linux/drivers/mtd/nand/atmel_nand.c
<<
>>
Prefs
   1/*
   2 *  Copyright © 2003 Rick Bronson
   3 *
   4 *  Derived from drivers/mtd/nand/autcpu12.c
   5 *       Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
   6 *
   7 *  Derived from drivers/mtd/spia.c
   8 *       Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
   9 *
  10 *
  11 *  Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
  12 *     Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
  13 *
  14 *     Derived from Das U-Boot source code
  15 *              (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
  16 *     © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
  17 *
  18 *  Add Programmable Multibit ECC support for various AT91 SoC
  19 *     © Copyright 2012 ATMEL, Hong Xu
  20 *
  21 *  Add Nand Flash Controller support for SAMA5 SoC
  22 *     © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License version 2 as
  26 * published by the Free Software Foundation.
  27 *
  28 */
  29
  30#include <linux/clk.h>
  31#include <linux/dma-mapping.h>
  32#include <linux/slab.h>
  33#include <linux/module.h>
  34#include <linux/moduleparam.h>
  35#include <linux/platform_device.h>
  36#include <linux/of.h>
  37#include <linux/of_device.h>
  38#include <linux/of_gpio.h>
  39#include <linux/mtd/mtd.h>
  40#include <linux/mtd/nand.h>
  41#include <linux/mtd/partitions.h>
  42
  43#include <linux/delay.h>
  44#include <linux/dmaengine.h>
  45#include <linux/gpio.h>
  46#include <linux/interrupt.h>
  47#include <linux/io.h>
  48#include <linux/platform_data/atmel.h>
  49
  50static int use_dma = 1;
  51module_param(use_dma, int, 0);
  52
  53static int on_flash_bbt = 0;
  54module_param(on_flash_bbt, int, 0);
  55
  56/* Register access macros */
  57#define ecc_readl(add, reg)                             \
  58        __raw_readl(add + ATMEL_ECC_##reg)
  59#define ecc_writel(add, reg, value)                     \
  60        __raw_writel((value), add + ATMEL_ECC_##reg)
  61
  62#include "atmel_nand_ecc.h"     /* Hardware ECC registers */
  63#include "atmel_nand_nfc.h"     /* Nand Flash Controller definition */
  64
  65struct atmel_nand_caps {
  66        bool pmecc_correct_erase_page;
  67        uint8_t pmecc_max_correction;
  68};
  69
  70/*
  71 * oob layout for large page size
  72 * bad block info is on bytes 0 and 1
  73 * the bytes have to be consecutives to avoid
  74 * several NAND_CMD_RNDOUT during read
  75 *
  76 * oob layout for small page size
  77 * bad block info is on bytes 4 and 5
  78 * the bytes have to be consecutives to avoid
  79 * several NAND_CMD_RNDOUT during read
  80 */
  81static int atmel_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
  82                                  struct mtd_oob_region *oobregion)
  83{
  84        if (section)
  85                return -ERANGE;
  86
  87        oobregion->length = 4;
  88        oobregion->offset = 0;
  89
  90        return 0;
  91}
  92
  93static int atmel_ooblayout_free_sp(struct mtd_info *mtd, int section,
  94                                   struct mtd_oob_region *oobregion)
  95{
  96        if (section)
  97                return -ERANGE;
  98
  99        oobregion->offset = 6;
 100        oobregion->length = mtd->oobsize - oobregion->offset;
 101
 102        return 0;
 103}
 104
 105static const struct mtd_ooblayout_ops atmel_ooblayout_sp_ops = {
 106        .ecc = atmel_ooblayout_ecc_sp,
 107        .free = atmel_ooblayout_free_sp,
 108};
 109
 110struct atmel_nfc {
 111        void __iomem            *base_cmd_regs;
 112        void __iomem            *hsmc_regs;
 113        void                    *sram_bank0;
 114        dma_addr_t              sram_bank0_phys;
 115        bool                    use_nfc_sram;
 116        bool                    write_by_sram;
 117
 118        struct clk              *clk;
 119
 120        bool                    is_initialized;
 121        struct completion       comp_ready;
 122        struct completion       comp_cmd_done;
 123        struct completion       comp_xfer_done;
 124
 125        /* Point to the sram bank which include readed data via NFC */
 126        void                    *data_in_sram;
 127        bool                    will_write_sram;
 128};
 129static struct atmel_nfc nand_nfc;
 130
 131struct atmel_nand_host {
 132        struct nand_chip        nand_chip;
 133        void __iomem            *io_base;
 134        dma_addr_t              io_phys;
 135        struct atmel_nand_data  board;
 136        struct device           *dev;
 137        void __iomem            *ecc;
 138
 139        struct completion       comp;
 140        struct dma_chan         *dma_chan;
 141
 142        struct atmel_nfc        *nfc;
 143
 144        const struct atmel_nand_caps    *caps;
 145        bool                    has_pmecc;
 146        u8                      pmecc_corr_cap;
 147        u16                     pmecc_sector_size;
 148        bool                    has_no_lookup_table;
 149        u32                     pmecc_lookup_table_offset;
 150        u32                     pmecc_lookup_table_offset_512;
 151        u32                     pmecc_lookup_table_offset_1024;
 152
 153        int                     pmecc_degree;   /* Degree of remainders */
 154        int                     pmecc_cw_len;   /* Length of codeword */
 155
 156        void __iomem            *pmerrloc_base;
 157        void __iomem            *pmerrloc_el_base;
 158        void __iomem            *pmecc_rom_base;
 159
 160        /* lookup table for alpha_to and index_of */
 161        void __iomem            *pmecc_alpha_to;
 162        void __iomem            *pmecc_index_of;
 163
 164        /* data for pmecc computation */
 165        int16_t                 *pmecc_partial_syn;
 166        int16_t                 *pmecc_si;
 167        int16_t                 *pmecc_smu;     /* Sigma table */
 168        int16_t                 *pmecc_lmu;     /* polynomal order */
 169        int                     *pmecc_mu;
 170        int                     *pmecc_dmu;
 171        int                     *pmecc_delta;
 172};
 173
 174/*
 175 * Enable NAND.
 176 */
 177static void atmel_nand_enable(struct atmel_nand_host *host)
 178{
 179        if (gpio_is_valid(host->board.enable_pin))
 180                gpio_set_value(host->board.enable_pin, 0);
 181}
 182
 183/*
 184 * Disable NAND.
 185 */
 186static void atmel_nand_disable(struct atmel_nand_host *host)
 187{
 188        if (gpio_is_valid(host->board.enable_pin))
 189                gpio_set_value(host->board.enable_pin, 1);
 190}
 191
 192/*
 193 * Hardware specific access to control-lines
 194 */
 195static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
 196{
 197        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 198        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 199
 200        if (ctrl & NAND_CTRL_CHANGE) {
 201                if (ctrl & NAND_NCE)
 202                        atmel_nand_enable(host);
 203                else
 204                        atmel_nand_disable(host);
 205        }
 206        if (cmd == NAND_CMD_NONE)
 207                return;
 208
 209        if (ctrl & NAND_CLE)
 210                writeb(cmd, host->io_base + (1 << host->board.cle));
 211        else
 212                writeb(cmd, host->io_base + (1 << host->board.ale));
 213}
 214
 215/*
 216 * Read the Device Ready pin.
 217 */
 218static int atmel_nand_device_ready(struct mtd_info *mtd)
 219{
 220        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 221        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 222
 223        return gpio_get_value(host->board.rdy_pin) ^
 224                !!host->board.rdy_pin_active_low;
 225}
 226
 227/* Set up for hardware ready pin and enable pin. */
 228static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd)
 229{
 230        struct nand_chip *chip = mtd_to_nand(mtd);
 231        struct atmel_nand_host *host = nand_get_controller_data(chip);
 232        int res = 0;
 233
 234        if (gpio_is_valid(host->board.rdy_pin)) {
 235                res = devm_gpio_request(host->dev,
 236                                host->board.rdy_pin, "nand_rdy");
 237                if (res < 0) {
 238                        dev_err(host->dev,
 239                                "can't request rdy gpio %d\n",
 240                                host->board.rdy_pin);
 241                        return res;
 242                }
 243
 244                res = gpio_direction_input(host->board.rdy_pin);
 245                if (res < 0) {
 246                        dev_err(host->dev,
 247                                "can't request input direction rdy gpio %d\n",
 248                                host->board.rdy_pin);
 249                        return res;
 250                }
 251
 252                chip->dev_ready = atmel_nand_device_ready;
 253        }
 254
 255        if (gpio_is_valid(host->board.enable_pin)) {
 256                res = devm_gpio_request(host->dev,
 257                                host->board.enable_pin, "nand_enable");
 258                if (res < 0) {
 259                        dev_err(host->dev,
 260                                "can't request enable gpio %d\n",
 261                                host->board.enable_pin);
 262                        return res;
 263                }
 264
 265                res = gpio_direction_output(host->board.enable_pin, 1);
 266                if (res < 0) {
 267                        dev_err(host->dev,
 268                                "can't request output direction enable gpio %d\n",
 269                                host->board.enable_pin);
 270                        return res;
 271                }
 272        }
 273
 274        return res;
 275}
 276
 277/*
 278 * Minimal-overhead PIO for data access.
 279 */
 280static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
 281{
 282        struct nand_chip        *nand_chip = mtd_to_nand(mtd);
 283        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 284
 285        if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
 286                memcpy(buf, host->nfc->data_in_sram, len);
 287                host->nfc->data_in_sram += len;
 288        } else {
 289                __raw_readsb(nand_chip->IO_ADDR_R, buf, len);
 290        }
 291}
 292
 293static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
 294{
 295        struct nand_chip        *nand_chip = mtd_to_nand(mtd);
 296        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 297
 298        if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
 299                memcpy(buf, host->nfc->data_in_sram, len);
 300                host->nfc->data_in_sram += len;
 301        } else {
 302                __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
 303        }
 304}
 305
 306static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
 307{
 308        struct nand_chip        *nand_chip = mtd_to_nand(mtd);
 309
 310        __raw_writesb(nand_chip->IO_ADDR_W, buf, len);
 311}
 312
 313static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
 314{
 315        struct nand_chip        *nand_chip = mtd_to_nand(mtd);
 316
 317        __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
 318}
 319
 320static void dma_complete_func(void *completion)
 321{
 322        complete(completion);
 323}
 324
 325static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank)
 326{
 327        /* NFC only has two banks. Must be 0 or 1 */
 328        if (bank > 1)
 329                return -EINVAL;
 330
 331        if (bank) {
 332                struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
 333
 334                /* Only for a 2k-page or lower flash, NFC can handle 2 banks */
 335                if (mtd->writesize > 2048)
 336                        return -EINVAL;
 337                nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1);
 338        } else {
 339                nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0);
 340        }
 341
 342        return 0;
 343}
 344
 345static uint nfc_get_sram_off(struct atmel_nand_host *host)
 346{
 347        if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
 348                return NFC_SRAM_BANK1_OFFSET;
 349        else
 350                return 0;
 351}
 352
 353static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host)
 354{
 355        if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
 356                return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET;
 357        else
 358                return host->nfc->sram_bank0_phys;
 359}
 360
 361static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
 362                               int is_read)
 363{
 364        struct dma_device *dma_dev;
 365        enum dma_ctrl_flags flags;
 366        dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
 367        struct dma_async_tx_descriptor *tx = NULL;
 368        dma_cookie_t cookie;
 369        struct nand_chip *chip = mtd_to_nand(mtd);
 370        struct atmel_nand_host *host = nand_get_controller_data(chip);
 371        void *p = buf;
 372        int err = -EIO;
 373        enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
 374        struct atmel_nfc *nfc = host->nfc;
 375
 376        if (buf >= high_memory)
 377                goto err_buf;
 378
 379        dma_dev = host->dma_chan->device;
 380
 381        flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
 382
 383        phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
 384        if (dma_mapping_error(dma_dev->dev, phys_addr)) {
 385                dev_err(host->dev, "Failed to dma_map_single\n");
 386                goto err_buf;
 387        }
 388
 389        if (is_read) {
 390                if (nfc && nfc->data_in_sram)
 391                        dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram
 392                                - (nfc->sram_bank0 + nfc_get_sram_off(host)));
 393                else
 394                        dma_src_addr = host->io_phys;
 395
 396                dma_dst_addr = phys_addr;
 397        } else {
 398                dma_src_addr = phys_addr;
 399
 400                if (nfc && nfc->write_by_sram)
 401                        dma_dst_addr = nfc_sram_phys(host);
 402                else
 403                        dma_dst_addr = host->io_phys;
 404        }
 405
 406        tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
 407                                             dma_src_addr, len, flags);
 408        if (!tx) {
 409                dev_err(host->dev, "Failed to prepare DMA memcpy\n");
 410                goto err_dma;
 411        }
 412
 413        init_completion(&host->comp);
 414        tx->callback = dma_complete_func;
 415        tx->callback_param = &host->comp;
 416
 417        cookie = tx->tx_submit(tx);
 418        if (dma_submit_error(cookie)) {
 419                dev_err(host->dev, "Failed to do DMA tx_submit\n");
 420                goto err_dma;
 421        }
 422
 423        dma_async_issue_pending(host->dma_chan);
 424        wait_for_completion(&host->comp);
 425
 426        if (is_read && nfc && nfc->data_in_sram)
 427                /* After read data from SRAM, need to increase the position */
 428                nfc->data_in_sram += len;
 429
 430        err = 0;
 431
 432err_dma:
 433        dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
 434err_buf:
 435        if (err != 0)
 436                dev_dbg(host->dev, "Fall back to CPU I/O\n");
 437        return err;
 438}
 439
 440static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
 441{
 442        struct nand_chip *chip = mtd_to_nand(mtd);
 443
 444        if (use_dma && len > mtd->oobsize)
 445                /* only use DMA for bigger than oob size: better performances */
 446                if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
 447                        return;
 448
 449        if (chip->options & NAND_BUSWIDTH_16)
 450                atmel_read_buf16(mtd, buf, len);
 451        else
 452                atmel_read_buf8(mtd, buf, len);
 453}
 454
 455static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
 456{
 457        struct nand_chip *chip = mtd_to_nand(mtd);
 458
 459        if (use_dma && len > mtd->oobsize)
 460                /* only use DMA for bigger than oob size: better performances */
 461                if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
 462                        return;
 463
 464        if (chip->options & NAND_BUSWIDTH_16)
 465                atmel_write_buf16(mtd, buf, len);
 466        else
 467                atmel_write_buf8(mtd, buf, len);
 468}
 469
 470/*
 471 * Return number of ecc bytes per sector according to sector size and
 472 * correction capability
 473 *
 474 * Following table shows what at91 PMECC supported:
 475 * Correction Capability        Sector_512_bytes        Sector_1024_bytes
 476 * =====================        ================        =================
 477 *                2-bits                 4-bytes                  4-bytes
 478 *                4-bits                 7-bytes                  7-bytes
 479 *                8-bits                13-bytes                 14-bytes
 480 *               12-bits                20-bytes                 21-bytes
 481 *               24-bits                39-bytes                 42-bytes
 482 *               32-bits                52-bytes                 56-bytes
 483 */
 484static int pmecc_get_ecc_bytes(int cap, int sector_size)
 485{
 486        int m = 12 + sector_size / 512;
 487        return (m * cap + 7) / 8;
 488}
 489
 490static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
 491{
 492        int table_size;
 493
 494        table_size = host->pmecc_sector_size == 512 ?
 495                PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
 496
 497        return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
 498                        table_size * sizeof(int16_t);
 499}
 500
 501static int pmecc_data_alloc(struct atmel_nand_host *host)
 502{
 503        const int cap = host->pmecc_corr_cap;
 504        int size;
 505
 506        size = (2 * cap + 1) * sizeof(int16_t);
 507        host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL);
 508        host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL);
 509        host->pmecc_lmu = devm_kzalloc(host->dev,
 510                        (cap + 1) * sizeof(int16_t), GFP_KERNEL);
 511        host->pmecc_smu = devm_kzalloc(host->dev,
 512                        (cap + 2) * size, GFP_KERNEL);
 513
 514        size = (cap + 1) * sizeof(int);
 515        host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL);
 516        host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL);
 517        host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL);
 518
 519        if (!host->pmecc_partial_syn ||
 520                !host->pmecc_si ||
 521                !host->pmecc_lmu ||
 522                !host->pmecc_smu ||
 523                !host->pmecc_mu ||
 524                !host->pmecc_dmu ||
 525                !host->pmecc_delta)
 526                return -ENOMEM;
 527
 528        return 0;
 529}
 530
 531static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
 532{
 533        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 534        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 535        int i;
 536        uint32_t value;
 537
 538        /* Fill odd syndromes */
 539        for (i = 0; i < host->pmecc_corr_cap; i++) {
 540                value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
 541                if (i & 1)
 542                        value >>= 16;
 543                value &= 0xffff;
 544                host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
 545        }
 546}
 547
 548static void pmecc_substitute(struct mtd_info *mtd)
 549{
 550        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 551        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 552        int16_t __iomem *alpha_to = host->pmecc_alpha_to;
 553        int16_t __iomem *index_of = host->pmecc_index_of;
 554        int16_t *partial_syn = host->pmecc_partial_syn;
 555        const int cap = host->pmecc_corr_cap;
 556        int16_t *si;
 557        int i, j;
 558
 559        /* si[] is a table that holds the current syndrome value,
 560         * an element of that table belongs to the field
 561         */
 562        si = host->pmecc_si;
 563
 564        memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
 565
 566        /* Computation 2t syndromes based on S(x) */
 567        /* Odd syndromes */
 568        for (i = 1; i < 2 * cap; i += 2) {
 569                for (j = 0; j < host->pmecc_degree; j++) {
 570                        if (partial_syn[i] & ((unsigned short)0x1 << j))
 571                                si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
 572                }
 573        }
 574        /* Even syndrome = (Odd syndrome) ** 2 */
 575        for (i = 2, j = 1; j <= cap; i = ++j << 1) {
 576                if (si[j] == 0) {
 577                        si[i] = 0;
 578                } else {
 579                        int16_t tmp;
 580
 581                        tmp = readw_relaxed(index_of + si[j]);
 582                        tmp = (tmp * 2) % host->pmecc_cw_len;
 583                        si[i] = readw_relaxed(alpha_to + tmp);
 584                }
 585        }
 586
 587        return;
 588}
 589
 590static void pmecc_get_sigma(struct mtd_info *mtd)
 591{
 592        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 593        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 594
 595        int16_t *lmu = host->pmecc_lmu;
 596        int16_t *si = host->pmecc_si;
 597        int *mu = host->pmecc_mu;
 598        int *dmu = host->pmecc_dmu;     /* Discrepancy */
 599        int *delta = host->pmecc_delta; /* Delta order */
 600        int cw_len = host->pmecc_cw_len;
 601        const int16_t cap = host->pmecc_corr_cap;
 602        const int num = 2 * cap + 1;
 603        int16_t __iomem *index_of = host->pmecc_index_of;
 604        int16_t __iomem *alpha_to = host->pmecc_alpha_to;
 605        int i, j, k;
 606        uint32_t dmu_0_count, tmp;
 607        int16_t *smu = host->pmecc_smu;
 608
 609        /* index of largest delta */
 610        int ro;
 611        int largest;
 612        int diff;
 613
 614        dmu_0_count = 0;
 615
 616        /* First Row */
 617
 618        /* Mu */
 619        mu[0] = -1;
 620
 621        memset(smu, 0, sizeof(int16_t) * num);
 622        smu[0] = 1;
 623
 624        /* discrepancy set to 1 */
 625        dmu[0] = 1;
 626        /* polynom order set to 0 */
 627        lmu[0] = 0;
 628        delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
 629
 630        /* Second Row */
 631
 632        /* Mu */
 633        mu[1] = 0;
 634        /* Sigma(x) set to 1 */
 635        memset(&smu[num], 0, sizeof(int16_t) * num);
 636        smu[num] = 1;
 637
 638        /* discrepancy set to S1 */
 639        dmu[1] = si[1];
 640
 641        /* polynom order set to 0 */
 642        lmu[1] = 0;
 643
 644        delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
 645
 646        /* Init the Sigma(x) last row */
 647        memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
 648
 649        for (i = 1; i <= cap; i++) {
 650                mu[i + 1] = i << 1;
 651                /* Begin Computing Sigma (Mu+1) and L(mu) */
 652                /* check if discrepancy is set to 0 */
 653                if (dmu[i] == 0) {
 654                        dmu_0_count++;
 655
 656                        tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
 657                        if ((cap - (lmu[i] >> 1) - 1) & 0x1)
 658                                tmp += 2;
 659                        else
 660                                tmp += 1;
 661
 662                        if (dmu_0_count == tmp) {
 663                                for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
 664                                        smu[(cap + 1) * num + j] =
 665                                                        smu[i * num + j];
 666
 667                                lmu[cap + 1] = lmu[i];
 668                                return;
 669                        }
 670
 671                        /* copy polynom */
 672                        for (j = 0; j <= lmu[i] >> 1; j++)
 673                                smu[(i + 1) * num + j] = smu[i * num + j];
 674
 675                        /* copy previous polynom order to the next */
 676                        lmu[i + 1] = lmu[i];
 677                } else {
 678                        ro = 0;
 679                        largest = -1;
 680                        /* find largest delta with dmu != 0 */
 681                        for (j = 0; j < i; j++) {
 682                                if ((dmu[j]) && (delta[j] > largest)) {
 683                                        largest = delta[j];
 684                                        ro = j;
 685                                }
 686                        }
 687
 688                        /* compute difference */
 689                        diff = (mu[i] - mu[ro]);
 690
 691                        /* Compute degree of the new smu polynomial */
 692                        if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
 693                                lmu[i + 1] = lmu[i];
 694                        else
 695                                lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
 696
 697                        /* Init smu[i+1] with 0 */
 698                        for (k = 0; k < num; k++)
 699                                smu[(i + 1) * num + k] = 0;
 700
 701                        /* Compute smu[i+1] */
 702                        for (k = 0; k <= lmu[ro] >> 1; k++) {
 703                                int16_t a, b, c;
 704
 705                                if (!(smu[ro * num + k] && dmu[i]))
 706                                        continue;
 707                                a = readw_relaxed(index_of + dmu[i]);
 708                                b = readw_relaxed(index_of + dmu[ro]);
 709                                c = readw_relaxed(index_of + smu[ro * num + k]);
 710                                tmp = a + (cw_len - b) + c;
 711                                a = readw_relaxed(alpha_to + tmp % cw_len);
 712                                smu[(i + 1) * num + (k + diff)] = a;
 713                        }
 714
 715                        for (k = 0; k <= lmu[i] >> 1; k++)
 716                                smu[(i + 1) * num + k] ^= smu[i * num + k];
 717                }
 718
 719                /* End Computing Sigma (Mu+1) and L(mu) */
 720                /* In either case compute delta */
 721                delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
 722
 723                /* Do not compute discrepancy for the last iteration */
 724                if (i >= cap)
 725                        continue;
 726
 727                for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
 728                        tmp = 2 * (i - 1);
 729                        if (k == 0) {
 730                                dmu[i + 1] = si[tmp + 3];
 731                        } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
 732                                int16_t a, b, c;
 733                                a = readw_relaxed(index_of +
 734                                                smu[(i + 1) * num + k]);
 735                                b = si[2 * (i - 1) + 3 - k];
 736                                c = readw_relaxed(index_of + b);
 737                                tmp = a + c;
 738                                tmp %= cw_len;
 739                                dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
 740                                        dmu[i + 1];
 741                        }
 742                }
 743        }
 744
 745        return;
 746}
 747
 748static int pmecc_err_location(struct mtd_info *mtd)
 749{
 750        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 751        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 752        unsigned long end_time;
 753        const int cap = host->pmecc_corr_cap;
 754        const int num = 2 * cap + 1;
 755        int sector_size = host->pmecc_sector_size;
 756        int err_nbr = 0;        /* number of error */
 757        int roots_nbr;          /* number of roots */
 758        int i;
 759        uint32_t val;
 760        int16_t *smu = host->pmecc_smu;
 761
 762        pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
 763
 764        for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
 765                pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
 766                                      smu[(cap + 1) * num + i]);
 767                err_nbr++;
 768        }
 769
 770        val = (err_nbr - 1) << 16;
 771        if (sector_size == 1024)
 772                val |= 1;
 773
 774        pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
 775        pmerrloc_writel(host->pmerrloc_base, ELEN,
 776                        sector_size * 8 + host->pmecc_degree * cap);
 777
 778        end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
 779        while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
 780                 & PMERRLOC_CALC_DONE)) {
 781                if (unlikely(time_after(jiffies, end_time))) {
 782                        dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
 783                        return -1;
 784                }
 785                cpu_relax();
 786        }
 787
 788        roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
 789                & PMERRLOC_ERR_NUM_MASK) >> 8;
 790        /* Number of roots == degree of smu hence <= cap */
 791        if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
 792                return err_nbr - 1;
 793
 794        /* Number of roots does not match the degree of smu
 795         * unable to correct error */
 796        return -1;
 797}
 798
 799static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
 800                int sector_num, int extra_bytes, int err_nbr)
 801{
 802        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 803        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 804        int i = 0;
 805        int byte_pos, bit_pos, sector_size, pos;
 806        uint32_t tmp;
 807        uint8_t err_byte;
 808
 809        sector_size = host->pmecc_sector_size;
 810
 811        while (err_nbr) {
 812                tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_el_base, i) - 1;
 813                byte_pos = tmp / 8;
 814                bit_pos  = tmp % 8;
 815
 816                if (byte_pos >= (sector_size + extra_bytes))
 817                        BUG();  /* should never happen */
 818
 819                if (byte_pos < sector_size) {
 820                        err_byte = *(buf + byte_pos);
 821                        *(buf + byte_pos) ^= (1 << bit_pos);
 822
 823                        pos = sector_num * host->pmecc_sector_size + byte_pos;
 824                        dev_dbg(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
 825                                pos, bit_pos, err_byte, *(buf + byte_pos));
 826                } else {
 827                        struct mtd_oob_region oobregion;
 828
 829                        /* Bit flip in OOB area */
 830                        tmp = sector_num * nand_chip->ecc.bytes
 831                                        + (byte_pos - sector_size);
 832                        err_byte = ecc[tmp];
 833                        ecc[tmp] ^= (1 << bit_pos);
 834
 835                        mtd_ooblayout_ecc(mtd, 0, &oobregion);
 836                        pos = tmp + oobregion.offset;
 837                        dev_dbg(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
 838                                pos, bit_pos, err_byte, ecc[tmp]);
 839                }
 840
 841                i++;
 842                err_nbr--;
 843        }
 844
 845        return;
 846}
 847
 848static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
 849        u8 *ecc)
 850{
 851        struct nand_chip *nand_chip = mtd_to_nand(mtd);
 852        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
 853        int i, err_nbr;
 854        uint8_t *buf_pos;
 855        int max_bitflips = 0;
 856
 857        for (i = 0; i < nand_chip->ecc.steps; i++) {
 858                err_nbr = 0;
 859                if (pmecc_stat & 0x1) {
 860                        buf_pos = buf + i * host->pmecc_sector_size;
 861
 862                        pmecc_gen_syndrome(mtd, i);
 863                        pmecc_substitute(mtd);
 864                        pmecc_get_sigma(mtd);
 865
 866                        err_nbr = pmecc_err_location(mtd);
 867                        if (err_nbr >= 0) {
 868                                pmecc_correct_data(mtd, buf_pos, ecc, i,
 869                                                   nand_chip->ecc.bytes,
 870                                                   err_nbr);
 871                        } else if (!host->caps->pmecc_correct_erase_page) {
 872                                u8 *ecc_pos = ecc + (i * nand_chip->ecc.bytes);
 873
 874                                /* Try to detect erased pages */
 875                                err_nbr = nand_check_erased_ecc_chunk(buf_pos,
 876                                                        host->pmecc_sector_size,
 877                                                        ecc_pos,
 878                                                        nand_chip->ecc.bytes,
 879                                                        NULL, 0,
 880                                                        nand_chip->ecc.strength);
 881                        }
 882
 883                        if (err_nbr < 0) {
 884                                dev_err(host->dev, "PMECC: Too many errors\n");
 885                                mtd->ecc_stats.failed++;
 886                                return -EIO;
 887                        }
 888
 889                        mtd->ecc_stats.corrected += err_nbr;
 890                        max_bitflips = max_t(int, max_bitflips, err_nbr);
 891                }
 892                pmecc_stat >>= 1;
 893        }
 894
 895        return max_bitflips;
 896}
 897
 898static void pmecc_enable(struct atmel_nand_host *host, int ecc_op)
 899{
 900        u32 val;
 901
 902        if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) {
 903                dev_err(host->dev, "atmel_nand: wrong pmecc operation type!");
 904                return;
 905        }
 906
 907        pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
 908        pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
 909        val = pmecc_readl_relaxed(host->ecc, CFG);
 910
 911        if (ecc_op == NAND_ECC_READ)
 912                pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP)
 913                        | PMECC_CFG_AUTO_ENABLE);
 914        else
 915                pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP)
 916                        & ~PMECC_CFG_AUTO_ENABLE);
 917
 918        pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
 919        pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
 920}
 921
 922static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
 923        struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
 924{
 925        struct atmel_nand_host *host = nand_get_controller_data(chip);
 926        int eccsize = chip->ecc.size * chip->ecc.steps;
 927        uint8_t *oob = chip->oob_poi;
 928        uint32_t stat;
 929        unsigned long end_time;
 930        int bitflips = 0;
 931
 932        if (!host->nfc || !host->nfc->use_nfc_sram)
 933                pmecc_enable(host, NAND_ECC_READ);
 934
 935        chip->read_buf(mtd, buf, eccsize);
 936        chip->read_buf(mtd, oob, mtd->oobsize);
 937
 938        end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
 939        while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
 940                if (unlikely(time_after(jiffies, end_time))) {
 941                        dev_err(host->dev, "PMECC: Timeout to get error status.\n");
 942                        return -EIO;
 943                }
 944                cpu_relax();
 945        }
 946
 947        stat = pmecc_readl_relaxed(host->ecc, ISR);
 948        if (stat != 0) {
 949                struct mtd_oob_region oobregion;
 950
 951                mtd_ooblayout_ecc(mtd, 0, &oobregion);
 952                bitflips = pmecc_correction(mtd, stat, buf,
 953                                            &oob[oobregion.offset]);
 954                if (bitflips < 0)
 955                        /* uncorrectable errors */
 956                        return 0;
 957        }
 958
 959        return bitflips;
 960}
 961
 962static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
 963                struct nand_chip *chip, const uint8_t *buf, int oob_required,
 964                int page)
 965{
 966        struct atmel_nand_host *host = nand_get_controller_data(chip);
 967        struct mtd_oob_region oobregion = { };
 968        int i, j, section = 0;
 969        unsigned long end_time;
 970
 971        if (!host->nfc || !host->nfc->write_by_sram) {
 972                pmecc_enable(host, NAND_ECC_WRITE);
 973                chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
 974        }
 975
 976        end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
 977        while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
 978                if (unlikely(time_after(jiffies, end_time))) {
 979                        dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
 980                        return -EIO;
 981                }
 982                cpu_relax();
 983        }
 984
 985        for (i = 0; i < chip->ecc.steps; i++) {
 986                for (j = 0; j < chip->ecc.bytes; j++) {
 987                        if (!oobregion.length)
 988                                mtd_ooblayout_ecc(mtd, section, &oobregion);
 989
 990                        chip->oob_poi[oobregion.offset] =
 991                                pmecc_readb_ecc_relaxed(host->ecc, i, j);
 992                        oobregion.length--;
 993                        oobregion.offset++;
 994                        section++;
 995                }
 996        }
 997        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
 998
 999        return 0;
1000}
1001
1002static void atmel_pmecc_core_init(struct mtd_info *mtd)
1003{
1004        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1005        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
1006        int eccbytes = mtd_ooblayout_count_eccbytes(mtd);
1007        uint32_t val = 0;
1008        struct mtd_oob_region oobregion;
1009
1010        pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
1011        pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1012
1013        switch (host->pmecc_corr_cap) {
1014        case 2:
1015                val = PMECC_CFG_BCH_ERR2;
1016                break;
1017        case 4:
1018                val = PMECC_CFG_BCH_ERR4;
1019                break;
1020        case 8:
1021                val = PMECC_CFG_BCH_ERR8;
1022                break;
1023        case 12:
1024                val = PMECC_CFG_BCH_ERR12;
1025                break;
1026        case 24:
1027                val = PMECC_CFG_BCH_ERR24;
1028                break;
1029        case 32:
1030                val = PMECC_CFG_BCH_ERR32;
1031                break;
1032        }
1033
1034        if (host->pmecc_sector_size == 512)
1035                val |= PMECC_CFG_SECTOR512;
1036        else if (host->pmecc_sector_size == 1024)
1037                val |= PMECC_CFG_SECTOR1024;
1038
1039        switch (nand_chip->ecc.steps) {
1040        case 1:
1041                val |= PMECC_CFG_PAGE_1SECTOR;
1042                break;
1043        case 2:
1044                val |= PMECC_CFG_PAGE_2SECTORS;
1045                break;
1046        case 4:
1047                val |= PMECC_CFG_PAGE_4SECTORS;
1048                break;
1049        case 8:
1050                val |= PMECC_CFG_PAGE_8SECTORS;
1051                break;
1052        }
1053
1054        val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
1055                | PMECC_CFG_AUTO_DISABLE);
1056        pmecc_writel(host->ecc, CFG, val);
1057
1058        pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
1059        mtd_ooblayout_ecc(mtd, 0, &oobregion);
1060        pmecc_writel(host->ecc, SADDR, oobregion.offset);
1061        pmecc_writel(host->ecc, EADDR,
1062                     oobregion.offset + eccbytes - 1);
1063        /* See datasheet about PMECC Clock Control Register */
1064        pmecc_writel(host->ecc, CLK, 2);
1065        pmecc_writel(host->ecc, IDR, 0xff);
1066        pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
1067}
1068
1069/*
1070 * Get minimum ecc requirements from NAND.
1071 * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
1072 * will set them according to minimum ecc requirement. Otherwise, use the
1073 * value in DTS file.
1074 * return 0 if success. otherwise return error code.
1075 */
1076static int pmecc_choose_ecc(struct atmel_nand_host *host,
1077                int *cap, int *sector_size)
1078{
1079        /* Get minimum ECC requirements */
1080        if (host->nand_chip.ecc_strength_ds) {
1081                *cap = host->nand_chip.ecc_strength_ds;
1082                *sector_size = host->nand_chip.ecc_step_ds;
1083                dev_info(host->dev, "minimum ECC: %d bits in %d bytes\n",
1084                                *cap, *sector_size);
1085        } else {
1086                *cap = 2;
1087                *sector_size = 512;
1088                dev_info(host->dev, "can't detect min. ECC, assume 2 bits in 512 bytes\n");
1089        }
1090
1091        /* If device tree doesn't specify, use NAND's minimum ECC parameters */
1092        if (host->pmecc_corr_cap == 0) {
1093                if (*cap > host->caps->pmecc_max_correction)
1094                        return -EINVAL;
1095
1096                /* use the most fitable ecc bits (the near bigger one ) */
1097                if (*cap <= 2)
1098                        host->pmecc_corr_cap = 2;
1099                else if (*cap <= 4)
1100                        host->pmecc_corr_cap = 4;
1101                else if (*cap <= 8)
1102                        host->pmecc_corr_cap = 8;
1103                else if (*cap <= 12)
1104                        host->pmecc_corr_cap = 12;
1105                else if (*cap <= 24)
1106                        host->pmecc_corr_cap = 24;
1107                else if (*cap <= 32)
1108                        host->pmecc_corr_cap = 32;
1109                else
1110                        return -EINVAL;
1111        }
1112        if (host->pmecc_sector_size == 0) {
1113                /* use the most fitable sector size (the near smaller one ) */
1114                if (*sector_size >= 1024)
1115                        host->pmecc_sector_size = 1024;
1116                else if (*sector_size >= 512)
1117                        host->pmecc_sector_size = 512;
1118                else
1119                        return -EINVAL;
1120        }
1121        return 0;
1122}
1123
1124static inline int deg(unsigned int poly)
1125{
1126        /* polynomial degree is the most-significant bit index */
1127        return fls(poly) - 1;
1128}
1129
1130static int build_gf_tables(int mm, unsigned int poly,
1131                int16_t *index_of, int16_t *alpha_to)
1132{
1133        unsigned int i, x = 1;
1134        const unsigned int k = 1 << deg(poly);
1135        unsigned int nn = (1 << mm) - 1;
1136
1137        /* primitive polynomial must be of degree m */
1138        if (k != (1u << mm))
1139                return -EINVAL;
1140
1141        for (i = 0; i < nn; i++) {
1142                alpha_to[i] = x;
1143                index_of[x] = i;
1144                if (i && (x == 1))
1145                        /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1146                        return -EINVAL;
1147                x <<= 1;
1148                if (x & k)
1149                        x ^= poly;
1150        }
1151        alpha_to[nn] = 1;
1152        index_of[0] = 0;
1153
1154        return 0;
1155}
1156
1157static uint16_t *create_lookup_table(struct device *dev, int sector_size)
1158{
1159        int degree = (sector_size == 512) ?
1160                        PMECC_GF_DIMENSION_13 :
1161                        PMECC_GF_DIMENSION_14;
1162        unsigned int poly = (sector_size == 512) ?
1163                        PMECC_GF_13_PRIMITIVE_POLY :
1164                        PMECC_GF_14_PRIMITIVE_POLY;
1165        int table_size = (sector_size == 512) ?
1166                        PMECC_LOOKUP_TABLE_SIZE_512 :
1167                        PMECC_LOOKUP_TABLE_SIZE_1024;
1168
1169        int16_t *addr = devm_kzalloc(dev, 2 * table_size * sizeof(uint16_t),
1170                        GFP_KERNEL);
1171        if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
1172                return NULL;
1173
1174        return addr;
1175}
1176
1177static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
1178                                         struct atmel_nand_host *host)
1179{
1180        struct nand_chip *nand_chip = &host->nand_chip;
1181        struct mtd_info *mtd = nand_to_mtd(nand_chip);
1182        struct resource *regs, *regs_pmerr, *regs_rom;
1183        uint16_t *galois_table;
1184        int cap, sector_size, err_no;
1185
1186        err_no = pmecc_choose_ecc(host, &cap, &sector_size);
1187        if (err_no) {
1188                dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
1189                return err_no;
1190        }
1191
1192        if (cap > host->pmecc_corr_cap ||
1193                        sector_size != host->pmecc_sector_size)
1194                dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
1195
1196        cap = host->pmecc_corr_cap;
1197        sector_size = host->pmecc_sector_size;
1198        host->pmecc_lookup_table_offset = (sector_size == 512) ?
1199                        host->pmecc_lookup_table_offset_512 :
1200                        host->pmecc_lookup_table_offset_1024;
1201
1202        dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
1203                 cap, sector_size);
1204
1205        regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1206        if (!regs) {
1207                dev_warn(host->dev,
1208                        "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
1209                nand_chip->ecc.mode = NAND_ECC_SOFT;
1210                nand_chip->ecc.algo = NAND_ECC_HAMMING;
1211                return 0;
1212        }
1213
1214        host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1215        if (IS_ERR(host->ecc)) {
1216                err_no = PTR_ERR(host->ecc);
1217                goto err;
1218        }
1219
1220        regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1221        host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
1222        if (IS_ERR(host->pmerrloc_base)) {
1223                err_no = PTR_ERR(host->pmerrloc_base);
1224                goto err;
1225        }
1226        host->pmerrloc_el_base = host->pmerrloc_base + ATMEL_PMERRLOC_SIGMAx +
1227                (host->caps->pmecc_max_correction + 1) * 4;
1228
1229        if (!host->has_no_lookup_table) {
1230                regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1231                host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev,
1232                                                                regs_rom);
1233                if (IS_ERR(host->pmecc_rom_base)) {
1234                        dev_err(host->dev, "Can not get I/O resource for ROM, will build a lookup table in runtime!\n");
1235                        host->has_no_lookup_table = true;
1236                }
1237        }
1238
1239        if (host->has_no_lookup_table) {
1240                /* Build the look-up table in runtime */
1241                galois_table = create_lookup_table(host->dev, sector_size);
1242                if (!galois_table) {
1243                        dev_err(host->dev, "Failed to build a lookup table in runtime!\n");
1244                        err_no = -EINVAL;
1245                        goto err;
1246                }
1247
1248                host->pmecc_rom_base = (void __iomem *)galois_table;
1249                host->pmecc_lookup_table_offset = 0;
1250        }
1251
1252        nand_chip->ecc.size = sector_size;
1253
1254        /* set ECC page size and oob layout */
1255        switch (mtd->writesize) {
1256        case 512:
1257        case 1024:
1258        case 2048:
1259        case 4096:
1260        case 8192:
1261                if (sector_size > mtd->writesize) {
1262                        dev_err(host->dev, "pmecc sector size is bigger than the page size!\n");
1263                        err_no = -EINVAL;
1264                        goto err;
1265                }
1266
1267                host->pmecc_degree = (sector_size == 512) ?
1268                        PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
1269                host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
1270                host->pmecc_alpha_to = pmecc_get_alpha_to(host);
1271                host->pmecc_index_of = host->pmecc_rom_base +
1272                        host->pmecc_lookup_table_offset;
1273
1274                nand_chip->ecc.strength = cap;
1275                nand_chip->ecc.bytes = pmecc_get_ecc_bytes(cap, sector_size);
1276                nand_chip->ecc.steps = mtd->writesize / sector_size;
1277                nand_chip->ecc.total = nand_chip->ecc.bytes *
1278                        nand_chip->ecc.steps;
1279                if (nand_chip->ecc.total >
1280                                mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {
1281                        dev_err(host->dev, "No room for ECC bytes\n");
1282                        err_no = -EINVAL;
1283                        goto err;
1284                }
1285
1286                mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
1287                break;
1288        default:
1289                dev_warn(host->dev,
1290                        "Unsupported page size for PMECC, use Software ECC\n");
1291                /* page size not handled by HW ECC */
1292                /* switching back to soft ECC */
1293                nand_chip->ecc.mode = NAND_ECC_SOFT;
1294                nand_chip->ecc.algo = NAND_ECC_HAMMING;
1295                return 0;
1296        }
1297
1298        /* Allocate data for PMECC computation */
1299        err_no = pmecc_data_alloc(host);
1300        if (err_no) {
1301                dev_err(host->dev,
1302                                "Cannot allocate memory for PMECC computation!\n");
1303                goto err;
1304        }
1305
1306        nand_chip->options |= NAND_NO_SUBPAGE_WRITE;
1307        nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
1308        nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
1309
1310        atmel_pmecc_core_init(mtd);
1311
1312        return 0;
1313
1314err:
1315        return err_no;
1316}
1317
1318/*
1319 * Calculate HW ECC
1320 *
1321 * function called after a write
1322 *
1323 * mtd:        MTD block structure
1324 * dat:        raw data (unused)
1325 * ecc_code:   buffer for ECC
1326 */
1327static int atmel_nand_calculate(struct mtd_info *mtd,
1328                const u_char *dat, unsigned char *ecc_code)
1329{
1330        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1331        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
1332        unsigned int ecc_value;
1333
1334        /* get the first 2 ECC bytes */
1335        ecc_value = ecc_readl(host->ecc, PR);
1336
1337        ecc_code[0] = ecc_value & 0xFF;
1338        ecc_code[1] = (ecc_value >> 8) & 0xFF;
1339
1340        /* get the last 2 ECC bytes */
1341        ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
1342
1343        ecc_code[2] = ecc_value & 0xFF;
1344        ecc_code[3] = (ecc_value >> 8) & 0xFF;
1345
1346        return 0;
1347}
1348
1349/*
1350 * HW ECC read page function
1351 *
1352 * mtd:        mtd info structure
1353 * chip:       nand chip info structure
1354 * buf:        buffer to store read data
1355 * oob_required:    caller expects OOB data read to chip->oob_poi
1356 */
1357static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1358                                uint8_t *buf, int oob_required, int page)
1359{
1360        int eccsize = chip->ecc.size;
1361        int eccbytes = chip->ecc.bytes;
1362        uint8_t *p = buf;
1363        uint8_t *oob = chip->oob_poi;
1364        uint8_t *ecc_pos;
1365        int stat;
1366        unsigned int max_bitflips = 0;
1367        struct mtd_oob_region oobregion = {};
1368
1369        /*
1370         * Errata: ALE is incorrectly wired up to the ECC controller
1371         * on the AP7000, so it will include the address cycles in the
1372         * ECC calculation.
1373         *
1374         * Workaround: Reset the parity registers before reading the
1375         * actual data.
1376         */
1377        struct atmel_nand_host *host = nand_get_controller_data(chip);
1378        if (host->board.need_reset_workaround)
1379                ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1380
1381        /* read the page */
1382        chip->read_buf(mtd, p, eccsize);
1383
1384        /* move to ECC position if needed */
1385        mtd_ooblayout_ecc(mtd, 0, &oobregion);
1386        if (oobregion.offset != 0) {
1387                /*
1388                 * This only works on large pages because the ECC controller
1389                 * waits for NAND_CMD_RNDOUTSTART after the NAND_CMD_RNDOUT.
1390                 * Anyway, for small pages, the first ECC byte is at offset
1391                 * 0 in the OOB area.
1392                 */
1393                chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1394                              mtd->writesize + oobregion.offset, -1);
1395        }
1396
1397        /* the ECC controller needs to read the ECC just after the data */
1398        ecc_pos = oob + oobregion.offset;
1399        chip->read_buf(mtd, ecc_pos, eccbytes);
1400
1401        /* check if there's an error */
1402        stat = chip->ecc.correct(mtd, p, oob, NULL);
1403
1404        if (stat < 0) {
1405                mtd->ecc_stats.failed++;
1406        } else {
1407                mtd->ecc_stats.corrected += stat;
1408                max_bitflips = max_t(unsigned int, max_bitflips, stat);
1409        }
1410
1411        /* get back to oob start (end of page) */
1412        chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1413
1414        /* read the oob */
1415        chip->read_buf(mtd, oob, mtd->oobsize);
1416
1417        return max_bitflips;
1418}
1419
1420/*
1421 * HW ECC Correction
1422 *
1423 * function called after a read
1424 *
1425 * mtd:        MTD block structure
1426 * dat:        raw data read from the chip
1427 * read_ecc:   ECC from the chip (unused)
1428 * isnull:     unused
1429 *
1430 * Detect and correct a 1 bit error for a page
1431 */
1432static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1433                u_char *read_ecc, u_char *isnull)
1434{
1435        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1436        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
1437        unsigned int ecc_status;
1438        unsigned int ecc_word, ecc_bit;
1439
1440        /* get the status from the Status Register */
1441        ecc_status = ecc_readl(host->ecc, SR);
1442
1443        /* if there's no error */
1444        if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1445                return 0;
1446
1447        /* get error bit offset (4 bits) */
1448        ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
1449        /* get word address (12 bits) */
1450        ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
1451        ecc_word >>= 4;
1452
1453        /* if there are multiple errors */
1454        if (ecc_status & ATMEL_ECC_MULERR) {
1455                /* check if it is a freshly erased block
1456                 * (filled with 0xff) */
1457                if ((ecc_bit == ATMEL_ECC_BITADDR)
1458                                && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1459                        /* the block has just been erased, return OK */
1460                        return 0;
1461                }
1462                /* it doesn't seems to be a freshly
1463                 * erased block.
1464                 * We can't correct so many errors */
1465                dev_dbg(host->dev, "atmel_nand : multiple errors detected."
1466                                " Unable to correct.\n");
1467                return -EBADMSG;
1468        }
1469
1470        /* if there's a single bit error : we can correct it */
1471        if (ecc_status & ATMEL_ECC_ECCERR) {
1472                /* there's nothing much to do here.
1473                 * the bit error is on the ECC itself.
1474                 */
1475                dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
1476                                " Nothing to correct\n");
1477                return 0;
1478        }
1479
1480        dev_dbg(host->dev, "atmel_nand : one bit error on data."
1481                        " (word offset in the page :"
1482                        " 0x%x bit offset : 0x%x)\n",
1483                        ecc_word, ecc_bit);
1484        /* correct the error */
1485        if (nand_chip->options & NAND_BUSWIDTH_16) {
1486                /* 16 bits words */
1487                ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1488        } else {
1489                /* 8 bits words */
1490                dat[ecc_word] ^= (1 << ecc_bit);
1491        }
1492        dev_dbg(host->dev, "atmel_nand : error corrected\n");
1493        return 1;
1494}
1495
1496/*
1497 * Enable HW ECC : unused on most chips
1498 */
1499static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1500{
1501        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1502        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
1503
1504        if (host->board.need_reset_workaround)
1505                ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1506}
1507
1508static int atmel_of_init_ecc(struct atmel_nand_host *host,
1509                             struct device_node *np)
1510{
1511        u32 offset[2];
1512        u32 val;
1513
1514        host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
1515
1516        /* Not using PMECC */
1517        if (!(host->nand_chip.ecc.mode == NAND_ECC_HW) || !host->has_pmecc)
1518                return 0;
1519
1520        /* use PMECC, get correction capability, sector size and lookup
1521         * table offset.
1522         * If correction bits and sector size are not specified, then find
1523         * them from NAND ONFI parameters.
1524         */
1525        if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
1526                if (val > host->caps->pmecc_max_correction) {
1527                        dev_err(host->dev,
1528                                "Required ECC strength too high: %u max %u\n",
1529                                val, host->caps->pmecc_max_correction);
1530                        return -EINVAL;
1531                }
1532                if ((val != 2)  && (val != 4)  && (val != 8) &&
1533                    (val != 12) && (val != 24) && (val != 32)) {
1534                        dev_err(host->dev,
1535                                "Required ECC strength not supported: %u\n",
1536                                val);
1537                        return -EINVAL;
1538                }
1539                host->pmecc_corr_cap = (u8)val;
1540        }
1541
1542        if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
1543                if ((val != 512) && (val != 1024)) {
1544                        dev_err(host->dev,
1545                                "Required ECC sector size not supported: %u\n",
1546                                val);
1547                        return -EINVAL;
1548                }
1549                host->pmecc_sector_size = (u16)val;
1550        }
1551
1552        if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
1553                        offset, 2) != 0) {
1554                dev_err(host->dev, "Cannot get PMECC lookup table offset, will build a lookup table in runtime.\n");
1555                host->has_no_lookup_table = true;
1556                /* Will build a lookup table and initialize the offset later */
1557                return 0;
1558        }
1559
1560        if (!offset[0] && !offset[1]) {
1561                dev_err(host->dev, "Invalid PMECC lookup table offset\n");
1562                return -EINVAL;
1563        }
1564
1565        host->pmecc_lookup_table_offset_512 = offset[0];
1566        host->pmecc_lookup_table_offset_1024 = offset[1];
1567
1568        return 0;
1569}
1570
1571static int atmel_of_init_port(struct atmel_nand_host *host,
1572                              struct device_node *np)
1573{
1574        u32 val;
1575        struct atmel_nand_data *board = &host->board;
1576        enum of_gpio_flags flags = 0;
1577
1578        host->caps = (struct atmel_nand_caps *)
1579                of_device_get_match_data(host->dev);
1580
1581        if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
1582                if (val >= 32) {
1583                        dev_err(host->dev, "invalid addr-offset %u\n", val);
1584                        return -EINVAL;
1585                }
1586                board->ale = val;
1587        }
1588
1589        if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
1590                if (val >= 32) {
1591                        dev_err(host->dev, "invalid cmd-offset %u\n", val);
1592                        return -EINVAL;
1593                }
1594                board->cle = val;
1595        }
1596
1597        board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");
1598
1599        board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
1600        board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
1601
1602        board->enable_pin = of_get_gpio(np, 1);
1603        board->det_pin = of_get_gpio(np, 2);
1604
1605        /* load the nfc driver if there is */
1606        of_platform_populate(np, NULL, NULL, host->dev);
1607
1608        /*
1609         * Initialize ECC mode to NAND_ECC_SOFT so that we have a correct value
1610         * even if the nand-ecc-mode property is not defined.
1611         */
1612        host->nand_chip.ecc.mode = NAND_ECC_SOFT;
1613        host->nand_chip.ecc.algo = NAND_ECC_HAMMING;
1614
1615        return 0;
1616}
1617
1618static int atmel_hw_nand_init_params(struct platform_device *pdev,
1619                                         struct atmel_nand_host *host)
1620{
1621        struct nand_chip *nand_chip = &host->nand_chip;
1622        struct mtd_info *mtd = nand_to_mtd(nand_chip);
1623        struct resource         *regs;
1624
1625        regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1626        if (!regs) {
1627                dev_err(host->dev,
1628                        "Can't get I/O resource regs, use software ECC\n");
1629                nand_chip->ecc.mode = NAND_ECC_SOFT;
1630                nand_chip->ecc.algo = NAND_ECC_HAMMING;
1631                return 0;
1632        }
1633
1634        host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1635        if (IS_ERR(host->ecc))
1636                return PTR_ERR(host->ecc);
1637
1638        /* ECC is calculated for the whole page (1 step) */
1639        nand_chip->ecc.size = mtd->writesize;
1640
1641        /* set ECC page size and oob layout */
1642        switch (mtd->writesize) {
1643        case 512:
1644                mtd_set_ooblayout(mtd, &atmel_ooblayout_sp_ops);
1645                ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
1646                break;
1647        case 1024:
1648                mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
1649                ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
1650                break;
1651        case 2048:
1652                mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
1653                ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
1654                break;
1655        case 4096:
1656                mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
1657                ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
1658                break;
1659        default:
1660                /* page size not handled by HW ECC */
1661                /* switching back to soft ECC */
1662                nand_chip->ecc.mode = NAND_ECC_SOFT;
1663                nand_chip->ecc.algo = NAND_ECC_HAMMING;
1664                return 0;
1665        }
1666
1667        /* set up for HW ECC */
1668        nand_chip->ecc.calculate = atmel_nand_calculate;
1669        nand_chip->ecc.correct = atmel_nand_correct;
1670        nand_chip->ecc.hwctl = atmel_nand_hwctl;
1671        nand_chip->ecc.read_page = atmel_nand_read_page;
1672        nand_chip->ecc.bytes = 4;
1673        nand_chip->ecc.strength = 1;
1674
1675        return 0;
1676}
1677
1678static inline u32 nfc_read_status(struct atmel_nand_host *host)
1679{
1680        u32 err_flags = NFC_SR_DTOE | NFC_SR_UNDEF | NFC_SR_AWB | NFC_SR_ASE;
1681        u32 nfc_status = nfc_readl(host->nfc->hsmc_regs, SR);
1682
1683        if (unlikely(nfc_status & err_flags)) {
1684                if (nfc_status & NFC_SR_DTOE)
1685                        dev_err(host->dev, "NFC: Waiting Nand R/B Timeout Error\n");
1686                else if (nfc_status & NFC_SR_UNDEF)
1687                        dev_err(host->dev, "NFC: Access Undefined Area Error\n");
1688                else if (nfc_status & NFC_SR_AWB)
1689                        dev_err(host->dev, "NFC: Access memory While NFC is busy\n");
1690                else if (nfc_status & NFC_SR_ASE)
1691                        dev_err(host->dev, "NFC: Access memory Size Error\n");
1692        }
1693
1694        return nfc_status;
1695}
1696
1697/* SMC interrupt service routine */
1698static irqreturn_t hsmc_interrupt(int irq, void *dev_id)
1699{
1700        struct atmel_nand_host *host = dev_id;
1701        u32 status, mask, pending;
1702        irqreturn_t ret = IRQ_NONE;
1703
1704        status = nfc_read_status(host);
1705        mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1706        pending = status & mask;
1707
1708        if (pending & NFC_SR_XFR_DONE) {
1709                complete(&host->nfc->comp_xfer_done);
1710                nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE);
1711                ret = IRQ_HANDLED;
1712        }
1713        if (pending & NFC_SR_RB_EDGE) {
1714                complete(&host->nfc->comp_ready);
1715                nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE);
1716                ret = IRQ_HANDLED;
1717        }
1718        if (pending & NFC_SR_CMD_DONE) {
1719                complete(&host->nfc->comp_cmd_done);
1720                nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE);
1721                ret = IRQ_HANDLED;
1722        }
1723
1724        return ret;
1725}
1726
1727/* NFC(Nand Flash Controller) related functions */
1728static void nfc_prepare_interrupt(struct atmel_nand_host *host, u32 flag)
1729{
1730        if (flag & NFC_SR_XFR_DONE)
1731                init_completion(&host->nfc->comp_xfer_done);
1732
1733        if (flag & NFC_SR_RB_EDGE)
1734                init_completion(&host->nfc->comp_ready);
1735
1736        if (flag & NFC_SR_CMD_DONE)
1737                init_completion(&host->nfc->comp_cmd_done);
1738
1739        /* Enable interrupt that need to wait for */
1740        nfc_writel(host->nfc->hsmc_regs, IER, flag);
1741}
1742
1743static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag)
1744{
1745        int i, index = 0;
1746        struct completion *comp[3];     /* Support 3 interrupt completion */
1747
1748        if (flag & NFC_SR_XFR_DONE)
1749                comp[index++] = &host->nfc->comp_xfer_done;
1750
1751        if (flag & NFC_SR_RB_EDGE)
1752                comp[index++] = &host->nfc->comp_ready;
1753
1754        if (flag & NFC_SR_CMD_DONE)
1755                comp[index++] = &host->nfc->comp_cmd_done;
1756
1757        if (index == 0) {
1758                dev_err(host->dev, "Unknown interrupt flag: 0x%08x\n", flag);
1759                return -EINVAL;
1760        }
1761
1762        for (i = 0; i < index; i++) {
1763                if (wait_for_completion_timeout(comp[i],
1764                                msecs_to_jiffies(NFC_TIME_OUT_MS)))
1765                        continue;       /* wait for next completion */
1766                else
1767                        goto err_timeout;
1768        }
1769
1770        return 0;
1771
1772err_timeout:
1773        dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag);
1774        /* Disable the interrupt as it is not handled by interrupt handler */
1775        nfc_writel(host->nfc->hsmc_regs, IDR, flag);
1776        return -ETIMEDOUT;
1777}
1778
1779static int nfc_send_command(struct atmel_nand_host *host,
1780        unsigned int cmd, unsigned int addr, unsigned char cycle0)
1781{
1782        unsigned long timeout;
1783        u32 flag = NFC_SR_CMD_DONE;
1784        flag |= cmd & NFCADDR_CMD_DATAEN ? NFC_SR_XFR_DONE : 0;
1785
1786        dev_dbg(host->dev,
1787                "nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
1788                cmd, addr, cycle0);
1789
1790        timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1791        while (nfc_readl(host->nfc->hsmc_regs, SR) & NFC_SR_BUSY) {
1792                if (time_after(jiffies, timeout)) {
1793                        dev_err(host->dev,
1794                                "Time out to wait for NFC ready!\n");
1795                        return -ETIMEDOUT;
1796                }
1797        }
1798
1799        nfc_prepare_interrupt(host, flag);
1800        nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0);
1801        nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs);
1802        return nfc_wait_interrupt(host, flag);
1803}
1804
1805static int nfc_device_ready(struct mtd_info *mtd)
1806{
1807        u32 status, mask;
1808        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1809        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
1810
1811        status = nfc_read_status(host);
1812        mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1813
1814        /* The mask should be 0. If not we may lost interrupts */
1815        if (unlikely(mask & status))
1816                dev_err(host->dev, "Lost the interrupt flags: 0x%08x\n",
1817                                mask & status);
1818
1819        return status & NFC_SR_RB_EDGE;
1820}
1821
1822static void nfc_select_chip(struct mtd_info *mtd, int chip)
1823{
1824        struct nand_chip *nand_chip = mtd_to_nand(mtd);
1825        struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
1826
1827        if (chip == -1)
1828                nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE);
1829        else
1830                nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE);
1831}
1832
1833static int nfc_make_addr(struct mtd_info *mtd, int command, int column,
1834                int page_addr, unsigned int *addr1234, unsigned int *cycle0)
1835{
1836        struct nand_chip *chip = mtd_to_nand(mtd);
1837
1838        int acycle = 0;
1839        unsigned char addr_bytes[8];
1840        int index = 0, bit_shift;
1841
1842        BUG_ON(addr1234 == NULL || cycle0 == NULL);
1843
1844        *cycle0 = 0;
1845        *addr1234 = 0;
1846
1847        if (column != -1) {
1848                if (chip->options & NAND_BUSWIDTH_16 &&
1849                                !nand_opcode_8bits(command))
1850                        column >>= 1;
1851                addr_bytes[acycle++] = column & 0xff;
1852                if (mtd->writesize > 512)
1853                        addr_bytes[acycle++] = (column >> 8) & 0xff;
1854        }
1855
1856        if (page_addr != -1) {
1857                addr_bytes[acycle++] = page_addr & 0xff;
1858                addr_bytes[acycle++] = (page_addr >> 8) & 0xff;
1859                if (chip->chipsize > (128 << 20))
1860                        addr_bytes[acycle++] = (page_addr >> 16) & 0xff;
1861        }
1862
1863        if (acycle > 4)
1864                *cycle0 = addr_bytes[index++];
1865
1866        for (bit_shift = 0; index < acycle; bit_shift += 8)
1867                *addr1234 += addr_bytes[index++] << bit_shift;
1868
1869        /* return acycle in cmd register */
1870        return acycle << NFCADDR_CMD_ACYCLE_BIT_POS;
1871}
1872
1873static void nfc_nand_command(struct mtd_info *mtd, unsigned int command,
1874                                int column, int page_addr)
1875{
1876        struct nand_chip *chip = mtd_to_nand(mtd);
1877        struct atmel_nand_host *host = nand_get_controller_data(chip);
1878        unsigned long timeout;
1879        unsigned int nfc_addr_cmd = 0;
1880
1881        unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1882
1883        /* Set default settings: no cmd2, no addr cycle. read from nand */
1884        unsigned int cmd2 = 0;
1885        unsigned int vcmd2 = 0;
1886        int acycle = NFCADDR_CMD_ACYCLE_NONE;
1887        int csid = NFCADDR_CMD_CSID_3;
1888        int dataen = NFCADDR_CMD_DATADIS;
1889        int nfcwr = NFCADDR_CMD_NFCRD;
1890        unsigned int addr1234 = 0;
1891        unsigned int cycle0 = 0;
1892        bool do_addr = true;
1893        host->nfc->data_in_sram = NULL;
1894
1895        dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
1896             __func__, command, column, page_addr);
1897
1898        switch (command) {
1899        case NAND_CMD_RESET:
1900                nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr;
1901                nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1902                udelay(chip->chip_delay);
1903
1904                nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
1905                timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1906                while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) {
1907                        if (time_after(jiffies, timeout)) {
1908                                dev_err(host->dev,
1909                                        "Time out to wait status ready!\n");
1910                                break;
1911                        }
1912                }
1913                return;
1914        case NAND_CMD_STATUS:
1915                do_addr = false;
1916                break;
1917        case NAND_CMD_PARAM:
1918        case NAND_CMD_READID:
1919                do_addr = false;
1920                acycle = NFCADDR_CMD_ACYCLE_1;
1921                if (column != -1)
1922                        addr1234 = column;
1923                break;
1924        case NAND_CMD_RNDOUT:
1925                cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS;
1926                vcmd2 = NFCADDR_CMD_VCMD2;
1927                break;
1928        case NAND_CMD_READ0:
1929        case NAND_CMD_READOOB:
1930                if (command == NAND_CMD_READOOB) {
1931                        column += mtd->writesize;
1932                        command = NAND_CMD_READ0; /* only READ0 is valid */
1933                        cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1934                }
1935                if (host->nfc->use_nfc_sram) {
1936                        /* Enable Data transfer to sram */
1937                        dataen = NFCADDR_CMD_DATAEN;
1938
1939                        /* Need enable PMECC now, since NFC will transfer
1940                         * data in bus after sending nfc read command.
1941                         */
1942                        if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1943                                pmecc_enable(host, NAND_ECC_READ);
1944                }
1945
1946                cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS;
1947                vcmd2 = NFCADDR_CMD_VCMD2;
1948                break;
1949        /* For prgramming command, the cmd need set to write enable */
1950        case NAND_CMD_PAGEPROG:
1951        case NAND_CMD_SEQIN:
1952        case NAND_CMD_RNDIN:
1953                nfcwr = NFCADDR_CMD_NFCWR;
1954                if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN)
1955                        dataen = NFCADDR_CMD_DATAEN;
1956                break;
1957        default:
1958                break;
1959        }
1960
1961        if (do_addr)
1962                acycle = nfc_make_addr(mtd, command, column, page_addr,
1963                                &addr1234, &cycle0);
1964
1965        nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr;
1966        nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1967
1968        /*
1969         * Program and erase have their own busy handlers status, sequential
1970         * in, and deplete1 need no delay.
1971         */
1972        switch (command) {
1973        case NAND_CMD_CACHEDPROG:
1974        case NAND_CMD_PAGEPROG:
1975        case NAND_CMD_ERASE1:
1976        case NAND_CMD_ERASE2:
1977        case NAND_CMD_RNDIN:
1978        case NAND_CMD_STATUS:
1979        case NAND_CMD_RNDOUT:
1980        case NAND_CMD_SEQIN:
1981        case NAND_CMD_READID:
1982                return;
1983
1984        case NAND_CMD_READ0:
1985                if (dataen == NFCADDR_CMD_DATAEN) {
1986                        host->nfc->data_in_sram = host->nfc->sram_bank0 +
1987                                nfc_get_sram_off(host);
1988                        return;
1989                }
1990                /* fall through */
1991        default:
1992                nfc_prepare_interrupt(host, NFC_SR_RB_EDGE);
1993                nfc_wait_interrupt(host, NFC_SR_RB_EDGE);
1994        }
1995}
1996
1997static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1998                        uint32_t offset, int data_len, const uint8_t *buf,
1999                        int oob_required, int page, int cached, int raw)
2000{
2001        int cfg, len;
2002        int status = 0;
2003        struct atmel_nand_host *host = nand_get_controller_data(chip);
2004        void *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host);
2005
2006        /* Subpage write is not supported */
2007        if (offset || (data_len < mtd->writesize))
2008                return -EINVAL;
2009
2010        len = mtd->writesize;
2011        /* Copy page data to sram that will write to nand via NFC */
2012        if (use_dma) {
2013                if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
2014                        /* Fall back to use cpu copy */
2015                        memcpy(sram, buf, len);
2016        } else {
2017                memcpy(sram, buf, len);
2018        }
2019
2020        cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
2021        if (unlikely(raw) && oob_required) {
2022                memcpy(sram + len, chip->oob_poi, mtd->oobsize);
2023                len += mtd->oobsize;
2024                nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
2025        } else {
2026                nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
2027        }
2028
2029        if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
2030                /*
2031                 * When use NFC sram, need set up PMECC before send
2032                 * NAND_CMD_SEQIN command. Since when the nand command
2033                 * is sent, nfc will do transfer from sram and nand.
2034                 */
2035                pmecc_enable(host, NAND_ECC_WRITE);
2036
2037        host->nfc->will_write_sram = true;
2038        chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2039        host->nfc->will_write_sram = false;
2040
2041        if (likely(!raw))
2042                /* Need to write ecc into oob */
2043                status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2044                                              page);
2045
2046        if (status < 0)
2047                return status;
2048
2049        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2050        status = chip->waitfunc(mtd, chip);
2051
2052        if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2053                status = chip->errstat(mtd, chip, FL_WRITING, status, page);
2054
2055        if (status & NAND_STATUS_FAIL)
2056                return -EIO;
2057
2058        return 0;
2059}
2060
2061static int nfc_sram_init(struct mtd_info *mtd)
2062{
2063        struct nand_chip *chip = mtd_to_nand(mtd);
2064        struct atmel_nand_host *host = nand_get_controller_data(chip);
2065        int res = 0;
2066
2067        /* Initialize the NFC CFG register */
2068        unsigned int cfg_nfc = 0;
2069
2070        /* set page size and oob layout */
2071        switch (mtd->writesize) {
2072        case 512:
2073                cfg_nfc = NFC_CFG_PAGESIZE_512;
2074                break;
2075        case 1024:
2076                cfg_nfc = NFC_CFG_PAGESIZE_1024;
2077                break;
2078        case 2048:
2079                cfg_nfc = NFC_CFG_PAGESIZE_2048;
2080                break;
2081        case 4096:
2082                cfg_nfc = NFC_CFG_PAGESIZE_4096;
2083                break;
2084        case 8192:
2085                cfg_nfc = NFC_CFG_PAGESIZE_8192;
2086                break;
2087        default:
2088                dev_err(host->dev, "Unsupported page size for NFC.\n");
2089                res = -ENXIO;
2090                return res;
2091        }
2092
2093        /* oob bytes size = (NFCSPARESIZE + 1) * 4
2094         * Max support spare size is 512 bytes. */
2095        cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
2096                & NFC_CFG_NFC_SPARESIZE);
2097        /* default set a max timeout */
2098        cfg_nfc |= NFC_CFG_RSPARE |
2099                        NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL;
2100
2101        nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc);
2102
2103        host->nfc->will_write_sram = false;
2104        nfc_set_sram_bank(host, 0);
2105
2106        /* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
2107        if (host->nfc->write_by_sram) {
2108                if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) ||
2109                                chip->ecc.mode == NAND_ECC_NONE)
2110                        chip->write_page = nfc_sram_write_page;
2111                else
2112                        host->nfc->write_by_sram = false;
2113        }
2114
2115        dev_info(host->dev, "Using NFC Sram read %s\n",
2116                        host->nfc->write_by_sram ? "and write" : "");
2117        return 0;
2118}
2119
2120static struct platform_driver atmel_nand_nfc_driver;
2121/*
2122 * Probe for the NAND device.
2123 */
2124static int atmel_nand_probe(struct platform_device *pdev)
2125{
2126        struct atmel_nand_host *host;
2127        struct mtd_info *mtd;
2128        struct nand_chip *nand_chip;
2129        struct resource *mem;
2130        int res, irq;
2131
2132        /* Allocate memory for the device structure (and zero it) */
2133        host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
2134        if (!host)
2135                return -ENOMEM;
2136
2137        res = platform_driver_register(&atmel_nand_nfc_driver);
2138        if (res)
2139                dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n");
2140
2141        mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2142        host->io_base = devm_ioremap_resource(&pdev->dev, mem);
2143        if (IS_ERR(host->io_base)) {
2144                res = PTR_ERR(host->io_base);
2145                goto err_nand_ioremap;
2146        }
2147        host->io_phys = (dma_addr_t)mem->start;
2148
2149        nand_chip = &host->nand_chip;
2150        mtd = nand_to_mtd(nand_chip);
2151        host->dev = &pdev->dev;
2152        if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
2153                nand_set_flash_node(nand_chip, pdev->dev.of_node);
2154                /* Only when CONFIG_OF is enabled of_node can be parsed */
2155                res = atmel_of_init_port(host, pdev->dev.of_node);
2156                if (res)
2157                        goto err_nand_ioremap;
2158        } else {
2159                memcpy(&host->board, dev_get_platdata(&pdev->dev),
2160                       sizeof(struct atmel_nand_data));
2161                nand_chip->ecc.mode = host->board.ecc_mode;
2162
2163                /*
2164                 * When using software ECC every supported avr32 board means
2165                 * Hamming algorithm. If that ever changes we'll need to add
2166                 * ecc_algo field to the struct atmel_nand_data.
2167                 */
2168                if (nand_chip->ecc.mode == NAND_ECC_SOFT)
2169                        nand_chip->ecc.algo = NAND_ECC_HAMMING;
2170
2171                /* 16-bit bus width */
2172                if (host->board.bus_width_16)
2173                        nand_chip->options |= NAND_BUSWIDTH_16;
2174        }
2175
2176         /* link the private data structures */
2177        nand_set_controller_data(nand_chip, host);
2178        mtd->dev.parent = &pdev->dev;
2179
2180        /* Set address of NAND IO lines */
2181        nand_chip->IO_ADDR_R = host->io_base;
2182        nand_chip->IO_ADDR_W = host->io_base;
2183
2184        if (nand_nfc.is_initialized) {
2185                /* NFC driver is probed and initialized */
2186                host->nfc = &nand_nfc;
2187
2188                nand_chip->select_chip = nfc_select_chip;
2189                nand_chip->dev_ready = nfc_device_ready;
2190                nand_chip->cmdfunc = nfc_nand_command;
2191
2192                /* Initialize the interrupt for NFC */
2193                irq = platform_get_irq(pdev, 0);
2194                if (irq < 0) {
2195                        dev_err(host->dev, "Cannot get HSMC irq!\n");
2196                        res = irq;
2197                        goto err_nand_ioremap;
2198                }
2199
2200                res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt,
2201                                0, "hsmc", host);
2202                if (res) {
2203                        dev_err(&pdev->dev, "Unable to request HSMC irq %d\n",
2204                                irq);
2205                        goto err_nand_ioremap;
2206                }
2207        } else {
2208                res = atmel_nand_set_enable_ready_pins(mtd);
2209                if (res)
2210                        goto err_nand_ioremap;
2211
2212                nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
2213        }
2214
2215        nand_chip->chip_delay = 40;             /* 40us command delay time */
2216
2217
2218        nand_chip->read_buf = atmel_read_buf;
2219        nand_chip->write_buf = atmel_write_buf;
2220
2221        platform_set_drvdata(pdev, host);
2222        atmel_nand_enable(host);
2223
2224        if (gpio_is_valid(host->board.det_pin)) {
2225                res = devm_gpio_request(&pdev->dev,
2226                                host->board.det_pin, "nand_det");
2227                if (res < 0) {
2228                        dev_err(&pdev->dev,
2229                                "can't request det gpio %d\n",
2230                                host->board.det_pin);
2231                        goto err_no_card;
2232                }
2233
2234                res = gpio_direction_input(host->board.det_pin);
2235                if (res < 0) {
2236                        dev_err(&pdev->dev,
2237                                "can't request input direction det gpio %d\n",
2238                                host->board.det_pin);
2239                        goto err_no_card;
2240                }
2241
2242                if (gpio_get_value(host->board.det_pin)) {
2243                        dev_info(&pdev->dev, "No SmartMedia card inserted.\n");
2244                        res = -ENXIO;
2245                        goto err_no_card;
2246                }
2247        }
2248
2249        if (!host->board.has_dma)
2250                use_dma = 0;
2251
2252        if (use_dma) {
2253                dma_cap_mask_t mask;
2254
2255                dma_cap_zero(mask);
2256                dma_cap_set(DMA_MEMCPY, mask);
2257                host->dma_chan = dma_request_channel(mask, NULL, NULL);
2258                if (!host->dma_chan) {
2259                        dev_err(host->dev, "Failed to request DMA channel\n");
2260                        use_dma = 0;
2261                }
2262        }
2263        if (use_dma)
2264                dev_info(host->dev, "Using %s for DMA transfers.\n",
2265                                        dma_chan_name(host->dma_chan));
2266        else
2267                dev_info(host->dev, "No DMA support for NAND access.\n");
2268
2269        /* first scan to find the device and get the page size */
2270        res = nand_scan_ident(mtd, 1, NULL);
2271        if (res)
2272                goto err_scan_ident;
2273
2274        if (host->board.on_flash_bbt || on_flash_bbt)
2275                nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2276
2277        if (nand_chip->bbt_options & NAND_BBT_USE_FLASH)
2278                dev_info(&pdev->dev, "Use On Flash BBT\n");
2279
2280        if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
2281                res = atmel_of_init_ecc(host, pdev->dev.of_node);
2282                if (res)
2283                        goto err_hw_ecc;
2284        }
2285
2286        if (nand_chip->ecc.mode == NAND_ECC_HW) {
2287                if (host->has_pmecc)
2288                        res = atmel_pmecc_nand_init_params(pdev, host);
2289                else
2290                        res = atmel_hw_nand_init_params(pdev, host);
2291
2292                if (res != 0)
2293                        goto err_hw_ecc;
2294        }
2295
2296        /* initialize the nfc configuration register */
2297        if (host->nfc && host->nfc->use_nfc_sram) {
2298                res = nfc_sram_init(mtd);
2299                if (res) {
2300                        host->nfc->use_nfc_sram = false;
2301                        dev_err(host->dev, "Disable use nfc sram for data transfer.\n");
2302                }
2303        }
2304
2305        /* second phase scan */
2306        res = nand_scan_tail(mtd);
2307        if (res)
2308                goto err_scan_tail;
2309
2310        mtd->name = "atmel_nand";
2311        res = mtd_device_register(mtd, host->board.parts,
2312                                  host->board.num_parts);
2313        if (!res)
2314                return res;
2315
2316err_scan_tail:
2317        if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW)
2318                pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2319err_hw_ecc:
2320err_scan_ident:
2321err_no_card:
2322        atmel_nand_disable(host);
2323        if (host->dma_chan)
2324                dma_release_channel(host->dma_chan);
2325err_nand_ioremap:
2326        return res;
2327}
2328
2329/*
2330 * Remove a NAND device.
2331 */
2332static int atmel_nand_remove(struct platform_device *pdev)
2333{
2334        struct atmel_nand_host *host = platform_get_drvdata(pdev);
2335        struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
2336
2337        nand_release(mtd);
2338
2339        atmel_nand_disable(host);
2340
2341        if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
2342                pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2343                pmerrloc_writel(host->pmerrloc_base, ELDIS,
2344                                PMERRLOC_DISABLE);
2345        }
2346
2347        if (host->dma_chan)
2348                dma_release_channel(host->dma_chan);
2349
2350        platform_driver_unregister(&atmel_nand_nfc_driver);
2351
2352        return 0;
2353}
2354
2355/*
2356 * AT91RM9200 does not have PMECC or PMECC Errloc peripherals for
2357 * BCH ECC. Combined with the "atmel,has-pmecc", it is used to describe
2358 * devices from the SAM9 family that have those.
2359 */
2360static const struct atmel_nand_caps at91rm9200_caps = {
2361        .pmecc_correct_erase_page = false,
2362        .pmecc_max_correction = 24,
2363};
2364
2365static const struct atmel_nand_caps sama5d4_caps = {
2366        .pmecc_correct_erase_page = true,
2367        .pmecc_max_correction = 24,
2368};
2369
2370/*
2371 * The PMECC Errloc controller starting in SAMA5D2 is not compatible,
2372 * as the increased correction strength requires more registers.
2373 */
2374static const struct atmel_nand_caps sama5d2_caps = {
2375        .pmecc_correct_erase_page = true,
2376        .pmecc_max_correction = 32,
2377};
2378
2379static const struct of_device_id atmel_nand_dt_ids[] = {
2380        { .compatible = "atmel,at91rm9200-nand", .data = &at91rm9200_caps },
2381        { .compatible = "atmel,sama5d4-nand", .data = &sama5d4_caps },
2382        { .compatible = "atmel,sama5d2-nand", .data = &sama5d2_caps },
2383        { /* sentinel */ }
2384};
2385
2386MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
2387
2388static int atmel_nand_nfc_probe(struct platform_device *pdev)
2389{
2390        struct atmel_nfc *nfc = &nand_nfc;
2391        struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;
2392        int ret;
2393
2394        nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2395        nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
2396        if (IS_ERR(nfc->base_cmd_regs))
2397                return PTR_ERR(nfc->base_cmd_regs);
2398
2399        nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2400        nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs);
2401        if (IS_ERR(nfc->hsmc_regs))
2402                return PTR_ERR(nfc->hsmc_regs);
2403
2404        nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2405        if (nfc_sram) {
2406                nfc->sram_bank0 = (void * __force)
2407                                devm_ioremap_resource(&pdev->dev, nfc_sram);
2408                if (IS_ERR(nfc->sram_bank0)) {
2409                        dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
2410                                        PTR_ERR(nfc->sram_bank0));
2411                } else {
2412                        nfc->use_nfc_sram = true;
2413                        nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start;
2414
2415                        if (pdev->dev.of_node)
2416                                nfc->write_by_sram = of_property_read_bool(
2417                                                pdev->dev.of_node,
2418                                                "atmel,write-by-sram");
2419                }
2420        }
2421
2422        nfc_writel(nfc->hsmc_regs, IDR, 0xffffffff);
2423        nfc_readl(nfc->hsmc_regs, SR);  /* clear the NFC_SR */
2424
2425        nfc->clk = devm_clk_get(&pdev->dev, NULL);
2426        if (!IS_ERR(nfc->clk)) {
2427                ret = clk_prepare_enable(nfc->clk);
2428                if (ret)
2429                        return ret;
2430        } else {
2431                dev_warn(&pdev->dev, "NFC clock missing, update your Device Tree");
2432        }
2433
2434        nfc->is_initialized = true;
2435        dev_info(&pdev->dev, "NFC is probed.\n");
2436
2437        return 0;
2438}
2439
2440static int atmel_nand_nfc_remove(struct platform_device *pdev)
2441{
2442        struct atmel_nfc *nfc = &nand_nfc;
2443
2444        if (!IS_ERR(nfc->clk))
2445                clk_disable_unprepare(nfc->clk);
2446
2447        return 0;
2448}
2449
2450static const struct of_device_id atmel_nand_nfc_match[] = {
2451        { .compatible = "atmel,sama5d3-nfc" },
2452        { /* sentinel */ }
2453};
2454MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match);
2455
2456static struct platform_driver atmel_nand_nfc_driver = {
2457        .driver = {
2458                .name = "atmel_nand_nfc",
2459                .of_match_table = of_match_ptr(atmel_nand_nfc_match),
2460        },
2461        .probe = atmel_nand_nfc_probe,
2462        .remove = atmel_nand_nfc_remove,
2463};
2464
2465static struct platform_driver atmel_nand_driver = {
2466        .probe          = atmel_nand_probe,
2467        .remove         = atmel_nand_remove,
2468        .driver         = {
2469                .name   = "atmel_nand",
2470                .of_match_table = of_match_ptr(atmel_nand_dt_ids),
2471        },
2472};
2473
2474module_platform_driver(atmel_nand_driver);
2475
2476MODULE_LICENSE("GPL");
2477MODULE_AUTHOR("Rick Bronson");
2478MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
2479MODULE_ALIAS("platform:atmel_nand");
2480