linux/drivers/mtd/spi-nor/fsl-quadspi.c
<<
>>
Prefs
   1/*
   2 * Freescale QuadSPI driver.
   3 *
   4 * Copyright (C) 2013 Freescale Semiconductor, Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 */
  11#include <linux/kernel.h>
  12#include <linux/module.h>
  13#include <linux/interrupt.h>
  14#include <linux/errno.h>
  15#include <linux/platform_device.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/io.h>
  19#include <linux/clk.h>
  20#include <linux/err.h>
  21#include <linux/of.h>
  22#include <linux/of_device.h>
  23#include <linux/timer.h>
  24#include <linux/jiffies.h>
  25#include <linux/completion.h>
  26#include <linux/mtd/mtd.h>
  27#include <linux/mtd/partitions.h>
  28#include <linux/mtd/spi-nor.h>
  29#include <linux/mutex.h>
  30#include <linux/pm_qos.h>
  31#include <linux/sizes.h>
  32
  33/* Controller needs driver to swap endian */
  34#define QUADSPI_QUIRK_SWAP_ENDIAN       (1 << 0)
  35/* Controller needs 4x internal clock */
  36#define QUADSPI_QUIRK_4X_INT_CLK        (1 << 1)
  37/*
  38 * TKT253890, Controller needs driver to fill txfifo till 16 byte to
  39 * trigger data transfer even though extern data will not transferred.
  40 */
  41#define QUADSPI_QUIRK_TKT253890         (1 << 2)
  42/* Controller cannot wake up from wait mode, TKT245618 */
  43#define QUADSPI_QUIRK_TKT245618         (1 << 3)
  44
  45/* The registers */
  46#define QUADSPI_MCR                     0x00
  47#define QUADSPI_MCR_RESERVED_SHIFT      16
  48#define QUADSPI_MCR_RESERVED_MASK       (0xF << QUADSPI_MCR_RESERVED_SHIFT)
  49#define QUADSPI_MCR_MDIS_SHIFT          14
  50#define QUADSPI_MCR_MDIS_MASK           (1 << QUADSPI_MCR_MDIS_SHIFT)
  51#define QUADSPI_MCR_CLR_TXF_SHIFT       11
  52#define QUADSPI_MCR_CLR_TXF_MASK        (1 << QUADSPI_MCR_CLR_TXF_SHIFT)
  53#define QUADSPI_MCR_CLR_RXF_SHIFT       10
  54#define QUADSPI_MCR_CLR_RXF_MASK        (1 << QUADSPI_MCR_CLR_RXF_SHIFT)
  55#define QUADSPI_MCR_DDR_EN_SHIFT        7
  56#define QUADSPI_MCR_DDR_EN_MASK         (1 << QUADSPI_MCR_DDR_EN_SHIFT)
  57#define QUADSPI_MCR_END_CFG_SHIFT       2
  58#define QUADSPI_MCR_END_CFG_MASK        (3 << QUADSPI_MCR_END_CFG_SHIFT)
  59#define QUADSPI_MCR_SWRSTHD_SHIFT       1
  60#define QUADSPI_MCR_SWRSTHD_MASK        (1 << QUADSPI_MCR_SWRSTHD_SHIFT)
  61#define QUADSPI_MCR_SWRSTSD_SHIFT       0
  62#define QUADSPI_MCR_SWRSTSD_MASK        (1 << QUADSPI_MCR_SWRSTSD_SHIFT)
  63
  64#define QUADSPI_IPCR                    0x08
  65#define QUADSPI_IPCR_SEQID_SHIFT        24
  66#define QUADSPI_IPCR_SEQID_MASK         (0xF << QUADSPI_IPCR_SEQID_SHIFT)
  67
  68#define QUADSPI_BUF0CR                  0x10
  69#define QUADSPI_BUF1CR                  0x14
  70#define QUADSPI_BUF2CR                  0x18
  71#define QUADSPI_BUFXCR_INVALID_MSTRID   0xe
  72
  73#define QUADSPI_BUF3CR                  0x1c
  74#define QUADSPI_BUF3CR_ALLMST_SHIFT     31
  75#define QUADSPI_BUF3CR_ALLMST_MASK      (1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
  76#define QUADSPI_BUF3CR_ADATSZ_SHIFT             8
  77#define QUADSPI_BUF3CR_ADATSZ_MASK      (0xFF << QUADSPI_BUF3CR_ADATSZ_SHIFT)
  78
  79#define QUADSPI_BFGENCR                 0x20
  80#define QUADSPI_BFGENCR_PAR_EN_SHIFT    16
  81#define QUADSPI_BFGENCR_PAR_EN_MASK     (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
  82#define QUADSPI_BFGENCR_SEQID_SHIFT     12
  83#define QUADSPI_BFGENCR_SEQID_MASK      (0xF << QUADSPI_BFGENCR_SEQID_SHIFT)
  84
  85#define QUADSPI_BUF0IND                 0x30
  86#define QUADSPI_BUF1IND                 0x34
  87#define QUADSPI_BUF2IND                 0x38
  88#define QUADSPI_SFAR                    0x100
  89
  90#define QUADSPI_SMPR                    0x108
  91#define QUADSPI_SMPR_DDRSMP_SHIFT       16
  92#define QUADSPI_SMPR_DDRSMP_MASK        (7 << QUADSPI_SMPR_DDRSMP_SHIFT)
  93#define QUADSPI_SMPR_FSDLY_SHIFT        6
  94#define QUADSPI_SMPR_FSDLY_MASK         (1 << QUADSPI_SMPR_FSDLY_SHIFT)
  95#define QUADSPI_SMPR_FSPHS_SHIFT        5
  96#define QUADSPI_SMPR_FSPHS_MASK         (1 << QUADSPI_SMPR_FSPHS_SHIFT)
  97#define QUADSPI_SMPR_HSENA_SHIFT        0
  98#define QUADSPI_SMPR_HSENA_MASK         (1 << QUADSPI_SMPR_HSENA_SHIFT)
  99
 100#define QUADSPI_RBSR                    0x10c
 101#define QUADSPI_RBSR_RDBFL_SHIFT        8
 102#define QUADSPI_RBSR_RDBFL_MASK         (0x3F << QUADSPI_RBSR_RDBFL_SHIFT)
 103
 104#define QUADSPI_RBCT                    0x110
 105#define QUADSPI_RBCT_WMRK_MASK          0x1F
 106#define QUADSPI_RBCT_RXBRD_SHIFT        8
 107#define QUADSPI_RBCT_RXBRD_USEIPS       (0x1 << QUADSPI_RBCT_RXBRD_SHIFT)
 108
 109#define QUADSPI_TBSR                    0x150
 110#define QUADSPI_TBDR                    0x154
 111#define QUADSPI_SR                      0x15c
 112#define QUADSPI_SR_IP_ACC_SHIFT         1
 113#define QUADSPI_SR_IP_ACC_MASK          (0x1 << QUADSPI_SR_IP_ACC_SHIFT)
 114#define QUADSPI_SR_AHB_ACC_SHIFT        2
 115#define QUADSPI_SR_AHB_ACC_MASK         (0x1 << QUADSPI_SR_AHB_ACC_SHIFT)
 116
 117#define QUADSPI_FR                      0x160
 118#define QUADSPI_FR_TFF_MASK             0x1
 119
 120#define QUADSPI_SFA1AD                  0x180
 121#define QUADSPI_SFA2AD                  0x184
 122#define QUADSPI_SFB1AD                  0x188
 123#define QUADSPI_SFB2AD                  0x18c
 124#define QUADSPI_RBDR                    0x200
 125
 126#define QUADSPI_LUTKEY                  0x300
 127#define QUADSPI_LUTKEY_VALUE            0x5AF05AF0
 128
 129#define QUADSPI_LCKCR                   0x304
 130#define QUADSPI_LCKER_LOCK              0x1
 131#define QUADSPI_LCKER_UNLOCK            0x2
 132
 133#define QUADSPI_RSER                    0x164
 134#define QUADSPI_RSER_TFIE               (0x1 << 0)
 135
 136#define QUADSPI_LUT_BASE                0x310
 137
 138/*
 139 * The definition of the LUT register shows below:
 140 *
 141 *  ---------------------------------------------------
 142 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 143 *  ---------------------------------------------------
 144 */
 145#define OPRND0_SHIFT            0
 146#define PAD0_SHIFT              8
 147#define INSTR0_SHIFT            10
 148#define OPRND1_SHIFT            16
 149
 150/* Instruction set for the LUT register. */
 151#define LUT_STOP                0
 152#define LUT_CMD                 1
 153#define LUT_ADDR                2
 154#define LUT_DUMMY               3
 155#define LUT_MODE                4
 156#define LUT_MODE2               5
 157#define LUT_MODE4               6
 158#define LUT_FSL_READ            7
 159#define LUT_FSL_WRITE           8
 160#define LUT_JMP_ON_CS           9
 161#define LUT_ADDR_DDR            10
 162#define LUT_MODE_DDR            11
 163#define LUT_MODE2_DDR           12
 164#define LUT_MODE4_DDR           13
 165#define LUT_FSL_READ_DDR                14
 166#define LUT_FSL_WRITE_DDR               15
 167#define LUT_DATA_LEARN          16
 168
 169/*
 170 * The PAD definitions for LUT register.
 171 *
 172 * The pad stands for the lines number of IO[0:3].
 173 * For example, the Quad read need four IO lines, so you should
 174 * set LUT_PAD4 which means we use four IO lines.
 175 */
 176#define LUT_PAD1                0
 177#define LUT_PAD2                1
 178#define LUT_PAD4                2
 179
 180/* Oprands for the LUT register. */
 181#define ADDR24BIT               0x18
 182#define ADDR32BIT               0x20
 183
 184/* Macros for constructing the LUT register. */
 185#define LUT0(ins, pad, opr)                                             \
 186                (((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
 187                ((LUT_##ins) << INSTR0_SHIFT))
 188
 189#define LUT1(ins, pad, opr)     (LUT0(ins, pad, opr) << OPRND1_SHIFT)
 190
 191/* other macros for LUT register. */
 192#define QUADSPI_LUT(x)          (QUADSPI_LUT_BASE + (x) * 4)
 193#define QUADSPI_LUT_NUM         64
 194
 195/* SEQID -- we can have 16 seqids at most. */
 196#define SEQID_QUAD_READ         0
 197#define SEQID_WREN              1
 198#define SEQID_WRDI              2
 199#define SEQID_RDSR              3
 200#define SEQID_SE                4
 201#define SEQID_CHIP_ERASE        5
 202#define SEQID_PP                6
 203#define SEQID_RDID              7
 204#define SEQID_WRSR              8
 205#define SEQID_RDCR              9
 206#define SEQID_EN4B              10
 207#define SEQID_BRWR              11
 208
 209#define QUADSPI_MIN_IOMAP SZ_4M
 210
 211enum fsl_qspi_devtype {
 212        FSL_QUADSPI_VYBRID,
 213        FSL_QUADSPI_IMX6SX,
 214        FSL_QUADSPI_IMX7D,
 215        FSL_QUADSPI_IMX6UL,
 216        FSL_QUADSPI_LS1021A,
 217};
 218
 219struct fsl_qspi_devtype_data {
 220        enum fsl_qspi_devtype devtype;
 221        int rxfifo;
 222        int txfifo;
 223        int ahb_buf_size;
 224        int driver_data;
 225};
 226
 227static const struct fsl_qspi_devtype_data vybrid_data = {
 228        .devtype = FSL_QUADSPI_VYBRID,
 229        .rxfifo = 128,
 230        .txfifo = 64,
 231        .ahb_buf_size = 1024,
 232        .driver_data = QUADSPI_QUIRK_SWAP_ENDIAN,
 233};
 234
 235static const struct fsl_qspi_devtype_data imx6sx_data = {
 236        .devtype = FSL_QUADSPI_IMX6SX,
 237        .rxfifo = 128,
 238        .txfifo = 512,
 239        .ahb_buf_size = 1024,
 240        .driver_data = QUADSPI_QUIRK_4X_INT_CLK
 241                       | QUADSPI_QUIRK_TKT245618,
 242};
 243
 244static const struct fsl_qspi_devtype_data imx7d_data = {
 245        .devtype = FSL_QUADSPI_IMX7D,
 246        .rxfifo = 512,
 247        .txfifo = 512,
 248        .ahb_buf_size = 1024,
 249        .driver_data = QUADSPI_QUIRK_TKT253890
 250                       | QUADSPI_QUIRK_4X_INT_CLK,
 251};
 252
 253static const struct fsl_qspi_devtype_data imx6ul_data = {
 254        .devtype = FSL_QUADSPI_IMX6UL,
 255        .rxfifo = 128,
 256        .txfifo = 512,
 257        .ahb_buf_size = 1024,
 258        .driver_data = QUADSPI_QUIRK_TKT253890
 259                       | QUADSPI_QUIRK_4X_INT_CLK,
 260};
 261
 262static struct fsl_qspi_devtype_data ls1021a_data = {
 263        .devtype = FSL_QUADSPI_LS1021A,
 264        .rxfifo = 128,
 265        .txfifo = 64,
 266        .ahb_buf_size = 1024,
 267        .driver_data = 0,
 268};
 269
 270#define FSL_QSPI_MAX_CHIP       4
 271struct fsl_qspi {
 272        struct spi_nor nor[FSL_QSPI_MAX_CHIP];
 273        void __iomem *iobase;
 274        void __iomem *ahb_addr;
 275        u32 memmap_phy;
 276        u32 memmap_offs;
 277        u32 memmap_len;
 278        struct clk *clk, *clk_en;
 279        struct device *dev;
 280        struct completion c;
 281        const struct fsl_qspi_devtype_data *devtype_data;
 282        u32 nor_size;
 283        u32 nor_num;
 284        u32 clk_rate;
 285        unsigned int chip_base_addr; /* We may support two chips. */
 286        bool has_second_chip;
 287        bool big_endian;
 288        struct mutex lock;
 289        struct pm_qos_request pm_qos_req;
 290};
 291
 292static inline int needs_swap_endian(struct fsl_qspi *q)
 293{
 294        return q->devtype_data->driver_data & QUADSPI_QUIRK_SWAP_ENDIAN;
 295}
 296
 297static inline int needs_4x_clock(struct fsl_qspi *q)
 298{
 299        return q->devtype_data->driver_data & QUADSPI_QUIRK_4X_INT_CLK;
 300}
 301
 302static inline int needs_fill_txfifo(struct fsl_qspi *q)
 303{
 304        return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT253890;
 305}
 306
 307static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
 308{
 309        return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT245618;
 310}
 311
 312/*
 313 * R/W functions for big- or little-endian registers:
 314 * The qSPI controller's endian is independent of the CPU core's endian.
 315 * So far, although the CPU core is little-endian but the qSPI have two
 316 * versions for big-endian and little-endian.
 317 */
 318static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
 319{
 320        if (q->big_endian)
 321                iowrite32be(val, addr);
 322        else
 323                iowrite32(val, addr);
 324}
 325
 326static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
 327{
 328        if (q->big_endian)
 329                return ioread32be(addr);
 330        else
 331                return ioread32(addr);
 332}
 333
 334/*
 335 * An IC bug makes us to re-arrange the 32-bit data.
 336 * The following chips, such as IMX6SLX, have fixed this bug.
 337 */
 338static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
 339{
 340        return needs_swap_endian(q) ? __swab32(a) : a;
 341}
 342
 343static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
 344{
 345        qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
 346        qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
 347}
 348
 349static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
 350{
 351        qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
 352        qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
 353}
 354
 355static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
 356{
 357        struct fsl_qspi *q = dev_id;
 358        u32 reg;
 359
 360        /* clear interrupt */
 361        reg = qspi_readl(q, q->iobase + QUADSPI_FR);
 362        qspi_writel(q, reg, q->iobase + QUADSPI_FR);
 363
 364        if (reg & QUADSPI_FR_TFF_MASK)
 365                complete(&q->c);
 366
 367        dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
 368        return IRQ_HANDLED;
 369}
 370
 371static void fsl_qspi_init_lut(struct fsl_qspi *q)
 372{
 373        void __iomem *base = q->iobase;
 374        int rxfifo = q->devtype_data->rxfifo;
 375        u32 lut_base;
 376        u8 cmd, addrlen, dummy;
 377        int i;
 378
 379        fsl_qspi_unlock_lut(q);
 380
 381        /* Clear all the LUT table */
 382        for (i = 0; i < QUADSPI_LUT_NUM; i++)
 383                qspi_writel(q, 0, base + QUADSPI_LUT_BASE + i * 4);
 384
 385        /* Quad Read */
 386        lut_base = SEQID_QUAD_READ * 4;
 387
 388        if (q->nor_size <= SZ_16M) {
 389                cmd = SPINOR_OP_READ_1_1_4;
 390                addrlen = ADDR24BIT;
 391                dummy = 8;
 392        } else {
 393                /* use the 4-byte address */
 394                cmd = SPINOR_OP_READ_1_1_4;
 395                addrlen = ADDR32BIT;
 396                dummy = 8;
 397        }
 398
 399        qspi_writel(q, LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
 400                        base + QUADSPI_LUT(lut_base));
 401        qspi_writel(q, LUT0(DUMMY, PAD1, dummy) | LUT1(FSL_READ, PAD4, rxfifo),
 402                        base + QUADSPI_LUT(lut_base + 1));
 403
 404        /* Write enable */
 405        lut_base = SEQID_WREN * 4;
 406        qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WREN),
 407                        base + QUADSPI_LUT(lut_base));
 408
 409        /* Page Program */
 410        lut_base = SEQID_PP * 4;
 411
 412        if (q->nor_size <= SZ_16M) {
 413                cmd = SPINOR_OP_PP;
 414                addrlen = ADDR24BIT;
 415        } else {
 416                /* use the 4-byte address */
 417                cmd = SPINOR_OP_PP;
 418                addrlen = ADDR32BIT;
 419        }
 420
 421        qspi_writel(q, LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
 422                        base + QUADSPI_LUT(lut_base));
 423        qspi_writel(q, LUT0(FSL_WRITE, PAD1, 0),
 424                        base + QUADSPI_LUT(lut_base + 1));
 425
 426        /* Read Status */
 427        lut_base = SEQID_RDSR * 4;
 428        qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDSR) |
 429                        LUT1(FSL_READ, PAD1, 0x1),
 430                        base + QUADSPI_LUT(lut_base));
 431
 432        /* Erase a sector */
 433        lut_base = SEQID_SE * 4;
 434
 435        cmd = q->nor[0].erase_opcode;
 436        addrlen = q->nor_size <= SZ_16M ? ADDR24BIT : ADDR32BIT;
 437
 438        qspi_writel(q, LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
 439                        base + QUADSPI_LUT(lut_base));
 440
 441        /* Erase the whole chip */
 442        lut_base = SEQID_CHIP_ERASE * 4;
 443        qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
 444                        base + QUADSPI_LUT(lut_base));
 445
 446        /* READ ID */
 447        lut_base = SEQID_RDID * 4;
 448        qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDID) |
 449                        LUT1(FSL_READ, PAD1, 0x8),
 450                        base + QUADSPI_LUT(lut_base));
 451
 452        /* Write Register */
 453        lut_base = SEQID_WRSR * 4;
 454        qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRSR) |
 455                        LUT1(FSL_WRITE, PAD1, 0x2),
 456                        base + QUADSPI_LUT(lut_base));
 457
 458        /* Read Configuration Register */
 459        lut_base = SEQID_RDCR * 4;
 460        qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDCR) |
 461                        LUT1(FSL_READ, PAD1, 0x1),
 462                        base + QUADSPI_LUT(lut_base));
 463
 464        /* Write disable */
 465        lut_base = SEQID_WRDI * 4;
 466        qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRDI),
 467                        base + QUADSPI_LUT(lut_base));
 468
 469        /* Enter 4 Byte Mode (Micron) */
 470        lut_base = SEQID_EN4B * 4;
 471        qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_EN4B),
 472                        base + QUADSPI_LUT(lut_base));
 473
 474        /* Enter 4 Byte Mode (Spansion) */
 475        lut_base = SEQID_BRWR * 4;
 476        qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_BRWR),
 477                        base + QUADSPI_LUT(lut_base));
 478
 479        fsl_qspi_lock_lut(q);
 480}
 481
 482/* Get the SEQID for the command */
 483static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
 484{
 485        switch (cmd) {
 486        case SPINOR_OP_READ_1_1_4:
 487                return SEQID_QUAD_READ;
 488        case SPINOR_OP_WREN:
 489                return SEQID_WREN;
 490        case SPINOR_OP_WRDI:
 491                return SEQID_WRDI;
 492        case SPINOR_OP_RDSR:
 493                return SEQID_RDSR;
 494        case SPINOR_OP_SE:
 495                return SEQID_SE;
 496        case SPINOR_OP_CHIP_ERASE:
 497                return SEQID_CHIP_ERASE;
 498        case SPINOR_OP_PP:
 499                return SEQID_PP;
 500        case SPINOR_OP_RDID:
 501                return SEQID_RDID;
 502        case SPINOR_OP_WRSR:
 503                return SEQID_WRSR;
 504        case SPINOR_OP_RDCR:
 505                return SEQID_RDCR;
 506        case SPINOR_OP_EN4B:
 507                return SEQID_EN4B;
 508        case SPINOR_OP_BRWR:
 509                return SEQID_BRWR;
 510        default:
 511                if (cmd == q->nor[0].erase_opcode)
 512                        return SEQID_SE;
 513                dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
 514                break;
 515        }
 516        return -EINVAL;
 517}
 518
 519static int
 520fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
 521{
 522        void __iomem *base = q->iobase;
 523        int seqid;
 524        u32 reg, reg2;
 525        int err;
 526
 527        init_completion(&q->c);
 528        dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
 529                        q->chip_base_addr, addr, len, cmd);
 530
 531        /* save the reg */
 532        reg = qspi_readl(q, base + QUADSPI_MCR);
 533
 534        qspi_writel(q, q->memmap_phy + q->chip_base_addr + addr,
 535                        base + QUADSPI_SFAR);
 536        qspi_writel(q, QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
 537                        base + QUADSPI_RBCT);
 538        qspi_writel(q, reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
 539
 540        do {
 541                reg2 = qspi_readl(q, base + QUADSPI_SR);
 542                if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
 543                        udelay(1);
 544                        dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
 545                        continue;
 546                }
 547                break;
 548        } while (1);
 549
 550        /* trigger the LUT now */
 551        seqid = fsl_qspi_get_seqid(q, cmd);
 552        qspi_writel(q, (seqid << QUADSPI_IPCR_SEQID_SHIFT) | len,
 553                        base + QUADSPI_IPCR);
 554
 555        /* Wait for the interrupt. */
 556        if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) {
 557                dev_err(q->dev,
 558                        "cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
 559                        cmd, addr, qspi_readl(q, base + QUADSPI_FR),
 560                        qspi_readl(q, base + QUADSPI_SR));
 561                err = -ETIMEDOUT;
 562        } else {
 563                err = 0;
 564        }
 565
 566        /* restore the MCR */
 567        qspi_writel(q, reg, base + QUADSPI_MCR);
 568
 569        return err;
 570}
 571
 572/* Read out the data from the QUADSPI_RBDR buffer registers. */
 573static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
 574{
 575        u32 tmp;
 576        int i = 0;
 577
 578        while (len > 0) {
 579                tmp = qspi_readl(q, q->iobase + QUADSPI_RBDR + i * 4);
 580                tmp = fsl_qspi_endian_xchg(q, tmp);
 581                dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
 582                                q->chip_base_addr, tmp);
 583
 584                if (len >= 4) {
 585                        *((u32 *)rxbuf) = tmp;
 586                        rxbuf += 4;
 587                } else {
 588                        memcpy(rxbuf, &tmp, len);
 589                        break;
 590                }
 591
 592                len -= 4;
 593                i++;
 594        }
 595}
 596
 597/*
 598 * If we have changed the content of the flash by writing or erasing,
 599 * we need to invalidate the AHB buffer. If we do not do so, we may read out
 600 * the wrong data. The spec tells us reset the AHB domain and Serial Flash
 601 * domain at the same time.
 602 */
 603static inline void fsl_qspi_invalid(struct fsl_qspi *q)
 604{
 605        u32 reg;
 606
 607        reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
 608        reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
 609        qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
 610
 611        /*
 612         * The minimum delay : 1 AHB + 2 SFCK clocks.
 613         * Delay 1 us is enough.
 614         */
 615        udelay(1);
 616
 617        reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
 618        qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
 619}
 620
 621static ssize_t fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
 622                                u8 opcode, unsigned int to, u32 *txbuf,
 623                                unsigned count)
 624{
 625        int ret, i, j;
 626        u32 tmp;
 627
 628        dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
 629                q->chip_base_addr, to, count);
 630
 631        /* clear the TX FIFO. */
 632        tmp = qspi_readl(q, q->iobase + QUADSPI_MCR);
 633        qspi_writel(q, tmp | QUADSPI_MCR_CLR_TXF_MASK, q->iobase + QUADSPI_MCR);
 634
 635        /* fill the TX data to the FIFO */
 636        for (j = 0, i = ((count + 3) / 4); j < i; j++) {
 637                tmp = fsl_qspi_endian_xchg(q, *txbuf);
 638                qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
 639                txbuf++;
 640        }
 641
 642        /* fill the TXFIFO upto 16 bytes for i.MX7d */
 643        if (needs_fill_txfifo(q))
 644                for (; i < 4; i++)
 645                        qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
 646
 647        /* Trigger it */
 648        ret = fsl_qspi_runcmd(q, opcode, to, count);
 649
 650        if (ret == 0)
 651                return count;
 652
 653        return ret;
 654}
 655
 656static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
 657{
 658        int nor_size = q->nor_size;
 659        void __iomem *base = q->iobase;
 660
 661        qspi_writel(q, nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
 662        qspi_writel(q, nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
 663        qspi_writel(q, nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
 664        qspi_writel(q, nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
 665}
 666
 667/*
 668 * There are two different ways to read out the data from the flash:
 669 *  the "IP Command Read" and the "AHB Command Read".
 670 *
 671 * The IC guy suggests we use the "AHB Command Read" which is faster
 672 * then the "IP Command Read". (What's more is that there is a bug in
 673 * the "IP Command Read" in the Vybrid.)
 674 *
 675 * After we set up the registers for the "AHB Command Read", we can use
 676 * the memcpy to read the data directly. A "missed" access to the buffer
 677 * causes the controller to clear the buffer, and use the sequence pointed
 678 * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
 679 */
 680static void fsl_qspi_init_abh_read(struct fsl_qspi *q)
 681{
 682        void __iomem *base = q->iobase;
 683        int seqid;
 684
 685        /* AHB configuration for access buffer 0/1/2 .*/
 686        qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
 687        qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
 688        qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
 689        /*
 690         * Set ADATSZ with the maximum AHB buffer size to improve the
 691         * read performance.
 692         */
 693        qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
 694                        ((q->devtype_data->ahb_buf_size / 8)
 695                        << QUADSPI_BUF3CR_ADATSZ_SHIFT),
 696                        base + QUADSPI_BUF3CR);
 697
 698        /* We only use the buffer3 */
 699        qspi_writel(q, 0, base + QUADSPI_BUF0IND);
 700        qspi_writel(q, 0, base + QUADSPI_BUF1IND);
 701        qspi_writel(q, 0, base + QUADSPI_BUF2IND);
 702
 703        /* Set the default lut sequence for AHB Read. */
 704        seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
 705        qspi_writel(q, seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
 706                q->iobase + QUADSPI_BFGENCR);
 707}
 708
 709/* This function was used to prepare and enable QSPI clock */
 710static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
 711{
 712        int ret;
 713
 714        ret = clk_prepare_enable(q->clk_en);
 715        if (ret)
 716                return ret;
 717
 718        ret = clk_prepare_enable(q->clk);
 719        if (ret) {
 720                clk_disable_unprepare(q->clk_en);
 721                return ret;
 722        }
 723
 724        if (needs_wakeup_wait_mode(q))
 725                pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0);
 726
 727        return 0;
 728}
 729
 730/* This function was used to disable and unprepare QSPI clock */
 731static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
 732{
 733        if (needs_wakeup_wait_mode(q))
 734                pm_qos_remove_request(&q->pm_qos_req);
 735
 736        clk_disable_unprepare(q->clk);
 737        clk_disable_unprepare(q->clk_en);
 738
 739}
 740
 741/* We use this function to do some basic init for spi_nor_scan(). */
 742static int fsl_qspi_nor_setup(struct fsl_qspi *q)
 743{
 744        void __iomem *base = q->iobase;
 745        u32 reg;
 746        int ret;
 747
 748        /* disable and unprepare clock to avoid glitch pass to controller */
 749        fsl_qspi_clk_disable_unprep(q);
 750
 751        /* the default frequency, we will change it in the future. */
 752        ret = clk_set_rate(q->clk, 66000000);
 753        if (ret)
 754                return ret;
 755
 756        ret = fsl_qspi_clk_prep_enable(q);
 757        if (ret)
 758                return ret;
 759
 760        /* Reset the module */
 761        qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
 762                base + QUADSPI_MCR);
 763        udelay(1);
 764
 765        /* Init the LUT table. */
 766        fsl_qspi_init_lut(q);
 767
 768        /* Disable the module */
 769        qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
 770                        base + QUADSPI_MCR);
 771
 772        reg = qspi_readl(q, base + QUADSPI_SMPR);
 773        qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
 774                        | QUADSPI_SMPR_FSPHS_MASK
 775                        | QUADSPI_SMPR_HSENA_MASK
 776                        | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
 777
 778        /* Enable the module */
 779        qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
 780                        base + QUADSPI_MCR);
 781
 782        /* clear all interrupt status */
 783        qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
 784
 785        /* enable the interrupt */
 786        qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
 787
 788        return 0;
 789}
 790
 791static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
 792{
 793        unsigned long rate = q->clk_rate;
 794        int ret;
 795
 796        if (needs_4x_clock(q))
 797                rate *= 4;
 798
 799        /* disable and unprepare clock to avoid glitch pass to controller */
 800        fsl_qspi_clk_disable_unprep(q);
 801
 802        ret = clk_set_rate(q->clk, rate);
 803        if (ret)
 804                return ret;
 805
 806        ret = fsl_qspi_clk_prep_enable(q);
 807        if (ret)
 808                return ret;
 809
 810        /* Init the LUT table again. */
 811        fsl_qspi_init_lut(q);
 812
 813        /* Init for AHB read */
 814        fsl_qspi_init_abh_read(q);
 815
 816        return 0;
 817}
 818
 819static const struct of_device_id fsl_qspi_dt_ids[] = {
 820        { .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, },
 821        { .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, },
 822        { .compatible = "fsl,imx7d-qspi", .data = (void *)&imx7d_data, },
 823        { .compatible = "fsl,imx6ul-qspi", .data = (void *)&imx6ul_data, },
 824        { .compatible = "fsl,ls1021a-qspi", .data = (void *)&ls1021a_data, },
 825        { /* sentinel */ }
 826};
 827MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
 828
 829static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
 830{
 831        q->chip_base_addr = q->nor_size * (nor - q->nor);
 832}
 833
 834static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
 835{
 836        int ret;
 837        struct fsl_qspi *q = nor->priv;
 838
 839        ret = fsl_qspi_runcmd(q, opcode, 0, len);
 840        if (ret)
 841                return ret;
 842
 843        fsl_qspi_read_data(q, len, buf);
 844        return 0;
 845}
 846
 847static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
 848{
 849        struct fsl_qspi *q = nor->priv;
 850        int ret;
 851
 852        if (!buf) {
 853                ret = fsl_qspi_runcmd(q, opcode, 0, 1);
 854                if (ret)
 855                        return ret;
 856
 857                if (opcode == SPINOR_OP_CHIP_ERASE)
 858                        fsl_qspi_invalid(q);
 859
 860        } else if (len > 0) {
 861                ret = fsl_qspi_nor_write(q, nor, opcode, 0,
 862                                        (u32 *)buf, len);
 863                if (ret > 0)
 864                        return 0;
 865        } else {
 866                dev_err(q->dev, "invalid cmd %d\n", opcode);
 867                ret = -EINVAL;
 868        }
 869
 870        return ret;
 871}
 872
 873static ssize_t fsl_qspi_write(struct spi_nor *nor, loff_t to,
 874                              size_t len, const u_char *buf)
 875{
 876        struct fsl_qspi *q = nor->priv;
 877        ssize_t ret = fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
 878                                         (u32 *)buf, len);
 879
 880        /* invalid the data in the AHB buffer. */
 881        fsl_qspi_invalid(q);
 882        return ret;
 883}
 884
 885static ssize_t fsl_qspi_read(struct spi_nor *nor, loff_t from,
 886                             size_t len, u_char *buf)
 887{
 888        struct fsl_qspi *q = nor->priv;
 889        u8 cmd = nor->read_opcode;
 890
 891        /* if necessary,ioremap buffer before AHB read, */
 892        if (!q->ahb_addr) {
 893                q->memmap_offs = q->chip_base_addr + from;
 894                q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
 895
 896                q->ahb_addr = ioremap_nocache(
 897                                q->memmap_phy + q->memmap_offs,
 898                                q->memmap_len);
 899                if (!q->ahb_addr) {
 900                        dev_err(q->dev, "ioremap failed\n");
 901                        return -ENOMEM;
 902                }
 903        /* ioremap if the data requested is out of range */
 904        } else if (q->chip_base_addr + from < q->memmap_offs
 905                        || q->chip_base_addr + from + len >
 906                        q->memmap_offs + q->memmap_len) {
 907                iounmap(q->ahb_addr);
 908
 909                q->memmap_offs = q->chip_base_addr + from;
 910                q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
 911                q->ahb_addr = ioremap_nocache(
 912                                q->memmap_phy + q->memmap_offs,
 913                                q->memmap_len);
 914                if (!q->ahb_addr) {
 915                        dev_err(q->dev, "ioremap failed\n");
 916                        return -ENOMEM;
 917                }
 918        }
 919
 920        dev_dbg(q->dev, "cmd [%x],read from %p, len:%zd\n",
 921                cmd, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
 922                len);
 923
 924        /* Read out the data directly from the AHB buffer.*/
 925        memcpy(buf, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
 926                len);
 927
 928        return len;
 929}
 930
 931static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
 932{
 933        struct fsl_qspi *q = nor->priv;
 934        int ret;
 935
 936        dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
 937                nor->mtd.erasesize / 1024, q->chip_base_addr, (u32)offs);
 938
 939        ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
 940        if (ret)
 941                return ret;
 942
 943        fsl_qspi_invalid(q);
 944        return 0;
 945}
 946
 947static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
 948{
 949        struct fsl_qspi *q = nor->priv;
 950        int ret;
 951
 952        mutex_lock(&q->lock);
 953
 954        ret = fsl_qspi_clk_prep_enable(q);
 955        if (ret)
 956                goto err_mutex;
 957
 958        fsl_qspi_set_base_addr(q, nor);
 959        return 0;
 960
 961err_mutex:
 962        mutex_unlock(&q->lock);
 963        return ret;
 964}
 965
 966static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
 967{
 968        struct fsl_qspi *q = nor->priv;
 969
 970        fsl_qspi_clk_disable_unprep(q);
 971        mutex_unlock(&q->lock);
 972}
 973
 974static int fsl_qspi_probe(struct platform_device *pdev)
 975{
 976        struct device_node *np = pdev->dev.of_node;
 977        struct device *dev = &pdev->dev;
 978        struct fsl_qspi *q;
 979        struct resource *res;
 980        struct spi_nor *nor;
 981        struct mtd_info *mtd;
 982        int ret, i = 0;
 983
 984        q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
 985        if (!q)
 986                return -ENOMEM;
 987
 988        q->nor_num = of_get_child_count(dev->of_node);
 989        if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
 990                return -ENODEV;
 991
 992        q->dev = dev;
 993        q->devtype_data = of_device_get_match_data(dev);
 994        if (!q->devtype_data)
 995                return -ENODEV;
 996        platform_set_drvdata(pdev, q);
 997
 998        /* find the resources */
 999        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
1000        q->iobase = devm_ioremap_resource(dev, res);
1001        if (IS_ERR(q->iobase))
1002                return PTR_ERR(q->iobase);
1003
1004        q->big_endian = of_property_read_bool(np, "big-endian");
1005        res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1006                                        "QuadSPI-memory");
1007        if (!devm_request_mem_region(dev, res->start, resource_size(res),
1008                                     res->name)) {
1009                dev_err(dev, "can't request region for resource %pR\n", res);
1010                return -EBUSY;
1011        }
1012
1013        q->memmap_phy = res->start;
1014
1015        /* find the clocks */
1016        q->clk_en = devm_clk_get(dev, "qspi_en");
1017        if (IS_ERR(q->clk_en))
1018                return PTR_ERR(q->clk_en);
1019
1020        q->clk = devm_clk_get(dev, "qspi");
1021        if (IS_ERR(q->clk))
1022                return PTR_ERR(q->clk);
1023
1024        ret = fsl_qspi_clk_prep_enable(q);
1025        if (ret) {
1026                dev_err(dev, "can not enable the clock\n");
1027                goto clk_failed;
1028        }
1029
1030        /* find the irq */
1031        ret = platform_get_irq(pdev, 0);
1032        if (ret < 0) {
1033                dev_err(dev, "failed to get the irq: %d\n", ret);
1034                goto irq_failed;
1035        }
1036
1037        ret = devm_request_irq(dev, ret,
1038                        fsl_qspi_irq_handler, 0, pdev->name, q);
1039        if (ret) {
1040                dev_err(dev, "failed to request irq: %d\n", ret);
1041                goto irq_failed;
1042        }
1043
1044        ret = fsl_qspi_nor_setup(q);
1045        if (ret)
1046                goto irq_failed;
1047
1048        if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
1049                q->has_second_chip = true;
1050
1051        mutex_init(&q->lock);
1052
1053        /* iterate the subnodes. */
1054        for_each_available_child_of_node(dev->of_node, np) {
1055                /* skip the holes */
1056                if (!q->has_second_chip)
1057                        i *= 2;
1058
1059                nor = &q->nor[i];
1060                mtd = &nor->mtd;
1061
1062                nor->dev = dev;
1063                spi_nor_set_flash_node(nor, np);
1064                nor->priv = q;
1065
1066                /* fill the hooks */
1067                nor->read_reg = fsl_qspi_read_reg;
1068                nor->write_reg = fsl_qspi_write_reg;
1069                nor->read = fsl_qspi_read;
1070                nor->write = fsl_qspi_write;
1071                nor->erase = fsl_qspi_erase;
1072
1073                nor->prepare = fsl_qspi_prep;
1074                nor->unprepare = fsl_qspi_unprep;
1075
1076                ret = of_property_read_u32(np, "spi-max-frequency",
1077                                &q->clk_rate);
1078                if (ret < 0)
1079                        goto mutex_failed;
1080
1081                /* set the chip address for READID */
1082                fsl_qspi_set_base_addr(q, nor);
1083
1084                ret = spi_nor_scan(nor, NULL, SPI_NOR_QUAD);
1085                if (ret)
1086                        goto mutex_failed;
1087
1088                ret = mtd_device_register(mtd, NULL, 0);
1089                if (ret)
1090                        goto mutex_failed;
1091
1092                /* Set the correct NOR size now. */
1093                if (q->nor_size == 0) {
1094                        q->nor_size = mtd->size;
1095
1096                        /* Map the SPI NOR to accessiable address */
1097                        fsl_qspi_set_map_addr(q);
1098                }
1099
1100                /*
1101                 * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
1102                 * may writes 265 bytes per time. The write is working in the
1103                 * unit of the TX FIFO, not in the unit of the SPI NOR's page
1104                 * size.
1105                 *
1106                 * So shrink the spi_nor->page_size if it is larger then the
1107                 * TX FIFO.
1108                 */
1109                if (nor->page_size > q->devtype_data->txfifo)
1110                        nor->page_size = q->devtype_data->txfifo;
1111
1112                i++;
1113        }
1114
1115        /* finish the rest init. */
1116        ret = fsl_qspi_nor_setup_last(q);
1117        if (ret)
1118                goto last_init_failed;
1119
1120        fsl_qspi_clk_disable_unprep(q);
1121        return 0;
1122
1123last_init_failed:
1124        for (i = 0; i < q->nor_num; i++) {
1125                /* skip the holes */
1126                if (!q->has_second_chip)
1127                        i *= 2;
1128                mtd_device_unregister(&q->nor[i].mtd);
1129        }
1130mutex_failed:
1131        mutex_destroy(&q->lock);
1132irq_failed:
1133        fsl_qspi_clk_disable_unprep(q);
1134clk_failed:
1135        dev_err(dev, "Freescale QuadSPI probe failed\n");
1136        return ret;
1137}
1138
1139static int fsl_qspi_remove(struct platform_device *pdev)
1140{
1141        struct fsl_qspi *q = platform_get_drvdata(pdev);
1142        int i;
1143
1144        for (i = 0; i < q->nor_num; i++) {
1145                /* skip the holes */
1146                if (!q->has_second_chip)
1147                        i *= 2;
1148                mtd_device_unregister(&q->nor[i].mtd);
1149        }
1150
1151        /* disable the hardware */
1152        qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
1153        qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
1154
1155        mutex_destroy(&q->lock);
1156
1157        if (q->ahb_addr)
1158                iounmap(q->ahb_addr);
1159
1160        return 0;
1161}
1162
1163static int fsl_qspi_suspend(struct platform_device *pdev, pm_message_t state)
1164{
1165        return 0;
1166}
1167
1168static int fsl_qspi_resume(struct platform_device *pdev)
1169{
1170        int ret;
1171        struct fsl_qspi *q = platform_get_drvdata(pdev);
1172
1173        ret = fsl_qspi_clk_prep_enable(q);
1174        if (ret)
1175                return ret;
1176
1177        fsl_qspi_nor_setup(q);
1178        fsl_qspi_set_map_addr(q);
1179        fsl_qspi_nor_setup_last(q);
1180
1181        fsl_qspi_clk_disable_unprep(q);
1182
1183        return 0;
1184}
1185
1186static struct platform_driver fsl_qspi_driver = {
1187        .driver = {
1188                .name   = "fsl-quadspi",
1189                .bus    = &platform_bus_type,
1190                .of_match_table = fsl_qspi_dt_ids,
1191        },
1192        .probe          = fsl_qspi_probe,
1193        .remove         = fsl_qspi_remove,
1194        .suspend        = fsl_qspi_suspend,
1195        .resume         = fsl_qspi_resume,
1196};
1197module_platform_driver(fsl_qspi_driver);
1198
1199MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
1200MODULE_AUTHOR("Freescale Semiconductor Inc.");
1201MODULE_LICENSE("GPL v2");
1202