
 622        }
 623
 624        /*
 625         * We know source/dest won't overlap since both memory ranges
 626         * have been allocated by UEFI, so we can safely use memcpy.
 627         */
 628        memcpy((void *)new_addr, (void *)cur_image_addr, image_size);
 629
 630        /* Return the new address of the relocated image. */
 631        *image_addr = new_addr;
 632
 633        return status;
 634}
 635
 636/*
 637 * Get the number of UTF-8 bytes corresponding to an UTF-16 character.
 638 * This overestimates for surrogates, but that is okay.
 639 */
 640static int efi_utf8_bytes(u16 c)
 641{
 642        return 1 + (c >= 0x80) + (c >= 0x800);
 643}
 644
 645/*
 646 * Convert an UTF-16 string, not necessarily null terminated, to UTF-8.
 647 */
 648static u8 *efi_utf16_to_utf8(u8 *dst, const u16 *src, int n)
 649{
 650        unsigned int c;
 651
 652        while (n--) {
 653                c = *src++;
 654                if (n && c >= 0xd800 && c <= 0xdbff &&
 655                    *src >= 0xdc00 && *src <= 0xdfff) {
 656                        c = 0x10000 + ((c & 0x3ff) << 10) + (*src & 0x3ff);
 657                        src++;
 658                        n--;
 659                }
 660                if (c >= 0xd800 && c <= 0xdfff)
 661                        c = 0xfffd; /* Unmatched surrogate */
 662                if (c < 0x80) {
 663                        *dst++ = c;
 664                        continue;
 665                }
 666                if (c < 0x800) {
 667                        *dst++ = 0xc0 + (c >> 6);
 668                        goto t1;
 669                }
 670                if (c < 0x10000) {
 671                        *dst++ = 0xe0 + (c >> 12);
 672                        goto t2;
 673                }
 674                *dst++ = 0xf0 + (c >> 18);
 675                *dst++ = 0x80 + ((c >> 12) & 0x3f);
 676        t2:
 677                *dst++ = 0x80 + ((c >> 6) & 0x3f);
 678        t1:
 679                *dst++ = 0x80 + (c & 0x3f);
 680        }
 681
 682        return dst;
 683}
 684
 685#ifndef MAX_CMDLINE_ADDRESS
 686#define MAX_CMDLINE_ADDRESS     ULONG_MAX
 687#endif
 688
 689/*
 690 * Convert the unicode UEFI command line to ASCII to pass to kernel.
 691 * Size of memory allocated return in *cmd_line_len.
 692 * Returns NULL on error.
 693 */
 694char *efi_convert_cmdline(efi_system_table_t *sys_table_arg,
 695                          efi_loaded_image_t *image,
 696                          int *cmd_line_len)
 697{
 698        const u16 *s2;
 699        u8 *s1 = NULL;
 700        unsigned long cmdline_addr = 0;
 701        int load_options_chars = image->load_options_size / 2; /* UTF-16 */
 702        const u16 *options = image->load_options;
 703        int options_bytes = 0;  /* UTF-8 bytes */
 704        int options_chars = 0;  /* UTF-16 chars */
 705        efi_status_t status;
 706        u16 zero = 0;
 707
 708        if (options) {
 709                s2 = options;
 710                while (*s2 && *s2 != '\n'
 711                       && options_chars < load_options_chars) {
 712                        options_bytes += efi_utf8_bytes(*s2++);
 713                        options_chars++;
 714                }
 715        }
 716
 717        if (!options_chars) {
 718                /* No command line options, so return empty string*/
 719                options = &zero;
 720        }
 721
 722        options_bytes++;        /* NUL termination */
 723
 724        status = efi_high_alloc(sys_table_arg, options_bytes, 0,
 725                                &cmdline_addr, MAX_CMDLINE_ADDRESS);
 726        if (status != EFI_SUCCESS)
 727                return NULL;
 728
 729        s1 = (u8 *)cmdline_addr;
 730        s2 = (const u16 *)options;
 731
 732        s1 = efi_utf16_to_utf8(s1, s2, options_chars);
 733        *s1 = '\0';
 734
 735        *cmd_line_len = options_bytes;
 736        return (char *)cmdline_addr;
 737}
 738
 739/*
 740 * Handle calling ExitBootServices according to the requirements set out by the
 741 * spec.  Obtains the current memory map, and returns that info after calling
 742 * ExitBootServices.  The client must specify a function to perform any
 743 * processing of the memory map data prior to ExitBootServices.  A client
 744 * specific structure may be passed to the function via priv.  The client
 745 * function may be called multiple times.
 746 */
 747efi_status_t efi_exit_boot_services(efi_system_table_t *sys_table_arg,
 748                                    void *handle,
 749                                    struct efi_boot_memmap *map,
 750                                    void *priv,
 751                                    efi_exit_boot_map_processing priv_func)
 752{
 753        efi_status_t status;
 754
 755        status = efi_get_memory_map(sys_table_arg, map);
 756
 757        if (status != EFI_SUCCESS)
 758                goto fail;
 759
 760        status = priv_func(sys_table_arg, map, priv);
 761        if (status != EFI_SUCCESS)
 762                goto free_map;
 763
 764        status = efi_call_early(exit_boot_services, handle, *map->key_ptr);
 765
 766        if (status == EFI_INVALID_PARAMETER) {
 767                /*
 768                 * The memory map changed between efi_get_memory_map() and
 769                 * exit_boot_services().  Per the UEFI Spec v2.6, Section 6.4:
 770                 * EFI_BOOT_SERVICES.ExitBootServices we need to get the
 771                 * updated map, and try again.  The spec implies one retry
 772                 * should be sufficent, which is confirmed against the EDK2
 773                 * implementation.  Per the spec, we can only invoke
 774                 * get_memory_map() and exit_boot_services() - we cannot alloc
 775                 * so efi_get_memory_map() cannot be used, and we must reuse
 776                 * the buffer.  For all practical purposes, the headroom in the
 777                 * buffer should account for any changes in the map so the call
 778                 * to get_memory_map() is expected to succeed here.
 779                 */
 780                *map->map_size = *map->buff_size;
 781                status = efi_call_early(get_memory_map,
 782                                        map->map_size,
 783                                        *map->map,
 784                                        map->key_ptr,
 785                                        map->desc_size,
 786                                        map->desc_ver);
 787
 788                /* exit_boot_services() was called, thus cannot free */
 789                if (status != EFI_SUCCESS)
 790                        goto fail;
 791
 792                status = priv_func(sys_table_arg, map, priv);
 793                /* exit_boot_services() was called, thus cannot free */
 794                if (status != EFI_SUCCESS)
 795                        goto fail;
 796
 797                status = efi_call_early(exit_boot_services, handle, *map->key_ptr);
 798        }
 799
 800        /* exit_boot_services() was called, thus cannot free */
 801        if (status != EFI_SUCCESS)
 802                goto fail;
 803
 804        return EFI_SUCCESS;
 805
 806free_map:
 807        efi_call_early(free_pool, *map->map);
 808fail:
 809        return status;
 810}
 811