linux/drivers/media/dvb-frontends/drxd_hard.c
<<
>>
Prefs
   1/*
   2 * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
   3 *
   4 * Copyright (C) 2003-2007 Micronas
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * version 2 only, as published by the Free Software Foundation.
   9 *
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  20 * 02110-1301, USA
  21 * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
  22 */
  23
  24#include <linux/kernel.h>
  25#include <linux/module.h>
  26#include <linux/moduleparam.h>
  27#include <linux/init.h>
  28#include <linux/delay.h>
  29#include <linux/firmware.h>
  30#include <linux/i2c.h>
  31#include <asm/div64.h>
  32
  33#include "dvb_frontend.h"
  34#include "drxd.h"
  35#include "drxd_firm.h"
  36
  37#define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
  38#define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
  39
  40#define CHUNK_SIZE 48
  41
  42#define DRX_I2C_RMW           0x10
  43#define DRX_I2C_BROADCAST     0x20
  44#define DRX_I2C_CLEARCRC      0x80
  45#define DRX_I2C_SINGLE_MASTER 0xC0
  46#define DRX_I2C_MODEFLAGS     0xC0
  47#define DRX_I2C_FLAGS         0xF0
  48
  49#define DEFAULT_LOCK_TIMEOUT    1100
  50
  51#define DRX_CHANNEL_AUTO 0
  52#define DRX_CHANNEL_HIGH 1
  53#define DRX_CHANNEL_LOW  2
  54
  55#define DRX_LOCK_MPEG  1
  56#define DRX_LOCK_FEC   2
  57#define DRX_LOCK_DEMOD 4
  58
  59/****************************************************************************/
  60
  61enum CSCDState {
  62        CSCD_INIT = 0,
  63        CSCD_SET,
  64        CSCD_SAVED
  65};
  66
  67enum CDrxdState {
  68        DRXD_UNINITIALIZED = 0,
  69        DRXD_STOPPED,
  70        DRXD_STARTED
  71};
  72
  73enum AGC_CTRL_MODE {
  74        AGC_CTRL_AUTO = 0,
  75        AGC_CTRL_USER,
  76        AGC_CTRL_OFF
  77};
  78
  79enum OperationMode {
  80        OM_Default,
  81        OM_DVBT_Diversity_Front,
  82        OM_DVBT_Diversity_End
  83};
  84
  85struct SCfgAgc {
  86        enum AGC_CTRL_MODE ctrlMode;
  87        u16 outputLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
  88        u16 settleLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
  89        u16 minOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
  90        u16 maxOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
  91        u16 speed;              /* range [0, ... , 1023], 1/n of fullscale range */
  92
  93        u16 R1;
  94        u16 R2;
  95        u16 R3;
  96};
  97
  98struct SNoiseCal {
  99        int cpOpt;
 100        short cpNexpOfs;
 101        short tdCal2k;
 102        short tdCal8k;
 103};
 104
 105enum app_env {
 106        APPENV_STATIC = 0,
 107        APPENV_PORTABLE = 1,
 108        APPENV_MOBILE = 2
 109};
 110
 111enum EIFFilter {
 112        IFFILTER_SAW = 0,
 113        IFFILTER_DISCRETE = 1
 114};
 115
 116struct drxd_state {
 117        struct dvb_frontend frontend;
 118        struct dvb_frontend_ops ops;
 119        struct dtv_frontend_properties props;
 120
 121        const struct firmware *fw;
 122        struct device *dev;
 123
 124        struct i2c_adapter *i2c;
 125        void *priv;
 126        struct drxd_config config;
 127
 128        int i2c_access;
 129        int init_done;
 130        struct mutex mutex;
 131
 132        u8 chip_adr;
 133        u16 hi_cfg_timing_div;
 134        u16 hi_cfg_bridge_delay;
 135        u16 hi_cfg_wakeup_key;
 136        u16 hi_cfg_ctrl;
 137
 138        u16 intermediate_freq;
 139        u16 osc_clock_freq;
 140
 141        enum CSCDState cscd_state;
 142        enum CDrxdState drxd_state;
 143
 144        u16 sys_clock_freq;
 145        s16 osc_clock_deviation;
 146        u16 expected_sys_clock_freq;
 147
 148        u16 insert_rs_byte;
 149        u16 enable_parallel;
 150
 151        int operation_mode;
 152
 153        struct SCfgAgc if_agc_cfg;
 154        struct SCfgAgc rf_agc_cfg;
 155
 156        struct SNoiseCal noise_cal;
 157
 158        u32 fe_fs_add_incr;
 159        u32 org_fe_fs_add_incr;
 160        u16 current_fe_if_incr;
 161
 162        u16 m_FeAgRegAgPwd;
 163        u16 m_FeAgRegAgAgcSio;
 164
 165        u16 m_EcOcRegOcModeLop;
 166        u16 m_EcOcRegSncSncLvl;
 167        u8 *m_InitAtomicRead;
 168        u8 *m_HiI2cPatch;
 169
 170        u8 *m_ResetCEFR;
 171        u8 *m_InitFE_1;
 172        u8 *m_InitFE_2;
 173        u8 *m_InitCP;
 174        u8 *m_InitCE;
 175        u8 *m_InitEQ;
 176        u8 *m_InitSC;
 177        u8 *m_InitEC;
 178        u8 *m_ResetECRAM;
 179        u8 *m_InitDiversityFront;
 180        u8 *m_InitDiversityEnd;
 181        u8 *m_DisableDiversity;
 182        u8 *m_StartDiversityFront;
 183        u8 *m_StartDiversityEnd;
 184
 185        u8 *m_DiversityDelay8MHZ;
 186        u8 *m_DiversityDelay6MHZ;
 187
 188        u8 *microcode;
 189        u32 microcode_length;
 190
 191        int type_A;
 192        int PGA;
 193        int diversity;
 194        int tuner_mirrors;
 195
 196        enum app_env app_env_default;
 197        enum app_env app_env_diversity;
 198
 199};
 200
 201/****************************************************************************/
 202/* I2C **********************************************************************/
 203/****************************************************************************/
 204
 205static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
 206{
 207        struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
 208
 209        if (i2c_transfer(adap, &msg, 1) != 1)
 210                return -1;
 211        return 0;
 212}
 213
 214static int i2c_read(struct i2c_adapter *adap,
 215                    u8 adr, u8 *msg, int len, u8 *answ, int alen)
 216{
 217        struct i2c_msg msgs[2] = {
 218                {
 219                        .addr = adr, .flags = 0,
 220                        .buf = msg, .len = len
 221                }, {
 222                        .addr = adr, .flags = I2C_M_RD,
 223                        .buf = answ, .len = alen
 224                }
 225        };
 226        if (i2c_transfer(adap, msgs, 2) != 2)
 227                return -1;
 228        return 0;
 229}
 230
 231static inline u32 MulDiv32(u32 a, u32 b, u32 c)
 232{
 233        u64 tmp64;
 234
 235        tmp64 = (u64)a * (u64)b;
 236        do_div(tmp64, c);
 237
 238        return (u32) tmp64;
 239}
 240
 241static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
 242{
 243        u8 adr = state->config.demod_address;
 244        u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
 245                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
 246        };
 247        u8 mm2[2];
 248        if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
 249                return -1;
 250        if (data)
 251                *data = mm2[0] | (mm2[1] << 8);
 252        return mm2[0] | (mm2[1] << 8);
 253}
 254
 255static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
 256{
 257        u8 adr = state->config.demod_address;
 258        u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
 259                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
 260        };
 261        u8 mm2[4];
 262
 263        if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
 264                return -1;
 265        if (data)
 266                *data =
 267                    mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
 268        return 0;
 269}
 270
 271static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
 272{
 273        u8 adr = state->config.demod_address;
 274        u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
 275                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
 276                data & 0xff, (data >> 8) & 0xff
 277        };
 278
 279        if (i2c_write(state->i2c, adr, mm, 6) < 0)
 280                return -1;
 281        return 0;
 282}
 283
 284static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
 285{
 286        u8 adr = state->config.demod_address;
 287        u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
 288                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
 289                data & 0xff, (data >> 8) & 0xff,
 290                (data >> 16) & 0xff, (data >> 24) & 0xff
 291        };
 292
 293        if (i2c_write(state->i2c, adr, mm, 8) < 0)
 294                return -1;
 295        return 0;
 296}
 297
 298static int write_chunk(struct drxd_state *state,
 299                       u32 reg, u8 *data, u32 len, u8 flags)
 300{
 301        u8 adr = state->config.demod_address;
 302        u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
 303                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
 304        };
 305        int i;
 306
 307        for (i = 0; i < len; i++)
 308                mm[4 + i] = data[i];
 309        if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
 310                printk(KERN_ERR "error in write_chunk\n");
 311                return -1;
 312        }
 313        return 0;
 314}
 315
 316static int WriteBlock(struct drxd_state *state,
 317                      u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
 318{
 319        while (BlockSize > 0) {
 320                u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
 321
 322                if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
 323                        return -1;
 324                pBlock += Chunk;
 325                Address += (Chunk >> 1);
 326                BlockSize -= Chunk;
 327        }
 328        return 0;
 329}
 330
 331static int WriteTable(struct drxd_state *state, u8 * pTable)
 332{
 333        int status = 0;
 334
 335        if (pTable == NULL)
 336                return 0;
 337
 338        while (!status) {
 339                u16 Length;
 340                u32 Address = pTable[0] | (pTable[1] << 8) |
 341                    (pTable[2] << 16) | (pTable[3] << 24);
 342
 343                if (Address == 0xFFFFFFFF)
 344                        break;
 345                pTable += sizeof(u32);
 346
 347                Length = pTable[0] | (pTable[1] << 8);
 348                pTable += sizeof(u16);
 349                if (!Length)
 350                        break;
 351                status = WriteBlock(state, Address, Length * 2, pTable, 0);
 352                pTable += (Length * 2);
 353        }
 354        return status;
 355}
 356
 357/****************************************************************************/
 358/****************************************************************************/
 359/****************************************************************************/
 360
 361static int ResetCEFR(struct drxd_state *state)
 362{
 363        return WriteTable(state, state->m_ResetCEFR);
 364}
 365
 366static int InitCP(struct drxd_state *state)
 367{
 368        return WriteTable(state, state->m_InitCP);
 369}
 370
 371static int InitCE(struct drxd_state *state)
 372{
 373        int status;
 374        enum app_env AppEnv = state->app_env_default;
 375
 376        do {
 377                status = WriteTable(state, state->m_InitCE);
 378                if (status < 0)
 379                        break;
 380
 381                if (state->operation_mode == OM_DVBT_Diversity_Front ||
 382                    state->operation_mode == OM_DVBT_Diversity_End) {
 383                        AppEnv = state->app_env_diversity;
 384                }
 385                if (AppEnv == APPENV_STATIC) {
 386                        status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
 387                        if (status < 0)
 388                                break;
 389                } else if (AppEnv == APPENV_PORTABLE) {
 390                        status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
 391                        if (status < 0)
 392                                break;
 393                } else if (AppEnv == APPENV_MOBILE && state->type_A) {
 394                        status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
 395                        if (status < 0)
 396                                break;
 397                } else if (AppEnv == APPENV_MOBILE && !state->type_A) {
 398                        status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
 399                        if (status < 0)
 400                                break;
 401                }
 402
 403                /* start ce */
 404                status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
 405                if (status < 0)
 406                        break;
 407        } while (0);
 408        return status;
 409}
 410
 411static int StopOC(struct drxd_state *state)
 412{
 413        int status = 0;
 414        u16 ocSyncLvl = 0;
 415        u16 ocModeLop = state->m_EcOcRegOcModeLop;
 416        u16 dtoIncLop = 0;
 417        u16 dtoIncHip = 0;
 418
 419        do {
 420                /* Store output configuration */
 421                status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
 422                if (status < 0)
 423                        break;
 424                /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
 425                state->m_EcOcRegSncSncLvl = ocSyncLvl;
 426                /* m_EcOcRegOcModeLop = ocModeLop; */
 427
 428                /* Flush FIFO (byte-boundary) at fixed rate */
 429                status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
 430                if (status < 0)
 431                        break;
 432                status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
 433                if (status < 0)
 434                        break;
 435                status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
 436                if (status < 0)
 437                        break;
 438                status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
 439                if (status < 0)
 440                        break;
 441                ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
 442                ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
 443                status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
 444                if (status < 0)
 445                        break;
 446                status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
 447                if (status < 0)
 448                        break;
 449
 450                msleep(1);
 451                /* Output pins to '0' */
 452                status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
 453                if (status < 0)
 454                        break;
 455
 456                /* Force the OC out of sync */
 457                ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
 458                status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
 459                if (status < 0)
 460                        break;
 461                ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
 462                ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
 463                ocModeLop |= 0x2;       /* Magically-out-of-sync */
 464                status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
 465                if (status < 0)
 466                        break;
 467                status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
 468                if (status < 0)
 469                        break;
 470                status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
 471                if (status < 0)
 472                        break;
 473        } while (0);
 474
 475        return status;
 476}
 477
 478static int StartOC(struct drxd_state *state)
 479{
 480        int status = 0;
 481
 482        do {
 483                /* Stop OC */
 484                status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
 485                if (status < 0)
 486                        break;
 487
 488                /* Restore output configuration */
 489                status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
 490                if (status < 0)
 491                        break;
 492                status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
 493                if (status < 0)
 494                        break;
 495
 496                /* Output pins active again */
 497                status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
 498                if (status < 0)
 499                        break;
 500
 501                /* Start OC */
 502                status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
 503                if (status < 0)
 504                        break;
 505        } while (0);
 506        return status;
 507}
 508
 509static int InitEQ(struct drxd_state *state)
 510{
 511        return WriteTable(state, state->m_InitEQ);
 512}
 513
 514static int InitEC(struct drxd_state *state)
 515{
 516        return WriteTable(state, state->m_InitEC);
 517}
 518
 519static int InitSC(struct drxd_state *state)
 520{
 521        return WriteTable(state, state->m_InitSC);
 522}
 523
 524static int InitAtomicRead(struct drxd_state *state)
 525{
 526        return WriteTable(state, state->m_InitAtomicRead);
 527}
 528
 529static int CorrectSysClockDeviation(struct drxd_state *state);
 530
 531static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
 532{
 533        u16 ScRaRamLock = 0;
 534        const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
 535                                    SC_RA_RAM_LOCK_FEC__M |
 536                                    SC_RA_RAM_LOCK_DEMOD__M);
 537        const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
 538                                   SC_RA_RAM_LOCK_DEMOD__M);
 539        const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
 540
 541        int status;
 542
 543        *pLockStatus = 0;
 544
 545        status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
 546        if (status < 0) {
 547                printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
 548                return status;
 549        }
 550
 551        if (state->drxd_state != DRXD_STARTED)
 552                return 0;
 553
 554        if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
 555                *pLockStatus |= DRX_LOCK_MPEG;
 556                CorrectSysClockDeviation(state);
 557        }
 558
 559        if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
 560                *pLockStatus |= DRX_LOCK_FEC;
 561
 562        if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
 563                *pLockStatus |= DRX_LOCK_DEMOD;
 564        return 0;
 565}
 566
 567/****************************************************************************/
 568
 569static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
 570{
 571        int status;
 572
 573        if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
 574                return -1;
 575
 576        if (cfg->ctrlMode == AGC_CTRL_USER) {
 577                do {
 578                        u16 FeAgRegPm1AgcWri;
 579                        u16 FeAgRegAgModeLop;
 580
 581                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
 582                        if (status < 0)
 583                                break;
 584                        FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
 585                        FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
 586                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
 587                        if (status < 0)
 588                                break;
 589
 590                        FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
 591                                                  FE_AG_REG_PM1_AGC_WRI__M);
 592                        status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
 593                        if (status < 0)
 594                                break;
 595                } while (0);
 596        } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
 597                if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
 598                    ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
 599                    ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
 600                    ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
 601                    )
 602                        return -1;
 603                do {
 604                        u16 FeAgRegAgModeLop;
 605                        u16 FeAgRegEgcSetLvl;
 606                        u16 slope, offset;
 607
 608                        /* == Mode == */
 609
 610                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
 611                        if (status < 0)
 612                                break;
 613                        FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
 614                        FeAgRegAgModeLop |=
 615                            FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
 616                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
 617                        if (status < 0)
 618                                break;
 619
 620                        /* == Settle level == */
 621
 622                        FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
 623                                                  FE_AG_REG_EGC_SET_LVL__M);
 624                        status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
 625                        if (status < 0)
 626                                break;
 627
 628                        /* == Min/Max == */
 629
 630                        slope = (u16) ((cfg->maxOutputLevel -
 631                                        cfg->minOutputLevel) / 2);
 632                        offset = (u16) ((cfg->maxOutputLevel +
 633                                         cfg->minOutputLevel) / 2 - 511);
 634
 635                        status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
 636                        if (status < 0)
 637                                break;
 638                        status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
 639                        if (status < 0)
 640                                break;
 641
 642                        /* == Speed == */
 643                        {
 644                                const u16 maxRur = 8;
 645                                const u16 slowIncrDecLUT[] = { 3, 4, 4, 5, 6 };
 646                                const u16 fastIncrDecLUT[] = { 14, 15, 15, 16,
 647                                        17, 18, 18, 19,
 648                                        20, 21, 22, 23,
 649                                        24, 26, 27, 28,
 650                                        29, 31
 651                                };
 652
 653                                u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
 654                                    (maxRur + 1);
 655                                u16 fineSpeed = (u16) (cfg->speed -
 656                                                       ((cfg->speed /
 657                                                         fineSteps) *
 658                                                        fineSteps));
 659                                u16 invRurCount = (u16) (cfg->speed /
 660                                                         fineSteps);
 661                                u16 rurCount;
 662                                if (invRurCount > maxRur) {
 663                                        rurCount = 0;
 664                                        fineSpeed += fineSteps;
 665                                } else {
 666                                        rurCount = maxRur - invRurCount;
 667                                }
 668
 669                                /*
 670                                   fastInc = default *
 671                                   (2^(fineSpeed/fineSteps))
 672                                   => range[default...2*default>
 673                                   slowInc = default *
 674                                   (2^(fineSpeed/fineSteps))
 675                                 */
 676                                {
 677                                        u16 fastIncrDec =
 678                                            fastIncrDecLUT[fineSpeed /
 679                                                           ((fineSteps /
 680                                                             (14 + 1)) + 1)];
 681                                        u16 slowIncrDec =
 682                                            slowIncrDecLUT[fineSpeed /
 683                                                           (fineSteps /
 684                                                            (3 + 1))];
 685
 686                                        status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
 687                                        if (status < 0)
 688                                                break;
 689                                        status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
 690                                        if (status < 0)
 691                                                break;
 692                                        status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
 693                                        if (status < 0)
 694                                                break;
 695                                        status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
 696                                        if (status < 0)
 697                                                break;
 698                                        status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
 699                                        if (status < 0)
 700                                                break;
 701                                }
 702                        }
 703                } while (0);
 704
 705        } else {
 706                /* No OFF mode for IF control */
 707                return -1;
 708        }
 709        return status;
 710}
 711
 712static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
 713{
 714        int status = 0;
 715
 716        if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
 717                return -1;
 718
 719        if (cfg->ctrlMode == AGC_CTRL_USER) {
 720                do {
 721                        u16 AgModeLop = 0;
 722                        u16 level = (cfg->outputLevel);
 723
 724                        if (level == DRXD_FE_CTRL_MAX)
 725                                level++;
 726
 727                        status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
 728                        if (status < 0)
 729                                break;
 730
 731                        /*==== Mode ====*/
 732
 733                        /* Powerdown PD2, WRI source */
 734                        state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
 735                        state->m_FeAgRegAgPwd |=
 736                            FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
 737                        status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
 738                        if (status < 0)
 739                                break;
 740
 741                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
 742                        if (status < 0)
 743                                break;
 744                        AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
 745                                        FE_AG_REG_AG_MODE_LOP_MODE_E__M));
 746                        AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
 747                                      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
 748                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
 749                        if (status < 0)
 750                                break;
 751
 752                        /* enable AGC2 pin */
 753                        {
 754                                u16 FeAgRegAgAgcSio = 0;
 755                                status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
 756                                if (status < 0)
 757                                        break;
 758                                FeAgRegAgAgcSio &=
 759                                    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
 760                                FeAgRegAgAgcSio |=
 761                                    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
 762                                status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
 763                                if (status < 0)
 764                                        break;
 765                        }
 766
 767                } while (0);
 768        } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
 769                u16 AgModeLop = 0;
 770
 771                do {
 772                        u16 level;
 773                        /* Automatic control */
 774                        /* Powerup PD2, AGC2 as output, TGC source */
 775                        (state->m_FeAgRegAgPwd) &=
 776                            ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
 777                        (state->m_FeAgRegAgPwd) |=
 778                            FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
 779                        status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
 780                        if (status < 0)
 781                                break;
 782
 783                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
 784                        if (status < 0)
 785                                break;
 786                        AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
 787                                        FE_AG_REG_AG_MODE_LOP_MODE_E__M));
 788                        AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
 789                                      FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
 790                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
 791                        if (status < 0)
 792                                break;
 793                        /* Settle level */
 794                        level = (((cfg->settleLevel) >> 4) &
 795                                 FE_AG_REG_TGC_SET_LVL__M);
 796                        status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
 797                        if (status < 0)
 798                                break;
 799
 800                        /* Min/max: don't care */
 801
 802                        /* Speed: TODO */
 803
 804                        /* enable AGC2 pin */
 805                        {
 806                                u16 FeAgRegAgAgcSio = 0;
 807                                status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
 808                                if (status < 0)
 809                                        break;
 810                                FeAgRegAgAgcSio &=
 811                                    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
 812                                FeAgRegAgAgcSio |=
 813                                    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
 814                                status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
 815                                if (status < 0)
 816                                        break;
 817                        }
 818
 819                } while (0);
 820        } else {
 821                u16 AgModeLop = 0;
 822
 823                do {
 824                        /* No RF AGC control */
 825                        /* Powerdown PD2, AGC2 as output, WRI source */
 826                        (state->m_FeAgRegAgPwd) &=
 827                            ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
 828                        (state->m_FeAgRegAgPwd) |=
 829                            FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
 830                        status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
 831                        if (status < 0)
 832                                break;
 833
 834                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
 835                        if (status < 0)
 836                                break;
 837                        AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
 838                                        FE_AG_REG_AG_MODE_LOP_MODE_E__M));
 839                        AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
 840                                      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
 841                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
 842                        if (status < 0)
 843                                break;
 844
 845                        /* set FeAgRegAgAgcSio AGC2 (RF) as input */
 846                        {
 847                                u16 FeAgRegAgAgcSio = 0;
 848                                status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
 849                                if (status < 0)
 850                                        break;
 851                                FeAgRegAgAgcSio &=
 852                                    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
 853                                FeAgRegAgAgcSio |=
 854                                    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
 855                                status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
 856                                if (status < 0)
 857                                        break;
 858                        }
 859                } while (0);
 860        }
 861        return status;
 862}
 863
 864static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
 865{
 866        int status = 0;
 867
 868        *pValue = 0;
 869        if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
 870                u16 Value;
 871                status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
 872                Value &= FE_AG_REG_GC1_AGC_DAT__M;
 873                if (status >= 0) {
 874                        /*           3.3V
 875                           |
 876                           R1
 877                           |
 878                           Vin - R3 - * -- Vout
 879                           |
 880                           R2
 881                           |
 882                           GND
 883                         */
 884                        u32 R1 = state->if_agc_cfg.R1;
 885                        u32 R2 = state->if_agc_cfg.R2;
 886                        u32 R3 = state->if_agc_cfg.R3;
 887
 888                        u32 Vmax, Rpar, Vmin, Vout;
 889
 890                        if (R2 == 0 && (R1 == 0 || R3 == 0))
 891                                return 0;
 892
 893                        Vmax = (3300 * R2) / (R1 + R2);
 894                        Rpar = (R2 * R3) / (R3 + R2);
 895                        Vmin = (3300 * Rpar) / (R1 + Rpar);
 896                        Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
 897
 898                        *pValue = Vout;
 899                }
 900        }
 901        return status;
 902}
 903
 904static int load_firmware(struct drxd_state *state, const char *fw_name)
 905{
 906        const struct firmware *fw;
 907
 908        if (request_firmware(&fw, fw_name, state->dev) < 0) {
 909                printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
 910                return -EIO;
 911        }
 912
 913        state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
 914        if (state->microcode == NULL) {
 915                release_firmware(fw);
 916                printk(KERN_ERR "drxd: firmware load failure: no memory\n");
 917                return -ENOMEM;
 918        }
 919
 920        state->microcode_length = fw->size;
 921        release_firmware(fw);
 922        return 0;
 923}
 924
 925static int DownloadMicrocode(struct drxd_state *state,
 926                             const u8 *pMCImage, u32 Length)
 927{
 928        u8 *pSrc;
 929        u32 Address;
 930        u16 nBlocks;
 931        u16 BlockSize;
 932        u32 offset = 0;
 933        int i, status = 0;
 934
 935        pSrc = (u8 *) pMCImage;
 936        /* We're not using Flags */
 937        /* Flags = (pSrc[0] << 8) | pSrc[1]; */
 938        pSrc += sizeof(u16);
 939        offset += sizeof(u16);
 940        nBlocks = (pSrc[0] << 8) | pSrc[1];
 941        pSrc += sizeof(u16);
 942        offset += sizeof(u16);
 943
 944        for (i = 0; i < nBlocks; i++) {
 945                Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
 946                    (pSrc[2] << 8) | pSrc[3];
 947                pSrc += sizeof(u32);
 948                offset += sizeof(u32);
 949
 950                BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
 951                pSrc += sizeof(u16);
 952                offset += sizeof(u16);
 953
 954                /* We're not using Flags */
 955                /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
 956                pSrc += sizeof(u16);
 957                offset += sizeof(u16);
 958
 959                /* We're not using BlockCRC */
 960                /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
 961                pSrc += sizeof(u16);
 962                offset += sizeof(u16);
 963
 964                status = WriteBlock(state, Address, BlockSize,
 965                                    pSrc, DRX_I2C_CLEARCRC);
 966                if (status < 0)
 967                        break;
 968                pSrc += BlockSize;
 969                offset += BlockSize;
 970        }
 971
 972        return status;
 973}
 974
 975static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
 976{
 977        u32 nrRetries = 0;
 978        u16 waitCmd;
 979        int status;
 980
 981        status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
 982        if (status < 0)
 983                return status;
 984
 985        do {
 986                nrRetries += 1;
 987                if (nrRetries > DRXD_MAX_RETRIES) {
 988                        status = -1;
 989                        break;
 990                }
 991                status = Read16(state, HI_RA_RAM_SRV_CMD__A, &waitCmd, 0);
 992        } while (waitCmd != 0);
 993
 994        if (status >= 0)
 995                status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
 996        return status;
 997}
 998
 999static int HI_CfgCommand(struct drxd_state *state)
1000{
1001        int status = 0;
1002
1003        mutex_lock(&state->mutex);
1004        Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1005        Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
1006        Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
1007        Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
1008        Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
1009
1010        Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1011
1012        if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
1013            HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
1014                status = Write16(state, HI_RA_RAM_SRV_CMD__A,
1015                                 HI_RA_RAM_SRV_CMD_CONFIG, 0);
1016        else
1017                status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, NULL);
1018        mutex_unlock(&state->mutex);
1019        return status;
1020}
1021
1022static int InitHI(struct drxd_state *state)
1023{
1024        state->hi_cfg_wakeup_key = (state->chip_adr);
1025        /* port/bridge/power down ctrl */
1026        state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1027        return HI_CfgCommand(state);
1028}
1029
1030static int HI_ResetCommand(struct drxd_state *state)
1031{
1032        int status;
1033
1034        mutex_lock(&state->mutex);
1035        status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1036                         HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1037        if (status == 0)
1038                status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, NULL);
1039        mutex_unlock(&state->mutex);
1040        msleep(1);
1041        return status;
1042}
1043
1044static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1045{
1046        state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1047        if (bEnableBridge)
1048                state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1049        else
1050                state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1051
1052        return HI_CfgCommand(state);
1053}
1054
1055#define HI_TR_WRITE      0x9
1056#define HI_TR_READ       0xA
1057#define HI_TR_READ_WRITE 0xB
1058#define HI_TR_BROADCAST  0x4
1059
1060#if 0
1061static int AtomicReadBlock(struct drxd_state *state,
1062                           u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1063{
1064        int status;
1065        int i = 0;
1066
1067        /* Parameter check */
1068        if ((!pData) || ((DataSize & 1) != 0))
1069                return -1;
1070
1071        mutex_lock(&state->mutex);
1072
1073        do {
1074                /* Instruct HI to read n bytes */
1075                /* TODO use proper names forthese egisters */
1076                status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1077                if (status < 0)
1078                        break;
1079                status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1080                if (status < 0)
1081                        break;
1082                status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1083                if (status < 0)
1084                        break;
1085                status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1086                if (status < 0)
1087                        break;
1088                status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1089                if (status < 0)
1090                        break;
1091
1092                status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1093                if (status < 0)
1094                        break;
1095
1096        } while (0);
1097
1098        if (status >= 0) {
1099                for (i = 0; i < (DataSize / 2); i += 1) {
1100                        u16 word;
1101
1102                        status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1103                                        &word, 0);
1104                        if (status < 0)
1105                                break;
1106                        pData[2 * i] = (u8) (word & 0xFF);
1107                        pData[(2 * i) + 1] = (u8) (word >> 8);
1108                }
1109        }
1110        mutex_unlock(&state->mutex);
1111        return status;
1112}
1113
1114static int AtomicReadReg32(struct drxd_state *state,
1115                           u32 Addr, u32 *pData, u8 Flags)
1116{
1117        u8 buf[sizeof(u32)];
1118        int status;
1119
1120        if (!pData)
1121                return -1;
1122        status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1123        *pData = (((u32) buf[0]) << 0) +
1124            (((u32) buf[1]) << 8) +
1125            (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1126        return status;
1127}
1128#endif
1129
1130static int StopAllProcessors(struct drxd_state *state)
1131{
1132        return Write16(state, HI_COMM_EXEC__A,
1133                       SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1134}
1135
1136static int EnableAndResetMB(struct drxd_state *state)
1137{
1138        if (state->type_A) {
1139                /* disable? monitor bus observe @ EC_OC */
1140                Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1141        }
1142
1143        /* do inverse broadcast, followed by explicit write to HI */
1144        Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1145        Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1146        return 0;
1147}
1148
1149static int InitCC(struct drxd_state *state)
1150{
1151        if (state->osc_clock_freq == 0 ||
1152            state->osc_clock_freq > 20000 ||
1153            (state->osc_clock_freq % 4000) != 0) {
1154                printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1155                return -1;
1156        }
1157
1158        Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1159        Write16(state, CC_REG_PLL_MODE__A, CC_REG_PLL_MODE_BYPASS_PLL |
1160                CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1161        Write16(state, CC_REG_REF_DIVIDE__A, state->osc_clock_freq / 4000, 0);
1162        Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 0);
1163        Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1164
1165        return 0;
1166}
1167
1168static int ResetECOD(struct drxd_state *state)
1169{
1170        int status = 0;
1171
1172        if (state->type_A)
1173                status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1174        else
1175                status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1176
1177        if (!(status < 0))
1178                status = WriteTable(state, state->m_ResetECRAM);
1179        if (!(status < 0))
1180                status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1181        return status;
1182}
1183
1184/* Configure PGA switch */
1185
1186static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1187{
1188        int status;
1189        u16 AgModeLop = 0;
1190        u16 AgModeHip = 0;
1191        do {
1192                if (pgaSwitch) {
1193                        /* PGA on */
1194                        /* fine gain */
1195                        status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1196                        if (status < 0)
1197                                break;
1198                        AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1199                        AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1200                        status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1201                        if (status < 0)
1202                                break;
1203
1204                        /* coarse gain */
1205                        status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1206                        if (status < 0)
1207                                break;
1208                        AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1209                        AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1210                        status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1211                        if (status < 0)
1212                                break;
1213
1214                        /* enable fine and coarse gain, enable AAF,
1215                           no ext resistor */
1216                        status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1217                        if (status < 0)
1218                                break;
1219                } else {
1220                        /* PGA off, bypass */
1221
1222                        /* fine gain */
1223                        status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1224                        if (status < 0)
1225                                break;
1226                        AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1227                        AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1228                        status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1229                        if (status < 0)
1230                                break;
1231
1232                        /* coarse gain */
1233                        status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1234                        if (status < 0)
1235                                break;
1236                        AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1237                        AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1238                        status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1239                        if (status < 0)
1240                                break;
1241
1242                        /* disable fine and coarse gain, enable AAF,
1243                           no ext resistor */
1244                        status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1245                        if (status < 0)
1246                                break;
1247                }
1248        } while (0);
1249        return status;
1250}
1251
1252static int InitFE(struct drxd_state *state)
1253{
1254        int status;
1255
1256        do {
1257                status = WriteTable(state, state->m_InitFE_1);
1258                if (status < 0)
1259                        break;
1260
1261                if (state->type_A) {
1262                        status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1263                                         FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1264                                         0);
1265                } else {
1266                        if (state->PGA)
1267                                status = SetCfgPga(state, 0);
1268                        else
1269                                status =
1270                                    Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1271                                            B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1272                                            0);
1273                }
1274
1275                if (status < 0)
1276                        break;
1277                status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1278                if (status < 0)
1279                        break;
1280                status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1281                if (status < 0)
1282                        break;
1283
1284                status = WriteTable(state, state->m_InitFE_2);
1285                if (status < 0)
1286                        break;
1287
1288        } while (0);
1289
1290        return status;
1291}
1292
1293static int InitFT(struct drxd_state *state)
1294{
1295        /*
1296           norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1297           SC stuff
1298         */
1299        return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1300}
1301
1302static int SC_WaitForReady(struct drxd_state *state)
1303{
1304        u16 curCmd;
1305        int i;
1306
1307        for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1308                int status = Read16(state, SC_RA_RAM_CMD__A, &curCmd, 0);
1309                if (status == 0 || curCmd == 0)
1310                        return status;
1311        }
1312        return -1;
1313}
1314
1315static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1316{
1317        int status = 0;
1318        u16 errCode;
1319
1320        Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1321        SC_WaitForReady(state);
1322
1323        Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1324
1325        if (errCode == 0xFFFF) {
1326                printk(KERN_ERR "Command Error\n");
1327                status = -1;
1328        }
1329
1330        return status;
1331}
1332
1333static int SC_ProcStartCommand(struct drxd_state *state,
1334                               u16 subCmd, u16 param0, u16 param1)
1335{
1336        int status = 0;
1337        u16 scExec;
1338
1339        mutex_lock(&state->mutex);
1340        do {
1341                Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1342                if (scExec != 1) {
1343                        status = -1;
1344                        break;
1345                }
1346                SC_WaitForReady(state);
1347                Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1348                Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1349                Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1350
1351                SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1352        } while (0);
1353        mutex_unlock(&state->mutex);
1354        return status;
1355}
1356
1357static int SC_SetPrefParamCommand(struct drxd_state *state,
1358                                  u16 subCmd, u16 param0, u16 param1)
1359{
1360        int status;
1361
1362        mutex_lock(&state->mutex);
1363        do {
1364                status = SC_WaitForReady(state);
1365                if (status < 0)
1366                        break;
1367                status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1368                if (status < 0)
1369                        break;
1370                status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1371                if (status < 0)
1372                        break;
1373                status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1374                if (status < 0)
1375                        break;
1376
1377                status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1378                if (status < 0)
1379                        break;
1380        } while (0);
1381        mutex_unlock(&state->mutex);
1382        return status;
1383}
1384
1385#if 0
1386static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1387{
1388        int status = 0;
1389
1390        mutex_lock(&state->mutex);
1391        do {
1392                status = SC_WaitForReady(state);
1393                if (status < 0)
1394                        break;
1395                status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1396                if (status < 0)
1397                        break;
1398                status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1399                if (status < 0)
1400                        break;
1401        } while (0);
1402        mutex_unlock(&state->mutex);
1403        return status;
1404}
1405#endif
1406
1407static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1408{
1409        int status;
1410
1411        do {
1412                u16 EcOcRegIprInvMpg = 0;
1413                u16 EcOcRegOcModeLop = 0;
1414                u16 EcOcRegOcModeHip = 0;
1415                u16 EcOcRegOcMpgSio = 0;
1416
1417                /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1418
1419                if (state->operation_mode == OM_DVBT_Diversity_Front) {
1420                        if (bEnableOutput) {
1421                                EcOcRegOcModeHip |=
1422                                    B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1423                        } else
1424                                EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1425                        EcOcRegOcModeLop |=
1426                            EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1427                } else {
1428                        EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1429
1430                        if (bEnableOutput)
1431                                EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1432                        else
1433                                EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1434
1435                        /* Don't Insert RS Byte */
1436                        if (state->insert_rs_byte) {
1437                                EcOcRegOcModeLop &=
1438                                    (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1439                                EcOcRegOcModeHip &=
1440                                    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1441                                EcOcRegOcModeHip |=
1442                                    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1443                        } else {
1444                                EcOcRegOcModeLop |=
1445                                    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1446                                EcOcRegOcModeHip &=
1447                                    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1448                                EcOcRegOcModeHip |=
1449                                    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1450                        }
1451
1452                        /* Mode = Parallel */
1453                        if (state->enable_parallel)
1454                                EcOcRegOcModeLop &=
1455                                    (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1456                        else
1457                                EcOcRegOcModeLop |=
1458                                    EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1459                }
1460                /* Invert Data */
1461                /* EcOcRegIprInvMpg |= 0x00FF; */
1462                EcOcRegIprInvMpg &= (~(0x00FF));
1463
1464                /* Invert Error ( we don't use the pin ) */
1465                /*  EcOcRegIprInvMpg |= 0x0100; */
1466                EcOcRegIprInvMpg &= (~(0x0100));
1467
1468                /* Invert Start ( we don't use the pin ) */
1469                /* EcOcRegIprInvMpg |= 0x0200; */
1470                EcOcRegIprInvMpg &= (~(0x0200));
1471
1472                /* Invert Valid ( we don't use the pin ) */
1473                /* EcOcRegIprInvMpg |= 0x0400; */
1474                EcOcRegIprInvMpg &= (~(0x0400));
1475
1476                /* Invert Clock */
1477                /* EcOcRegIprInvMpg |= 0x0800; */
1478                EcOcRegIprInvMpg &= (~(0x0800));
1479
1480                /* EcOcRegOcModeLop =0x05; */
1481                status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1482                if (status < 0)
1483                        break;
1484                status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1485                if (status < 0)
1486                        break;
1487                status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1488                if (status < 0)
1489                        break;
1490                status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1491                if (status < 0)
1492                        break;
1493        } while (0);
1494        return status;
1495}
1496
1497static int SetDeviceTypeId(struct drxd_state *state)
1498{
1499        int status = 0;
1500        u16 deviceId = 0;
1501
1502        do {
1503                status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1504                if (status < 0)
1505                        break;
1506                /* TODO: why twice? */
1507                status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1508                if (status < 0)
1509                        break;
1510                printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1511
1512                state->type_A = 0;
1513                state->PGA = 0;
1514                state->diversity = 0;
1515                if (deviceId == 0) {    /* on A2 only 3975 available */
1516                        state->type_A = 1;
1517                        printk(KERN_INFO "DRX3975D-A2\n");
1518                } else {
1519                        deviceId >>= 12;
1520                        printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1521                        switch (deviceId) {
1522                        case 4:
1523                                state->diversity = 1;
1524                        case 3:
1525                        case 7:
1526                                state->PGA = 1;
1527                                break;
1528                        case 6:
1529                                state->diversity = 1;
1530                        case 5:
1531                        case 8:
1532                                break;
1533                        default:
1534                                status = -1;
1535                                break;
1536                        }
1537                }
1538        } while (0);
1539
1540        if (status < 0)
1541                return status;
1542
1543        /* Init Table selection */
1544        state->m_InitAtomicRead = DRXD_InitAtomicRead;
1545        state->m_InitSC = DRXD_InitSC;
1546        state->m_ResetECRAM = DRXD_ResetECRAM;
1547        if (state->type_A) {
1548                state->m_ResetCEFR = DRXD_ResetCEFR;
1549                state->m_InitFE_1 = DRXD_InitFEA2_1;
1550                state->m_InitFE_2 = DRXD_InitFEA2_2;
1551                state->m_InitCP = DRXD_InitCPA2;
1552                state->m_InitCE = DRXD_InitCEA2;
1553                state->m_InitEQ = DRXD_InitEQA2;
1554                state->m_InitEC = DRXD_InitECA2;
1555                if (load_firmware(state, DRX_FW_FILENAME_A2))
1556                        return -EIO;
1557        } else {
1558                state->m_ResetCEFR = NULL;
1559                state->m_InitFE_1 = DRXD_InitFEB1_1;
1560                state->m_InitFE_2 = DRXD_InitFEB1_2;
1561                state->m_InitCP = DRXD_InitCPB1;
1562                state->m_InitCE = DRXD_InitCEB1;
1563                state->m_InitEQ = DRXD_InitEQB1;
1564                state->m_InitEC = DRXD_InitECB1;
1565                if (load_firmware(state, DRX_FW_FILENAME_B1))
1566                        return -EIO;
1567        }
1568        if (state->diversity) {
1569                state->m_InitDiversityFront = DRXD_InitDiversityFront;
1570                state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1571                state->m_DisableDiversity = DRXD_DisableDiversity;
1572                state->m_StartDiversityFront = DRXD_StartDiversityFront;
1573                state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1574                state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1575                state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1576        } else {
1577                state->m_InitDiversityFront = NULL;
1578                state->m_InitDiversityEnd = NULL;
1579                state->m_DisableDiversity = NULL;
1580                state->m_StartDiversityFront = NULL;
1581                state->m_StartDiversityEnd = NULL;
1582                state->m_DiversityDelay8MHZ = NULL;
1583                state->m_DiversityDelay6MHZ = NULL;
1584        }
1585
1586        return status;
1587}
1588
1589static int CorrectSysClockDeviation(struct drxd_state *state)
1590{
1591        int status;
1592        s32 incr = 0;
1593        s32 nomincr = 0;
1594        u32 bandwidth = 0;
1595        u32 sysClockInHz = 0;
1596        u32 sysClockFreq = 0;   /* in kHz */
1597        s16 oscClockDeviation;
1598        s16 Diff;
1599
1600        do {
1601                /* Retrieve bandwidth and incr, sanity check */
1602
1603                /* These accesses should be AtomicReadReg32, but that
1604                   causes trouble (at least for diversity */
1605                status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1606                if (status < 0)
1607                        break;
1608                status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1609                if (status < 0)
1610                        break;
1611
1612                if (state->type_A) {
1613                        if ((nomincr - incr < -500) || (nomincr - incr > 500))
1614                                break;
1615                } else {
1616                        if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1617                                break;
1618                }
1619
1620                switch (state->props.bandwidth_hz) {
1621                case 8000000:
1622                        bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1623                        break;
1624                case 7000000:
1625                        bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1626                        break;
1627                case 6000000:
1628                        bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1629                        break;
1630                default:
1631                        return -1;
1632                        break;
1633                }
1634
1635                /* Compute new sysclock value
1636                   sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1637                incr += (1 << 23);
1638                sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1639                sysClockFreq = (u32) (sysClockInHz / 1000);
1640                /* rounding */
1641                if ((sysClockInHz % 1000) > 500)
1642                        sysClockFreq++;
1643
1644                /* Compute clock deviation in ppm */
1645                oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1646                                             (s32)
1647                                             (state->expected_sys_clock_freq)) *
1648                                            1000000L) /
1649                                           (s32)
1650                                           (state->expected_sys_clock_freq));
1651
1652                Diff = oscClockDeviation - state->osc_clock_deviation;
1653                /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1654                if (Diff >= -200 && Diff <= 200) {
1655                        state->sys_clock_freq = (u16) sysClockFreq;
1656                        if (oscClockDeviation != state->osc_clock_deviation) {
1657                                if (state->config.osc_deviation) {
1658                                        state->config.osc_deviation(state->priv,
1659                                                                    oscClockDeviation,
1660                                                                    1);
1661                                        state->osc_clock_deviation =
1662                                            oscClockDeviation;
1663                                }
1664                        }
1665                        /* switch OFF SRMM scan in SC */
1666                        status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1667                        if (status < 0)
1668                                break;
1669                        /* overrule FE_IF internal value for
1670                           proper re-locking */
1671                        status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1672                        if (status < 0)
1673                                break;
1674                        state->cscd_state = CSCD_SAVED;
1675                }
1676        } while (0);
1677
1678        return status;
1679}
1680
1681static int DRX_Stop(struct drxd_state *state)
1682{
1683        int status;
1684
1685        if (state->drxd_state != DRXD_STARTED)
1686                return 0;
1687
1688        do {
1689                if (state->cscd_state != CSCD_SAVED) {
1690                        u32 lock;
1691                        status = DRX_GetLockStatus(state, &lock);
1692                        if (status < 0)
1693                                break;
1694                }
1695
1696                status = StopOC(state);
1697                if (status < 0)
1698                        break;
1699
1700                state->drxd_state = DRXD_STOPPED;
1701
1702                status = ConfigureMPEGOutput(state, 0);
1703                if (status < 0)
1704                        break;
1705
1706                if (state->type_A) {
1707                        /* Stop relevant processors off the device */
1708                        status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1709                        if (status < 0)
1710                                break;
1711
1712                        status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1713                        if (status < 0)
1714                                break;
1715                        status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1716                        if (status < 0)
1717                                break;
1718                } else {
1719                        /* Stop all processors except HI & CC & FE */
1720                        status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1721                        if (status < 0)
1722                                break;
1723                        status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1724                        if (status < 0)
1725                                break;
1726                        status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1727                        if (status < 0)
1728                                break;
1729                        status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1730                        if (status < 0)
1731                                break;
1732                        status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1733                        if (status < 0)
1734                                break;
1735                        status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1736                        if (status < 0)
1737                                break;
1738                        status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1739                        if (status < 0)
1740                                break;
1741                }
1742
1743        } while (0);
1744        return status;
1745}
1746
1747#if 0   /* Currently unused */
1748static int SetOperationMode(struct drxd_state *state, int oMode)
1749{
1750        int status;
1751
1752        do {
1753                if (state->drxd_state != DRXD_STOPPED) {
1754                        status = -1;
1755                        break;
1756                }
1757
1758                if (oMode == state->operation_mode) {
1759                        status = 0;
1760                        break;
1761                }
1762
1763                if (oMode != OM_Default && !state->diversity) {
1764                        status = -1;
1765                        break;
1766                }
1767
1768                switch (oMode) {
1769                case OM_DVBT_Diversity_Front:
1770                        status = WriteTable(state, state->m_InitDiversityFront);
1771                        break;
1772                case OM_DVBT_Diversity_End:
1773                        status = WriteTable(state, state->m_InitDiversityEnd);
1774                        break;
1775                case OM_Default:
1776                        /* We need to check how to
1777                           get DRXD out of diversity */
1778                default:
1779                        status = WriteTable(state, state->m_DisableDiversity);
1780                        break;
1781                }
1782        } while (0);
1783
1784        if (!status)
1785                state->operation_mode = oMode;
1786        return status;
1787}
1788#endif
1789
1790static int StartDiversity(struct drxd_state *state)
1791{
1792        int status = 0;
1793        u16 rcControl;
1794
1795        do {
1796                if (state->operation_mode == OM_DVBT_Diversity_Front) {
1797                        status = WriteTable(state, state->m_StartDiversityFront);
1798                        if (status < 0)
1799                                break;
1800                } else if (state->operation_mode == OM_DVBT_Diversity_End) {
1801                        status = WriteTable(state, state->m_StartDiversityEnd);
1802                        if (status < 0)
1803                                break;
1804                        if (state->props.bandwidth_hz == 8000000) {
1805                                status = WriteTable(state, state->m_DiversityDelay8MHZ);
1806                                if (status < 0)
1807                                        break;
1808                        } else {
1809                                status = WriteTable(state, state->m_DiversityDelay6MHZ);
1810                                if (status < 0)
1811                                        break;
1812                        }
1813
1814                        status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1815                        if (status < 0)
1816                                break;
1817                        rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1818                        rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1819                            /*  combining enabled */
1820                            B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1821                            B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1822                            B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1823                        status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1824                        if (status < 0)
1825                                break;
1826                }
1827        } while (0);
1828        return status;
1829}
1830
1831static int SetFrequencyShift(struct drxd_state *state,
1832                             u32 offsetFreq, int channelMirrored)
1833{
1834        int negativeShift = (state->tuner_mirrors == channelMirrored);
1835
1836        /* Handle all mirroring
1837         *
1838         * Note: ADC mirroring (aliasing) is implictly handled by limiting
1839         * feFsRegAddInc to 28 bits below
1840         * (if the result before masking is more than 28 bits, this means
1841         *  that the ADC is mirroring.
1842         * The masking is in fact the aliasing of the ADC)
1843         *
1844         */
1845
1846        /* Compute register value, unsigned computation */
1847        state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1848                                         offsetFreq,
1849                                         1 << 28, state->sys_clock_freq);
1850        /* Remove integer part */
1851        state->fe_fs_add_incr &= 0x0FFFFFFFL;
1852        if (negativeShift)
1853                state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1854
1855        /* Save the frequency shift without tunerOffset compensation
1856           for CtrlGetChannel. */
1857        state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1858                                             1 << 28, state->sys_clock_freq);
1859        /* Remove integer part */
1860        state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1861        if (negativeShift)
1862                state->org_fe_fs_add_incr = ((1L << 28) -
1863                                             state->org_fe_fs_add_incr);
1864
1865        return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1866                       state->fe_fs_add_incr, 0);
1867}
1868
1869static int SetCfgNoiseCalibration(struct drxd_state *state,
1870                                  struct SNoiseCal *noiseCal)
1871{
1872        u16 beOptEna;
1873        int status = 0;
1874
1875        do {
1876                status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1877                if (status < 0)
1878                        break;
1879                if (noiseCal->cpOpt) {
1880                        beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1881                } else {
1882                        beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1883                        status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1884                        if (status < 0)
1885                                break;
1886                }
1887                status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1888                if (status < 0)
1889                        break;
1890
1891                if (!state->type_A) {
1892                        status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1893                        if (status < 0)
1894                                break;
1895                        status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1896                        if (status < 0)
1897                                break;
1898                }
1899        } while (0);
1900
1901        return status;
1902}
1903
1904static int DRX_Start(struct drxd_state *state, s32 off)
1905{
1906        struct dtv_frontend_properties *p = &state->props;
1907        int status;
1908
1909        u16 transmissionParams = 0;
1910        u16 operationMode = 0;
1911        u16 qpskTdTpsPwr = 0;
1912        u16 qam16TdTpsPwr = 0;
1913        u16 qam64TdTpsPwr = 0;
1914        u32 feIfIncr = 0;
1915        u32 bandwidth = 0;
1916        int mirrorFreqSpect;
1917
1918        u16 qpskSnCeGain = 0;
1919        u16 qam16SnCeGain = 0;
1920        u16 qam64SnCeGain = 0;
1921        u16 qpskIsGainMan = 0;
1922        u16 qam16IsGainMan = 0;
1923        u16 qam64IsGainMan = 0;
1924        u16 qpskIsGainExp = 0;
1925        u16 qam16IsGainExp = 0;
1926        u16 qam64IsGainExp = 0;
1927        u16 bandwidthParam = 0;
1928
1929        if (off < 0)
1930                off = (off - 500) / 1000;
1931        else
1932                off = (off + 500) / 1000;
1933
1934        do {
1935                if (state->drxd_state != DRXD_STOPPED)
1936                        return -1;
1937                status = ResetECOD(state);
1938                if (status < 0)
1939                        break;
1940                if (state->type_A) {
1941                        status = InitSC(state);
1942                        if (status < 0)
1943                                break;
1944                } else {
1945                        status = InitFT(state);
1946                        if (status < 0)
1947                                break;
1948                        status = InitCP(state);
1949                        if (status < 0)
1950                                break;
1951                        status = InitCE(state);
1952                        if (status < 0)
1953                                break;
1954                        status = InitEQ(state);
1955                        if (status < 0)
1956                                break;
1957                        status = InitSC(state);
1958                        if (status < 0)
1959                                break;
1960                }
1961
1962                /* Restore current IF & RF AGC settings */
1963
1964                status = SetCfgIfAgc(state, &state->if_agc_cfg);
1965                if (status < 0)
1966                        break;
1967                status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1968                if (status < 0)
1969                        break;
1970
1971                mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
1972
1973                switch (p->transmission_mode) {
1974                default:        /* Not set, detect it automatically */
1975                        operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1976                        /* fall through , try first guess DRX_FFTMODE_8K */
1977                case TRANSMISSION_MODE_8K:
1978                        transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1979                        if (state->type_A) {
1980                                status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1981                                if (status < 0)
1982                                        break;
1983                                qpskSnCeGain = 99;
1984                                qam16SnCeGain = 83;
1985                                qam64SnCeGain = 67;
1986                        }
1987                        break;
1988                case TRANSMISSION_MODE_2K:
1989                        transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1990                        if (state->type_A) {
1991                                status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1992                                if (status < 0)
1993                                        break;
1994                                qpskSnCeGain = 97;
1995                                qam16SnCeGain = 71;
1996                                qam64SnCeGain = 65;
1997                        }
1998                        break;
1999                }
2000
2001                switch (p->guard_interval) {
2002                case GUARD_INTERVAL_1_4:
2003                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2004                        break;
2005                case GUARD_INTERVAL_1_8:
2006                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
2007                        break;
2008                case GUARD_INTERVAL_1_16:
2009                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2010                        break;
2011                case GUARD_INTERVAL_1_32:
2012                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2013                        break;
2014                default:        /* Not set, detect it automatically */
2015                        operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2016                        /* try first guess 1/4 */
2017                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2018                        break;
2019                }
2020
2021                switch (p->hierarchy) {
2022                case HIERARCHY_1:
2023                        transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2024                        if (state->type_A) {
2025                                status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2026                                if (status < 0)
2027                                        break;
2028                                status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2029                                if (status < 0)
2030                                        break;
2031
2032                                qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2033                                qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2034                                qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2035
2036                                qpskIsGainMan =
2037                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2038                                qam16IsGainMan =
2039                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2040                                qam64IsGainMan =
2041                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2042
2043                                qpskIsGainExp =
2044                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2045                                qam16IsGainExp =
2046                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2047                                qam64IsGainExp =
2048                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2049                        }
2050                        break;
2051
2052                case HIERARCHY_2:
2053                        transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2054                        if (state->type_A) {
2055                                status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2056                                if (status < 0)
2057                                        break;
2058                                status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2059                                if (status < 0)
2060                                        break;
2061
2062                                qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2063                                qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2064                                qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2065
2066                                qpskIsGainMan =
2067                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2068                                qam16IsGainMan =
2069                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2070                                qam64IsGainMan =
2071                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2072
2073                                qpskIsGainExp =
2074                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2075                                qam16IsGainExp =
2076                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2077                                qam64IsGainExp =
2078                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2079                        }
2080                        break;
2081                case HIERARCHY_4:
2082                        transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2083                        if (state->type_A) {
2084                                status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2085                                if (status < 0)
2086                                        break;
2087                                status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2088                                if (status < 0)
2089                                        break;
2090
2091                                qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2092                                qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2093                                qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2094
2095                                qpskIsGainMan =
2096                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2097                                qam16IsGainMan =
2098                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2099                                qam64IsGainMan =
2100                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2101
2102                                qpskIsGainExp =
2103                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2104                                qam16IsGainExp =
2105                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2106                                qam64IsGainExp =
2107                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2108                        }
2109                        break;
2110                case HIERARCHY_AUTO:
2111                default:
2112                        /* Not set, detect it automatically, start with none */
2113                        operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2114                        transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2115                        if (state->type_A) {
2116                                status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2117                                if (status < 0)
2118                                        break;
2119                                status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2120                                if (status < 0)
2121                                        break;
2122
2123                                qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2124                                qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2125                                qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2126
2127                                qpskIsGainMan =
2128                                    SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2129                                qam16IsGainMan =
2130                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2131                                qam64IsGainMan =
2132                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2133
2134                                qpskIsGainExp =
2135                                    SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2136                                qam16IsGainExp =
2137                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2138                                qam64IsGainExp =
2139                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2140                        }
2141                        break;
2142                }
2143                status = status;
2144                if (status < 0)
2145                        break;
2146
2147                switch (p->modulation) {
2148                default:
2149                        operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2150                        /* fall through , try first guess
2151                           DRX_CONSTELLATION_QAM64 */
2152                case QAM_64:
2153                        transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2154                        if (state->type_A) {
2155                                status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2156                                if (status < 0)
2157                                        break;
2158                                status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2159                                if (status < 0)
2160                                        break;
2161                                status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2162                                if (status < 0)
2163                                        break;
2164                                status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2165                                if (status < 0)
2166                                        break;
2167                                status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2168                                if (status < 0)
2169                                        break;
2170
2171                                status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2172                                if (status < 0)
2173                                        break;
2174                                status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2175                                if (status < 0)
2176                                        break;
2177                                status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2178                                if (status < 0)
2179                                        break;
2180                                status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2181                                if (status < 0)
2182                                        break;
2183                        }
2184                        break;
2185                case QPSK:
2186                        transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2187                        if (state->type_A) {
2188                                status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2189                                if (status < 0)
2190                                        break;
2191                                status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2192                                if (status < 0)
2193                                        break;
2194                                status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2195                                if (status < 0)
2196                                        break;
2197                                status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2198                                if (status < 0)
2199                                        break;
2200                                status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2201                                if (status < 0)
2202                                        break;
2203
2204                                status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2205                                if (status < 0)
2206                                        break;
2207                                status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2208                                if (status < 0)
2209                                        break;
2210                                status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2211                                if (status < 0)
2212                                        break;
2213                                status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2214                                if (status < 0)
2215                                        break;
2216                        }
2217                        break;
2218
2219                case QAM_16:
2220                        transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2221                        if (state->type_A) {
2222                                status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2223                                if (status < 0)
2224                                        break;
2225                                status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2226                                if (status < 0)
2227                                        break;
2228                                status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2229                                if (status < 0)
2230                                        break;
2231                                status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2232                                if (status < 0)
2233                                        break;
2234                                status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2235                                if (status < 0)
2236                                        break;
2237
2238                                status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2239                                if (status < 0)
2240                                        break;
2241                                status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2242                                if (status < 0)
2243                                        break;
2244                                status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2245                                if (status < 0)
2246                                        break;
2247                                status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2248                                if (status < 0)
2249                                        break;
2250                        }
2251                        break;
2252
2253                }
2254                status = status;
2255                if (status < 0)
2256                        break;
2257
2258                switch (DRX_CHANNEL_HIGH) {
2259                default:
2260                case DRX_CHANNEL_AUTO:
2261                case DRX_CHANNEL_LOW:
2262                        transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2263                        status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2264                        if (status < 0)
2265                                break;
2266                        break;
2267                case DRX_CHANNEL_HIGH:
2268                        transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2269                        status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2270                        if (status < 0)
2271                                break;
2272                        break;
2273
2274                }
2275
2276                switch (p->code_rate_HP) {
2277                case FEC_1_2:
2278                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2279                        if (state->type_A) {
2280                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2281                                if (status < 0)
2282                                        break;
2283                        }
2284                        break;
2285                default:
2286                        operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2287                case FEC_2_3:
2288                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2289                        if (state->type_A) {
2290                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2291                                if (status < 0)
2292                                        break;
2293                        }
2294                        break;
2295                case FEC_3_4:
2296                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2297                        if (state->type_A) {
2298                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2299                                if (status < 0)
2300                                        break;
2301                        }
2302                        break;
2303                case FEC_5_6:
2304                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2305                        if (state->type_A) {
2306                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2307                                if (status < 0)
2308                                        break;
2309                        }
2310                        break;
2311                case FEC_7_8:
2312                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2313                        if (state->type_A) {
2314                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2315                                if (status < 0)
2316                                        break;
2317                        }
2318                        break;
2319                }
2320                status = status;
2321                if (status < 0)
2322                        break;
2323
2324                /* First determine real bandwidth (Hz) */
2325                /* Also set delay for impulse noise cruncher (only A2) */
2326                /* Also set parameters for EC_OC fix, note
2327                   EC_OC_REG_TMD_HIL_MAR is changed
2328                   by SC for fix for some 8K,1/8 guard but is restored by
2329                   InitEC and ResetEC
2330                   functions */
2331                switch (p->bandwidth_hz) {
2332                case 0:
2333                        p->bandwidth_hz = 8000000;
2334                        /* fall through */
2335                case 8000000:
2336                        /* (64/7)*(8/8)*1000000 */
2337                        bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2338
2339                        bandwidthParam = 0;
2340                        status = Write16(state,
2341                                         FE_AG_REG_IND_DEL__A, 50, 0x0000);
2342                        break;
2343                case 7000000:
2344                        /* (64/7)*(7/8)*1000000 */
2345                        bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2346                        bandwidthParam = 0x4807;        /*binary:0100 1000 0000 0111 */
2347                        status = Write16(state,
2348                                         FE_AG_REG_IND_DEL__A, 59, 0x0000);
2349                        break;
2350                case 6000000:
2351                        /* (64/7)*(6/8)*1000000 */
2352                        bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2353                        bandwidthParam = 0x0F07;        /*binary: 0000 1111 0000 0111 */
2354                        status = Write16(state,
2355                                         FE_AG_REG_IND_DEL__A, 71, 0x0000);
2356                        break;
2357                default:
2358                        status = -EINVAL;
2359                }
2360                if (status < 0)
2361                        break;
2362
2363                status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2364                if (status < 0)
2365                        break;
2366
2367                {
2368                        u16 sc_config;
2369                        status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2370                        if (status < 0)
2371                                break;
2372
2373                        /* enable SLAVE mode in 2k 1/32 to
2374                           prevent timing change glitches */
2375                        if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2376                            (p->guard_interval == GUARD_INTERVAL_1_32)) {
2377                                /* enable slave */
2378                                sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2379                        } else {
2380                                /* disable slave */
2381                                sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2382                        }
2383                        status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2384                        if (status < 0)
2385                                break;
2386                }
2387
2388                status = SetCfgNoiseCalibration(state, &state->noise_cal);
2389                if (status < 0)
2390                        break;
2391
2392                if (state->cscd_state == CSCD_INIT) {
2393                        /* switch on SRMM scan in SC */
2394                        status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2395                        if (status < 0)
2396                                break;
2397/*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2398                        state->cscd_state = CSCD_SET;
2399                }
2400
2401                /* Now compute FE_IF_REG_INCR */
2402                /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2403                   ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2404                feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2405                                    (1ULL << 21), bandwidth) - (1 << 23);
2406                status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2407                if (status < 0)
2408                        break;
2409                status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2410                if (status < 0)
2411                        break;
2412                /* Bandwidth setting done */
2413
2414                /* Mirror & frequency offset */
2415                SetFrequencyShift(state, off, mirrorFreqSpect);
2416
2417                /* Start SC, write channel settings to SC */
2418
2419                /* Enable SC after setting all other parameters */
2420                status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2421                if (status < 0)
2422                        break;
2423                status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2424                if (status < 0)
2425                        break;
2426
2427                /* Write SC parameter registers, operation mode */
2428#if 1
2429                operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2430                                 SC_RA_RAM_OP_AUTO_GUARD__M |
2431                                 SC_RA_RAM_OP_AUTO_CONST__M |
2432                                 SC_RA_RAM_OP_AUTO_HIER__M |
2433                                 SC_RA_RAM_OP_AUTO_RATE__M);
2434#endif
2435                status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2436                if (status < 0)
2437                        break;
2438
2439                /* Start correct processes to get in lock */
2440                status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2441                if (status < 0)
2442                        break;
2443
2444                status = StartOC(state);
2445                if (status < 0)
2446                        break;
2447
2448                if (state->operation_mode != OM_Default) {
2449                        status = StartDiversity(state);
2450                        if (status < 0)
2451                                break;
2452                }
2453
2454                state->drxd_state = DRXD_STARTED;
2455        } while (0);
2456
2457        return status;
2458}
2459
2460static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2461{
2462        u32 ulRfAgcOutputLevel = 0xffffffff;
2463        u32 ulRfAgcSettleLevel = 528;   /* Optimum value for MT2060 */
2464        u32 ulRfAgcMinLevel = 0;        /* Currently unused */
2465        u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */
2466        u32 ulRfAgcSpeed = 0;   /* Currently unused */
2467        u32 ulRfAgcMode = 0;    /*2;   Off */
2468        u32 ulRfAgcR1 = 820;
2469        u32 ulRfAgcR2 = 2200;
2470        u32 ulRfAgcR3 = 150;
2471        u32 ulIfAgcMode = 0;    /* Auto */
2472        u32 ulIfAgcOutputLevel = 0xffffffff;
2473        u32 ulIfAgcSettleLevel = 0xffffffff;
2474        u32 ulIfAgcMinLevel = 0xffffffff;
2475        u32 ulIfAgcMaxLevel = 0xffffffff;
2476        u32 ulIfAgcSpeed = 0xffffffff;
2477        u32 ulIfAgcR1 = 820;
2478        u32 ulIfAgcR2 = 2200;
2479        u32 ulIfAgcR3 = 150;
2480        u32 ulClock = state->config.clock;
2481        u32 ulSerialMode = 0;
2482        u32 ulEcOcRegOcModeLop = 4;     /* Dynamic DTO source */
2483        u32 ulHiI2cDelay = HI_I2C_DELAY;
2484        u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2485        u32 ulHiI2cPatch = 0;
2486        u32 ulEnvironment = APPENV_PORTABLE;
2487        u32 ulEnvironmentDiversity = APPENV_MOBILE;
2488        u32 ulIFFilter = IFFILTER_SAW;
2489
2490        state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2491        state->if_agc_cfg.outputLevel = 0;
2492        state->if_agc_cfg.settleLevel = 140;
2493        state->if_agc_cfg.minOutputLevel = 0;
2494        state->if_agc_cfg.maxOutputLevel = 1023;
2495        state->if_agc_cfg.speed = 904;
2496
2497        if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2498                state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2499                state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2500        }
2501
2502        if (ulIfAgcMode == 0 &&
2503            ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2504            ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2505            ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2506            ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2507                state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2508                state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2509                state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2510                state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2511                state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2512        }
2513
2514        state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2515        state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2516        state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2517
2518        state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2519        state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2520        state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2521
2522        state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2523        /* rest of the RFAgcCfg structure currently unused */
2524        if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2525                state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2526                state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2527        }
2528
2529        if (ulRfAgcMode == 0 &&
2530            ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2531            ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2532            ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2533            ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2534                state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2535                state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2536                state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2537                state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2538                state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2539        }
2540
2541        if (ulRfAgcMode == 2)
2542                state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2543
2544        if (ulEnvironment <= 2)
2545                state->app_env_default = (enum app_env)
2546                    (ulEnvironment);
2547        if (ulEnvironmentDiversity <= 2)
2548                state->app_env_diversity = (enum app_env)
2549                    (ulEnvironmentDiversity);
2550
2551        if (ulIFFilter == IFFILTER_DISCRETE) {
2552                /* discrete filter */
2553                state->noise_cal.cpOpt = 0;
2554                state->noise_cal.cpNexpOfs = 40;
2555                state->noise_cal.tdCal2k = -40;
2556                state->noise_cal.tdCal8k = -24;
2557        } else {
2558                /* SAW filter */
2559                state->noise_cal.cpOpt = 1;
2560                state->noise_cal.cpNexpOfs = 0;
2561                state->noise_cal.tdCal2k = -21;
2562                state->noise_cal.tdCal8k = -24;
2563        }
2564        state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2565
2566        state->chip_adr = (state->config.demod_address << 1) | 1;
2567        switch (ulHiI2cPatch) {
2568        case 1:
2569                state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2570                break;
2571        case 3:
2572                state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2573                break;
2574        default:
2575                state->m_HiI2cPatch = NULL;
2576        }
2577
2578        /* modify tuner and clock attributes */
2579        state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2580        /* expected system clock frequency in kHz */
2581        state->expected_sys_clock_freq = 48000;
2582        /* real system clock frequency in kHz */
2583        state->sys_clock_freq = 48000;
2584        state->osc_clock_freq = (u16) ulClock;
2585        state->osc_clock_deviation = 0;
2586        state->cscd_state = CSCD_INIT;
2587        state->drxd_state = DRXD_UNINITIALIZED;
2588
2589        state->PGA = 0;
2590        state->type_A = 0;
2591        state->tuner_mirrors = 0;
2592
2593        /* modify MPEG output attributes */
2594        state->insert_rs_byte = state->config.insert_rs_byte;
2595        state->enable_parallel = (ulSerialMode != 1);
2596
2597        /* Timing div, 250ns/Psys */
2598        /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2599
2600        state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2601                                          ulHiI2cDelay) / 1000;
2602        /* Bridge delay, uses oscilator clock */
2603        /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2604        state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2605                                            ulHiI2cBridgeDelay) / 1000;
2606
2607        state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2608        /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2609        state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2610        return 0;
2611}
2612
2613static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
2614{
2615        int status = 0;
2616        u32 driverVersion;
2617
2618        if (state->init_done)
2619                return 0;
2620
2621        CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2622
2623        do {
2624                state->operation_mode = OM_Default;
2625
2626                status = SetDeviceTypeId(state);
2627                if (status < 0)
2628                        break;
2629
2630                /* Apply I2c address patch to B1 */
2631                if (!state->type_A && state->m_HiI2cPatch != NULL) {
2632                        status = WriteTable(state, state->m_HiI2cPatch);
2633                        if (status < 0)
2634                                break;
2635                }
2636
2637                if (state->type_A) {
2638                        /* HI firmware patch for UIO readout,
2639                           avoid clearing of result register */
2640                        status = Write16(state, 0x43012D, 0x047f, 0);
2641                        if (status < 0)
2642                                break;
2643                }
2644
2645                status = HI_ResetCommand(state);
2646                if (status < 0)
2647                        break;
2648
2649                status = StopAllProcessors(state);
2650                if (status < 0)
2651                        break;
2652                status = InitCC(state);
2653                if (status < 0)
2654                        break;
2655
2656                state->osc_clock_deviation = 0;
2657
2658                if (state->config.osc_deviation)
2659                        state->osc_clock_deviation =
2660                            state->config.osc_deviation(state->priv, 0, 0);
2661                {
2662                        /* Handle clock deviation */
2663                        s32 devB;
2664                        s32 devA = (s32) (state->osc_clock_deviation) *
2665                            (s32) (state->expected_sys_clock_freq);
2666                        /* deviation in kHz */
2667                        s32 deviation = (devA / (1000000L));
2668                        /* rounding, signed */
2669                        if (devA > 0)
2670                                devB = (2);
2671                        else
2672                                devB = (-2);
2673                        if ((devB * (devA % 1000000L) > 1000000L)) {
2674                                /* add +1 or -1 */
2675                                deviation += (devB / 2);
2676                        }
2677
2678                        state->sys_clock_freq =
2679                            (u16) ((state->expected_sys_clock_freq) +
2680                                   deviation);
2681                }
2682                status = InitHI(state);
2683                if (status < 0)
2684                        break;
2685                status = InitAtomicRead(state);
2686                if (status < 0)
2687                        break;
2688
2689                status = EnableAndResetMB(state);
2690                if (status < 0)
2691                        break;
2692                if (state->type_A) {
2693                        status = ResetCEFR(state);
2694                        if (status < 0)
2695                                break;
2696                }
2697                if (fw) {
2698                        status = DownloadMicrocode(state, fw, fw_size);
2699                        if (status < 0)
2700                                break;
2701                } else {
2702                        status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2703                        if (status < 0)
2704                                break;
2705                }
2706
2707                if (state->PGA) {
2708                        state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2709                        SetCfgPga(state, 0);    /* PGA = 0 dB */
2710                } else {
2711                        state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2712                }
2713
2714                state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2715
2716                status = InitFE(state);
2717                if (status < 0)
2718                        break;
2719                status = InitFT(state);
2720                if (status < 0)
2721                        break;
2722                status = InitCP(state);
2723                if (status < 0)
2724                        break;
2725                status = InitCE(state);
2726                if (status < 0)
2727                        break;
2728                status = InitEQ(state);
2729                if (status < 0)
2730                        break;
2731                status = InitEC(state);
2732                if (status < 0)
2733                        break;
2734                status = InitSC(state);
2735                if (status < 0)
2736                        break;
2737
2738                status = SetCfgIfAgc(state, &state->if_agc_cfg);
2739                if (status < 0)
2740                        break;
2741                status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2742                if (status < 0)
2743                        break;
2744
2745                state->cscd_state = CSCD_INIT;
2746                status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2747                if (status < 0)
2748                        break;
2749                status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2750                if (status < 0)
2751                        break;
2752
2753                driverVersion = (((VERSION_MAJOR / 10) << 4) +
2754                                 (VERSION_MAJOR % 10)) << 24;
2755                driverVersion += (((VERSION_MINOR / 10) << 4) +
2756                                  (VERSION_MINOR % 10)) << 16;
2757                driverVersion += ((VERSION_PATCH / 1000) << 12) +
2758                    ((VERSION_PATCH / 100) << 8) +
2759                    ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2760
2761                status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2762                if (status < 0)
2763                        break;
2764
2765                status = StopOC(state);
2766                if (status < 0)
2767                        break;
2768
2769                state->drxd_state = DRXD_STOPPED;
2770                state->init_done = 1;
2771                status = 0;
2772        } while (0);
2773        return status;
2774}
2775
2776static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
2777{
2778        DRX_GetLockStatus(state, pLockStatus);
2779
2780        /*if (*pLockStatus&DRX_LOCK_MPEG) */
2781        if (*pLockStatus & DRX_LOCK_FEC) {
2782                ConfigureMPEGOutput(state, 1);
2783                /* Get status again, in case we have MPEG lock now */
2784                /*DRX_GetLockStatus(state, pLockStatus); */
2785        }
2786
2787        return 0;
2788}
2789
2790/****************************************************************************/
2791/****************************************************************************/
2792/****************************************************************************/
2793
2794static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2795{
2796        struct drxd_state *state = fe->demodulator_priv;
2797        u32 value;
2798        int res;
2799
2800        res = ReadIFAgc(state, &value);
2801        if (res < 0)
2802                *strength = 0;
2803        else
2804                *strength = 0xffff - (value << 4);
2805        return 0;
2806}
2807
2808static int drxd_read_status(struct dvb_frontend *fe, enum fe_status *status)
2809{
2810        struct drxd_state *state = fe->demodulator_priv;
2811        u32 lock;
2812
2813        DRXD_status(state, &lock);
2814        *status = 0;
2815        /* No MPEG lock in V255 firmware, bug ? */
2816#if 1
2817        if (lock & DRX_LOCK_MPEG)
2818                *status |= FE_HAS_LOCK;
2819#else
2820        if (lock & DRX_LOCK_FEC)
2821                *status |= FE_HAS_LOCK;
2822#endif
2823        if (lock & DRX_LOCK_FEC)
2824                *status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2825        if (lock & DRX_LOCK_DEMOD)
2826                *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2827
2828        return 0;
2829}
2830
2831static int drxd_init(struct dvb_frontend *fe)
2832{
2833        struct drxd_state *state = fe->demodulator_priv;
2834
2835        return DRXD_init(state, NULL, 0);
2836}
2837
2838static int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2839{
2840        struct drxd_state *state = fe->demodulator_priv;
2841
2842        if (state->config.disable_i2c_gate_ctrl == 1)
2843                return 0;
2844
2845        return DRX_ConfigureI2CBridge(state, onoff);
2846}
2847
2848static int drxd_get_tune_settings(struct dvb_frontend *fe,
2849                                  struct dvb_frontend_tune_settings *sets)
2850{
2851        sets->min_delay_ms = 10000;
2852        sets->max_drift = 0;
2853        sets->step_size = 0;
2854        return 0;
2855}
2856
2857static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2858{
2859        *ber = 0;
2860        return 0;
2861}
2862
2863static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2864{
2865        *snr = 0;
2866        return 0;
2867}
2868
2869static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2870{
2871        *ucblocks = 0;
2872        return 0;
2873}
2874
2875static int drxd_sleep(struct dvb_frontend *fe)
2876{
2877        struct drxd_state *state = fe->demodulator_priv;
2878
2879        ConfigureMPEGOutput(state, 0);
2880        return 0;
2881}
2882
2883static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2884{
2885        return drxd_config_i2c(fe, enable);
2886}
2887
2888static int drxd_set_frontend(struct dvb_frontend *fe)
2889{
2890        struct dtv_frontend_properties *p = &fe->dtv_property_cache;
2891        struct drxd_state *state = fe->demodulator_priv;
2892        s32 off = 0;
2893
2894        state->props = *p;
2895        DRX_Stop(state);
2896
2897        if (fe->ops.tuner_ops.set_params) {
2898                fe->ops.tuner_ops.set_params(fe);
2899                if (fe->ops.i2c_gate_ctrl)
2900                        fe->ops.i2c_gate_ctrl(fe, 0);
2901        }
2902
2903        msleep(200);
2904
2905        return DRX_Start(state, off);
2906}
2907
2908static void drxd_release(struct dvb_frontend *fe)
2909{
2910        struct drxd_state *state = fe->demodulator_priv;
2911
2912        kfree(state);
2913}
2914
2915static const struct dvb_frontend_ops drxd_ops = {
2916        .delsys = { SYS_DVBT},
2917        .info = {
2918                 .name = "Micronas DRXD DVB-T",
2919                 .frequency_min = 47125000,
2920                 .frequency_max = 855250000,
2921                 .frequency_stepsize = 166667,
2922                 .frequency_tolerance = 0,
2923                 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2924                 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2925                 FE_CAN_FEC_AUTO |
2926                 FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2927                 FE_CAN_QAM_AUTO |
2928                 FE_CAN_TRANSMISSION_MODE_AUTO |
2929                 FE_CAN_GUARD_INTERVAL_AUTO |
2930                 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2931
2932        .release = drxd_release,
2933        .init = drxd_init,
2934        .sleep = drxd_sleep,
2935        .i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2936
2937        .set_frontend = drxd_set_frontend,
2938        .get_tune_settings = drxd_get_tune_settings,
2939
2940        .read_status = drxd_read_status,
2941        .read_ber = drxd_read_ber,
2942        .read_signal_strength = drxd_read_signal_strength,
2943        .read_snr = drxd_read_snr,
2944        .read_ucblocks = drxd_read_ucblocks,
2945};
2946
2947struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2948                                 void *priv, struct i2c_adapter *i2c,
2949                                 struct device *dev)
2950{
2951        struct drxd_state *state = NULL;
2952
2953        state = kzalloc(sizeof(*state), GFP_KERNEL);
2954        if (!state)
2955                return NULL;
2956
2957        state->ops = drxd_ops;
2958        state->dev = dev;
2959        state->config = *config;
2960        state->i2c = i2c;
2961        state->priv = priv;
2962
2963        mutex_init(&state->mutex);
2964
2965        if (Read16(state, 0, NULL, 0) < 0)
2966                goto error;
2967
2968        state->frontend.ops = drxd_ops;
2969        state->frontend.demodulator_priv = state;
2970        ConfigureMPEGOutput(state, 0);
2971        /* add few initialization to allow gate control */
2972        CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2973        InitHI(state);
2974
2975        return &state->frontend;
2976
2977error:
2978        printk(KERN_ERR "drxd: not found\n");
2979        kfree(state);
2980        return NULL;
2981}
2982EXPORT_SYMBOL(drxd_attach);
2983
2984MODULE_DESCRIPTION("DRXD driver");
2985MODULE_AUTHOR("Micronas");
2986MODULE_LICENSE("GPL");
2987