linux/drivers/media/rc/rc-main.c
<<
>>
Prefs
   1/* rc-main.c - Remote Controller core module
   2 *
   3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 *  it under the terms of the GNU General Public License as published by
   7 *  the Free Software Foundation version 2 of the License.
   8 *
   9 *  This program is distributed in the hope that it will be useful,
  10 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 *  GNU General Public License for more details.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <media/rc-core.h>
  18#include <linux/atomic.h>
  19#include <linux/spinlock.h>
  20#include <linux/delay.h>
  21#include <linux/input.h>
  22#include <linux/leds.h>
  23#include <linux/slab.h>
  24#include <linux/idr.h>
  25#include <linux/device.h>
  26#include <linux/module.h>
  27#include "rc-core-priv.h"
  28
  29/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
  30#define IR_TAB_MIN_SIZE 256
  31#define IR_TAB_MAX_SIZE 8192
  32#define RC_DEV_MAX      256
  33
  34/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
  35#define IR_KEYPRESS_TIMEOUT 250
  36
  37/* Used to keep track of known keymaps */
  38static LIST_HEAD(rc_map_list);
  39static DEFINE_SPINLOCK(rc_map_lock);
  40static struct led_trigger *led_feedback;
  41
  42/* Used to keep track of rc devices */
  43static DEFINE_IDA(rc_ida);
  44
  45static struct rc_map_list *seek_rc_map(const char *name)
  46{
  47        struct rc_map_list *map = NULL;
  48
  49        spin_lock(&rc_map_lock);
  50        list_for_each_entry(map, &rc_map_list, list) {
  51                if (!strcmp(name, map->map.name)) {
  52                        spin_unlock(&rc_map_lock);
  53                        return map;
  54                }
  55        }
  56        spin_unlock(&rc_map_lock);
  57
  58        return NULL;
  59}
  60
  61struct rc_map *rc_map_get(const char *name)
  62{
  63
  64        struct rc_map_list *map;
  65
  66        map = seek_rc_map(name);
  67#ifdef CONFIG_MODULES
  68        if (!map) {
  69                int rc = request_module("%s", name);
  70                if (rc < 0) {
  71                        pr_err("Couldn't load IR keymap %s\n", name);
  72                        return NULL;
  73                }
  74                msleep(20);     /* Give some time for IR to register */
  75
  76                map = seek_rc_map(name);
  77        }
  78#endif
  79        if (!map) {
  80                pr_err("IR keymap %s not found\n", name);
  81                return NULL;
  82        }
  83
  84        printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
  85
  86        return &map->map;
  87}
  88EXPORT_SYMBOL_GPL(rc_map_get);
  89
  90int rc_map_register(struct rc_map_list *map)
  91{
  92        spin_lock(&rc_map_lock);
  93        list_add_tail(&map->list, &rc_map_list);
  94        spin_unlock(&rc_map_lock);
  95        return 0;
  96}
  97EXPORT_SYMBOL_GPL(rc_map_register);
  98
  99void rc_map_unregister(struct rc_map_list *map)
 100{
 101        spin_lock(&rc_map_lock);
 102        list_del(&map->list);
 103        spin_unlock(&rc_map_lock);
 104}
 105EXPORT_SYMBOL_GPL(rc_map_unregister);
 106
 107
 108static struct rc_map_table empty[] = {
 109        { 0x2a, KEY_COFFEE },
 110};
 111
 112static struct rc_map_list empty_map = {
 113        .map = {
 114                .scan    = empty,
 115                .size    = ARRAY_SIZE(empty),
 116                .rc_type = RC_TYPE_UNKNOWN,     /* Legacy IR type */
 117                .name    = RC_MAP_EMPTY,
 118        }
 119};
 120
 121/**
 122 * ir_create_table() - initializes a scancode table
 123 * @rc_map:     the rc_map to initialize
 124 * @name:       name to assign to the table
 125 * @rc_type:    ir type to assign to the new table
 126 * @size:       initial size of the table
 127 * @return:     zero on success or a negative error code
 128 *
 129 * This routine will initialize the rc_map and will allocate
 130 * memory to hold at least the specified number of elements.
 131 */
 132static int ir_create_table(struct rc_map *rc_map,
 133                           const char *name, u64 rc_type, size_t size)
 134{
 135        rc_map->name = kstrdup(name, GFP_KERNEL);
 136        if (!rc_map->name)
 137                return -ENOMEM;
 138        rc_map->rc_type = rc_type;
 139        rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
 140        rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
 141        rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
 142        if (!rc_map->scan) {
 143                kfree(rc_map->name);
 144                rc_map->name = NULL;
 145                return -ENOMEM;
 146        }
 147
 148        IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
 149                   rc_map->size, rc_map->alloc);
 150        return 0;
 151}
 152
 153/**
 154 * ir_free_table() - frees memory allocated by a scancode table
 155 * @rc_map:     the table whose mappings need to be freed
 156 *
 157 * This routine will free memory alloctaed for key mappings used by given
 158 * scancode table.
 159 */
 160static void ir_free_table(struct rc_map *rc_map)
 161{
 162        rc_map->size = 0;
 163        kfree(rc_map->name);
 164        rc_map->name = NULL;
 165        kfree(rc_map->scan);
 166        rc_map->scan = NULL;
 167}
 168
 169/**
 170 * ir_resize_table() - resizes a scancode table if necessary
 171 * @rc_map:     the rc_map to resize
 172 * @gfp_flags:  gfp flags to use when allocating memory
 173 * @return:     zero on success or a negative error code
 174 *
 175 * This routine will shrink the rc_map if it has lots of
 176 * unused entries and grow it if it is full.
 177 */
 178static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
 179{
 180        unsigned int oldalloc = rc_map->alloc;
 181        unsigned int newalloc = oldalloc;
 182        struct rc_map_table *oldscan = rc_map->scan;
 183        struct rc_map_table *newscan;
 184
 185        if (rc_map->size == rc_map->len) {
 186                /* All entries in use -> grow keytable */
 187                if (rc_map->alloc >= IR_TAB_MAX_SIZE)
 188                        return -ENOMEM;
 189
 190                newalloc *= 2;
 191                IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
 192        }
 193
 194        if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
 195                /* Less than 1/3 of entries in use -> shrink keytable */
 196                newalloc /= 2;
 197                IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
 198        }
 199
 200        if (newalloc == oldalloc)
 201                return 0;
 202
 203        newscan = kmalloc(newalloc, gfp_flags);
 204        if (!newscan) {
 205                IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
 206                return -ENOMEM;
 207        }
 208
 209        memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
 210        rc_map->scan = newscan;
 211        rc_map->alloc = newalloc;
 212        rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
 213        kfree(oldscan);
 214        return 0;
 215}
 216
 217/**
 218 * ir_update_mapping() - set a keycode in the scancode->keycode table
 219 * @dev:        the struct rc_dev device descriptor
 220 * @rc_map:     scancode table to be adjusted
 221 * @index:      index of the mapping that needs to be updated
 222 * @keycode:    the desired keycode
 223 * @return:     previous keycode assigned to the mapping
 224 *
 225 * This routine is used to update scancode->keycode mapping at given
 226 * position.
 227 */
 228static unsigned int ir_update_mapping(struct rc_dev *dev,
 229                                      struct rc_map *rc_map,
 230                                      unsigned int index,
 231                                      unsigned int new_keycode)
 232{
 233        int old_keycode = rc_map->scan[index].keycode;
 234        int i;
 235
 236        /* Did the user wish to remove the mapping? */
 237        if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
 238                IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
 239                           index, rc_map->scan[index].scancode);
 240                rc_map->len--;
 241                memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
 242                        (rc_map->len - index) * sizeof(struct rc_map_table));
 243        } else {
 244                IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
 245                           index,
 246                           old_keycode == KEY_RESERVED ? "New" : "Replacing",
 247                           rc_map->scan[index].scancode, new_keycode);
 248                rc_map->scan[index].keycode = new_keycode;
 249                __set_bit(new_keycode, dev->input_dev->keybit);
 250        }
 251
 252        if (old_keycode != KEY_RESERVED) {
 253                /* A previous mapping was updated... */
 254                __clear_bit(old_keycode, dev->input_dev->keybit);
 255                /* ... but another scancode might use the same keycode */
 256                for (i = 0; i < rc_map->len; i++) {
 257                        if (rc_map->scan[i].keycode == old_keycode) {
 258                                __set_bit(old_keycode, dev->input_dev->keybit);
 259                                break;
 260                        }
 261                }
 262
 263                /* Possibly shrink the keytable, failure is not a problem */
 264                ir_resize_table(rc_map, GFP_ATOMIC);
 265        }
 266
 267        return old_keycode;
 268}
 269
 270/**
 271 * ir_establish_scancode() - set a keycode in the scancode->keycode table
 272 * @dev:        the struct rc_dev device descriptor
 273 * @rc_map:     scancode table to be searched
 274 * @scancode:   the desired scancode
 275 * @resize:     controls whether we allowed to resize the table to
 276 *              accommodate not yet present scancodes
 277 * @return:     index of the mapping containing scancode in question
 278 *              or -1U in case of failure.
 279 *
 280 * This routine is used to locate given scancode in rc_map.
 281 * If scancode is not yet present the routine will allocate a new slot
 282 * for it.
 283 */
 284static unsigned int ir_establish_scancode(struct rc_dev *dev,
 285                                          struct rc_map *rc_map,
 286                                          unsigned int scancode,
 287                                          bool resize)
 288{
 289        unsigned int i;
 290
 291        /*
 292         * Unfortunately, some hardware-based IR decoders don't provide
 293         * all bits for the complete IR code. In general, they provide only
 294         * the command part of the IR code. Yet, as it is possible to replace
 295         * the provided IR with another one, it is needed to allow loading
 296         * IR tables from other remotes. So, we support specifying a mask to
 297         * indicate the valid bits of the scancodes.
 298         */
 299        if (dev->scancode_mask)
 300                scancode &= dev->scancode_mask;
 301
 302        /* First check if we already have a mapping for this ir command */
 303        for (i = 0; i < rc_map->len; i++) {
 304                if (rc_map->scan[i].scancode == scancode)
 305                        return i;
 306
 307                /* Keytable is sorted from lowest to highest scancode */
 308                if (rc_map->scan[i].scancode >= scancode)
 309                        break;
 310        }
 311
 312        /* No previous mapping found, we might need to grow the table */
 313        if (rc_map->size == rc_map->len) {
 314                if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
 315                        return -1U;
 316        }
 317
 318        /* i is the proper index to insert our new keycode */
 319        if (i < rc_map->len)
 320                memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
 321                        (rc_map->len - i) * sizeof(struct rc_map_table));
 322        rc_map->scan[i].scancode = scancode;
 323        rc_map->scan[i].keycode = KEY_RESERVED;
 324        rc_map->len++;
 325
 326        return i;
 327}
 328
 329/**
 330 * ir_setkeycode() - set a keycode in the scancode->keycode table
 331 * @idev:       the struct input_dev device descriptor
 332 * @scancode:   the desired scancode
 333 * @keycode:    result
 334 * @return:     -EINVAL if the keycode could not be inserted, otherwise zero.
 335 *
 336 * This routine is used to handle evdev EVIOCSKEY ioctl.
 337 */
 338static int ir_setkeycode(struct input_dev *idev,
 339                         const struct input_keymap_entry *ke,
 340                         unsigned int *old_keycode)
 341{
 342        struct rc_dev *rdev = input_get_drvdata(idev);
 343        struct rc_map *rc_map = &rdev->rc_map;
 344        unsigned int index;
 345        unsigned int scancode;
 346        int retval = 0;
 347        unsigned long flags;
 348
 349        spin_lock_irqsave(&rc_map->lock, flags);
 350
 351        if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 352                index = ke->index;
 353                if (index >= rc_map->len) {
 354                        retval = -EINVAL;
 355                        goto out;
 356                }
 357        } else {
 358                retval = input_scancode_to_scalar(ke, &scancode);
 359                if (retval)
 360                        goto out;
 361
 362                index = ir_establish_scancode(rdev, rc_map, scancode, true);
 363                if (index >= rc_map->len) {
 364                        retval = -ENOMEM;
 365                        goto out;
 366                }
 367        }
 368
 369        *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
 370
 371out:
 372        spin_unlock_irqrestore(&rc_map->lock, flags);
 373        return retval;
 374}
 375
 376/**
 377 * ir_setkeytable() - sets several entries in the scancode->keycode table
 378 * @dev:        the struct rc_dev device descriptor
 379 * @to:         the struct rc_map to copy entries to
 380 * @from:       the struct rc_map to copy entries from
 381 * @return:     -ENOMEM if all keycodes could not be inserted, otherwise zero.
 382 *
 383 * This routine is used to handle table initialization.
 384 */
 385static int ir_setkeytable(struct rc_dev *dev,
 386                          const struct rc_map *from)
 387{
 388        struct rc_map *rc_map = &dev->rc_map;
 389        unsigned int i, index;
 390        int rc;
 391
 392        rc = ir_create_table(rc_map, from->name,
 393                             from->rc_type, from->size);
 394        if (rc)
 395                return rc;
 396
 397        IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
 398                   rc_map->size, rc_map->alloc);
 399
 400        for (i = 0; i < from->size; i++) {
 401                index = ir_establish_scancode(dev, rc_map,
 402                                              from->scan[i].scancode, false);
 403                if (index >= rc_map->len) {
 404                        rc = -ENOMEM;
 405                        break;
 406                }
 407
 408                ir_update_mapping(dev, rc_map, index,
 409                                  from->scan[i].keycode);
 410        }
 411
 412        if (rc)
 413                ir_free_table(rc_map);
 414
 415        return rc;
 416}
 417
 418/**
 419 * ir_lookup_by_scancode() - locate mapping by scancode
 420 * @rc_map:     the struct rc_map to search
 421 * @scancode:   scancode to look for in the table
 422 * @return:     index in the table, -1U if not found
 423 *
 424 * This routine performs binary search in RC keykeymap table for
 425 * given scancode.
 426 */
 427static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
 428                                          unsigned int scancode)
 429{
 430        int start = 0;
 431        int end = rc_map->len - 1;
 432        int mid;
 433
 434        while (start <= end) {
 435                mid = (start + end) / 2;
 436                if (rc_map->scan[mid].scancode < scancode)
 437                        start = mid + 1;
 438                else if (rc_map->scan[mid].scancode > scancode)
 439                        end = mid - 1;
 440                else
 441                        return mid;
 442        }
 443
 444        return -1U;
 445}
 446
 447/**
 448 * ir_getkeycode() - get a keycode from the scancode->keycode table
 449 * @idev:       the struct input_dev device descriptor
 450 * @scancode:   the desired scancode
 451 * @keycode:    used to return the keycode, if found, or KEY_RESERVED
 452 * @return:     always returns zero.
 453 *
 454 * This routine is used to handle evdev EVIOCGKEY ioctl.
 455 */
 456static int ir_getkeycode(struct input_dev *idev,
 457                         struct input_keymap_entry *ke)
 458{
 459        struct rc_dev *rdev = input_get_drvdata(idev);
 460        struct rc_map *rc_map = &rdev->rc_map;
 461        struct rc_map_table *entry;
 462        unsigned long flags;
 463        unsigned int index;
 464        unsigned int scancode;
 465        int retval;
 466
 467        spin_lock_irqsave(&rc_map->lock, flags);
 468
 469        if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 470                index = ke->index;
 471        } else {
 472                retval = input_scancode_to_scalar(ke, &scancode);
 473                if (retval)
 474                        goto out;
 475
 476                index = ir_lookup_by_scancode(rc_map, scancode);
 477        }
 478
 479        if (index < rc_map->len) {
 480                entry = &rc_map->scan[index];
 481
 482                ke->index = index;
 483                ke->keycode = entry->keycode;
 484                ke->len = sizeof(entry->scancode);
 485                memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
 486
 487        } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
 488                /*
 489                 * We do not really know the valid range of scancodes
 490                 * so let's respond with KEY_RESERVED to anything we
 491                 * do not have mapping for [yet].
 492                 */
 493                ke->index = index;
 494                ke->keycode = KEY_RESERVED;
 495        } else {
 496                retval = -EINVAL;
 497                goto out;
 498        }
 499
 500        retval = 0;
 501
 502out:
 503        spin_unlock_irqrestore(&rc_map->lock, flags);
 504        return retval;
 505}
 506
 507/**
 508 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
 509 * @dev:        the struct rc_dev descriptor of the device
 510 * @scancode:   the scancode to look for
 511 * @return:     the corresponding keycode, or KEY_RESERVED
 512 *
 513 * This routine is used by drivers which need to convert a scancode to a
 514 * keycode. Normally it should not be used since drivers should have no
 515 * interest in keycodes.
 516 */
 517u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
 518{
 519        struct rc_map *rc_map = &dev->rc_map;
 520        unsigned int keycode;
 521        unsigned int index;
 522        unsigned long flags;
 523
 524        spin_lock_irqsave(&rc_map->lock, flags);
 525
 526        index = ir_lookup_by_scancode(rc_map, scancode);
 527        keycode = index < rc_map->len ?
 528                        rc_map->scan[index].keycode : KEY_RESERVED;
 529
 530        spin_unlock_irqrestore(&rc_map->lock, flags);
 531
 532        if (keycode != KEY_RESERVED)
 533                IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
 534                           dev->input_name, scancode, keycode);
 535
 536        return keycode;
 537}
 538EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
 539
 540/**
 541 * ir_do_keyup() - internal function to signal the release of a keypress
 542 * @dev:        the struct rc_dev descriptor of the device
 543 * @sync:       whether or not to call input_sync
 544 *
 545 * This function is used internally to release a keypress, it must be
 546 * called with keylock held.
 547 */
 548static void ir_do_keyup(struct rc_dev *dev, bool sync)
 549{
 550        if (!dev->keypressed)
 551                return;
 552
 553        IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
 554        input_report_key(dev->input_dev, dev->last_keycode, 0);
 555        led_trigger_event(led_feedback, LED_OFF);
 556        if (sync)
 557                input_sync(dev->input_dev);
 558        dev->keypressed = false;
 559}
 560
 561/**
 562 * rc_keyup() - signals the release of a keypress
 563 * @dev:        the struct rc_dev descriptor of the device
 564 *
 565 * This routine is used to signal that a key has been released on the
 566 * remote control.
 567 */
 568void rc_keyup(struct rc_dev *dev)
 569{
 570        unsigned long flags;
 571
 572        spin_lock_irqsave(&dev->keylock, flags);
 573        ir_do_keyup(dev, true);
 574        spin_unlock_irqrestore(&dev->keylock, flags);
 575}
 576EXPORT_SYMBOL_GPL(rc_keyup);
 577
 578/**
 579 * ir_timer_keyup() - generates a keyup event after a timeout
 580 * @cookie:     a pointer to the struct rc_dev for the device
 581 *
 582 * This routine will generate a keyup event some time after a keydown event
 583 * is generated when no further activity has been detected.
 584 */
 585static void ir_timer_keyup(unsigned long cookie)
 586{
 587        struct rc_dev *dev = (struct rc_dev *)cookie;
 588        unsigned long flags;
 589
 590        /*
 591         * ir->keyup_jiffies is used to prevent a race condition if a
 592         * hardware interrupt occurs at this point and the keyup timer
 593         * event is moved further into the future as a result.
 594         *
 595         * The timer will then be reactivated and this function called
 596         * again in the future. We need to exit gracefully in that case
 597         * to allow the input subsystem to do its auto-repeat magic or
 598         * a keyup event might follow immediately after the keydown.
 599         */
 600        spin_lock_irqsave(&dev->keylock, flags);
 601        if (time_is_before_eq_jiffies(dev->keyup_jiffies))
 602                ir_do_keyup(dev, true);
 603        spin_unlock_irqrestore(&dev->keylock, flags);
 604}
 605
 606/**
 607 * rc_repeat() - signals that a key is still pressed
 608 * @dev:        the struct rc_dev descriptor of the device
 609 *
 610 * This routine is used by IR decoders when a repeat message which does
 611 * not include the necessary bits to reproduce the scancode has been
 612 * received.
 613 */
 614void rc_repeat(struct rc_dev *dev)
 615{
 616        unsigned long flags;
 617
 618        spin_lock_irqsave(&dev->keylock, flags);
 619
 620        input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
 621        input_sync(dev->input_dev);
 622
 623        if (!dev->keypressed)
 624                goto out;
 625
 626        dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
 627        mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
 628
 629out:
 630        spin_unlock_irqrestore(&dev->keylock, flags);
 631}
 632EXPORT_SYMBOL_GPL(rc_repeat);
 633
 634/**
 635 * ir_do_keydown() - internal function to process a keypress
 636 * @dev:        the struct rc_dev descriptor of the device
 637 * @protocol:   the protocol of the keypress
 638 * @scancode:   the scancode of the keypress
 639 * @keycode:    the keycode of the keypress
 640 * @toggle:     the toggle value of the keypress
 641 *
 642 * This function is used internally to register a keypress, it must be
 643 * called with keylock held.
 644 */
 645static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
 646                          u32 scancode, u32 keycode, u8 toggle)
 647{
 648        bool new_event = (!dev->keypressed               ||
 649                          dev->last_protocol != protocol ||
 650                          dev->last_scancode != scancode ||
 651                          dev->last_toggle   != toggle);
 652
 653        if (new_event && dev->keypressed)
 654                ir_do_keyup(dev, false);
 655
 656        input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
 657
 658        if (new_event && keycode != KEY_RESERVED) {
 659                /* Register a keypress */
 660                dev->keypressed = true;
 661                dev->last_protocol = protocol;
 662                dev->last_scancode = scancode;
 663                dev->last_toggle = toggle;
 664                dev->last_keycode = keycode;
 665
 666                IR_dprintk(1, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
 667                           dev->input_name, keycode, protocol, scancode);
 668                input_report_key(dev->input_dev, keycode, 1);
 669
 670                led_trigger_event(led_feedback, LED_FULL);
 671        }
 672
 673        input_sync(dev->input_dev);
 674}
 675
 676/**
 677 * rc_keydown() - generates input event for a key press
 678 * @dev:        the struct rc_dev descriptor of the device
 679 * @protocol:   the protocol for the keypress
 680 * @scancode:   the scancode for the keypress
 681 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 682 *              support toggle values, this should be set to zero)
 683 *
 684 * This routine is used to signal that a key has been pressed on the
 685 * remote control.
 686 */
 687void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
 688{
 689        unsigned long flags;
 690        u32 keycode = rc_g_keycode_from_table(dev, scancode);
 691
 692        spin_lock_irqsave(&dev->keylock, flags);
 693        ir_do_keydown(dev, protocol, scancode, keycode, toggle);
 694
 695        if (dev->keypressed) {
 696                dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
 697                mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
 698        }
 699        spin_unlock_irqrestore(&dev->keylock, flags);
 700}
 701EXPORT_SYMBOL_GPL(rc_keydown);
 702
 703/**
 704 * rc_keydown_notimeout() - generates input event for a key press without
 705 *                          an automatic keyup event at a later time
 706 * @dev:        the struct rc_dev descriptor of the device
 707 * @protocol:   the protocol for the keypress
 708 * @scancode:   the scancode for the keypress
 709 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 710 *              support toggle values, this should be set to zero)
 711 *
 712 * This routine is used to signal that a key has been pressed on the
 713 * remote control. The driver must manually call rc_keyup() at a later stage.
 714 */
 715void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
 716                          u32 scancode, u8 toggle)
 717{
 718        unsigned long flags;
 719        u32 keycode = rc_g_keycode_from_table(dev, scancode);
 720
 721        spin_lock_irqsave(&dev->keylock, flags);
 722        ir_do_keydown(dev, protocol, scancode, keycode, toggle);
 723        spin_unlock_irqrestore(&dev->keylock, flags);
 724}
 725EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
 726
 727int rc_open(struct rc_dev *rdev)
 728{
 729        int rval = 0;
 730
 731        if (!rdev)
 732                return -EINVAL;
 733
 734        mutex_lock(&rdev->lock);
 735
 736        if (!rdev->users++ && rdev->open != NULL)
 737                rval = rdev->open(rdev);
 738
 739        if (rval)
 740                rdev->users--;
 741
 742        mutex_unlock(&rdev->lock);
 743
 744        return rval;
 745}
 746EXPORT_SYMBOL_GPL(rc_open);
 747
 748static int ir_open(struct input_dev *idev)
 749{
 750        struct rc_dev *rdev = input_get_drvdata(idev);
 751
 752        return rc_open(rdev);
 753}
 754
 755void rc_close(struct rc_dev *rdev)
 756{
 757        if (rdev) {
 758                mutex_lock(&rdev->lock);
 759
 760                if (!--rdev->users && rdev->close != NULL)
 761                        rdev->close(rdev);
 762
 763                mutex_unlock(&rdev->lock);
 764        }
 765}
 766EXPORT_SYMBOL_GPL(rc_close);
 767
 768static void ir_close(struct input_dev *idev)
 769{
 770        struct rc_dev *rdev = input_get_drvdata(idev);
 771        rc_close(rdev);
 772}
 773
 774/* class for /sys/class/rc */
 775static char *rc_devnode(struct device *dev, umode_t *mode)
 776{
 777        return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
 778}
 779
 780static struct class rc_class = {
 781        .name           = "rc",
 782        .devnode        = rc_devnode,
 783};
 784
 785/*
 786 * These are the protocol textual descriptions that are
 787 * used by the sysfs protocols file. Note that the order
 788 * of the entries is relevant.
 789 */
 790static const struct {
 791        u64     type;
 792        const char      *name;
 793        const char      *module_name;
 794} proto_names[] = {
 795        { RC_BIT_NONE,          "none",         NULL                    },
 796        { RC_BIT_OTHER,         "other",        NULL                    },
 797        { RC_BIT_UNKNOWN,       "unknown",      NULL                    },
 798        { RC_BIT_RC5 |
 799          RC_BIT_RC5X,          "rc-5",         "ir-rc5-decoder"        },
 800        { RC_BIT_NEC |
 801          RC_BIT_NECX |
 802          RC_BIT_NEC32,         "nec",          "ir-nec-decoder"        },
 803        { RC_BIT_RC6_0 |
 804          RC_BIT_RC6_6A_20 |
 805          RC_BIT_RC6_6A_24 |
 806          RC_BIT_RC6_6A_32 |
 807          RC_BIT_RC6_MCE,       "rc-6",         "ir-rc6-decoder"        },
 808        { RC_BIT_JVC,           "jvc",          "ir-jvc-decoder"        },
 809        { RC_BIT_SONY12 |
 810          RC_BIT_SONY15 |
 811          RC_BIT_SONY20,        "sony",         "ir-sony-decoder"       },
 812        { RC_BIT_RC5_SZ,        "rc-5-sz",      "ir-rc5-decoder"        },
 813        { RC_BIT_SANYO,         "sanyo",        "ir-sanyo-decoder"      },
 814        { RC_BIT_SHARP,         "sharp",        "ir-sharp-decoder"      },
 815        { RC_BIT_MCE_KBD,       "mce_kbd",      "ir-mce_kbd-decoder"    },
 816        { RC_BIT_XMP,           "xmp",          "ir-xmp-decoder"        },
 817        { RC_BIT_CEC,           "cec",          NULL                    },
 818};
 819
 820/**
 821 * struct rc_filter_attribute - Device attribute relating to a filter type.
 822 * @attr:       Device attribute.
 823 * @type:       Filter type.
 824 * @mask:       false for filter value, true for filter mask.
 825 */
 826struct rc_filter_attribute {
 827        struct device_attribute         attr;
 828        enum rc_filter_type             type;
 829        bool                            mask;
 830};
 831#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
 832
 833#define RC_PROTO_ATTR(_name, _mode, _show, _store, _type)               \
 834        struct rc_filter_attribute dev_attr_##_name = {                 \
 835                .attr = __ATTR(_name, _mode, _show, _store),            \
 836                .type = (_type),                                        \
 837        }
 838#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)       \
 839        struct rc_filter_attribute dev_attr_##_name = {                 \
 840                .attr = __ATTR(_name, _mode, _show, _store),            \
 841                .type = (_type),                                        \
 842                .mask = (_mask),                                        \
 843        }
 844
 845static bool lirc_is_present(void)
 846{
 847#if defined(CONFIG_LIRC_MODULE)
 848        struct module *lirc;
 849
 850        mutex_lock(&module_mutex);
 851        lirc = find_module("lirc_dev");
 852        mutex_unlock(&module_mutex);
 853
 854        return lirc ? true : false;
 855#elif defined(CONFIG_LIRC)
 856        return true;
 857#else
 858        return false;
 859#endif
 860}
 861
 862/**
 863 * show_protocols() - shows the current/wakeup IR protocol(s)
 864 * @device:     the device descriptor
 865 * @mattr:      the device attribute struct
 866 * @buf:        a pointer to the output buffer
 867 *
 868 * This routine is a callback routine for input read the IR protocol type(s).
 869 * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
 870 * It returns the protocol names of supported protocols.
 871 * Enabled protocols are printed in brackets.
 872 *
 873 * dev->lock is taken to guard against races between device
 874 * registration, store_protocols and show_protocols.
 875 */
 876static ssize_t show_protocols(struct device *device,
 877                              struct device_attribute *mattr, char *buf)
 878{
 879        struct rc_dev *dev = to_rc_dev(device);
 880        struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
 881        u64 allowed, enabled;
 882        char *tmp = buf;
 883        int i;
 884
 885        /* Device is being removed */
 886        if (!dev)
 887                return -EINVAL;
 888
 889        if (!atomic_read(&dev->initialized))
 890                return -ERESTARTSYS;
 891
 892        mutex_lock(&dev->lock);
 893
 894        if (fattr->type == RC_FILTER_NORMAL) {
 895                enabled = dev->enabled_protocols;
 896                allowed = dev->allowed_protocols;
 897                if (dev->raw && !allowed)
 898                        allowed = ir_raw_get_allowed_protocols();
 899        } else {
 900                enabled = dev->enabled_wakeup_protocols;
 901                allowed = dev->allowed_wakeup_protocols;
 902        }
 903
 904        mutex_unlock(&dev->lock);
 905
 906        IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
 907                   __func__, (long long)allowed, (long long)enabled);
 908
 909        for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
 910                if (allowed & enabled & proto_names[i].type)
 911                        tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
 912                else if (allowed & proto_names[i].type)
 913                        tmp += sprintf(tmp, "%s ", proto_names[i].name);
 914
 915                if (allowed & proto_names[i].type)
 916                        allowed &= ~proto_names[i].type;
 917        }
 918
 919        if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
 920                tmp += sprintf(tmp, "[lirc] ");
 921
 922        if (tmp != buf)
 923                tmp--;
 924        *tmp = '\n';
 925
 926        return tmp + 1 - buf;
 927}
 928
 929/**
 930 * parse_protocol_change() - parses a protocol change request
 931 * @protocols:  pointer to the bitmask of current protocols
 932 * @buf:        pointer to the buffer with a list of changes
 933 *
 934 * Writing "+proto" will add a protocol to the protocol mask.
 935 * Writing "-proto" will remove a protocol from protocol mask.
 936 * Writing "proto" will enable only "proto".
 937 * Writing "none" will disable all protocols.
 938 * Returns the number of changes performed or a negative error code.
 939 */
 940static int parse_protocol_change(u64 *protocols, const char *buf)
 941{
 942        const char *tmp;
 943        unsigned count = 0;
 944        bool enable, disable;
 945        u64 mask;
 946        int i;
 947
 948        while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
 949                if (!*tmp)
 950                        break;
 951
 952                if (*tmp == '+') {
 953                        enable = true;
 954                        disable = false;
 955                        tmp++;
 956                } else if (*tmp == '-') {
 957                        enable = false;
 958                        disable = true;
 959                        tmp++;
 960                } else {
 961                        enable = false;
 962                        disable = false;
 963                }
 964
 965                for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
 966                        if (!strcasecmp(tmp, proto_names[i].name)) {
 967                                mask = proto_names[i].type;
 968                                break;
 969                        }
 970                }
 971
 972                if (i == ARRAY_SIZE(proto_names)) {
 973                        if (!strcasecmp(tmp, "lirc"))
 974                                mask = 0;
 975                        else {
 976                                IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
 977                                return -EINVAL;
 978                        }
 979                }
 980
 981                count++;
 982
 983                if (enable)
 984                        *protocols |= mask;
 985                else if (disable)
 986                        *protocols &= ~mask;
 987                else
 988                        *protocols = mask;
 989        }
 990
 991        if (!count) {
 992                IR_dprintk(1, "Protocol not specified\n");
 993                return -EINVAL;
 994        }
 995
 996        return count;
 997}
 998
 999static void ir_raw_load_modules(u64 *protocols)
1000
1001{
1002        u64 available;
1003        int i, ret;
1004
1005        for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1006                if (proto_names[i].type == RC_BIT_NONE ||
1007                    proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN))
1008                        continue;
1009
1010                available = ir_raw_get_allowed_protocols();
1011                if (!(*protocols & proto_names[i].type & ~available))
1012                        continue;
1013
1014                if (!proto_names[i].module_name) {
1015                        pr_err("Can't enable IR protocol %s\n",
1016                               proto_names[i].name);
1017                        *protocols &= ~proto_names[i].type;
1018                        continue;
1019                }
1020
1021                ret = request_module("%s", proto_names[i].module_name);
1022                if (ret < 0) {
1023                        pr_err("Couldn't load IR protocol module %s\n",
1024                               proto_names[i].module_name);
1025                        *protocols &= ~proto_names[i].type;
1026                        continue;
1027                }
1028                msleep(20);
1029                available = ir_raw_get_allowed_protocols();
1030                if (!(*protocols & proto_names[i].type & ~available))
1031                        continue;
1032
1033                pr_err("Loaded IR protocol module %s, \
1034                       but protocol %s still not available\n",
1035                       proto_names[i].module_name,
1036                       proto_names[i].name);
1037                *protocols &= ~proto_names[i].type;
1038        }
1039}
1040
1041/**
1042 * store_protocols() - changes the current/wakeup IR protocol(s)
1043 * @device:     the device descriptor
1044 * @mattr:      the device attribute struct
1045 * @buf:        a pointer to the input buffer
1046 * @len:        length of the input buffer
1047 *
1048 * This routine is for changing the IR protocol type.
1049 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1050 * See parse_protocol_change() for the valid commands.
1051 * Returns @len on success or a negative error code.
1052 *
1053 * dev->lock is taken to guard against races between device
1054 * registration, store_protocols and show_protocols.
1055 */
1056static ssize_t store_protocols(struct device *device,
1057                               struct device_attribute *mattr,
1058                               const char *buf, size_t len)
1059{
1060        struct rc_dev *dev = to_rc_dev(device);
1061        struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
1062        u64 *current_protocols;
1063        int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
1064        struct rc_scancode_filter *filter;
1065        int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1066        u64 old_protocols, new_protocols;
1067        ssize_t rc;
1068
1069        /* Device is being removed */
1070        if (!dev)
1071                return -EINVAL;
1072
1073        if (!atomic_read(&dev->initialized))
1074                return -ERESTARTSYS;
1075
1076        if (fattr->type == RC_FILTER_NORMAL) {
1077                IR_dprintk(1, "Normal protocol change requested\n");
1078                current_protocols = &dev->enabled_protocols;
1079                change_protocol = dev->change_protocol;
1080                filter = &dev->scancode_filter;
1081                set_filter = dev->s_filter;
1082        } else {
1083                IR_dprintk(1, "Wakeup protocol change requested\n");
1084                current_protocols = &dev->enabled_wakeup_protocols;
1085                change_protocol = dev->change_wakeup_protocol;
1086                filter = &dev->scancode_wakeup_filter;
1087                set_filter = dev->s_wakeup_filter;
1088        }
1089
1090        if (!change_protocol) {
1091                IR_dprintk(1, "Protocol switching not supported\n");
1092                return -EINVAL;
1093        }
1094
1095        mutex_lock(&dev->lock);
1096
1097        old_protocols = *current_protocols;
1098        new_protocols = old_protocols;
1099        rc = parse_protocol_change(&new_protocols, buf);
1100        if (rc < 0)
1101                goto out;
1102
1103        rc = change_protocol(dev, &new_protocols);
1104        if (rc < 0) {
1105                IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1106                           (long long)new_protocols);
1107                goto out;
1108        }
1109
1110        if (dev->driver_type == RC_DRIVER_IR_RAW)
1111                ir_raw_load_modules(&new_protocols);
1112
1113        if (new_protocols != old_protocols) {
1114                *current_protocols = new_protocols;
1115                IR_dprintk(1, "Protocols changed to 0x%llx\n",
1116                           (long long)new_protocols);
1117        }
1118
1119        /*
1120         * If a protocol change was attempted the filter may need updating, even
1121         * if the actual protocol mask hasn't changed (since the driver may have
1122         * cleared the filter).
1123         * Try setting the same filter with the new protocol (if any).
1124         * Fall back to clearing the filter.
1125         */
1126        if (set_filter && filter->mask) {
1127                if (new_protocols)
1128                        rc = set_filter(dev, filter);
1129                else
1130                        rc = -1;
1131
1132                if (rc < 0) {
1133                        filter->data = 0;
1134                        filter->mask = 0;
1135                        set_filter(dev, filter);
1136                }
1137        }
1138
1139        rc = len;
1140
1141out:
1142        mutex_unlock(&dev->lock);
1143        return rc;
1144}
1145
1146/**
1147 * show_filter() - shows the current scancode filter value or mask
1148 * @device:     the device descriptor
1149 * @attr:       the device attribute struct
1150 * @buf:        a pointer to the output buffer
1151 *
1152 * This routine is a callback routine to read a scancode filter value or mask.
1153 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1154 * It prints the current scancode filter value or mask of the appropriate filter
1155 * type in hexadecimal into @buf and returns the size of the buffer.
1156 *
1157 * Bits of the filter value corresponding to set bits in the filter mask are
1158 * compared against input scancodes and non-matching scancodes are discarded.
1159 *
1160 * dev->lock is taken to guard against races between device registration,
1161 * store_filter and show_filter.
1162 */
1163static ssize_t show_filter(struct device *device,
1164                           struct device_attribute *attr,
1165                           char *buf)
1166{
1167        struct rc_dev *dev = to_rc_dev(device);
1168        struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1169        struct rc_scancode_filter *filter;
1170        u32 val;
1171
1172        /* Device is being removed */
1173        if (!dev)
1174                return -EINVAL;
1175
1176        if (!atomic_read(&dev->initialized))
1177                return -ERESTARTSYS;
1178
1179        mutex_lock(&dev->lock);
1180
1181        if (fattr->type == RC_FILTER_NORMAL)
1182                filter = &dev->scancode_filter;
1183        else
1184                filter = &dev->scancode_wakeup_filter;
1185
1186        if (fattr->mask)
1187                val = filter->mask;
1188        else
1189                val = filter->data;
1190        mutex_unlock(&dev->lock);
1191
1192        return sprintf(buf, "%#x\n", val);
1193}
1194
1195/**
1196 * store_filter() - changes the scancode filter value
1197 * @device:     the device descriptor
1198 * @attr:       the device attribute struct
1199 * @buf:        a pointer to the input buffer
1200 * @len:        length of the input buffer
1201 *
1202 * This routine is for changing a scancode filter value or mask.
1203 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1204 * Returns -EINVAL if an invalid filter value for the current protocol was
1205 * specified or if scancode filtering is not supported by the driver, otherwise
1206 * returns @len.
1207 *
1208 * Bits of the filter value corresponding to set bits in the filter mask are
1209 * compared against input scancodes and non-matching scancodes are discarded.
1210 *
1211 * dev->lock is taken to guard against races between device registration,
1212 * store_filter and show_filter.
1213 */
1214static ssize_t store_filter(struct device *device,
1215                            struct device_attribute *attr,
1216                            const char *buf, size_t len)
1217{
1218        struct rc_dev *dev = to_rc_dev(device);
1219        struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1220        struct rc_scancode_filter new_filter, *filter;
1221        int ret;
1222        unsigned long val;
1223        int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1224        u64 *enabled_protocols;
1225
1226        /* Device is being removed */
1227        if (!dev)
1228                return -EINVAL;
1229
1230        if (!atomic_read(&dev->initialized))
1231                return -ERESTARTSYS;
1232
1233        ret = kstrtoul(buf, 0, &val);
1234        if (ret < 0)
1235                return ret;
1236
1237        if (fattr->type == RC_FILTER_NORMAL) {
1238                set_filter = dev->s_filter;
1239                enabled_protocols = &dev->enabled_protocols;
1240                filter = &dev->scancode_filter;
1241        } else {
1242                set_filter = dev->s_wakeup_filter;
1243                enabled_protocols = &dev->enabled_wakeup_protocols;
1244                filter = &dev->scancode_wakeup_filter;
1245        }
1246
1247        if (!set_filter)
1248                return -EINVAL;
1249
1250        mutex_lock(&dev->lock);
1251
1252        new_filter = *filter;
1253        if (fattr->mask)
1254                new_filter.mask = val;
1255        else
1256                new_filter.data = val;
1257
1258        if (!*enabled_protocols && val) {
1259                /* refuse to set a filter unless a protocol is enabled */
1260                ret = -EINVAL;
1261                goto unlock;
1262        }
1263
1264        ret = set_filter(dev, &new_filter);
1265        if (ret < 0)
1266                goto unlock;
1267
1268        *filter = new_filter;
1269
1270unlock:
1271        mutex_unlock(&dev->lock);
1272        return (ret < 0) ? ret : len;
1273}
1274
1275static void rc_dev_release(struct device *device)
1276{
1277        struct rc_dev *dev = to_rc_dev(device);
1278
1279        kfree(dev);
1280}
1281
1282#define ADD_HOTPLUG_VAR(fmt, val...)                                    \
1283        do {                                                            \
1284                int err = add_uevent_var(env, fmt, val);                \
1285                if (err)                                                \
1286                        return err;                                     \
1287        } while (0)
1288
1289static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1290{
1291        struct rc_dev *dev = to_rc_dev(device);
1292
1293        if (dev->rc_map.name)
1294                ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1295        if (dev->driver_name)
1296                ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1297
1298        return 0;
1299}
1300
1301/*
1302 * Static device attribute struct with the sysfs attributes for IR's
1303 */
1304static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
1305                     show_protocols, store_protocols, RC_FILTER_NORMAL);
1306static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
1307                     show_protocols, store_protocols, RC_FILTER_WAKEUP);
1308static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1309                      show_filter, store_filter, RC_FILTER_NORMAL, false);
1310static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1311                      show_filter, store_filter, RC_FILTER_NORMAL, true);
1312static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1313                      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1314static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1315                      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1316
1317static struct attribute *rc_dev_protocol_attrs[] = {
1318        &dev_attr_protocols.attr.attr,
1319        NULL,
1320};
1321
1322static struct attribute_group rc_dev_protocol_attr_grp = {
1323        .attrs  = rc_dev_protocol_attrs,
1324};
1325
1326static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
1327        &dev_attr_wakeup_protocols.attr.attr,
1328        NULL,
1329};
1330
1331static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
1332        .attrs  = rc_dev_wakeup_protocol_attrs,
1333};
1334
1335static struct attribute *rc_dev_filter_attrs[] = {
1336        &dev_attr_filter.attr.attr,
1337        &dev_attr_filter_mask.attr.attr,
1338        NULL,
1339};
1340
1341static struct attribute_group rc_dev_filter_attr_grp = {
1342        .attrs  = rc_dev_filter_attrs,
1343};
1344
1345static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1346        &dev_attr_wakeup_filter.attr.attr,
1347        &dev_attr_wakeup_filter_mask.attr.attr,
1348        NULL,
1349};
1350
1351static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1352        .attrs  = rc_dev_wakeup_filter_attrs,
1353};
1354
1355static struct device_type rc_dev_type = {
1356        .release        = rc_dev_release,
1357        .uevent         = rc_dev_uevent,
1358};
1359
1360struct rc_dev *rc_allocate_device(void)
1361{
1362        struct rc_dev *dev;
1363
1364        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1365        if (!dev)
1366                return NULL;
1367
1368        dev->input_dev = input_allocate_device();
1369        if (!dev->input_dev) {
1370                kfree(dev);
1371                return NULL;
1372        }
1373
1374        dev->input_dev->getkeycode = ir_getkeycode;
1375        dev->input_dev->setkeycode = ir_setkeycode;
1376        input_set_drvdata(dev->input_dev, dev);
1377
1378        spin_lock_init(&dev->rc_map.lock);
1379        spin_lock_init(&dev->keylock);
1380        mutex_init(&dev->lock);
1381        setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1382
1383        dev->dev.type = &rc_dev_type;
1384        dev->dev.class = &rc_class;
1385        device_initialize(&dev->dev);
1386
1387        __module_get(THIS_MODULE);
1388        return dev;
1389}
1390EXPORT_SYMBOL_GPL(rc_allocate_device);
1391
1392void rc_free_device(struct rc_dev *dev)
1393{
1394        if (!dev)
1395                return;
1396
1397        input_free_device(dev->input_dev);
1398
1399        put_device(&dev->dev);
1400
1401        /* kfree(dev) will be called by the callback function
1402           rc_dev_release() */
1403
1404        module_put(THIS_MODULE);
1405}
1406EXPORT_SYMBOL_GPL(rc_free_device);
1407
1408static void devm_rc_alloc_release(struct device *dev, void *res)
1409{
1410        rc_free_device(*(struct rc_dev **)res);
1411}
1412
1413struct rc_dev *devm_rc_allocate_device(struct device *dev)
1414{
1415        struct rc_dev **dr, *rc;
1416
1417        dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1418        if (!dr)
1419                return NULL;
1420
1421        rc = rc_allocate_device();
1422        if (!rc) {
1423                devres_free(dr);
1424                return NULL;
1425        }
1426
1427        rc->dev.parent = dev;
1428        rc->managed_alloc = true;
1429        *dr = rc;
1430        devres_add(dev, dr);
1431
1432        return rc;
1433}
1434EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1435
1436int rc_register_device(struct rc_dev *dev)
1437{
1438        static bool raw_init = false; /* raw decoders loaded? */
1439        struct rc_map *rc_map;
1440        const char *path;
1441        int attr = 0;
1442        int minor;
1443        int rc;
1444
1445        if (!dev || !dev->map_name)
1446                return -EINVAL;
1447
1448        rc_map = rc_map_get(dev->map_name);
1449        if (!rc_map)
1450                rc_map = rc_map_get(RC_MAP_EMPTY);
1451        if (!rc_map || !rc_map->scan || rc_map->size == 0)
1452                return -EINVAL;
1453
1454        set_bit(EV_KEY, dev->input_dev->evbit);
1455        set_bit(EV_REP, dev->input_dev->evbit);
1456        set_bit(EV_MSC, dev->input_dev->evbit);
1457        set_bit(MSC_SCAN, dev->input_dev->mscbit);
1458        if (dev->open)
1459                dev->input_dev->open = ir_open;
1460        if (dev->close)
1461                dev->input_dev->close = ir_close;
1462
1463        minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1464        if (minor < 0)
1465                return minor;
1466
1467        dev->minor = minor;
1468        dev_set_name(&dev->dev, "rc%u", dev->minor);
1469        dev_set_drvdata(&dev->dev, dev);
1470        atomic_set(&dev->initialized, 0);
1471
1472        dev->dev.groups = dev->sysfs_groups;
1473        dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1474        if (dev->s_filter)
1475                dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1476        if (dev->s_wakeup_filter)
1477                dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1478        if (dev->change_wakeup_protocol)
1479                dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
1480        dev->sysfs_groups[attr++] = NULL;
1481
1482        rc = device_add(&dev->dev);
1483        if (rc)
1484                goto out_unlock;
1485
1486        rc = ir_setkeytable(dev, rc_map);
1487        if (rc)
1488                goto out_dev;
1489
1490        dev->input_dev->dev.parent = &dev->dev;
1491        memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1492        dev->input_dev->phys = dev->input_phys;
1493        dev->input_dev->name = dev->input_name;
1494
1495        rc = input_register_device(dev->input_dev);
1496        if (rc)
1497                goto out_table;
1498
1499        /*
1500         * Default delay of 250ms is too short for some protocols, especially
1501         * since the timeout is currently set to 250ms. Increase it to 500ms,
1502         * to avoid wrong repetition of the keycodes. Note that this must be
1503         * set after the call to input_register_device().
1504         */
1505        dev->input_dev->rep[REP_DELAY] = 500;
1506
1507        /*
1508         * As a repeat event on protocols like RC-5 and NEC take as long as
1509         * 110/114ms, using 33ms as a repeat period is not the right thing
1510         * to do.
1511         */
1512        dev->input_dev->rep[REP_PERIOD] = 125;
1513
1514        path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1515        dev_info(&dev->dev, "%s as %s\n",
1516                dev->input_name ?: "Unspecified device", path ?: "N/A");
1517        kfree(path);
1518
1519        if (dev->driver_type == RC_DRIVER_IR_RAW) {
1520                if (!raw_init) {
1521                        request_module_nowait("ir-lirc-codec");
1522                        raw_init = true;
1523                }
1524                rc = ir_raw_event_register(dev);
1525                if (rc < 0)
1526                        goto out_input;
1527        }
1528
1529        if (dev->change_protocol) {
1530                u64 rc_type = (1ll << rc_map->rc_type);
1531                rc = dev->change_protocol(dev, &rc_type);
1532                if (rc < 0)
1533                        goto out_raw;
1534                dev->enabled_protocols = rc_type;
1535        }
1536
1537        /* Allow the RC sysfs nodes to be accessible */
1538        atomic_set(&dev->initialized, 1);
1539
1540        IR_dprintk(1, "Registered rc%u (driver: %s, remote: %s, mode %s)\n",
1541                   dev->minor,
1542                   dev->driver_name ? dev->driver_name : "unknown",
1543                   rc_map->name ? rc_map->name : "unknown",
1544                   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1545
1546        return 0;
1547
1548out_raw:
1549        if (dev->driver_type == RC_DRIVER_IR_RAW)
1550                ir_raw_event_unregister(dev);
1551out_input:
1552        input_unregister_device(dev->input_dev);
1553        dev->input_dev = NULL;
1554out_table:
1555        ir_free_table(&dev->rc_map);
1556out_dev:
1557        device_del(&dev->dev);
1558out_unlock:
1559        ida_simple_remove(&rc_ida, minor);
1560        return rc;
1561}
1562EXPORT_SYMBOL_GPL(rc_register_device);
1563
1564static void devm_rc_release(struct device *dev, void *res)
1565{
1566        rc_unregister_device(*(struct rc_dev **)res);
1567}
1568
1569int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1570{
1571        struct rc_dev **dr;
1572        int ret;
1573
1574        dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1575        if (!dr)
1576                return -ENOMEM;
1577
1578        ret = rc_register_device(dev);
1579        if (ret) {
1580                devres_free(dr);
1581                return ret;
1582        }
1583
1584        *dr = dev;
1585        devres_add(parent, dr);
1586
1587        return 0;
1588}
1589EXPORT_SYMBOL_GPL(devm_rc_register_device);
1590
1591void rc_unregister_device(struct rc_dev *dev)
1592{
1593        if (!dev)
1594                return;
1595
1596        del_timer_sync(&dev->timer_keyup);
1597
1598        if (dev->driver_type == RC_DRIVER_IR_RAW)
1599                ir_raw_event_unregister(dev);
1600
1601        /* Freeing the table should also call the stop callback */
1602        ir_free_table(&dev->rc_map);
1603        IR_dprintk(1, "Freed keycode table\n");
1604
1605        input_unregister_device(dev->input_dev);
1606        dev->input_dev = NULL;
1607
1608        device_del(&dev->dev);
1609
1610        ida_simple_remove(&rc_ida, dev->minor);
1611
1612        if (!dev->managed_alloc)
1613                rc_free_device(dev);
1614}
1615
1616EXPORT_SYMBOL_GPL(rc_unregister_device);
1617
1618/*
1619 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1620 */
1621
1622static int __init rc_core_init(void)
1623{
1624        int rc = class_register(&rc_class);
1625        if (rc) {
1626                pr_err("rc_core: unable to register rc class\n");
1627                return rc;
1628        }
1629
1630        led_trigger_register_simple("rc-feedback", &led_feedback);
1631        rc_map_register(&empty_map);
1632
1633        return 0;
1634}
1635
1636static void __exit rc_core_exit(void)
1637{
1638        class_unregister(&rc_class);
1639        led_trigger_unregister_simple(led_feedback);
1640        rc_map_unregister(&empty_map);
1641}
1642
1643subsys_initcall(rc_core_init);
1644module_exit(rc_core_exit);
1645
1646int rc_core_debug;    /* ir_debug level (0,1,2) */
1647EXPORT_SYMBOL_GPL(rc_core_debug);
1648module_param_named(debug, rc_core_debug, int, 0644);
1649
1650MODULE_AUTHOR("Mauro Carvalho Chehab");
1651MODULE_LICENSE("GPL");
1652