1
2
3
4
5
6
7
8#include "dm-core.h"
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/slab.h>
17#include <linux/interrupt.h>
18#include <linux/mutex.h>
19#include <linux/delay.h>
20#include <linux/atomic.h>
21#include <linux/blk-mq.h>
22#include <linux/mount.h>
23
24#define DM_MSG_PREFIX "table"
25
26#define MAX_DEPTH 16
27#define NODE_SIZE L1_CACHE_BYTES
28#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31struct dm_table {
32 struct mapped_device *md;
33 unsigned type;
34
35
36 unsigned int depth;
37 unsigned int counts[MAX_DEPTH];
38 sector_t *index[MAX_DEPTH];
39
40 unsigned int num_targets;
41 unsigned int num_allocated;
42 sector_t *highs;
43 struct dm_target *targets;
44
45 struct target_type *immutable_target_type;
46
47 bool integrity_supported:1;
48 bool singleton:1;
49 bool all_blk_mq:1;
50
51
52
53
54
55
56 fmode_t mode;
57
58
59 struct list_head devices;
60
61
62 void (*event_fn)(void *);
63 void *event_context;
64
65 struct dm_md_mempools *mempools;
66
67 struct list_head target_callbacks;
68};
69
70
71
72
73static unsigned int int_log(unsigned int n, unsigned int base)
74{
75 int result = 0;
76
77 while (n > 1) {
78 n = dm_div_up(n, base);
79 result++;
80 }
81
82 return result;
83}
84
85
86
87
88static inline unsigned int get_child(unsigned int n, unsigned int k)
89{
90 return (n * CHILDREN_PER_NODE) + k;
91}
92
93
94
95
96static inline sector_t *get_node(struct dm_table *t,
97 unsigned int l, unsigned int n)
98{
99 return t->index[l] + (n * KEYS_PER_NODE);
100}
101
102
103
104
105
106static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
107{
108 for (; l < t->depth - 1; l++)
109 n = get_child(n, CHILDREN_PER_NODE - 1);
110
111 if (n >= t->counts[l])
112 return (sector_t) - 1;
113
114 return get_node(t, l, n)[KEYS_PER_NODE - 1];
115}
116
117
118
119
120
121static int setup_btree_index(unsigned int l, struct dm_table *t)
122{
123 unsigned int n, k;
124 sector_t *node;
125
126 for (n = 0U; n < t->counts[l]; n++) {
127 node = get_node(t, l, n);
128
129 for (k = 0U; k < KEYS_PER_NODE; k++)
130 node[k] = high(t, l + 1, get_child(n, k));
131 }
132
133 return 0;
134}
135
136void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
137{
138 unsigned long size;
139 void *addr;
140
141
142
143
144 if (nmemb > (ULONG_MAX / elem_size))
145 return NULL;
146
147 size = nmemb * elem_size;
148 addr = vzalloc(size);
149
150 return addr;
151}
152EXPORT_SYMBOL(dm_vcalloc);
153
154
155
156
157
158static int alloc_targets(struct dm_table *t, unsigned int num)
159{
160 sector_t *n_highs;
161 struct dm_target *n_targets;
162
163
164
165
166
167
168 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
169 sizeof(sector_t));
170 if (!n_highs)
171 return -ENOMEM;
172
173 n_targets = (struct dm_target *) (n_highs + num);
174
175 memset(n_highs, -1, sizeof(*n_highs) * num);
176 vfree(t->highs);
177
178 t->num_allocated = num;
179 t->highs = n_highs;
180 t->targets = n_targets;
181
182 return 0;
183}
184
185int dm_table_create(struct dm_table **result, fmode_t mode,
186 unsigned num_targets, struct mapped_device *md)
187{
188 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
189
190 if (!t)
191 return -ENOMEM;
192
193 INIT_LIST_HEAD(&t->devices);
194 INIT_LIST_HEAD(&t->target_callbacks);
195
196 if (!num_targets)
197 num_targets = KEYS_PER_NODE;
198
199 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
200
201 if (!num_targets) {
202 kfree(t);
203 return -ENOMEM;
204 }
205
206 if (alloc_targets(t, num_targets)) {
207 kfree(t);
208 return -ENOMEM;
209 }
210
211 t->type = DM_TYPE_NONE;
212 t->mode = mode;
213 t->md = md;
214 *result = t;
215 return 0;
216}
217
218static void free_devices(struct list_head *devices, struct mapped_device *md)
219{
220 struct list_head *tmp, *next;
221
222 list_for_each_safe(tmp, next, devices) {
223 struct dm_dev_internal *dd =
224 list_entry(tmp, struct dm_dev_internal, list);
225 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
226 dm_device_name(md), dd->dm_dev->name);
227 dm_put_table_device(md, dd->dm_dev);
228 kfree(dd);
229 }
230}
231
232void dm_table_destroy(struct dm_table *t)
233{
234 unsigned int i;
235
236 if (!t)
237 return;
238
239
240 if (t->depth >= 2)
241 vfree(t->index[t->depth - 2]);
242
243
244 for (i = 0; i < t->num_targets; i++) {
245 struct dm_target *tgt = t->targets + i;
246
247 if (tgt->type->dtr)
248 tgt->type->dtr(tgt);
249
250 dm_put_target_type(tgt->type);
251 }
252
253 vfree(t->highs);
254
255
256 free_devices(&t->devices, t->md);
257
258 dm_free_md_mempools(t->mempools);
259
260 kfree(t);
261}
262
263
264
265
266static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
267{
268 struct dm_dev_internal *dd;
269
270 list_for_each_entry (dd, l, list)
271 if (dd->dm_dev->bdev->bd_dev == dev)
272 return dd;
273
274 return NULL;
275}
276
277
278
279
280static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
281 sector_t start, sector_t len, void *data)
282{
283 struct request_queue *q;
284 struct queue_limits *limits = data;
285 struct block_device *bdev = dev->bdev;
286 sector_t dev_size =
287 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
288 unsigned short logical_block_size_sectors =
289 limits->logical_block_size >> SECTOR_SHIFT;
290 char b[BDEVNAME_SIZE];
291
292
293
294
295
296
297 q = bdev_get_queue(bdev);
298 if (!q || !q->make_request_fn) {
299 DMWARN("%s: %s is not yet initialised: "
300 "start=%llu, len=%llu, dev_size=%llu",
301 dm_device_name(ti->table->md), bdevname(bdev, b),
302 (unsigned long long)start,
303 (unsigned long long)len,
304 (unsigned long long)dev_size);
305 return 1;
306 }
307
308 if (!dev_size)
309 return 0;
310
311 if ((start >= dev_size) || (start + len > dev_size)) {
312 DMWARN("%s: %s too small for target: "
313 "start=%llu, len=%llu, dev_size=%llu",
314 dm_device_name(ti->table->md), bdevname(bdev, b),
315 (unsigned long long)start,
316 (unsigned long long)len,
317 (unsigned long long)dev_size);
318 return 1;
319 }
320
321 if (logical_block_size_sectors <= 1)
322 return 0;
323
324 if (start & (logical_block_size_sectors - 1)) {
325 DMWARN("%s: start=%llu not aligned to h/w "
326 "logical block size %u of %s",
327 dm_device_name(ti->table->md),
328 (unsigned long long)start,
329 limits->logical_block_size, bdevname(bdev, b));
330 return 1;
331 }
332
333 if (len & (logical_block_size_sectors - 1)) {
334 DMWARN("%s: len=%llu not aligned to h/w "
335 "logical block size %u of %s",
336 dm_device_name(ti->table->md),
337 (unsigned long long)len,
338 limits->logical_block_size, bdevname(bdev, b));
339 return 1;
340 }
341
342 return 0;
343}
344
345
346
347
348
349
350
351static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
352 struct mapped_device *md)
353{
354 int r;
355 struct dm_dev *old_dev, *new_dev;
356
357 old_dev = dd->dm_dev;
358
359 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
360 dd->dm_dev->mode | new_mode, &new_dev);
361 if (r)
362 return r;
363
364 dd->dm_dev = new_dev;
365 dm_put_table_device(md, old_dev);
366
367 return 0;
368}
369
370
371
372
373dev_t dm_get_dev_t(const char *path)
374{
375 dev_t uninitialized_var(dev);
376 struct block_device *bdev;
377
378 bdev = lookup_bdev(path);
379 if (IS_ERR(bdev))
380 dev = name_to_dev_t(path);
381 else {
382 dev = bdev->bd_dev;
383 bdput(bdev);
384 }
385
386 return dev;
387}
388EXPORT_SYMBOL_GPL(dm_get_dev_t);
389
390
391
392
393
394int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
395 struct dm_dev **result)
396{
397 int r;
398 dev_t dev;
399 struct dm_dev_internal *dd;
400 struct dm_table *t = ti->table;
401
402 BUG_ON(!t);
403
404 dev = dm_get_dev_t(path);
405 if (!dev)
406 return -ENODEV;
407
408 dd = find_device(&t->devices, dev);
409 if (!dd) {
410 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
411 if (!dd)
412 return -ENOMEM;
413
414 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
415 kfree(dd);
416 return r;
417 }
418
419 atomic_set(&dd->count, 0);
420 list_add(&dd->list, &t->devices);
421
422 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
423 r = upgrade_mode(dd, mode, t->md);
424 if (r)
425 return r;
426 }
427 atomic_inc(&dd->count);
428
429 *result = dd->dm_dev;
430 return 0;
431}
432EXPORT_SYMBOL(dm_get_device);
433
434static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
435 sector_t start, sector_t len, void *data)
436{
437 struct queue_limits *limits = data;
438 struct block_device *bdev = dev->bdev;
439 struct request_queue *q = bdev_get_queue(bdev);
440 char b[BDEVNAME_SIZE];
441
442 if (unlikely(!q)) {
443 DMWARN("%s: Cannot set limits for nonexistent device %s",
444 dm_device_name(ti->table->md), bdevname(bdev, b));
445 return 0;
446 }
447
448 if (bdev_stack_limits(limits, bdev, start) < 0)
449 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
450 "physical_block_size=%u, logical_block_size=%u, "
451 "alignment_offset=%u, start=%llu",
452 dm_device_name(ti->table->md), bdevname(bdev, b),
453 q->limits.physical_block_size,
454 q->limits.logical_block_size,
455 q->limits.alignment_offset,
456 (unsigned long long) start << SECTOR_SHIFT);
457
458 return 0;
459}
460
461
462
463
464void dm_put_device(struct dm_target *ti, struct dm_dev *d)
465{
466 int found = 0;
467 struct list_head *devices = &ti->table->devices;
468 struct dm_dev_internal *dd;
469
470 list_for_each_entry(dd, devices, list) {
471 if (dd->dm_dev == d) {
472 found = 1;
473 break;
474 }
475 }
476 if (!found) {
477 DMWARN("%s: device %s not in table devices list",
478 dm_device_name(ti->table->md), d->name);
479 return;
480 }
481 if (atomic_dec_and_test(&dd->count)) {
482 dm_put_table_device(ti->table->md, d);
483 list_del(&dd->list);
484 kfree(dd);
485 }
486}
487EXPORT_SYMBOL(dm_put_device);
488
489
490
491
492static int adjoin(struct dm_table *table, struct dm_target *ti)
493{
494 struct dm_target *prev;
495
496 if (!table->num_targets)
497 return !ti->begin;
498
499 prev = &table->targets[table->num_targets - 1];
500 return (ti->begin == (prev->begin + prev->len));
501}
502
503
504
505
506
507
508
509
510
511
512
513static char **realloc_argv(unsigned *array_size, char **old_argv)
514{
515 char **argv;
516 unsigned new_size;
517 gfp_t gfp;
518
519 if (*array_size) {
520 new_size = *array_size * 2;
521 gfp = GFP_KERNEL;
522 } else {
523 new_size = 8;
524 gfp = GFP_NOIO;
525 }
526 argv = kmalloc(new_size * sizeof(*argv), gfp);
527 if (argv) {
528 memcpy(argv, old_argv, *array_size * sizeof(*argv));
529 *array_size = new_size;
530 }
531
532 kfree(old_argv);
533 return argv;
534}
535
536
537
538
539int dm_split_args(int *argc, char ***argvp, char *input)
540{
541 char *start, *end = input, *out, **argv = NULL;
542 unsigned array_size = 0;
543
544 *argc = 0;
545
546 if (!input) {
547 *argvp = NULL;
548 return 0;
549 }
550
551 argv = realloc_argv(&array_size, argv);
552 if (!argv)
553 return -ENOMEM;
554
555 while (1) {
556
557 start = skip_spaces(end);
558
559 if (!*start)
560 break;
561
562
563 end = out = start;
564 while (*end) {
565
566 if (*end == '\\' && *(end + 1)) {
567 *out++ = *(end + 1);
568 end += 2;
569 continue;
570 }
571
572 if (isspace(*end))
573 break;
574
575 *out++ = *end++;
576 }
577
578
579 if ((*argc + 1) > array_size) {
580 argv = realloc_argv(&array_size, argv);
581 if (!argv)
582 return -ENOMEM;
583 }
584
585
586 if (*end)
587 end++;
588
589
590 *out = '\0';
591 argv[*argc] = start;
592 (*argc)++;
593 }
594
595 *argvp = argv;
596 return 0;
597}
598
599
600
601
602
603
604
605
606static int validate_hardware_logical_block_alignment(struct dm_table *table,
607 struct queue_limits *limits)
608{
609
610
611
612
613 unsigned short device_logical_block_size_sects =
614 limits->logical_block_size >> SECTOR_SHIFT;
615
616
617
618
619 unsigned short next_target_start = 0;
620
621
622
623
624
625 unsigned short remaining = 0;
626
627 struct dm_target *uninitialized_var(ti);
628 struct queue_limits ti_limits;
629 unsigned i = 0;
630
631
632
633
634 while (i < dm_table_get_num_targets(table)) {
635 ti = dm_table_get_target(table, i++);
636
637 blk_set_stacking_limits(&ti_limits);
638
639
640 if (ti->type->iterate_devices)
641 ti->type->iterate_devices(ti, dm_set_device_limits,
642 &ti_limits);
643
644
645
646
647
648 if (remaining < ti->len &&
649 remaining & ((ti_limits.logical_block_size >>
650 SECTOR_SHIFT) - 1))
651 break;
652
653 next_target_start =
654 (unsigned short) ((next_target_start + ti->len) &
655 (device_logical_block_size_sects - 1));
656 remaining = next_target_start ?
657 device_logical_block_size_sects - next_target_start : 0;
658 }
659
660 if (remaining) {
661 DMWARN("%s: table line %u (start sect %llu len %llu) "
662 "not aligned to h/w logical block size %u",
663 dm_device_name(table->md), i,
664 (unsigned long long) ti->begin,
665 (unsigned long long) ti->len,
666 limits->logical_block_size);
667 return -EINVAL;
668 }
669
670 return 0;
671}
672
673int dm_table_add_target(struct dm_table *t, const char *type,
674 sector_t start, sector_t len, char *params)
675{
676 int r = -EINVAL, argc;
677 char **argv;
678 struct dm_target *tgt;
679
680 if (t->singleton) {
681 DMERR("%s: target type %s must appear alone in table",
682 dm_device_name(t->md), t->targets->type->name);
683 return -EINVAL;
684 }
685
686 BUG_ON(t->num_targets >= t->num_allocated);
687
688 tgt = t->targets + t->num_targets;
689 memset(tgt, 0, sizeof(*tgt));
690
691 if (!len) {
692 DMERR("%s: zero-length target", dm_device_name(t->md));
693 return -EINVAL;
694 }
695
696 tgt->type = dm_get_target_type(type);
697 if (!tgt->type) {
698 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
699 return -EINVAL;
700 }
701
702 if (dm_target_needs_singleton(tgt->type)) {
703 if (t->num_targets) {
704 tgt->error = "singleton target type must appear alone in table";
705 goto bad;
706 }
707 t->singleton = true;
708 }
709
710 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
711 tgt->error = "target type may not be included in a read-only table";
712 goto bad;
713 }
714
715 if (t->immutable_target_type) {
716 if (t->immutable_target_type != tgt->type) {
717 tgt->error = "immutable target type cannot be mixed with other target types";
718 goto bad;
719 }
720 } else if (dm_target_is_immutable(tgt->type)) {
721 if (t->num_targets) {
722 tgt->error = "immutable target type cannot be mixed with other target types";
723 goto bad;
724 }
725 t->immutable_target_type = tgt->type;
726 }
727
728 tgt->table = t;
729 tgt->begin = start;
730 tgt->len = len;
731 tgt->error = "Unknown error";
732
733
734
735
736 if (!adjoin(t, tgt)) {
737 tgt->error = "Gap in table";
738 goto bad;
739 }
740
741 r = dm_split_args(&argc, &argv, params);
742 if (r) {
743 tgt->error = "couldn't split parameters (insufficient memory)";
744 goto bad;
745 }
746
747 r = tgt->type->ctr(tgt, argc, argv);
748 kfree(argv);
749 if (r)
750 goto bad;
751
752 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
753
754 if (!tgt->num_discard_bios && tgt->discards_supported)
755 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
756 dm_device_name(t->md), type);
757
758 return 0;
759
760 bad:
761 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
762 dm_put_target_type(tgt->type);
763 return r;
764}
765
766
767
768
769static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
770 unsigned *value, char **error, unsigned grouped)
771{
772 const char *arg_str = dm_shift_arg(arg_set);
773 char dummy;
774
775 if (!arg_str ||
776 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
777 (*value < arg->min) ||
778 (*value > arg->max) ||
779 (grouped && arg_set->argc < *value)) {
780 *error = arg->error;
781 return -EINVAL;
782 }
783
784 return 0;
785}
786
787int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
788 unsigned *value, char **error)
789{
790 return validate_next_arg(arg, arg_set, value, error, 0);
791}
792EXPORT_SYMBOL(dm_read_arg);
793
794int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
795 unsigned *value, char **error)
796{
797 return validate_next_arg(arg, arg_set, value, error, 1);
798}
799EXPORT_SYMBOL(dm_read_arg_group);
800
801const char *dm_shift_arg(struct dm_arg_set *as)
802{
803 char *r;
804
805 if (as->argc) {
806 as->argc--;
807 r = *as->argv;
808 as->argv++;
809 return r;
810 }
811
812 return NULL;
813}
814EXPORT_SYMBOL(dm_shift_arg);
815
816void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
817{
818 BUG_ON(as->argc < num_args);
819 as->argc -= num_args;
820 as->argv += num_args;
821}
822EXPORT_SYMBOL(dm_consume_args);
823
824static bool __table_type_bio_based(unsigned table_type)
825{
826 return (table_type == DM_TYPE_BIO_BASED ||
827 table_type == DM_TYPE_DAX_BIO_BASED);
828}
829
830static bool __table_type_request_based(unsigned table_type)
831{
832 return (table_type == DM_TYPE_REQUEST_BASED ||
833 table_type == DM_TYPE_MQ_REQUEST_BASED);
834}
835
836void dm_table_set_type(struct dm_table *t, unsigned type)
837{
838 t->type = type;
839}
840EXPORT_SYMBOL_GPL(dm_table_set_type);
841
842static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
843 sector_t start, sector_t len, void *data)
844{
845 struct request_queue *q = bdev_get_queue(dev->bdev);
846
847 return q && blk_queue_dax(q);
848}
849
850static bool dm_table_supports_dax(struct dm_table *t)
851{
852 struct dm_target *ti;
853 unsigned i = 0;
854
855
856 while (i < dm_table_get_num_targets(t)) {
857 ti = dm_table_get_target(t, i++);
858
859 if (!ti->type->direct_access)
860 return false;
861
862 if (!ti->type->iterate_devices ||
863 !ti->type->iterate_devices(ti, device_supports_dax, NULL))
864 return false;
865 }
866
867 return true;
868}
869
870static int dm_table_determine_type(struct dm_table *t)
871{
872 unsigned i;
873 unsigned bio_based = 0, request_based = 0, hybrid = 0;
874 unsigned sq_count = 0, mq_count = 0;
875 struct dm_target *tgt;
876 struct dm_dev_internal *dd;
877 struct list_head *devices = dm_table_get_devices(t);
878 unsigned live_md_type = dm_get_md_type(t->md);
879
880 if (t->type != DM_TYPE_NONE) {
881
882 if (t->type == DM_TYPE_BIO_BASED)
883 return 0;
884 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
885 goto verify_rq_based;
886 }
887
888 for (i = 0; i < t->num_targets; i++) {
889 tgt = t->targets + i;
890 if (dm_target_hybrid(tgt))
891 hybrid = 1;
892 else if (dm_target_request_based(tgt))
893 request_based = 1;
894 else
895 bio_based = 1;
896
897 if (bio_based && request_based) {
898 DMWARN("Inconsistent table: different target types"
899 " can't be mixed up");
900 return -EINVAL;
901 }
902 }
903
904 if (hybrid && !bio_based && !request_based) {
905
906
907
908
909
910 if (__table_type_request_based(live_md_type))
911 request_based = 1;
912 else
913 bio_based = 1;
914 }
915
916 if (bio_based) {
917
918 t->type = DM_TYPE_BIO_BASED;
919 if (dm_table_supports_dax(t) ||
920 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED))
921 t->type = DM_TYPE_DAX_BIO_BASED;
922 return 0;
923 }
924
925 BUG_ON(!request_based);
926
927
928
929
930
931 t->type = DM_TYPE_REQUEST_BASED;
932
933verify_rq_based:
934
935
936
937
938
939
940 if (t->num_targets > 1) {
941 DMWARN("Request-based dm doesn't support multiple targets yet");
942 return -EINVAL;
943 }
944
945 if (list_empty(devices)) {
946 int srcu_idx;
947 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
948
949
950 if (live_table) {
951 t->type = live_table->type;
952 t->all_blk_mq = live_table->all_blk_mq;
953 }
954 dm_put_live_table(t->md, srcu_idx);
955 return 0;
956 }
957
958
959 list_for_each_entry(dd, devices, list) {
960 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
961
962 if (!blk_queue_stackable(q)) {
963 DMERR("table load rejected: including"
964 " non-request-stackable devices");
965 return -EINVAL;
966 }
967
968 if (q->mq_ops)
969 mq_count++;
970 else
971 sq_count++;
972 }
973 if (sq_count && mq_count) {
974 DMERR("table load rejected: not all devices are blk-mq request-stackable");
975 return -EINVAL;
976 }
977 t->all_blk_mq = mq_count > 0;
978
979 if (t->type == DM_TYPE_MQ_REQUEST_BASED && !t->all_blk_mq) {
980 DMERR("table load rejected: all devices are not blk-mq request-stackable");
981 return -EINVAL;
982 }
983
984 return 0;
985}
986
987unsigned dm_table_get_type(struct dm_table *t)
988{
989 return t->type;
990}
991
992struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
993{
994 return t->immutable_target_type;
995}
996
997struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
998{
999
1000 if (t->num_targets > 1 ||
1001 !dm_target_is_immutable(t->targets[0].type))
1002 return NULL;
1003
1004 return t->targets;
1005}
1006
1007struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1008{
1009 struct dm_target *uninitialized_var(ti);
1010 unsigned i = 0;
1011
1012 while (i < dm_table_get_num_targets(t)) {
1013 ti = dm_table_get_target(t, i++);
1014 if (dm_target_is_wildcard(ti->type))
1015 return ti;
1016 }
1017
1018 return NULL;
1019}
1020
1021bool dm_table_bio_based(struct dm_table *t)
1022{
1023 return __table_type_bio_based(dm_table_get_type(t));
1024}
1025
1026bool dm_table_request_based(struct dm_table *t)
1027{
1028 return __table_type_request_based(dm_table_get_type(t));
1029}
1030
1031bool dm_table_all_blk_mq_devices(struct dm_table *t)
1032{
1033 return t->all_blk_mq;
1034}
1035
1036static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1037{
1038 unsigned type = dm_table_get_type(t);
1039 unsigned per_io_data_size = 0;
1040 struct dm_target *tgt;
1041 unsigned i;
1042
1043 if (unlikely(type == DM_TYPE_NONE)) {
1044 DMWARN("no table type is set, can't allocate mempools");
1045 return -EINVAL;
1046 }
1047
1048 if (__table_type_bio_based(type))
1049 for (i = 0; i < t->num_targets; i++) {
1050 tgt = t->targets + i;
1051 per_io_data_size = max(per_io_data_size, tgt->per_io_data_size);
1052 }
1053
1054 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported, per_io_data_size);
1055 if (!t->mempools)
1056 return -ENOMEM;
1057
1058 return 0;
1059}
1060
1061void dm_table_free_md_mempools(struct dm_table *t)
1062{
1063 dm_free_md_mempools(t->mempools);
1064 t->mempools = NULL;
1065}
1066
1067struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1068{
1069 return t->mempools;
1070}
1071
1072static int setup_indexes(struct dm_table *t)
1073{
1074 int i;
1075 unsigned int total = 0;
1076 sector_t *indexes;
1077
1078
1079 for (i = t->depth - 2; i >= 0; i--) {
1080 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1081 total += t->counts[i];
1082 }
1083
1084 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1085 if (!indexes)
1086 return -ENOMEM;
1087
1088
1089 for (i = t->depth - 2; i >= 0; i--) {
1090 t->index[i] = indexes;
1091 indexes += (KEYS_PER_NODE * t->counts[i]);
1092 setup_btree_index(i, t);
1093 }
1094
1095 return 0;
1096}
1097
1098
1099
1100
1101static int dm_table_build_index(struct dm_table *t)
1102{
1103 int r = 0;
1104 unsigned int leaf_nodes;
1105
1106
1107 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1108 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1109
1110
1111 t->counts[t->depth - 1] = leaf_nodes;
1112 t->index[t->depth - 1] = t->highs;
1113
1114 if (t->depth >= 2)
1115 r = setup_indexes(t);
1116
1117 return r;
1118}
1119
1120static bool integrity_profile_exists(struct gendisk *disk)
1121{
1122 return !!blk_get_integrity(disk);
1123}
1124
1125
1126
1127
1128
1129static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1130{
1131 struct list_head *devices = dm_table_get_devices(t);
1132 struct dm_dev_internal *dd = NULL;
1133 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1134
1135 list_for_each_entry(dd, devices, list) {
1136 template_disk = dd->dm_dev->bdev->bd_disk;
1137 if (!integrity_profile_exists(template_disk))
1138 goto no_integrity;
1139 else if (prev_disk &&
1140 blk_integrity_compare(prev_disk, template_disk) < 0)
1141 goto no_integrity;
1142 prev_disk = template_disk;
1143 }
1144
1145 return template_disk;
1146
1147no_integrity:
1148 if (prev_disk)
1149 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1150 dm_device_name(t->md),
1151 prev_disk->disk_name,
1152 template_disk->disk_name);
1153 return NULL;
1154}
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166static int dm_table_register_integrity(struct dm_table *t)
1167{
1168 struct mapped_device *md = t->md;
1169 struct gendisk *template_disk = NULL;
1170
1171 template_disk = dm_table_get_integrity_disk(t);
1172 if (!template_disk)
1173 return 0;
1174
1175 if (!integrity_profile_exists(dm_disk(md))) {
1176 t->integrity_supported = true;
1177
1178
1179
1180
1181 blk_integrity_register(dm_disk(md),
1182 blk_get_integrity(template_disk));
1183 return 0;
1184 }
1185
1186
1187
1188
1189
1190 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1191 DMWARN("%s: conflict with existing integrity profile: "
1192 "%s profile mismatch",
1193 dm_device_name(t->md),
1194 template_disk->disk_name);
1195 return 1;
1196 }
1197
1198
1199 t->integrity_supported = true;
1200 return 0;
1201}
1202
1203
1204
1205
1206
1207int dm_table_complete(struct dm_table *t)
1208{
1209 int r;
1210
1211 r = dm_table_determine_type(t);
1212 if (r) {
1213 DMERR("unable to determine table type");
1214 return r;
1215 }
1216
1217 r = dm_table_build_index(t);
1218 if (r) {
1219 DMERR("unable to build btrees");
1220 return r;
1221 }
1222
1223 r = dm_table_register_integrity(t);
1224 if (r) {
1225 DMERR("could not register integrity profile.");
1226 return r;
1227 }
1228
1229 r = dm_table_alloc_md_mempools(t, t->md);
1230 if (r)
1231 DMERR("unable to allocate mempools");
1232
1233 return r;
1234}
1235
1236static DEFINE_MUTEX(_event_lock);
1237void dm_table_event_callback(struct dm_table *t,
1238 void (*fn)(void *), void *context)
1239{
1240 mutex_lock(&_event_lock);
1241 t->event_fn = fn;
1242 t->event_context = context;
1243 mutex_unlock(&_event_lock);
1244}
1245
1246void dm_table_event(struct dm_table *t)
1247{
1248
1249
1250
1251
1252 BUG_ON(in_interrupt());
1253
1254 mutex_lock(&_event_lock);
1255 if (t->event_fn)
1256 t->event_fn(t->event_context);
1257 mutex_unlock(&_event_lock);
1258}
1259EXPORT_SYMBOL(dm_table_event);
1260
1261sector_t dm_table_get_size(struct dm_table *t)
1262{
1263 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1264}
1265EXPORT_SYMBOL(dm_table_get_size);
1266
1267struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1268{
1269 if (index >= t->num_targets)
1270 return NULL;
1271
1272 return t->targets + index;
1273}
1274
1275
1276
1277
1278
1279
1280
1281struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1282{
1283 unsigned int l, n = 0, k = 0;
1284 sector_t *node;
1285
1286 for (l = 0; l < t->depth; l++) {
1287 n = get_child(n, k);
1288 node = get_node(t, l, n);
1289
1290 for (k = 0; k < KEYS_PER_NODE; k++)
1291 if (node[k] >= sector)
1292 break;
1293 }
1294
1295 return &t->targets[(KEYS_PER_NODE * n) + k];
1296}
1297
1298static int count_device(struct dm_target *ti, struct dm_dev *dev,
1299 sector_t start, sector_t len, void *data)
1300{
1301 unsigned *num_devices = data;
1302
1303 (*num_devices)++;
1304
1305 return 0;
1306}
1307
1308
1309
1310
1311
1312
1313
1314bool dm_table_has_no_data_devices(struct dm_table *table)
1315{
1316 struct dm_target *uninitialized_var(ti);
1317 unsigned i = 0, num_devices = 0;
1318
1319 while (i < dm_table_get_num_targets(table)) {
1320 ti = dm_table_get_target(table, i++);
1321
1322 if (!ti->type->iterate_devices)
1323 return false;
1324
1325 ti->type->iterate_devices(ti, count_device, &num_devices);
1326 if (num_devices)
1327 return false;
1328 }
1329
1330 return true;
1331}
1332
1333
1334
1335
1336int dm_calculate_queue_limits(struct dm_table *table,
1337 struct queue_limits *limits)
1338{
1339 struct dm_target *uninitialized_var(ti);
1340 struct queue_limits ti_limits;
1341 unsigned i = 0;
1342
1343 blk_set_stacking_limits(limits);
1344
1345 while (i < dm_table_get_num_targets(table)) {
1346 blk_set_stacking_limits(&ti_limits);
1347
1348 ti = dm_table_get_target(table, i++);
1349
1350 if (!ti->type->iterate_devices)
1351 goto combine_limits;
1352
1353
1354
1355
1356 ti->type->iterate_devices(ti, dm_set_device_limits,
1357 &ti_limits);
1358
1359
1360 if (ti->type->io_hints)
1361 ti->type->io_hints(ti, &ti_limits);
1362
1363
1364
1365
1366
1367 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1368 &ti_limits))
1369 return -EINVAL;
1370
1371combine_limits:
1372
1373
1374
1375
1376 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1377 DMWARN("%s: adding target device "
1378 "(start sect %llu len %llu) "
1379 "caused an alignment inconsistency",
1380 dm_device_name(table->md),
1381 (unsigned long long) ti->begin,
1382 (unsigned long long) ti->len);
1383 }
1384
1385 return validate_hardware_logical_block_alignment(table, limits);
1386}
1387
1388
1389
1390
1391
1392
1393static void dm_table_verify_integrity(struct dm_table *t)
1394{
1395 struct gendisk *template_disk = NULL;
1396
1397 if (t->integrity_supported) {
1398
1399
1400
1401
1402 template_disk = dm_table_get_integrity_disk(t);
1403 if (template_disk &&
1404 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1405 return;
1406 }
1407
1408 if (integrity_profile_exists(dm_disk(t->md))) {
1409 DMWARN("%s: unable to establish an integrity profile",
1410 dm_device_name(t->md));
1411 blk_integrity_unregister(dm_disk(t->md));
1412 }
1413}
1414
1415static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1416 sector_t start, sector_t len, void *data)
1417{
1418 unsigned long flush = (unsigned long) data;
1419 struct request_queue *q = bdev_get_queue(dev->bdev);
1420
1421 return q && (q->queue_flags & flush);
1422}
1423
1424static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1425{
1426 struct dm_target *ti;
1427 unsigned i = 0;
1428
1429
1430
1431
1432
1433
1434
1435 while (i < dm_table_get_num_targets(t)) {
1436 ti = dm_table_get_target(t, i++);
1437
1438 if (!ti->num_flush_bios)
1439 continue;
1440
1441 if (ti->flush_supported)
1442 return true;
1443
1444 if (ti->type->iterate_devices &&
1445 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1446 return true;
1447 }
1448
1449 return false;
1450}
1451
1452static bool dm_table_discard_zeroes_data(struct dm_table *t)
1453{
1454 struct dm_target *ti;
1455 unsigned i = 0;
1456
1457
1458 while (i < dm_table_get_num_targets(t)) {
1459 ti = dm_table_get_target(t, i++);
1460
1461 if (ti->discard_zeroes_data_unsupported)
1462 return false;
1463 }
1464
1465 return true;
1466}
1467
1468static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1469 sector_t start, sector_t len, void *data)
1470{
1471 struct request_queue *q = bdev_get_queue(dev->bdev);
1472
1473 return q && blk_queue_nonrot(q);
1474}
1475
1476static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1477 sector_t start, sector_t len, void *data)
1478{
1479 struct request_queue *q = bdev_get_queue(dev->bdev);
1480
1481 return q && !blk_queue_add_random(q);
1482}
1483
1484static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1485 sector_t start, sector_t len, void *data)
1486{
1487 struct request_queue *q = bdev_get_queue(dev->bdev);
1488
1489 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1490}
1491
1492static bool dm_table_all_devices_attribute(struct dm_table *t,
1493 iterate_devices_callout_fn func)
1494{
1495 struct dm_target *ti;
1496 unsigned i = 0;
1497
1498 while (i < dm_table_get_num_targets(t)) {
1499 ti = dm_table_get_target(t, i++);
1500
1501 if (!ti->type->iterate_devices ||
1502 !ti->type->iterate_devices(ti, func, NULL))
1503 return false;
1504 }
1505
1506 return true;
1507}
1508
1509static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1510 sector_t start, sector_t len, void *data)
1511{
1512 struct request_queue *q = bdev_get_queue(dev->bdev);
1513
1514 return q && !q->limits.max_write_same_sectors;
1515}
1516
1517static bool dm_table_supports_write_same(struct dm_table *t)
1518{
1519 struct dm_target *ti;
1520 unsigned i = 0;
1521
1522 while (i < dm_table_get_num_targets(t)) {
1523 ti = dm_table_get_target(t, i++);
1524
1525 if (!ti->num_write_same_bios)
1526 return false;
1527
1528 if (!ti->type->iterate_devices ||
1529 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1530 return false;
1531 }
1532
1533 return true;
1534}
1535
1536static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1537 sector_t start, sector_t len, void *data)
1538{
1539 struct request_queue *q = bdev_get_queue(dev->bdev);
1540
1541 return q && blk_queue_discard(q);
1542}
1543
1544static bool dm_table_supports_discards(struct dm_table *t)
1545{
1546 struct dm_target *ti;
1547 unsigned i = 0;
1548
1549
1550
1551
1552
1553
1554
1555
1556 while (i < dm_table_get_num_targets(t)) {
1557 ti = dm_table_get_target(t, i++);
1558
1559 if (!ti->num_discard_bios)
1560 continue;
1561
1562 if (ti->discards_supported)
1563 return true;
1564
1565 if (ti->type->iterate_devices &&
1566 ti->type->iterate_devices(ti, device_discard_capable, NULL))
1567 return true;
1568 }
1569
1570 return false;
1571}
1572
1573void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1574 struct queue_limits *limits)
1575{
1576 bool wc = false, fua = false;
1577
1578
1579
1580
1581 q->limits = *limits;
1582
1583 if (!dm_table_supports_discards(t))
1584 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
1585 else
1586 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
1587
1588 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1589 wc = true;
1590 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1591 fua = true;
1592 }
1593 blk_queue_write_cache(q, wc, fua);
1594
1595 if (!dm_table_discard_zeroes_data(t))
1596 q->limits.discard_zeroes_data = 0;
1597
1598
1599 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1600 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
1601 else
1602 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
1603
1604 if (!dm_table_supports_write_same(t))
1605 q->limits.max_write_same_sectors = 0;
1606
1607 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1608 queue_flag_clear_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1609 else
1610 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
1611
1612 dm_table_verify_integrity(t);
1613
1614
1615
1616
1617
1618
1619
1620 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1621 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632 smp_mb();
1633 if (dm_table_request_based(t))
1634 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
1635}
1636
1637unsigned int dm_table_get_num_targets(struct dm_table *t)
1638{
1639 return t->num_targets;
1640}
1641
1642struct list_head *dm_table_get_devices(struct dm_table *t)
1643{
1644 return &t->devices;
1645}
1646
1647fmode_t dm_table_get_mode(struct dm_table *t)
1648{
1649 return t->mode;
1650}
1651EXPORT_SYMBOL(dm_table_get_mode);
1652
1653enum suspend_mode {
1654 PRESUSPEND,
1655 PRESUSPEND_UNDO,
1656 POSTSUSPEND,
1657};
1658
1659static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1660{
1661 int i = t->num_targets;
1662 struct dm_target *ti = t->targets;
1663
1664 while (i--) {
1665 switch (mode) {
1666 case PRESUSPEND:
1667 if (ti->type->presuspend)
1668 ti->type->presuspend(ti);
1669 break;
1670 case PRESUSPEND_UNDO:
1671 if (ti->type->presuspend_undo)
1672 ti->type->presuspend_undo(ti);
1673 break;
1674 case POSTSUSPEND:
1675 if (ti->type->postsuspend)
1676 ti->type->postsuspend(ti);
1677 break;
1678 }
1679 ti++;
1680 }
1681}
1682
1683void dm_table_presuspend_targets(struct dm_table *t)
1684{
1685 if (!t)
1686 return;
1687
1688 suspend_targets(t, PRESUSPEND);
1689}
1690
1691void dm_table_presuspend_undo_targets(struct dm_table *t)
1692{
1693 if (!t)
1694 return;
1695
1696 suspend_targets(t, PRESUSPEND_UNDO);
1697}
1698
1699void dm_table_postsuspend_targets(struct dm_table *t)
1700{
1701 if (!t)
1702 return;
1703
1704 suspend_targets(t, POSTSUSPEND);
1705}
1706
1707int dm_table_resume_targets(struct dm_table *t)
1708{
1709 int i, r = 0;
1710
1711 for (i = 0; i < t->num_targets; i++) {
1712 struct dm_target *ti = t->targets + i;
1713
1714 if (!ti->type->preresume)
1715 continue;
1716
1717 r = ti->type->preresume(ti);
1718 if (r) {
1719 DMERR("%s: %s: preresume failed, error = %d",
1720 dm_device_name(t->md), ti->type->name, r);
1721 return r;
1722 }
1723 }
1724
1725 for (i = 0; i < t->num_targets; i++) {
1726 struct dm_target *ti = t->targets + i;
1727
1728 if (ti->type->resume)
1729 ti->type->resume(ti);
1730 }
1731
1732 return 0;
1733}
1734
1735void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
1736{
1737 list_add(&cb->list, &t->target_callbacks);
1738}
1739EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
1740
1741int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1742{
1743 struct dm_dev_internal *dd;
1744 struct list_head *devices = dm_table_get_devices(t);
1745 struct dm_target_callbacks *cb;
1746 int r = 0;
1747
1748 list_for_each_entry(dd, devices, list) {
1749 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
1750 char b[BDEVNAME_SIZE];
1751
1752 if (likely(q))
1753 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1754 else
1755 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1756 dm_device_name(t->md),
1757 bdevname(dd->dm_dev->bdev, b));
1758 }
1759
1760 list_for_each_entry(cb, &t->target_callbacks, list)
1761 if (cb->congested_fn)
1762 r |= cb->congested_fn(cb, bdi_bits);
1763
1764 return r;
1765}
1766
1767struct mapped_device *dm_table_get_md(struct dm_table *t)
1768{
1769 return t->md;
1770}
1771EXPORT_SYMBOL(dm_table_get_md);
1772
1773void dm_table_run_md_queue_async(struct dm_table *t)
1774{
1775 struct mapped_device *md;
1776 struct request_queue *queue;
1777 unsigned long flags;
1778
1779 if (!dm_table_request_based(t))
1780 return;
1781
1782 md = dm_table_get_md(t);
1783 queue = dm_get_md_queue(md);
1784 if (queue) {
1785 if (queue->mq_ops)
1786 blk_mq_run_hw_queues(queue, true);
1787 else {
1788 spin_lock_irqsave(queue->queue_lock, flags);
1789 blk_run_queue_async(queue);
1790 spin_unlock_irqrestore(queue->queue_lock, flags);
1791 }
1792 }
1793}
1794EXPORT_SYMBOL(dm_table_run_md_queue_async);
1795
1796