linux/drivers/gpu/drm/i915/intel_ringbuffer.h
<<
>>
Prefs
   1#ifndef _INTEL_RINGBUFFER_H_
   2#define _INTEL_RINGBUFFER_H_
   3
   4#include <linux/hashtable.h>
   5#include "i915_gem_batch_pool.h"
   6#include "i915_gem_request.h"
   7#include "i915_gem_timeline.h"
   8
   9#define I915_CMD_HASH_ORDER 9
  10
  11/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  12 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  13 * to give some inclination as to some of the magic values used in the various
  14 * workarounds!
  15 */
  16#define CACHELINE_BYTES 64
  17#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
  18
  19/*
  20 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
  21 * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
  22 * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
  23 *
  24 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
  25 * cacheline, the Head Pointer must not be greater than the Tail
  26 * Pointer."
  27 */
  28#define I915_RING_FREE_SPACE 64
  29
  30struct intel_hw_status_page {
  31        struct i915_vma *vma;
  32        u32 *page_addr;
  33        u32 ggtt_offset;
  34};
  35
  36#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
  37#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
  38
  39#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
  40#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
  41
  42#define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base))
  43#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
  44
  45#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
  46#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
  47
  48#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
  49#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
  50
  51#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
  52#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
  53
  54/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
  55 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
  56 */
  57#define gen8_semaphore_seqno_size sizeof(uint64_t)
  58#define GEN8_SEMAPHORE_OFFSET(__from, __to)                          \
  59        (((__from) * I915_NUM_ENGINES  + (__to)) * gen8_semaphore_seqno_size)
  60#define GEN8_SIGNAL_OFFSET(__ring, to)                       \
  61        (dev_priv->semaphore->node.start + \
  62         GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
  63#define GEN8_WAIT_OFFSET(__ring, from)                       \
  64        (dev_priv->semaphore->node.start + \
  65         GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
  66
  67enum intel_engine_hangcheck_action {
  68        HANGCHECK_IDLE = 0,
  69        HANGCHECK_WAIT,
  70        HANGCHECK_ACTIVE,
  71        HANGCHECK_KICK,
  72        HANGCHECK_HUNG,
  73};
  74
  75#define HANGCHECK_SCORE_RING_HUNG 31
  76
  77#define I915_MAX_SLICES 3
  78#define I915_MAX_SUBSLICES 3
  79
  80#define instdone_slice_mask(dev_priv__) \
  81        (INTEL_GEN(dev_priv__) == 7 ? \
  82         1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
  83
  84#define instdone_subslice_mask(dev_priv__) \
  85        (INTEL_GEN(dev_priv__) == 7 ? \
  86         1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
  87
  88#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
  89        for ((slice__) = 0, (subslice__) = 0; \
  90             (slice__) < I915_MAX_SLICES; \
  91             (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
  92               (slice__) += ((subslice__) == 0)) \
  93                for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
  94                            (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
  95
  96struct intel_instdone {
  97        u32 instdone;
  98        /* The following exist only in the RCS engine */
  99        u32 slice_common;
 100        u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
 101        u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
 102};
 103
 104struct intel_engine_hangcheck {
 105        u64 acthd;
 106        u32 seqno;
 107        int score;
 108        enum intel_engine_hangcheck_action action;
 109        int deadlock;
 110        struct intel_instdone instdone;
 111};
 112
 113struct intel_ring {
 114        struct i915_vma *vma;
 115        void *vaddr;
 116
 117        struct intel_engine_cs *engine;
 118
 119        struct list_head request_list;
 120
 121        u32 head;
 122        u32 tail;
 123        int space;
 124        int size;
 125        int effective_size;
 126
 127        /** We track the position of the requests in the ring buffer, and
 128         * when each is retired we increment last_retired_head as the GPU
 129         * must have finished processing the request and so we know we
 130         * can advance the ringbuffer up to that position.
 131         *
 132         * last_retired_head is set to -1 after the value is consumed so
 133         * we can detect new retirements.
 134         */
 135        u32 last_retired_head;
 136};
 137
 138struct i915_gem_context;
 139struct drm_i915_reg_table;
 140
 141/*
 142 * we use a single page to load ctx workarounds so all of these
 143 * values are referred in terms of dwords
 144 *
 145 * struct i915_wa_ctx_bb:
 146 *  offset: specifies batch starting position, also helpful in case
 147 *    if we want to have multiple batches at different offsets based on
 148 *    some criteria. It is not a requirement at the moment but provides
 149 *    an option for future use.
 150 *  size: size of the batch in DWORDS
 151 */
 152struct i915_ctx_workarounds {
 153        struct i915_wa_ctx_bb {
 154                u32 offset;
 155                u32 size;
 156        } indirect_ctx, per_ctx;
 157        struct i915_vma *vma;
 158};
 159
 160struct drm_i915_gem_request;
 161struct intel_render_state;
 162
 163struct intel_engine_cs {
 164        struct drm_i915_private *i915;
 165        const char      *name;
 166        enum intel_engine_id {
 167                RCS = 0,
 168                BCS,
 169                VCS,
 170                VCS2,   /* Keep instances of the same type engine together. */
 171                VECS
 172        } id;
 173#define _VCS(n) (VCS + (n))
 174        unsigned int exec_id;
 175        enum intel_engine_hw_id {
 176                RCS_HW = 0,
 177                VCS_HW,
 178                BCS_HW,
 179                VECS_HW,
 180                VCS2_HW
 181        } hw_id;
 182        enum intel_engine_hw_id guc_id; /* XXX same as hw_id? */
 183        u32             mmio_base;
 184        unsigned int irq_shift;
 185        struct intel_ring *buffer;
 186        struct intel_timeline *timeline;
 187
 188        struct intel_render_state *render_state;
 189
 190        /* Rather than have every client wait upon all user interrupts,
 191         * with the herd waking after every interrupt and each doing the
 192         * heavyweight seqno dance, we delegate the task (of being the
 193         * bottom-half of the user interrupt) to the first client. After
 194         * every interrupt, we wake up one client, who does the heavyweight
 195         * coherent seqno read and either goes back to sleep (if incomplete),
 196         * or wakes up all the completed clients in parallel, before then
 197         * transferring the bottom-half status to the next client in the queue.
 198         *
 199         * Compared to walking the entire list of waiters in a single dedicated
 200         * bottom-half, we reduce the latency of the first waiter by avoiding
 201         * a context switch, but incur additional coherent seqno reads when
 202         * following the chain of request breadcrumbs. Since it is most likely
 203         * that we have a single client waiting on each seqno, then reducing
 204         * the overhead of waking that client is much preferred.
 205         */
 206        struct intel_breadcrumbs {
 207                struct task_struct __rcu *irq_seqno_bh; /* bh for interrupts */
 208                bool irq_posted;
 209
 210                spinlock_t lock; /* protects the lists of requests; irqsafe */
 211                struct rb_root waiters; /* sorted by retirement, priority */
 212                struct rb_root signals; /* sorted by retirement */
 213                struct intel_wait *first_wait; /* oldest waiter by retirement */
 214                struct task_struct *signaler; /* used for fence signalling */
 215                struct drm_i915_gem_request *first_signal;
 216                struct timer_list fake_irq; /* used after a missed interrupt */
 217                struct timer_list hangcheck; /* detect missed interrupts */
 218
 219                unsigned long timeout;
 220
 221                bool irq_enabled : 1;
 222                bool rpm_wakelock : 1;
 223        } breadcrumbs;
 224
 225        /*
 226         * A pool of objects to use as shadow copies of client batch buffers
 227         * when the command parser is enabled. Prevents the client from
 228         * modifying the batch contents after software parsing.
 229         */
 230        struct i915_gem_batch_pool batch_pool;
 231
 232        struct intel_hw_status_page status_page;
 233        struct i915_ctx_workarounds wa_ctx;
 234        struct i915_vma *scratch;
 235
 236        u32             irq_keep_mask; /* always keep these interrupts */
 237        u32             irq_enable_mask; /* bitmask to enable ring interrupt */
 238        void            (*irq_enable)(struct intel_engine_cs *engine);
 239        void            (*irq_disable)(struct intel_engine_cs *engine);
 240
 241        int             (*init_hw)(struct intel_engine_cs *engine);
 242        void            (*reset_hw)(struct intel_engine_cs *engine,
 243                                    struct drm_i915_gem_request *req);
 244
 245        int             (*init_context)(struct drm_i915_gem_request *req);
 246
 247        int             (*emit_flush)(struct drm_i915_gem_request *request,
 248                                      u32 mode);
 249#define EMIT_INVALIDATE BIT(0)
 250#define EMIT_FLUSH      BIT(1)
 251#define EMIT_BARRIER    (EMIT_INVALIDATE | EMIT_FLUSH)
 252        int             (*emit_bb_start)(struct drm_i915_gem_request *req,
 253                                         u64 offset, u32 length,
 254                                         unsigned int dispatch_flags);
 255#define I915_DISPATCH_SECURE BIT(0)
 256#define I915_DISPATCH_PINNED BIT(1)
 257#define I915_DISPATCH_RS     BIT(2)
 258        void            (*emit_breadcrumb)(struct drm_i915_gem_request *req,
 259                                           u32 *out);
 260        int             emit_breadcrumb_sz;
 261
 262        /* Pass the request to the hardware queue (e.g. directly into
 263         * the legacy ringbuffer or to the end of an execlist).
 264         *
 265         * This is called from an atomic context with irqs disabled; must
 266         * be irq safe.
 267         */
 268        void            (*submit_request)(struct drm_i915_gem_request *req);
 269
 270        /* Call when the priority on a request has changed and it and its
 271         * dependencies may need rescheduling. Note the request itself may
 272         * not be ready to run!
 273         *
 274         * Called under the struct_mutex.
 275         */
 276        void            (*schedule)(struct drm_i915_gem_request *request,
 277                                    int priority);
 278
 279        /* Some chipsets are not quite as coherent as advertised and need
 280         * an expensive kick to force a true read of the up-to-date seqno.
 281         * However, the up-to-date seqno is not always required and the last
 282         * seen value is good enough. Note that the seqno will always be
 283         * monotonic, even if not coherent.
 284         */
 285        void            (*irq_seqno_barrier)(struct intel_engine_cs *engine);
 286        void            (*cleanup)(struct intel_engine_cs *engine);
 287
 288        /* GEN8 signal/wait table - never trust comments!
 289         *        signal to     signal to    signal to   signal to      signal to
 290         *          RCS            VCS          BCS        VECS          VCS2
 291         *      --------------------------------------------------------------------
 292         *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
 293         *      |-------------------------------------------------------------------
 294         *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
 295         *      |-------------------------------------------------------------------
 296         *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
 297         *      |-------------------------------------------------------------------
 298         * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
 299         *      |-------------------------------------------------------------------
 300         * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
 301         *      |-------------------------------------------------------------------
 302         *
 303         * Generalization:
 304         *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
 305         *  ie. transpose of g(x, y)
 306         *
 307         *       sync from      sync from    sync from    sync from     sync from
 308         *          RCS            VCS          BCS        VECS          VCS2
 309         *      --------------------------------------------------------------------
 310         *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
 311         *      |-------------------------------------------------------------------
 312         *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
 313         *      |-------------------------------------------------------------------
 314         *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
 315         *      |-------------------------------------------------------------------
 316         * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
 317         *      |-------------------------------------------------------------------
 318         * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
 319         *      |-------------------------------------------------------------------
 320         *
 321         * Generalization:
 322         *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
 323         *  ie. transpose of f(x, y)
 324         */
 325        struct {
 326                union {
 327#define GEN6_SEMAPHORE_LAST     VECS_HW
 328#define GEN6_NUM_SEMAPHORES     (GEN6_SEMAPHORE_LAST + 1)
 329#define GEN6_SEMAPHORES_MASK    GENMASK(GEN6_SEMAPHORE_LAST, 0)
 330                        struct {
 331                                /* our mbox written by others */
 332                                u32             wait[GEN6_NUM_SEMAPHORES];
 333                                /* mboxes this ring signals to */
 334                                i915_reg_t      signal[GEN6_NUM_SEMAPHORES];
 335                        } mbox;
 336                        u64             signal_ggtt[I915_NUM_ENGINES];
 337                };
 338
 339                /* AKA wait() */
 340                int     (*sync_to)(struct drm_i915_gem_request *req,
 341                                   struct drm_i915_gem_request *signal);
 342                u32     *(*signal)(struct drm_i915_gem_request *req, u32 *out);
 343        } semaphore;
 344
 345        /* Execlists */
 346        struct tasklet_struct irq_tasklet;
 347        struct execlist_port {
 348                struct drm_i915_gem_request *request;
 349                unsigned int count;
 350        } execlist_port[2];
 351        struct rb_root execlist_queue;
 352        struct rb_node *execlist_first;
 353        unsigned int fw_domains;
 354        bool disable_lite_restore_wa;
 355        bool preempt_wa;
 356        u32 ctx_desc_template;
 357
 358        struct i915_gem_context *last_context;
 359
 360        struct intel_engine_hangcheck hangcheck;
 361
 362        bool needs_cmd_parser;
 363
 364        /*
 365         * Table of commands the command parser needs to know about
 366         * for this engine.
 367         */
 368        DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
 369
 370        /*
 371         * Table of registers allowed in commands that read/write registers.
 372         */
 373        const struct drm_i915_reg_table *reg_tables;
 374        int reg_table_count;
 375
 376        /*
 377         * Returns the bitmask for the length field of the specified command.
 378         * Return 0 for an unrecognized/invalid command.
 379         *
 380         * If the command parser finds an entry for a command in the engine's
 381         * cmd_tables, it gets the command's length based on the table entry.
 382         * If not, it calls this function to determine the per-engine length
 383         * field encoding for the command (i.e. different opcode ranges use
 384         * certain bits to encode the command length in the header).
 385         */
 386        u32 (*get_cmd_length_mask)(u32 cmd_header);
 387};
 388
 389static inline unsigned
 390intel_engine_flag(const struct intel_engine_cs *engine)
 391{
 392        return 1 << engine->id;
 393}
 394
 395static inline void
 396intel_flush_status_page(struct intel_engine_cs *engine, int reg)
 397{
 398        mb();
 399        clflush(&engine->status_page.page_addr[reg]);
 400        mb();
 401}
 402
 403static inline u32
 404intel_read_status_page(struct intel_engine_cs *engine, int reg)
 405{
 406        /* Ensure that the compiler doesn't optimize away the load. */
 407        return READ_ONCE(engine->status_page.page_addr[reg]);
 408}
 409
 410static inline void
 411intel_write_status_page(struct intel_engine_cs *engine,
 412                        int reg, u32 value)
 413{
 414        engine->status_page.page_addr[reg] = value;
 415}
 416
 417/*
 418 * Reads a dword out of the status page, which is written to from the command
 419 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
 420 * MI_STORE_DATA_IMM.
 421 *
 422 * The following dwords have a reserved meaning:
 423 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
 424 * 0x04: ring 0 head pointer
 425 * 0x05: ring 1 head pointer (915-class)
 426 * 0x06: ring 2 head pointer (915-class)
 427 * 0x10-0x1b: Context status DWords (GM45)
 428 * 0x1f: Last written status offset. (GM45)
 429 * 0x20-0x2f: Reserved (Gen6+)
 430 *
 431 * The area from dword 0x30 to 0x3ff is available for driver usage.
 432 */
 433#define I915_GEM_HWS_INDEX              0x30
 434#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
 435#define I915_GEM_HWS_SCRATCH_INDEX      0x40
 436#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
 437
 438struct intel_ring *
 439intel_engine_create_ring(struct intel_engine_cs *engine, int size);
 440int intel_ring_pin(struct intel_ring *ring);
 441void intel_ring_unpin(struct intel_ring *ring);
 442void intel_ring_free(struct intel_ring *ring);
 443
 444void intel_engine_stop(struct intel_engine_cs *engine);
 445void intel_engine_cleanup(struct intel_engine_cs *engine);
 446
 447void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
 448
 449int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);
 450
 451int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
 452int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
 453
 454static inline void intel_ring_emit(struct intel_ring *ring, u32 data)
 455{
 456        *(uint32_t *)(ring->vaddr + ring->tail) = data;
 457        ring->tail += 4;
 458}
 459
 460static inline void intel_ring_emit_reg(struct intel_ring *ring, i915_reg_t reg)
 461{
 462        intel_ring_emit(ring, i915_mmio_reg_offset(reg));
 463}
 464
 465static inline void intel_ring_advance(struct intel_ring *ring)
 466{
 467        /* Dummy function.
 468         *
 469         * This serves as a placeholder in the code so that the reader
 470         * can compare against the preceding intel_ring_begin() and
 471         * check that the number of dwords emitted matches the space
 472         * reserved for the command packet (i.e. the value passed to
 473         * intel_ring_begin()).
 474         */
 475}
 476
 477static inline u32 intel_ring_offset(struct intel_ring *ring, void *addr)
 478{
 479        /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
 480        u32 offset = addr - ring->vaddr;
 481        return offset & (ring->size - 1);
 482}
 483
 484int __intel_ring_space(int head, int tail, int size);
 485void intel_ring_update_space(struct intel_ring *ring);
 486
 487void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
 488
 489void intel_engine_setup_common(struct intel_engine_cs *engine);
 490int intel_engine_init_common(struct intel_engine_cs *engine);
 491int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
 492void intel_engine_cleanup_common(struct intel_engine_cs *engine);
 493
 494int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
 495int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
 496int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
 497int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
 498int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
 499
 500u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
 501u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
 502
 503static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
 504{
 505        return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
 506}
 507
 508static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
 509{
 510        /* We are only peeking at the tail of the submit queue (and not the
 511         * queue itself) in order to gain a hint as to the current active
 512         * state of the engine. Callers are not expected to be taking
 513         * engine->timeline->lock, nor are they expected to be concerned
 514         * wtih serialising this hint with anything, so document it as
 515         * a hint and nothing more.
 516         */
 517        return READ_ONCE(engine->timeline->last_submitted_seqno);
 518}
 519
 520int init_workarounds_ring(struct intel_engine_cs *engine);
 521
 522void intel_engine_get_instdone(struct intel_engine_cs *engine,
 523                               struct intel_instdone *instdone);
 524
 525/*
 526 * Arbitrary size for largest possible 'add request' sequence. The code paths
 527 * are complex and variable. Empirical measurement shows that the worst case
 528 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
 529 * we need to allocate double the largest single packet within that emission
 530 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
 531 */
 532#define MIN_SPACE_FOR_ADD_REQUEST 336
 533
 534static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
 535{
 536        return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
 537}
 538
 539/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
 540int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
 541
 542static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
 543{
 544        wait->tsk = current;
 545        wait->seqno = seqno;
 546}
 547
 548static inline bool intel_wait_complete(const struct intel_wait *wait)
 549{
 550        return RB_EMPTY_NODE(&wait->node);
 551}
 552
 553bool intel_engine_add_wait(struct intel_engine_cs *engine,
 554                           struct intel_wait *wait);
 555void intel_engine_remove_wait(struct intel_engine_cs *engine,
 556                              struct intel_wait *wait);
 557void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
 558
 559static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
 560{
 561        return rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh);
 562}
 563
 564static inline bool intel_engine_wakeup(const struct intel_engine_cs *engine)
 565{
 566        bool wakeup = false;
 567
 568        /* Note that for this not to dangerously chase a dangling pointer,
 569         * we must hold the rcu_read_lock here.
 570         *
 571         * Also note that tsk is likely to be in !TASK_RUNNING state so an
 572         * early test for tsk->state != TASK_RUNNING before wake_up_process()
 573         * is unlikely to be beneficial.
 574         */
 575        if (intel_engine_has_waiter(engine)) {
 576                struct task_struct *tsk;
 577
 578                rcu_read_lock();
 579                tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
 580                if (tsk)
 581                        wakeup = wake_up_process(tsk);
 582                rcu_read_unlock();
 583        }
 584
 585        return wakeup;
 586}
 587
 588void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
 589void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
 590unsigned int intel_breadcrumbs_busy(struct drm_i915_private *i915);
 591
 592#endif /* _INTEL_RINGBUFFER_H_ */
 593