linux/drivers/net/ethernet/sfc/efx.c
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2005-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/module.h>
  12#include <linux/pci.h>
  13#include <linux/netdevice.h>
  14#include <linux/etherdevice.h>
  15#include <linux/delay.h>
  16#include <linux/notifier.h>
  17#include <linux/ip.h>
  18#include <linux/tcp.h>
  19#include <linux/in.h>
  20#include <linux/ethtool.h>
  21#include <linux/topology.h>
  22#include <linux/gfp.h>
  23#include <linux/aer.h>
  24#include <linux/interrupt.h>
  25#include "net_driver.h"
  26#include "efx.h"
  27#include "nic.h"
  28#include "selftest.h"
  29#include "sriov.h"
  30
  31#include "mcdi.h"
  32#include "workarounds.h"
  33
  34/**************************************************************************
  35 *
  36 * Type name strings
  37 *
  38 **************************************************************************
  39 */
  40
  41/* Loopback mode names (see LOOPBACK_MODE()) */
  42const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
  43const char *const efx_loopback_mode_names[] = {
  44        [LOOPBACK_NONE]         = "NONE",
  45        [LOOPBACK_DATA]         = "DATAPATH",
  46        [LOOPBACK_GMAC]         = "GMAC",
  47        [LOOPBACK_XGMII]        = "XGMII",
  48        [LOOPBACK_XGXS]         = "XGXS",
  49        [LOOPBACK_XAUI]         = "XAUI",
  50        [LOOPBACK_GMII]         = "GMII",
  51        [LOOPBACK_SGMII]        = "SGMII",
  52        [LOOPBACK_XGBR]         = "XGBR",
  53        [LOOPBACK_XFI]          = "XFI",
  54        [LOOPBACK_XAUI_FAR]     = "XAUI_FAR",
  55        [LOOPBACK_GMII_FAR]     = "GMII_FAR",
  56        [LOOPBACK_SGMII_FAR]    = "SGMII_FAR",
  57        [LOOPBACK_XFI_FAR]      = "XFI_FAR",
  58        [LOOPBACK_GPHY]         = "GPHY",
  59        [LOOPBACK_PHYXS]        = "PHYXS",
  60        [LOOPBACK_PCS]          = "PCS",
  61        [LOOPBACK_PMAPMD]       = "PMA/PMD",
  62        [LOOPBACK_XPORT]        = "XPORT",
  63        [LOOPBACK_XGMII_WS]     = "XGMII_WS",
  64        [LOOPBACK_XAUI_WS]      = "XAUI_WS",
  65        [LOOPBACK_XAUI_WS_FAR]  = "XAUI_WS_FAR",
  66        [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
  67        [LOOPBACK_GMII_WS]      = "GMII_WS",
  68        [LOOPBACK_XFI_WS]       = "XFI_WS",
  69        [LOOPBACK_XFI_WS_FAR]   = "XFI_WS_FAR",
  70        [LOOPBACK_PHYXS_WS]     = "PHYXS_WS",
  71};
  72
  73const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
  74const char *const efx_reset_type_names[] = {
  75        [RESET_TYPE_INVISIBLE]          = "INVISIBLE",
  76        [RESET_TYPE_ALL]                = "ALL",
  77        [RESET_TYPE_RECOVER_OR_ALL]     = "RECOVER_OR_ALL",
  78        [RESET_TYPE_WORLD]              = "WORLD",
  79        [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
  80        [RESET_TYPE_DATAPATH]           = "DATAPATH",
  81        [RESET_TYPE_MC_BIST]            = "MC_BIST",
  82        [RESET_TYPE_DISABLE]            = "DISABLE",
  83        [RESET_TYPE_TX_WATCHDOG]        = "TX_WATCHDOG",
  84        [RESET_TYPE_INT_ERROR]          = "INT_ERROR",
  85        [RESET_TYPE_DMA_ERROR]          = "DMA_ERROR",
  86        [RESET_TYPE_TX_SKIP]            = "TX_SKIP",
  87        [RESET_TYPE_MC_FAILURE]         = "MC_FAILURE",
  88        [RESET_TYPE_MCDI_TIMEOUT]       = "MCDI_TIMEOUT (FLR)",
  89};
  90
  91/* Reset workqueue. If any NIC has a hardware failure then a reset will be
  92 * queued onto this work queue. This is not a per-nic work queue, because
  93 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
  94 */
  95static struct workqueue_struct *reset_workqueue;
  96
  97/* How often and how many times to poll for a reset while waiting for a
  98 * BIST that another function started to complete.
  99 */
 100#define BIST_WAIT_DELAY_MS      100
 101#define BIST_WAIT_DELAY_COUNT   100
 102
 103/**************************************************************************
 104 *
 105 * Configurable values
 106 *
 107 *************************************************************************/
 108
 109/*
 110 * Use separate channels for TX and RX events
 111 *
 112 * Set this to 1 to use separate channels for TX and RX. It allows us
 113 * to control interrupt affinity separately for TX and RX.
 114 *
 115 * This is only used in MSI-X interrupt mode
 116 */
 117bool efx_separate_tx_channels;
 118module_param(efx_separate_tx_channels, bool, 0444);
 119MODULE_PARM_DESC(efx_separate_tx_channels,
 120                 "Use separate channels for TX and RX");
 121
 122/* This is the weight assigned to each of the (per-channel) virtual
 123 * NAPI devices.
 124 */
 125static int napi_weight = 64;
 126
 127/* This is the time (in jiffies) between invocations of the hardware
 128 * monitor.
 129 * On Falcon-based NICs, this will:
 130 * - Check the on-board hardware monitor;
 131 * - Poll the link state and reconfigure the hardware as necessary.
 132 * On Siena-based NICs for power systems with EEH support, this will give EEH a
 133 * chance to start.
 134 */
 135static unsigned int efx_monitor_interval = 1 * HZ;
 136
 137/* Initial interrupt moderation settings.  They can be modified after
 138 * module load with ethtool.
 139 *
 140 * The default for RX should strike a balance between increasing the
 141 * round-trip latency and reducing overhead.
 142 */
 143static unsigned int rx_irq_mod_usec = 60;
 144
 145/* Initial interrupt moderation settings.  They can be modified after
 146 * module load with ethtool.
 147 *
 148 * This default is chosen to ensure that a 10G link does not go idle
 149 * while a TX queue is stopped after it has become full.  A queue is
 150 * restarted when it drops below half full.  The time this takes (assuming
 151 * worst case 3 descriptors per packet and 1024 descriptors) is
 152 *   512 / 3 * 1.2 = 205 usec.
 153 */
 154static unsigned int tx_irq_mod_usec = 150;
 155
 156/* This is the first interrupt mode to try out of:
 157 * 0 => MSI-X
 158 * 1 => MSI
 159 * 2 => legacy
 160 */
 161static unsigned int interrupt_mode;
 162
 163/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
 164 * i.e. the number of CPUs among which we may distribute simultaneous
 165 * interrupt handling.
 166 *
 167 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
 168 * The default (0) means to assign an interrupt to each core.
 169 */
 170static unsigned int rss_cpus;
 171module_param(rss_cpus, uint, 0444);
 172MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
 173
 174static bool phy_flash_cfg;
 175module_param(phy_flash_cfg, bool, 0644);
 176MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
 177
 178static unsigned irq_adapt_low_thresh = 8000;
 179module_param(irq_adapt_low_thresh, uint, 0644);
 180MODULE_PARM_DESC(irq_adapt_low_thresh,
 181                 "Threshold score for reducing IRQ moderation");
 182
 183static unsigned irq_adapt_high_thresh = 16000;
 184module_param(irq_adapt_high_thresh, uint, 0644);
 185MODULE_PARM_DESC(irq_adapt_high_thresh,
 186                 "Threshold score for increasing IRQ moderation");
 187
 188static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
 189                         NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
 190                         NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
 191                         NETIF_MSG_TX_ERR | NETIF_MSG_HW);
 192module_param(debug, uint, 0);
 193MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
 194
 195/**************************************************************************
 196 *
 197 * Utility functions and prototypes
 198 *
 199 *************************************************************************/
 200
 201static int efx_soft_enable_interrupts(struct efx_nic *efx);
 202static void efx_soft_disable_interrupts(struct efx_nic *efx);
 203static void efx_remove_channel(struct efx_channel *channel);
 204static void efx_remove_channels(struct efx_nic *efx);
 205static const struct efx_channel_type efx_default_channel_type;
 206static void efx_remove_port(struct efx_nic *efx);
 207static void efx_init_napi_channel(struct efx_channel *channel);
 208static void efx_fini_napi(struct efx_nic *efx);
 209static void efx_fini_napi_channel(struct efx_channel *channel);
 210static void efx_fini_struct(struct efx_nic *efx);
 211static void efx_start_all(struct efx_nic *efx);
 212static void efx_stop_all(struct efx_nic *efx);
 213
 214#define EFX_ASSERT_RESET_SERIALISED(efx)                \
 215        do {                                            \
 216                if ((efx->state == STATE_READY) ||      \
 217                    (efx->state == STATE_RECOVERY) ||   \
 218                    (efx->state == STATE_DISABLED))     \
 219                        ASSERT_RTNL();                  \
 220        } while (0)
 221
 222static int efx_check_disabled(struct efx_nic *efx)
 223{
 224        if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
 225                netif_err(efx, drv, efx->net_dev,
 226                          "device is disabled due to earlier errors\n");
 227                return -EIO;
 228        }
 229        return 0;
 230}
 231
 232/**************************************************************************
 233 *
 234 * Event queue processing
 235 *
 236 *************************************************************************/
 237
 238/* Process channel's event queue
 239 *
 240 * This function is responsible for processing the event queue of a
 241 * single channel.  The caller must guarantee that this function will
 242 * never be concurrently called more than once on the same channel,
 243 * though different channels may be being processed concurrently.
 244 */
 245static int efx_process_channel(struct efx_channel *channel, int budget)
 246{
 247        struct efx_tx_queue *tx_queue;
 248        int spent;
 249
 250        if (unlikely(!channel->enabled))
 251                return 0;
 252
 253        efx_for_each_channel_tx_queue(tx_queue, channel) {
 254                tx_queue->pkts_compl = 0;
 255                tx_queue->bytes_compl = 0;
 256        }
 257
 258        spent = efx_nic_process_eventq(channel, budget);
 259        if (spent && efx_channel_has_rx_queue(channel)) {
 260                struct efx_rx_queue *rx_queue =
 261                        efx_channel_get_rx_queue(channel);
 262
 263                efx_rx_flush_packet(channel);
 264                efx_fast_push_rx_descriptors(rx_queue, true);
 265        }
 266
 267        /* Update BQL */
 268        efx_for_each_channel_tx_queue(tx_queue, channel) {
 269                if (tx_queue->bytes_compl) {
 270                        netdev_tx_completed_queue(tx_queue->core_txq,
 271                                tx_queue->pkts_compl, tx_queue->bytes_compl);
 272                }
 273        }
 274
 275        return spent;
 276}
 277
 278/* NAPI poll handler
 279 *
 280 * NAPI guarantees serialisation of polls of the same device, which
 281 * provides the guarantee required by efx_process_channel().
 282 */
 283static void efx_update_irq_mod(struct efx_nic *efx, struct efx_channel *channel)
 284{
 285        int step = efx->irq_mod_step_us;
 286
 287        if (channel->irq_mod_score < irq_adapt_low_thresh) {
 288                if (channel->irq_moderation_us > step) {
 289                        channel->irq_moderation_us -= step;
 290                        efx->type->push_irq_moderation(channel);
 291                }
 292        } else if (channel->irq_mod_score > irq_adapt_high_thresh) {
 293                if (channel->irq_moderation_us <
 294                    efx->irq_rx_moderation_us) {
 295                        channel->irq_moderation_us += step;
 296                        efx->type->push_irq_moderation(channel);
 297                }
 298        }
 299
 300        channel->irq_count = 0;
 301        channel->irq_mod_score = 0;
 302}
 303
 304static int efx_poll(struct napi_struct *napi, int budget)
 305{
 306        struct efx_channel *channel =
 307                container_of(napi, struct efx_channel, napi_str);
 308        struct efx_nic *efx = channel->efx;
 309        int spent;
 310
 311        if (!efx_channel_lock_napi(channel))
 312                return budget;
 313
 314        netif_vdbg(efx, intr, efx->net_dev,
 315                   "channel %d NAPI poll executing on CPU %d\n",
 316                   channel->channel, raw_smp_processor_id());
 317
 318        spent = efx_process_channel(channel, budget);
 319
 320        if (spent < budget) {
 321                if (efx_channel_has_rx_queue(channel) &&
 322                    efx->irq_rx_adaptive &&
 323                    unlikely(++channel->irq_count == 1000)) {
 324                        efx_update_irq_mod(efx, channel);
 325                }
 326
 327                efx_filter_rfs_expire(channel);
 328
 329                /* There is no race here; although napi_disable() will
 330                 * only wait for napi_complete(), this isn't a problem
 331                 * since efx_nic_eventq_read_ack() will have no effect if
 332                 * interrupts have already been disabled.
 333                 */
 334                napi_complete(napi);
 335                efx_nic_eventq_read_ack(channel);
 336        }
 337
 338        efx_channel_unlock_napi(channel);
 339        return spent;
 340}
 341
 342/* Create event queue
 343 * Event queue memory allocations are done only once.  If the channel
 344 * is reset, the memory buffer will be reused; this guards against
 345 * errors during channel reset and also simplifies interrupt handling.
 346 */
 347static int efx_probe_eventq(struct efx_channel *channel)
 348{
 349        struct efx_nic *efx = channel->efx;
 350        unsigned long entries;
 351
 352        netif_dbg(efx, probe, efx->net_dev,
 353                  "chan %d create event queue\n", channel->channel);
 354
 355        /* Build an event queue with room for one event per tx and rx buffer,
 356         * plus some extra for link state events and MCDI completions. */
 357        entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
 358        EFX_WARN_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
 359        channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
 360
 361        return efx_nic_probe_eventq(channel);
 362}
 363
 364/* Prepare channel's event queue */
 365static int efx_init_eventq(struct efx_channel *channel)
 366{
 367        struct efx_nic *efx = channel->efx;
 368        int rc;
 369
 370        EFX_WARN_ON_PARANOID(channel->eventq_init);
 371
 372        netif_dbg(efx, drv, efx->net_dev,
 373                  "chan %d init event queue\n", channel->channel);
 374
 375        rc = efx_nic_init_eventq(channel);
 376        if (rc == 0) {
 377                efx->type->push_irq_moderation(channel);
 378                channel->eventq_read_ptr = 0;
 379                channel->eventq_init = true;
 380        }
 381        return rc;
 382}
 383
 384/* Enable event queue processing and NAPI */
 385void efx_start_eventq(struct efx_channel *channel)
 386{
 387        netif_dbg(channel->efx, ifup, channel->efx->net_dev,
 388                  "chan %d start event queue\n", channel->channel);
 389
 390        /* Make sure the NAPI handler sees the enabled flag set */
 391        channel->enabled = true;
 392        smp_wmb();
 393
 394        efx_channel_enable(channel);
 395        napi_enable(&channel->napi_str);
 396        efx_nic_eventq_read_ack(channel);
 397}
 398
 399/* Disable event queue processing and NAPI */
 400void efx_stop_eventq(struct efx_channel *channel)
 401{
 402        if (!channel->enabled)
 403                return;
 404
 405        napi_disable(&channel->napi_str);
 406        while (!efx_channel_disable(channel))
 407                usleep_range(1000, 20000);
 408        channel->enabled = false;
 409}
 410
 411static void efx_fini_eventq(struct efx_channel *channel)
 412{
 413        if (!channel->eventq_init)
 414                return;
 415
 416        netif_dbg(channel->efx, drv, channel->efx->net_dev,
 417                  "chan %d fini event queue\n", channel->channel);
 418
 419        efx_nic_fini_eventq(channel);
 420        channel->eventq_init = false;
 421}
 422
 423static void efx_remove_eventq(struct efx_channel *channel)
 424{
 425        netif_dbg(channel->efx, drv, channel->efx->net_dev,
 426                  "chan %d remove event queue\n", channel->channel);
 427
 428        efx_nic_remove_eventq(channel);
 429}
 430
 431/**************************************************************************
 432 *
 433 * Channel handling
 434 *
 435 *************************************************************************/
 436
 437/* Allocate and initialise a channel structure. */
 438static struct efx_channel *
 439efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
 440{
 441        struct efx_channel *channel;
 442        struct efx_rx_queue *rx_queue;
 443        struct efx_tx_queue *tx_queue;
 444        int j;
 445
 446        channel = kzalloc(sizeof(*channel), GFP_KERNEL);
 447        if (!channel)
 448                return NULL;
 449
 450        channel->efx = efx;
 451        channel->channel = i;
 452        channel->type = &efx_default_channel_type;
 453
 454        for (j = 0; j < EFX_TXQ_TYPES; j++) {
 455                tx_queue = &channel->tx_queue[j];
 456                tx_queue->efx = efx;
 457                tx_queue->queue = i * EFX_TXQ_TYPES + j;
 458                tx_queue->channel = channel;
 459        }
 460
 461        rx_queue = &channel->rx_queue;
 462        rx_queue->efx = efx;
 463        setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
 464                    (unsigned long)rx_queue);
 465
 466        return channel;
 467}
 468
 469/* Allocate and initialise a channel structure, copying parameters
 470 * (but not resources) from an old channel structure.
 471 */
 472static struct efx_channel *
 473efx_copy_channel(const struct efx_channel *old_channel)
 474{
 475        struct efx_channel *channel;
 476        struct efx_rx_queue *rx_queue;
 477        struct efx_tx_queue *tx_queue;
 478        int j;
 479
 480        channel = kmalloc(sizeof(*channel), GFP_KERNEL);
 481        if (!channel)
 482                return NULL;
 483
 484        *channel = *old_channel;
 485
 486        channel->napi_dev = NULL;
 487        INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
 488        channel->napi_str.napi_id = 0;
 489        channel->napi_str.state = 0;
 490        memset(&channel->eventq, 0, sizeof(channel->eventq));
 491
 492        for (j = 0; j < EFX_TXQ_TYPES; j++) {
 493                tx_queue = &channel->tx_queue[j];
 494                if (tx_queue->channel)
 495                        tx_queue->channel = channel;
 496                tx_queue->buffer = NULL;
 497                memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
 498        }
 499
 500        rx_queue = &channel->rx_queue;
 501        rx_queue->buffer = NULL;
 502        memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
 503        setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
 504                    (unsigned long)rx_queue);
 505
 506        return channel;
 507}
 508
 509static int efx_probe_channel(struct efx_channel *channel)
 510{
 511        struct efx_tx_queue *tx_queue;
 512        struct efx_rx_queue *rx_queue;
 513        int rc;
 514
 515        netif_dbg(channel->efx, probe, channel->efx->net_dev,
 516                  "creating channel %d\n", channel->channel);
 517
 518        rc = channel->type->pre_probe(channel);
 519        if (rc)
 520                goto fail;
 521
 522        rc = efx_probe_eventq(channel);
 523        if (rc)
 524                goto fail;
 525
 526        efx_for_each_channel_tx_queue(tx_queue, channel) {
 527                rc = efx_probe_tx_queue(tx_queue);
 528                if (rc)
 529                        goto fail;
 530        }
 531
 532        efx_for_each_channel_rx_queue(rx_queue, channel) {
 533                rc = efx_probe_rx_queue(rx_queue);
 534                if (rc)
 535                        goto fail;
 536        }
 537
 538        return 0;
 539
 540fail:
 541        efx_remove_channel(channel);
 542        return rc;
 543}
 544
 545static void
 546efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
 547{
 548        struct efx_nic *efx = channel->efx;
 549        const char *type;
 550        int number;
 551
 552        number = channel->channel;
 553        if (efx->tx_channel_offset == 0) {
 554                type = "";
 555        } else if (channel->channel < efx->tx_channel_offset) {
 556                type = "-rx";
 557        } else {
 558                type = "-tx";
 559                number -= efx->tx_channel_offset;
 560        }
 561        snprintf(buf, len, "%s%s-%d", efx->name, type, number);
 562}
 563
 564static void efx_set_channel_names(struct efx_nic *efx)
 565{
 566        struct efx_channel *channel;
 567
 568        efx_for_each_channel(channel, efx)
 569                channel->type->get_name(channel,
 570                                        efx->msi_context[channel->channel].name,
 571                                        sizeof(efx->msi_context[0].name));
 572}
 573
 574static int efx_probe_channels(struct efx_nic *efx)
 575{
 576        struct efx_channel *channel;
 577        int rc;
 578
 579        /* Restart special buffer allocation */
 580        efx->next_buffer_table = 0;
 581
 582        /* Probe channels in reverse, so that any 'extra' channels
 583         * use the start of the buffer table. This allows the traffic
 584         * channels to be resized without moving them or wasting the
 585         * entries before them.
 586         */
 587        efx_for_each_channel_rev(channel, efx) {
 588                rc = efx_probe_channel(channel);
 589                if (rc) {
 590                        netif_err(efx, probe, efx->net_dev,
 591                                  "failed to create channel %d\n",
 592                                  channel->channel);
 593                        goto fail;
 594                }
 595        }
 596        efx_set_channel_names(efx);
 597
 598        return 0;
 599
 600fail:
 601        efx_remove_channels(efx);
 602        return rc;
 603}
 604
 605/* Channels are shutdown and reinitialised whilst the NIC is running
 606 * to propagate configuration changes (mtu, checksum offload), or
 607 * to clear hardware error conditions
 608 */
 609static void efx_start_datapath(struct efx_nic *efx)
 610{
 611        netdev_features_t old_features = efx->net_dev->features;
 612        bool old_rx_scatter = efx->rx_scatter;
 613        struct efx_tx_queue *tx_queue;
 614        struct efx_rx_queue *rx_queue;
 615        struct efx_channel *channel;
 616        size_t rx_buf_len;
 617
 618        /* Calculate the rx buffer allocation parameters required to
 619         * support the current MTU, including padding for header
 620         * alignment and overruns.
 621         */
 622        efx->rx_dma_len = (efx->rx_prefix_size +
 623                           EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
 624                           efx->type->rx_buffer_padding);
 625        rx_buf_len = (sizeof(struct efx_rx_page_state) +
 626                      efx->rx_ip_align + efx->rx_dma_len);
 627        if (rx_buf_len <= PAGE_SIZE) {
 628                efx->rx_scatter = efx->type->always_rx_scatter;
 629                efx->rx_buffer_order = 0;
 630        } else if (efx->type->can_rx_scatter) {
 631                BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
 632                BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
 633                             2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
 634                                       EFX_RX_BUF_ALIGNMENT) >
 635                             PAGE_SIZE);
 636                efx->rx_scatter = true;
 637                efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
 638                efx->rx_buffer_order = 0;
 639        } else {
 640                efx->rx_scatter = false;
 641                efx->rx_buffer_order = get_order(rx_buf_len);
 642        }
 643
 644        efx_rx_config_page_split(efx);
 645        if (efx->rx_buffer_order)
 646                netif_dbg(efx, drv, efx->net_dev,
 647                          "RX buf len=%u; page order=%u batch=%u\n",
 648                          efx->rx_dma_len, efx->rx_buffer_order,
 649                          efx->rx_pages_per_batch);
 650        else
 651                netif_dbg(efx, drv, efx->net_dev,
 652                          "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
 653                          efx->rx_dma_len, efx->rx_page_buf_step,
 654                          efx->rx_bufs_per_page, efx->rx_pages_per_batch);
 655
 656        /* Restore previously fixed features in hw_features and remove
 657         * features which are fixed now
 658         */
 659        efx->net_dev->hw_features |= efx->net_dev->features;
 660        efx->net_dev->hw_features &= ~efx->fixed_features;
 661        efx->net_dev->features |= efx->fixed_features;
 662        if (efx->net_dev->features != old_features)
 663                netdev_features_change(efx->net_dev);
 664
 665        /* RX filters may also have scatter-enabled flags */
 666        if (efx->rx_scatter != old_rx_scatter)
 667                efx->type->filter_update_rx_scatter(efx);
 668
 669        /* We must keep at least one descriptor in a TX ring empty.
 670         * We could avoid this when the queue size does not exactly
 671         * match the hardware ring size, but it's not that important.
 672         * Therefore we stop the queue when one more skb might fill
 673         * the ring completely.  We wake it when half way back to
 674         * empty.
 675         */
 676        efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
 677        efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
 678
 679        /* Initialise the channels */
 680        efx_for_each_channel(channel, efx) {
 681                efx_for_each_channel_tx_queue(tx_queue, channel) {
 682                        efx_init_tx_queue(tx_queue);
 683                        atomic_inc(&efx->active_queues);
 684                }
 685
 686                efx_for_each_channel_rx_queue(rx_queue, channel) {
 687                        efx_init_rx_queue(rx_queue);
 688                        atomic_inc(&efx->active_queues);
 689                        efx_stop_eventq(channel);
 690                        efx_fast_push_rx_descriptors(rx_queue, false);
 691                        efx_start_eventq(channel);
 692                }
 693
 694                WARN_ON(channel->rx_pkt_n_frags);
 695        }
 696
 697        efx_ptp_start_datapath(efx);
 698
 699        if (netif_device_present(efx->net_dev))
 700                netif_tx_wake_all_queues(efx->net_dev);
 701}
 702
 703static void efx_stop_datapath(struct efx_nic *efx)
 704{
 705        struct efx_channel *channel;
 706        struct efx_tx_queue *tx_queue;
 707        struct efx_rx_queue *rx_queue;
 708        int rc;
 709
 710        EFX_ASSERT_RESET_SERIALISED(efx);
 711        BUG_ON(efx->port_enabled);
 712
 713        efx_ptp_stop_datapath(efx);
 714
 715        /* Stop RX refill */
 716        efx_for_each_channel(channel, efx) {
 717                efx_for_each_channel_rx_queue(rx_queue, channel)
 718                        rx_queue->refill_enabled = false;
 719        }
 720
 721        efx_for_each_channel(channel, efx) {
 722                /* RX packet processing is pipelined, so wait for the
 723                 * NAPI handler to complete.  At least event queue 0
 724                 * might be kept active by non-data events, so don't
 725                 * use napi_synchronize() but actually disable NAPI
 726                 * temporarily.
 727                 */
 728                if (efx_channel_has_rx_queue(channel)) {
 729                        efx_stop_eventq(channel);
 730                        efx_start_eventq(channel);
 731                }
 732        }
 733
 734        rc = efx->type->fini_dmaq(efx);
 735        if (rc) {
 736                netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
 737        } else {
 738                netif_dbg(efx, drv, efx->net_dev,
 739                          "successfully flushed all queues\n");
 740        }
 741
 742        efx_for_each_channel(channel, efx) {
 743                efx_for_each_channel_rx_queue(rx_queue, channel)
 744                        efx_fini_rx_queue(rx_queue);
 745                efx_for_each_possible_channel_tx_queue(tx_queue, channel)
 746                        efx_fini_tx_queue(tx_queue);
 747        }
 748}
 749
 750static void efx_remove_channel(struct efx_channel *channel)
 751{
 752        struct efx_tx_queue *tx_queue;
 753        struct efx_rx_queue *rx_queue;
 754
 755        netif_dbg(channel->efx, drv, channel->efx->net_dev,
 756                  "destroy chan %d\n", channel->channel);
 757
 758        efx_for_each_channel_rx_queue(rx_queue, channel)
 759                efx_remove_rx_queue(rx_queue);
 760        efx_for_each_possible_channel_tx_queue(tx_queue, channel)
 761                efx_remove_tx_queue(tx_queue);
 762        efx_remove_eventq(channel);
 763        channel->type->post_remove(channel);
 764}
 765
 766static void efx_remove_channels(struct efx_nic *efx)
 767{
 768        struct efx_channel *channel;
 769
 770        efx_for_each_channel(channel, efx)
 771                efx_remove_channel(channel);
 772}
 773
 774int
 775efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
 776{
 777        struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
 778        u32 old_rxq_entries, old_txq_entries;
 779        unsigned i, next_buffer_table = 0;
 780        int rc, rc2;
 781
 782        rc = efx_check_disabled(efx);
 783        if (rc)
 784                return rc;
 785
 786        /* Not all channels should be reallocated. We must avoid
 787         * reallocating their buffer table entries.
 788         */
 789        efx_for_each_channel(channel, efx) {
 790                struct efx_rx_queue *rx_queue;
 791                struct efx_tx_queue *tx_queue;
 792
 793                if (channel->type->copy)
 794                        continue;
 795                next_buffer_table = max(next_buffer_table,
 796                                        channel->eventq.index +
 797                                        channel->eventq.entries);
 798                efx_for_each_channel_rx_queue(rx_queue, channel)
 799                        next_buffer_table = max(next_buffer_table,
 800                                                rx_queue->rxd.index +
 801                                                rx_queue->rxd.entries);
 802                efx_for_each_channel_tx_queue(tx_queue, channel)
 803                        next_buffer_table = max(next_buffer_table,
 804                                                tx_queue->txd.index +
 805                                                tx_queue->txd.entries);
 806        }
 807
 808        efx_device_detach_sync(efx);
 809        efx_stop_all(efx);
 810        efx_soft_disable_interrupts(efx);
 811
 812        /* Clone channels (where possible) */
 813        memset(other_channel, 0, sizeof(other_channel));
 814        for (i = 0; i < efx->n_channels; i++) {
 815                channel = efx->channel[i];
 816                if (channel->type->copy)
 817                        channel = channel->type->copy(channel);
 818                if (!channel) {
 819                        rc = -ENOMEM;
 820                        goto out;
 821                }
 822                other_channel[i] = channel;
 823        }
 824
 825        /* Swap entry counts and channel pointers */
 826        old_rxq_entries = efx->rxq_entries;
 827        old_txq_entries = efx->txq_entries;
 828        efx->rxq_entries = rxq_entries;
 829        efx->txq_entries = txq_entries;
 830        for (i = 0; i < efx->n_channels; i++) {
 831                channel = efx->channel[i];
 832                efx->channel[i] = other_channel[i];
 833                other_channel[i] = channel;
 834        }
 835
 836        /* Restart buffer table allocation */
 837        efx->next_buffer_table = next_buffer_table;
 838
 839        for (i = 0; i < efx->n_channels; i++) {
 840                channel = efx->channel[i];
 841                if (!channel->type->copy)
 842                        continue;
 843                rc = efx_probe_channel(channel);
 844                if (rc)
 845                        goto rollback;
 846                efx_init_napi_channel(efx->channel[i]);
 847        }
 848
 849out:
 850        /* Destroy unused channel structures */
 851        for (i = 0; i < efx->n_channels; i++) {
 852                channel = other_channel[i];
 853                if (channel && channel->type->copy) {
 854                        efx_fini_napi_channel(channel);
 855                        efx_remove_channel(channel);
 856                        kfree(channel);
 857                }
 858        }
 859
 860        rc2 = efx_soft_enable_interrupts(efx);
 861        if (rc2) {
 862                rc = rc ? rc : rc2;
 863                netif_err(efx, drv, efx->net_dev,
 864                          "unable to restart interrupts on channel reallocation\n");
 865                efx_schedule_reset(efx, RESET_TYPE_DISABLE);
 866        } else {
 867                efx_start_all(efx);
 868                netif_device_attach(efx->net_dev);
 869        }
 870        return rc;
 871
 872rollback:
 873        /* Swap back */
 874        efx->rxq_entries = old_rxq_entries;
 875        efx->txq_entries = old_txq_entries;
 876        for (i = 0; i < efx->n_channels; i++) {
 877                channel = efx->channel[i];
 878                efx->channel[i] = other_channel[i];
 879                other_channel[i] = channel;
 880        }
 881        goto out;
 882}
 883
 884void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
 885{
 886        mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
 887}
 888
 889static const struct efx_channel_type efx_default_channel_type = {
 890        .pre_probe              = efx_channel_dummy_op_int,
 891        .post_remove            = efx_channel_dummy_op_void,
 892        .get_name               = efx_get_channel_name,
 893        .copy                   = efx_copy_channel,
 894        .keep_eventq            = false,
 895};
 896
 897int efx_channel_dummy_op_int(struct efx_channel *channel)
 898{
 899        return 0;
 900}
 901
 902void efx_channel_dummy_op_void(struct efx_channel *channel)
 903{
 904}
 905
 906/**************************************************************************
 907 *
 908 * Port handling
 909 *
 910 **************************************************************************/
 911
 912/* This ensures that the kernel is kept informed (via
 913 * netif_carrier_on/off) of the link status, and also maintains the
 914 * link status's stop on the port's TX queue.
 915 */
 916void efx_link_status_changed(struct efx_nic *efx)
 917{
 918        struct efx_link_state *link_state = &efx->link_state;
 919
 920        /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
 921         * that no events are triggered between unregister_netdev() and the
 922         * driver unloading. A more general condition is that NETDEV_CHANGE
 923         * can only be generated between NETDEV_UP and NETDEV_DOWN */
 924        if (!netif_running(efx->net_dev))
 925                return;
 926
 927        if (link_state->up != netif_carrier_ok(efx->net_dev)) {
 928                efx->n_link_state_changes++;
 929
 930                if (link_state->up)
 931                        netif_carrier_on(efx->net_dev);
 932                else
 933                        netif_carrier_off(efx->net_dev);
 934        }
 935
 936        /* Status message for kernel log */
 937        if (link_state->up)
 938                netif_info(efx, link, efx->net_dev,
 939                           "link up at %uMbps %s-duplex (MTU %d)\n",
 940                           link_state->speed, link_state->fd ? "full" : "half",
 941                           efx->net_dev->mtu);
 942        else
 943                netif_info(efx, link, efx->net_dev, "link down\n");
 944}
 945
 946void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
 947{
 948        efx->link_advertising = advertising;
 949        if (advertising) {
 950                if (advertising & ADVERTISED_Pause)
 951                        efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
 952                else
 953                        efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
 954                if (advertising & ADVERTISED_Asym_Pause)
 955                        efx->wanted_fc ^= EFX_FC_TX;
 956        }
 957}
 958
 959void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
 960{
 961        efx->wanted_fc = wanted_fc;
 962        if (efx->link_advertising) {
 963                if (wanted_fc & EFX_FC_RX)
 964                        efx->link_advertising |= (ADVERTISED_Pause |
 965                                                  ADVERTISED_Asym_Pause);
 966                else
 967                        efx->link_advertising &= ~(ADVERTISED_Pause |
 968                                                   ADVERTISED_Asym_Pause);
 969                if (wanted_fc & EFX_FC_TX)
 970                        efx->link_advertising ^= ADVERTISED_Asym_Pause;
 971        }
 972}
 973
 974static void efx_fini_port(struct efx_nic *efx);
 975
 976/* We assume that efx->type->reconfigure_mac will always try to sync RX
 977 * filters and therefore needs to read-lock the filter table against freeing
 978 */
 979void efx_mac_reconfigure(struct efx_nic *efx)
 980{
 981        down_read(&efx->filter_sem);
 982        efx->type->reconfigure_mac(efx);
 983        up_read(&efx->filter_sem);
 984}
 985
 986/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
 987 * the MAC appropriately. All other PHY configuration changes are pushed
 988 * through phy_op->set_settings(), and pushed asynchronously to the MAC
 989 * through efx_monitor().
 990 *
 991 * Callers must hold the mac_lock
 992 */
 993int __efx_reconfigure_port(struct efx_nic *efx)
 994{
 995        enum efx_phy_mode phy_mode;
 996        int rc;
 997
 998        WARN_ON(!mutex_is_locked(&efx->mac_lock));
 999
1000        /* Disable PHY transmit in mac level loopbacks */
1001        phy_mode = efx->phy_mode;
1002        if (LOOPBACK_INTERNAL(efx))
1003                efx->phy_mode |= PHY_MODE_TX_DISABLED;
1004        else
1005                efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
1006
1007        rc = efx->type->reconfigure_port(efx);
1008
1009        if (rc)
1010                efx->phy_mode = phy_mode;
1011
1012        return rc;
1013}
1014
1015/* Reinitialise the MAC to pick up new PHY settings, even if the port is
1016 * disabled. */
1017int efx_reconfigure_port(struct efx_nic *efx)
1018{
1019        int rc;
1020
1021        EFX_ASSERT_RESET_SERIALISED(efx);
1022
1023        mutex_lock(&efx->mac_lock);
1024        rc = __efx_reconfigure_port(efx);
1025        mutex_unlock(&efx->mac_lock);
1026
1027        return rc;
1028}
1029
1030/* Asynchronous work item for changing MAC promiscuity and multicast
1031 * hash.  Avoid a drain/rx_ingress enable by reconfiguring the current
1032 * MAC directly. */
1033static void efx_mac_work(struct work_struct *data)
1034{
1035        struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
1036
1037        mutex_lock(&efx->mac_lock);
1038        if (efx->port_enabled)
1039                efx_mac_reconfigure(efx);
1040        mutex_unlock(&efx->mac_lock);
1041}
1042
1043static int efx_probe_port(struct efx_nic *efx)
1044{
1045        int rc;
1046
1047        netif_dbg(efx, probe, efx->net_dev, "create port\n");
1048
1049        if (phy_flash_cfg)
1050                efx->phy_mode = PHY_MODE_SPECIAL;
1051
1052        /* Connect up MAC/PHY operations table */
1053        rc = efx->type->probe_port(efx);
1054        if (rc)
1055                return rc;
1056
1057        /* Initialise MAC address to permanent address */
1058        ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr);
1059
1060        return 0;
1061}
1062
1063static int efx_init_port(struct efx_nic *efx)
1064{
1065        int rc;
1066
1067        netif_dbg(efx, drv, efx->net_dev, "init port\n");
1068
1069        mutex_lock(&efx->mac_lock);
1070
1071        rc = efx->phy_op->init(efx);
1072        if (rc)
1073                goto fail1;
1074
1075        efx->port_initialized = true;
1076
1077        /* Reconfigure the MAC before creating dma queues (required for
1078         * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1079        efx_mac_reconfigure(efx);
1080
1081        /* Ensure the PHY advertises the correct flow control settings */
1082        rc = efx->phy_op->reconfigure(efx);
1083        if (rc && rc != -EPERM)
1084                goto fail2;
1085
1086        mutex_unlock(&efx->mac_lock);
1087        return 0;
1088
1089fail2:
1090        efx->phy_op->fini(efx);
1091fail1:
1092        mutex_unlock(&efx->mac_lock);
1093        return rc;
1094}
1095
1096static void efx_start_port(struct efx_nic *efx)
1097{
1098        netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1099        BUG_ON(efx->port_enabled);
1100
1101        mutex_lock(&efx->mac_lock);
1102        efx->port_enabled = true;
1103
1104        /* Ensure MAC ingress/egress is enabled */
1105        efx_mac_reconfigure(efx);
1106
1107        mutex_unlock(&efx->mac_lock);
1108}
1109
1110/* Cancel work for MAC reconfiguration, periodic hardware monitoring
1111 * and the async self-test, wait for them to finish and prevent them
1112 * being scheduled again.  This doesn't cover online resets, which
1113 * should only be cancelled when removing the device.
1114 */
1115static void efx_stop_port(struct efx_nic *efx)
1116{
1117        netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1118
1119        EFX_ASSERT_RESET_SERIALISED(efx);
1120
1121        mutex_lock(&efx->mac_lock);
1122        efx->port_enabled = false;
1123        mutex_unlock(&efx->mac_lock);
1124
1125        /* Serialise against efx_set_multicast_list() */
1126        netif_addr_lock_bh(efx->net_dev);
1127        netif_addr_unlock_bh(efx->net_dev);
1128
1129        cancel_delayed_work_sync(&efx->monitor_work);
1130        efx_selftest_async_cancel(efx);
1131        cancel_work_sync(&efx->mac_work);
1132}
1133
1134static void efx_fini_port(struct efx_nic *efx)
1135{
1136        netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1137
1138        if (!efx->port_initialized)
1139                return;
1140
1141        efx->phy_op->fini(efx);
1142        efx->port_initialized = false;
1143
1144        efx->link_state.up = false;
1145        efx_link_status_changed(efx);
1146}
1147
1148static void efx_remove_port(struct efx_nic *efx)
1149{
1150        netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1151
1152        efx->type->remove_port(efx);
1153}
1154
1155/**************************************************************************
1156 *
1157 * NIC handling
1158 *
1159 **************************************************************************/
1160
1161static LIST_HEAD(efx_primary_list);
1162static LIST_HEAD(efx_unassociated_list);
1163
1164static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
1165{
1166        return left->type == right->type &&
1167                left->vpd_sn && right->vpd_sn &&
1168                !strcmp(left->vpd_sn, right->vpd_sn);
1169}
1170
1171static void efx_associate(struct efx_nic *efx)
1172{
1173        struct efx_nic *other, *next;
1174
1175        if (efx->primary == efx) {
1176                /* Adding primary function; look for secondaries */
1177
1178                netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1179                list_add_tail(&efx->node, &efx_primary_list);
1180
1181                list_for_each_entry_safe(other, next, &efx_unassociated_list,
1182                                         node) {
1183                        if (efx_same_controller(efx, other)) {
1184                                list_del(&other->node);
1185                                netif_dbg(other, probe, other->net_dev,
1186                                          "moving to secondary list of %s %s\n",
1187                                          pci_name(efx->pci_dev),
1188                                          efx->net_dev->name);
1189                                list_add_tail(&other->node,
1190                                              &efx->secondary_list);
1191                                other->primary = efx;
1192                        }
1193                }
1194        } else {
1195                /* Adding secondary function; look for primary */
1196
1197                list_for_each_entry(other, &efx_primary_list, node) {
1198                        if (efx_same_controller(efx, other)) {
1199                                netif_dbg(efx, probe, efx->net_dev,
1200                                          "adding to secondary list of %s %s\n",
1201                                          pci_name(other->pci_dev),
1202                                          other->net_dev->name);
1203                                list_add_tail(&efx->node,
1204                                              &other->secondary_list);
1205                                efx->primary = other;
1206                                return;
1207                        }
1208                }
1209
1210                netif_dbg(efx, probe, efx->net_dev,
1211                          "adding to unassociated list\n");
1212                list_add_tail(&efx->node, &efx_unassociated_list);
1213        }
1214}
1215
1216static void efx_dissociate(struct efx_nic *efx)
1217{
1218        struct efx_nic *other, *next;
1219
1220        list_del(&efx->node);
1221        efx->primary = NULL;
1222
1223        list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1224                list_del(&other->node);
1225                netif_dbg(other, probe, other->net_dev,
1226                          "moving to unassociated list\n");
1227                list_add_tail(&other->node, &efx_unassociated_list);
1228                other->primary = NULL;
1229        }
1230}
1231
1232/* This configures the PCI device to enable I/O and DMA. */
1233static int efx_init_io(struct efx_nic *efx)
1234{
1235        struct pci_dev *pci_dev = efx->pci_dev;
1236        dma_addr_t dma_mask = efx->type->max_dma_mask;
1237        unsigned int mem_map_size = efx->type->mem_map_size(efx);
1238        int rc, bar;
1239
1240        netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1241
1242        bar = efx->type->mem_bar;
1243
1244        rc = pci_enable_device(pci_dev);
1245        if (rc) {
1246                netif_err(efx, probe, efx->net_dev,
1247                          "failed to enable PCI device\n");
1248                goto fail1;
1249        }
1250
1251        pci_set_master(pci_dev);
1252
1253        /* Set the PCI DMA mask.  Try all possibilities from our
1254         * genuine mask down to 32 bits, because some architectures
1255         * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1256         * masks event though they reject 46 bit masks.
1257         */
1258        while (dma_mask > 0x7fffffffUL) {
1259                rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1260                if (rc == 0)
1261                        break;
1262                dma_mask >>= 1;
1263        }
1264        if (rc) {
1265                netif_err(efx, probe, efx->net_dev,
1266                          "could not find a suitable DMA mask\n");
1267                goto fail2;
1268        }
1269        netif_dbg(efx, probe, efx->net_dev,
1270                  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1271
1272        efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1273        rc = pci_request_region(pci_dev, bar, "sfc");
1274        if (rc) {
1275                netif_err(efx, probe, efx->net_dev,
1276                          "request for memory BAR failed\n");
1277                rc = -EIO;
1278                goto fail3;
1279        }
1280        efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size);
1281        if (!efx->membase) {
1282                netif_err(efx, probe, efx->net_dev,
1283                          "could not map memory BAR at %llx+%x\n",
1284                          (unsigned long long)efx->membase_phys, mem_map_size);
1285                rc = -ENOMEM;
1286                goto fail4;
1287        }
1288        netif_dbg(efx, probe, efx->net_dev,
1289                  "memory BAR at %llx+%x (virtual %p)\n",
1290                  (unsigned long long)efx->membase_phys, mem_map_size,
1291                  efx->membase);
1292
1293        return 0;
1294
1295 fail4:
1296        pci_release_region(efx->pci_dev, bar);
1297 fail3:
1298        efx->membase_phys = 0;
1299 fail2:
1300        pci_disable_device(efx->pci_dev);
1301 fail1:
1302        return rc;
1303}
1304
1305static void efx_fini_io(struct efx_nic *efx)
1306{
1307        int bar;
1308
1309        netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1310
1311        if (efx->membase) {
1312                iounmap(efx->membase);
1313                efx->membase = NULL;
1314        }
1315
1316        if (efx->membase_phys) {
1317                bar = efx->type->mem_bar;
1318                pci_release_region(efx->pci_dev, bar);
1319                efx->membase_phys = 0;
1320        }
1321
1322        /* Don't disable bus-mastering if VFs are assigned */
1323        if (!pci_vfs_assigned(efx->pci_dev))
1324                pci_disable_device(efx->pci_dev);
1325}
1326
1327void efx_set_default_rx_indir_table(struct efx_nic *efx)
1328{
1329        size_t i;
1330
1331        for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1332                efx->rx_indir_table[i] =
1333                        ethtool_rxfh_indir_default(i, efx->rss_spread);
1334}
1335
1336static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1337{
1338        cpumask_var_t thread_mask;
1339        unsigned int count;
1340        int cpu;
1341
1342        if (rss_cpus) {
1343                count = rss_cpus;
1344        } else {
1345                if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1346                        netif_warn(efx, probe, efx->net_dev,
1347                                   "RSS disabled due to allocation failure\n");
1348                        return 1;
1349                }
1350
1351                count = 0;
1352                for_each_online_cpu(cpu) {
1353                        if (!cpumask_test_cpu(cpu, thread_mask)) {
1354                                ++count;
1355                                cpumask_or(thread_mask, thread_mask,
1356                                           topology_sibling_cpumask(cpu));
1357                        }
1358                }
1359
1360                free_cpumask_var(thread_mask);
1361        }
1362
1363        /* If RSS is requested for the PF *and* VFs then we can't write RSS
1364         * table entries that are inaccessible to VFs
1365         */
1366#ifdef CONFIG_SFC_SRIOV
1367        if (efx->type->sriov_wanted) {
1368                if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1369                    count > efx_vf_size(efx)) {
1370                        netif_warn(efx, probe, efx->net_dev,
1371                                   "Reducing number of RSS channels from %u to %u for "
1372                                   "VF support. Increase vf-msix-limit to use more "
1373                                   "channels on the PF.\n",
1374                                   count, efx_vf_size(efx));
1375                        count = efx_vf_size(efx);
1376                }
1377        }
1378#endif
1379
1380        return count;
1381}
1382
1383/* Probe the number and type of interrupts we are able to obtain, and
1384 * the resulting numbers of channels and RX queues.
1385 */
1386static int efx_probe_interrupts(struct efx_nic *efx)
1387{
1388        unsigned int extra_channels = 0;
1389        unsigned int i, j;
1390        int rc;
1391
1392        for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1393                if (efx->extra_channel_type[i])
1394                        ++extra_channels;
1395
1396        if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1397                struct msix_entry xentries[EFX_MAX_CHANNELS];
1398                unsigned int n_channels;
1399
1400                n_channels = efx_wanted_parallelism(efx);
1401                if (efx_separate_tx_channels)
1402                        n_channels *= 2;
1403                n_channels += extra_channels;
1404                n_channels = min(n_channels, efx->max_channels);
1405
1406                for (i = 0; i < n_channels; i++)
1407                        xentries[i].entry = i;
1408                rc = pci_enable_msix_range(efx->pci_dev,
1409                                           xentries, 1, n_channels);
1410                if (rc < 0) {
1411                        /* Fall back to single channel MSI */
1412                        efx->interrupt_mode = EFX_INT_MODE_MSI;
1413                        netif_err(efx, drv, efx->net_dev,
1414                                  "could not enable MSI-X\n");
1415                } else if (rc < n_channels) {
1416                        netif_err(efx, drv, efx->net_dev,
1417                                  "WARNING: Insufficient MSI-X vectors"
1418                                  " available (%d < %u).\n", rc, n_channels);
1419                        netif_err(efx, drv, efx->net_dev,
1420                                  "WARNING: Performance may be reduced.\n");
1421                        n_channels = rc;
1422                }
1423
1424                if (rc > 0) {
1425                        efx->n_channels = n_channels;
1426                        if (n_channels > extra_channels)
1427                                n_channels -= extra_channels;
1428                        if (efx_separate_tx_channels) {
1429                                efx->n_tx_channels = min(max(n_channels / 2,
1430                                                             1U),
1431                                                         efx->max_tx_channels);
1432                                efx->n_rx_channels = max(n_channels -
1433                                                         efx->n_tx_channels,
1434                                                         1U);
1435                        } else {
1436                                efx->n_tx_channels = min(n_channels,
1437                                                         efx->max_tx_channels);
1438                                efx->n_rx_channels = n_channels;
1439                        }
1440                        for (i = 0; i < efx->n_channels; i++)
1441                                efx_get_channel(efx, i)->irq =
1442                                        xentries[i].vector;
1443                }
1444        }
1445
1446        /* Try single interrupt MSI */
1447        if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1448                efx->n_channels = 1;
1449                efx->n_rx_channels = 1;
1450                efx->n_tx_channels = 1;
1451                rc = pci_enable_msi(efx->pci_dev);
1452                if (rc == 0) {
1453                        efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1454                } else {
1455                        netif_err(efx, drv, efx->net_dev,
1456                                  "could not enable MSI\n");
1457                        efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1458                }
1459        }
1460
1461        /* Assume legacy interrupts */
1462        if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1463                efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0);
1464                efx->n_rx_channels = 1;
1465                efx->n_tx_channels = 1;
1466                efx->legacy_irq = efx->pci_dev->irq;
1467        }
1468
1469        /* Assign extra channels if possible */
1470        j = efx->n_channels;
1471        for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1472                if (!efx->extra_channel_type[i])
1473                        continue;
1474                if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1475                    efx->n_channels <= extra_channels) {
1476                        efx->extra_channel_type[i]->handle_no_channel(efx);
1477                } else {
1478                        --j;
1479                        efx_get_channel(efx, j)->type =
1480                                efx->extra_channel_type[i];
1481                }
1482        }
1483
1484        /* RSS might be usable on VFs even if it is disabled on the PF */
1485#ifdef CONFIG_SFC_SRIOV
1486        if (efx->type->sriov_wanted) {
1487                efx->rss_spread = ((efx->n_rx_channels > 1 ||
1488                                    !efx->type->sriov_wanted(efx)) ?
1489                                   efx->n_rx_channels : efx_vf_size(efx));
1490                return 0;
1491        }
1492#endif
1493        efx->rss_spread = efx->n_rx_channels;
1494
1495        return 0;
1496}
1497
1498static int efx_soft_enable_interrupts(struct efx_nic *efx)
1499{
1500        struct efx_channel *channel, *end_channel;
1501        int rc;
1502
1503        BUG_ON(efx->state == STATE_DISABLED);
1504
1505        efx->irq_soft_enabled = true;
1506        smp_wmb();
1507
1508        efx_for_each_channel(channel, efx) {
1509                if (!channel->type->keep_eventq) {
1510                        rc = efx_init_eventq(channel);
1511                        if (rc)
1512                                goto fail;
1513                }
1514                efx_start_eventq(channel);
1515        }
1516
1517        efx_mcdi_mode_event(efx);
1518
1519        return 0;
1520fail:
1521        end_channel = channel;
1522        efx_for_each_channel(channel, efx) {
1523                if (channel == end_channel)
1524                        break;
1525                efx_stop_eventq(channel);
1526                if (!channel->type->keep_eventq)
1527                        efx_fini_eventq(channel);
1528        }
1529
1530        return rc;
1531}
1532
1533static void efx_soft_disable_interrupts(struct efx_nic *efx)
1534{
1535        struct efx_channel *channel;
1536
1537        if (efx->state == STATE_DISABLED)
1538                return;
1539
1540        efx_mcdi_mode_poll(efx);
1541
1542        efx->irq_soft_enabled = false;
1543        smp_wmb();
1544
1545        if (efx->legacy_irq)
1546                synchronize_irq(efx->legacy_irq);
1547
1548        efx_for_each_channel(channel, efx) {
1549                if (channel->irq)
1550                        synchronize_irq(channel->irq);
1551
1552                efx_stop_eventq(channel);
1553                if (!channel->type->keep_eventq)
1554                        efx_fini_eventq(channel);
1555        }
1556
1557        /* Flush the asynchronous MCDI request queue */
1558        efx_mcdi_flush_async(efx);
1559}
1560
1561static int efx_enable_interrupts(struct efx_nic *efx)
1562{
1563        struct efx_channel *channel, *end_channel;
1564        int rc;
1565
1566        BUG_ON(efx->state == STATE_DISABLED);
1567
1568        if (efx->eeh_disabled_legacy_irq) {
1569                enable_irq(efx->legacy_irq);
1570                efx->eeh_disabled_legacy_irq = false;
1571        }
1572
1573        efx->type->irq_enable_master(efx);
1574
1575        efx_for_each_channel(channel, efx) {
1576                if (channel->type->keep_eventq) {
1577                        rc = efx_init_eventq(channel);
1578                        if (rc)
1579                                goto fail;
1580                }
1581        }
1582
1583        rc = efx_soft_enable_interrupts(efx);
1584        if (rc)
1585                goto fail;
1586
1587        return 0;
1588
1589fail:
1590        end_channel = channel;
1591        efx_for_each_channel(channel, efx) {
1592                if (channel == end_channel)
1593                        break;
1594                if (channel->type->keep_eventq)
1595                        efx_fini_eventq(channel);
1596        }
1597
1598        efx->type->irq_disable_non_ev(efx);
1599
1600        return rc;
1601}
1602
1603static void efx_disable_interrupts(struct efx_nic *efx)
1604{
1605        struct efx_channel *channel;
1606
1607        efx_soft_disable_interrupts(efx);
1608
1609        efx_for_each_channel(channel, efx) {
1610                if (channel->type->keep_eventq)
1611                        efx_fini_eventq(channel);
1612        }
1613
1614        efx->type->irq_disable_non_ev(efx);
1615}
1616
1617static void efx_remove_interrupts(struct efx_nic *efx)
1618{
1619        struct efx_channel *channel;
1620
1621        /* Remove MSI/MSI-X interrupts */
1622        efx_for_each_channel(channel, efx)
1623                channel->irq = 0;
1624        pci_disable_msi(efx->pci_dev);
1625        pci_disable_msix(efx->pci_dev);
1626
1627        /* Remove legacy interrupt */
1628        efx->legacy_irq = 0;
1629}
1630
1631static void efx_set_channels(struct efx_nic *efx)
1632{
1633        struct efx_channel *channel;
1634        struct efx_tx_queue *tx_queue;
1635
1636        efx->tx_channel_offset =
1637                efx_separate_tx_channels ?
1638                efx->n_channels - efx->n_tx_channels : 0;
1639
1640        /* We need to mark which channels really have RX and TX
1641         * queues, and adjust the TX queue numbers if we have separate
1642         * RX-only and TX-only channels.
1643         */
1644        efx_for_each_channel(channel, efx) {
1645                if (channel->channel < efx->n_rx_channels)
1646                        channel->rx_queue.core_index = channel->channel;
1647                else
1648                        channel->rx_queue.core_index = -1;
1649
1650                efx_for_each_channel_tx_queue(tx_queue, channel)
1651                        tx_queue->queue -= (efx->tx_channel_offset *
1652                                            EFX_TXQ_TYPES);
1653        }
1654}
1655
1656static int efx_probe_nic(struct efx_nic *efx)
1657{
1658        int rc;
1659
1660        netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1661
1662        /* Carry out hardware-type specific initialisation */
1663        rc = efx->type->probe(efx);
1664        if (rc)
1665                return rc;
1666
1667        do {
1668                if (!efx->max_channels || !efx->max_tx_channels) {
1669                        netif_err(efx, drv, efx->net_dev,
1670                                  "Insufficient resources to allocate"
1671                                  " any channels\n");
1672                        rc = -ENOSPC;
1673                        goto fail1;
1674                }
1675
1676                /* Determine the number of channels and queues by trying
1677                 * to hook in MSI-X interrupts.
1678                 */
1679                rc = efx_probe_interrupts(efx);
1680                if (rc)
1681                        goto fail1;
1682
1683                efx_set_channels(efx);
1684
1685                /* dimension_resources can fail with EAGAIN */
1686                rc = efx->type->dimension_resources(efx);
1687                if (rc != 0 && rc != -EAGAIN)
1688                        goto fail2;
1689
1690                if (rc == -EAGAIN)
1691                        /* try again with new max_channels */
1692                        efx_remove_interrupts(efx);
1693
1694        } while (rc == -EAGAIN);
1695
1696        if (efx->n_channels > 1)
1697                netdev_rss_key_fill(&efx->rx_hash_key,
1698                                    sizeof(efx->rx_hash_key));
1699        efx_set_default_rx_indir_table(efx);
1700
1701        netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1702        netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1703
1704        /* Initialise the interrupt moderation settings */
1705        efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1706        efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1707                                true);
1708
1709        return 0;
1710
1711fail2:
1712        efx_remove_interrupts(efx);
1713fail1:
1714        efx->type->remove(efx);
1715        return rc;
1716}
1717
1718static void efx_remove_nic(struct efx_nic *efx)
1719{
1720        netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1721
1722        efx_remove_interrupts(efx);
1723        efx->type->remove(efx);
1724}
1725
1726static int efx_probe_filters(struct efx_nic *efx)
1727{
1728        int rc;
1729
1730        spin_lock_init(&efx->filter_lock);
1731        init_rwsem(&efx->filter_sem);
1732        mutex_lock(&efx->mac_lock);
1733        down_write(&efx->filter_sem);
1734        rc = efx->type->filter_table_probe(efx);
1735        if (rc)
1736                goto out_unlock;
1737
1738#ifdef CONFIG_RFS_ACCEL
1739        if (efx->type->offload_features & NETIF_F_NTUPLE) {
1740                struct efx_channel *channel;
1741                int i, success = 1;
1742
1743                efx_for_each_channel(channel, efx) {
1744                        channel->rps_flow_id =
1745                                kcalloc(efx->type->max_rx_ip_filters,
1746                                        sizeof(*channel->rps_flow_id),
1747                                        GFP_KERNEL);
1748                        if (!channel->rps_flow_id)
1749                                success = 0;
1750                        else
1751                                for (i = 0;
1752                                     i < efx->type->max_rx_ip_filters;
1753                                     ++i)
1754                                        channel->rps_flow_id[i] =
1755                                                RPS_FLOW_ID_INVALID;
1756                }
1757
1758                if (!success) {
1759                        efx_for_each_channel(channel, efx)
1760                                kfree(channel->rps_flow_id);
1761                        efx->type->filter_table_remove(efx);
1762                        rc = -ENOMEM;
1763                        goto out_unlock;
1764                }
1765
1766                efx->rps_expire_index = efx->rps_expire_channel = 0;
1767        }
1768#endif
1769out_unlock:
1770        up_write(&efx->filter_sem);
1771        mutex_unlock(&efx->mac_lock);
1772        return rc;
1773}
1774
1775static void efx_remove_filters(struct efx_nic *efx)
1776{
1777#ifdef CONFIG_RFS_ACCEL
1778        struct efx_channel *channel;
1779
1780        efx_for_each_channel(channel, efx)
1781                kfree(channel->rps_flow_id);
1782#endif
1783        down_write(&efx->filter_sem);
1784        efx->type->filter_table_remove(efx);
1785        up_write(&efx->filter_sem);
1786}
1787
1788static void efx_restore_filters(struct efx_nic *efx)
1789{
1790        down_read(&efx->filter_sem);
1791        efx->type->filter_table_restore(efx);
1792        up_read(&efx->filter_sem);
1793}
1794
1795/**************************************************************************
1796 *
1797 * NIC startup/shutdown
1798 *
1799 *************************************************************************/
1800
1801static int efx_probe_all(struct efx_nic *efx)
1802{
1803        int rc;
1804
1805        rc = efx_probe_nic(efx);
1806        if (rc) {
1807                netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1808                goto fail1;
1809        }
1810
1811        rc = efx_probe_port(efx);
1812        if (rc) {
1813                netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1814                goto fail2;
1815        }
1816
1817        BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
1818        if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
1819                rc = -EINVAL;
1820                goto fail3;
1821        }
1822        efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1823
1824#ifdef CONFIG_SFC_SRIOV
1825        rc = efx->type->vswitching_probe(efx);
1826        if (rc) /* not fatal; the PF will still work fine */
1827                netif_warn(efx, probe, efx->net_dev,
1828                           "failed to setup vswitching rc=%d;"
1829                           " VFs may not function\n", rc);
1830#endif
1831
1832        rc = efx_probe_filters(efx);
1833        if (rc) {
1834                netif_err(efx, probe, efx->net_dev,
1835                          "failed to create filter tables\n");
1836                goto fail4;
1837        }
1838
1839        rc = efx_probe_channels(efx);
1840        if (rc)
1841                goto fail5;
1842
1843        return 0;
1844
1845 fail5:
1846        efx_remove_filters(efx);
1847 fail4:
1848#ifdef CONFIG_SFC_SRIOV
1849        efx->type->vswitching_remove(efx);
1850#endif
1851 fail3:
1852        efx_remove_port(efx);
1853 fail2:
1854        efx_remove_nic(efx);
1855 fail1:
1856        return rc;
1857}
1858
1859/* If the interface is supposed to be running but is not, start
1860 * the hardware and software data path, regular activity for the port
1861 * (MAC statistics, link polling, etc.) and schedule the port to be
1862 * reconfigured.  Interrupts must already be enabled.  This function
1863 * is safe to call multiple times, so long as the NIC is not disabled.
1864 * Requires the RTNL lock.
1865 */
1866static void efx_start_all(struct efx_nic *efx)
1867{
1868        EFX_ASSERT_RESET_SERIALISED(efx);
1869        BUG_ON(efx->state == STATE_DISABLED);
1870
1871        /* Check that it is appropriate to restart the interface. All
1872         * of these flags are safe to read under just the rtnl lock */
1873        if (efx->port_enabled || !netif_running(efx->net_dev) ||
1874            efx->reset_pending)
1875                return;
1876
1877        efx_start_port(efx);
1878        efx_start_datapath(efx);
1879
1880        /* Start the hardware monitor if there is one */
1881        if (efx->type->monitor != NULL)
1882                queue_delayed_work(efx->workqueue, &efx->monitor_work,
1883                                   efx_monitor_interval);
1884
1885        /* Link state detection is normally event-driven; we have
1886         * to poll now because we could have missed a change
1887         */
1888        mutex_lock(&efx->mac_lock);
1889        if (efx->phy_op->poll(efx))
1890                efx_link_status_changed(efx);
1891        mutex_unlock(&efx->mac_lock);
1892
1893        efx->type->start_stats(efx);
1894        efx->type->pull_stats(efx);
1895        spin_lock_bh(&efx->stats_lock);
1896        efx->type->update_stats(efx, NULL, NULL);
1897        spin_unlock_bh(&efx->stats_lock);
1898}
1899
1900/* Quiesce the hardware and software data path, and regular activity
1901 * for the port without bringing the link down.  Safe to call multiple
1902 * times with the NIC in almost any state, but interrupts should be
1903 * enabled.  Requires the RTNL lock.
1904 */
1905static void efx_stop_all(struct efx_nic *efx)
1906{
1907        EFX_ASSERT_RESET_SERIALISED(efx);
1908
1909        /* port_enabled can be read safely under the rtnl lock */
1910        if (!efx->port_enabled)
1911                return;
1912
1913        /* update stats before we go down so we can accurately count
1914         * rx_nodesc_drops
1915         */
1916        efx->type->pull_stats(efx);
1917        spin_lock_bh(&efx->stats_lock);
1918        efx->type->update_stats(efx, NULL, NULL);
1919        spin_unlock_bh(&efx->stats_lock);
1920        efx->type->stop_stats(efx);
1921        efx_stop_port(efx);
1922
1923        /* Stop the kernel transmit interface.  This is only valid if
1924         * the device is stopped or detached; otherwise the watchdog
1925         * may fire immediately.
1926         */
1927        WARN_ON(netif_running(efx->net_dev) &&
1928                netif_device_present(efx->net_dev));
1929        netif_tx_disable(efx->net_dev);
1930
1931        efx_stop_datapath(efx);
1932}
1933
1934static void efx_remove_all(struct efx_nic *efx)
1935{
1936        efx_remove_channels(efx);
1937        efx_remove_filters(efx);
1938#ifdef CONFIG_SFC_SRIOV
1939        efx->type->vswitching_remove(efx);
1940#endif
1941        efx_remove_port(efx);
1942        efx_remove_nic(efx);
1943}
1944
1945/**************************************************************************
1946 *
1947 * Interrupt moderation
1948 *
1949 **************************************************************************/
1950unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
1951{
1952        if (usecs == 0)
1953                return 0;
1954        if (usecs * 1000 < efx->timer_quantum_ns)
1955                return 1; /* never round down to 0 */
1956        return usecs * 1000 / efx->timer_quantum_ns;
1957}
1958
1959unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
1960{
1961        /* We must round up when converting ticks to microseconds
1962         * because we round down when converting the other way.
1963         */
1964        return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
1965}
1966
1967/* Set interrupt moderation parameters */
1968int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1969                            unsigned int rx_usecs, bool rx_adaptive,
1970                            bool rx_may_override_tx)
1971{
1972        struct efx_channel *channel;
1973        unsigned int timer_max_us;
1974
1975        EFX_ASSERT_RESET_SERIALISED(efx);
1976
1977        timer_max_us = efx->timer_max_ns / 1000;
1978
1979        if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1980                return -EINVAL;
1981
1982        if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1983            !rx_may_override_tx) {
1984                netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1985                          "RX and TX IRQ moderation must be equal\n");
1986                return -EINVAL;
1987        }
1988
1989        efx->irq_rx_adaptive = rx_adaptive;
1990        efx->irq_rx_moderation_us = rx_usecs;
1991        efx_for_each_channel(channel, efx) {
1992                if (efx_channel_has_rx_queue(channel))
1993                        channel->irq_moderation_us = rx_usecs;
1994                else if (efx_channel_has_tx_queues(channel))
1995                        channel->irq_moderation_us = tx_usecs;
1996        }
1997
1998        return 0;
1999}
2000
2001void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
2002                            unsigned int *rx_usecs, bool *rx_adaptive)
2003{
2004        *rx_adaptive = efx->irq_rx_adaptive;
2005        *rx_usecs = efx->irq_rx_moderation_us;
2006
2007        /* If channels are shared between RX and TX, so is IRQ
2008         * moderation.  Otherwise, IRQ moderation is the same for all
2009         * TX channels and is not adaptive.
2010         */
2011        if (efx->tx_channel_offset == 0) {
2012                *tx_usecs = *rx_usecs;
2013        } else {
2014                struct efx_channel *tx_channel;
2015
2016                tx_channel = efx->channel[efx->tx_channel_offset];
2017                *tx_usecs = tx_channel->irq_moderation_us;
2018        }
2019}
2020
2021/**************************************************************************
2022 *
2023 * Hardware monitor
2024 *
2025 **************************************************************************/
2026
2027/* Run periodically off the general workqueue */
2028static void efx_monitor(struct work_struct *data)
2029{
2030        struct efx_nic *efx = container_of(data, struct efx_nic,
2031                                           monitor_work.work);
2032
2033        netif_vdbg(efx, timer, efx->net_dev,
2034                   "hardware monitor executing on CPU %d\n",
2035                   raw_smp_processor_id());
2036        BUG_ON(efx->type->monitor == NULL);
2037
2038        /* If the mac_lock is already held then it is likely a port
2039         * reconfiguration is already in place, which will likely do
2040         * most of the work of monitor() anyway. */
2041        if (mutex_trylock(&efx->mac_lock)) {
2042                if (efx->port_enabled)
2043                        efx->type->monitor(efx);
2044                mutex_unlock(&efx->mac_lock);
2045        }
2046
2047        queue_delayed_work(efx->workqueue, &efx->monitor_work,
2048                           efx_monitor_interval);
2049}
2050
2051/**************************************************************************
2052 *
2053 * ioctls
2054 *
2055 *************************************************************************/
2056
2057/* Net device ioctl
2058 * Context: process, rtnl_lock() held.
2059 */
2060static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
2061{
2062        struct efx_nic *efx = netdev_priv(net_dev);
2063        struct mii_ioctl_data *data = if_mii(ifr);
2064
2065        if (cmd == SIOCSHWTSTAMP)
2066                return efx_ptp_set_ts_config(efx, ifr);
2067        if (cmd == SIOCGHWTSTAMP)
2068                return efx_ptp_get_ts_config(efx, ifr);
2069
2070        /* Convert phy_id from older PRTAD/DEVAD format */
2071        if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2072            (data->phy_id & 0xfc00) == 0x0400)
2073                data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2074
2075        return mdio_mii_ioctl(&efx->mdio, data, cmd);
2076}
2077
2078/**************************************************************************
2079 *
2080 * NAPI interface
2081 *
2082 **************************************************************************/
2083
2084static void efx_init_napi_channel(struct efx_channel *channel)
2085{
2086        struct efx_nic *efx = channel->efx;
2087
2088        channel->napi_dev = efx->net_dev;
2089        netif_napi_add(channel->napi_dev, &channel->napi_str,
2090                       efx_poll, napi_weight);
2091        efx_channel_busy_poll_init(channel);
2092}
2093
2094static void efx_init_napi(struct efx_nic *efx)
2095{
2096        struct efx_channel *channel;
2097
2098        efx_for_each_channel(channel, efx)
2099                efx_init_napi_channel(channel);
2100}
2101
2102static void efx_fini_napi_channel(struct efx_channel *channel)
2103{
2104        if (channel->napi_dev)
2105                netif_napi_del(&channel->napi_str);
2106
2107        channel->napi_dev = NULL;
2108}
2109
2110static void efx_fini_napi(struct efx_nic *efx)
2111{
2112        struct efx_channel *channel;
2113
2114        efx_for_each_channel(channel, efx)
2115                efx_fini_napi_channel(channel);
2116}
2117
2118/**************************************************************************
2119 *
2120 * Kernel netpoll interface
2121 *
2122 *************************************************************************/
2123
2124#ifdef CONFIG_NET_POLL_CONTROLLER
2125
2126/* Although in the common case interrupts will be disabled, this is not
2127 * guaranteed. However, all our work happens inside the NAPI callback,
2128 * so no locking is required.
2129 */
2130static void efx_netpoll(struct net_device *net_dev)
2131{
2132        struct efx_nic *efx = netdev_priv(net_dev);
2133        struct efx_channel *channel;
2134
2135        efx_for_each_channel(channel, efx)
2136                efx_schedule_channel(channel);
2137}
2138
2139#endif
2140
2141#ifdef CONFIG_NET_RX_BUSY_POLL
2142static int efx_busy_poll(struct napi_struct *napi)
2143{
2144        struct efx_channel *channel =
2145                container_of(napi, struct efx_channel, napi_str);
2146        struct efx_nic *efx = channel->efx;
2147        int budget = 4;
2148        int old_rx_packets, rx_packets;
2149
2150        if (!netif_running(efx->net_dev))
2151                return LL_FLUSH_FAILED;
2152
2153        if (!efx_channel_try_lock_poll(channel))
2154                return LL_FLUSH_BUSY;
2155
2156        old_rx_packets = channel->rx_queue.rx_packets;
2157        efx_process_channel(channel, budget);
2158
2159        rx_packets = channel->rx_queue.rx_packets - old_rx_packets;
2160
2161        /* There is no race condition with NAPI here.
2162         * NAPI will automatically be rescheduled if it yielded during busy
2163         * polling, because it was not able to take the lock and thus returned
2164         * the full budget.
2165         */
2166        efx_channel_unlock_poll(channel);
2167
2168        return rx_packets;
2169}
2170#endif
2171
2172/**************************************************************************
2173 *
2174 * Kernel net device interface
2175 *
2176 *************************************************************************/
2177
2178/* Context: process, rtnl_lock() held. */
2179int efx_net_open(struct net_device *net_dev)
2180{
2181        struct efx_nic *efx = netdev_priv(net_dev);
2182        int rc;
2183
2184        netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2185                  raw_smp_processor_id());
2186
2187        rc = efx_check_disabled(efx);
2188        if (rc)
2189                return rc;
2190        if (efx->phy_mode & PHY_MODE_SPECIAL)
2191                return -EBUSY;
2192        if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
2193                return -EIO;
2194
2195        /* Notify the kernel of the link state polled during driver load,
2196         * before the monitor starts running */
2197        efx_link_status_changed(efx);
2198
2199        efx_start_all(efx);
2200        efx_selftest_async_start(efx);
2201        return 0;
2202}
2203
2204/* Context: process, rtnl_lock() held.
2205 * Note that the kernel will ignore our return code; this method
2206 * should really be a void.
2207 */
2208int efx_net_stop(struct net_device *net_dev)
2209{
2210        struct efx_nic *efx = netdev_priv(net_dev);
2211
2212        netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2213                  raw_smp_processor_id());
2214
2215        /* Stop the device and flush all the channels */
2216        efx_stop_all(efx);
2217
2218        return 0;
2219}
2220
2221/* Context: process, dev_base_lock or RTNL held, non-blocking. */
2222static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
2223                                               struct rtnl_link_stats64 *stats)
2224{
2225        struct efx_nic *efx = netdev_priv(net_dev);
2226
2227        spin_lock_bh(&efx->stats_lock);
2228        efx->type->update_stats(efx, NULL, stats);
2229        spin_unlock_bh(&efx->stats_lock);
2230
2231        return stats;
2232}
2233
2234/* Context: netif_tx_lock held, BHs disabled. */
2235static void efx_watchdog(struct net_device *net_dev)
2236{
2237        struct efx_nic *efx = netdev_priv(net_dev);
2238
2239        netif_err(efx, tx_err, efx->net_dev,
2240                  "TX stuck with port_enabled=%d: resetting channels\n",
2241                  efx->port_enabled);
2242
2243        efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2244}
2245
2246
2247/* Context: process, rtnl_lock() held. */
2248static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
2249{
2250        struct efx_nic *efx = netdev_priv(net_dev);
2251        int rc;
2252
2253        rc = efx_check_disabled(efx);
2254        if (rc)
2255                return rc;
2256
2257        netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2258
2259        efx_device_detach_sync(efx);
2260        efx_stop_all(efx);
2261
2262        mutex_lock(&efx->mac_lock);
2263        net_dev->mtu = new_mtu;
2264        efx_mac_reconfigure(efx);
2265        mutex_unlock(&efx->mac_lock);
2266
2267        efx_start_all(efx);
2268        netif_device_attach(efx->net_dev);
2269        return 0;
2270}
2271
2272static int efx_set_mac_address(struct net_device *net_dev, void *data)
2273{
2274        struct efx_nic *efx = netdev_priv(net_dev);
2275        struct sockaddr *addr = data;
2276        u8 *new_addr = addr->sa_data;
2277        u8 old_addr[6];
2278        int rc;
2279
2280        if (!is_valid_ether_addr(new_addr)) {
2281                netif_err(efx, drv, efx->net_dev,
2282                          "invalid ethernet MAC address requested: %pM\n",
2283                          new_addr);
2284                return -EADDRNOTAVAIL;
2285        }
2286
2287        /* save old address */
2288        ether_addr_copy(old_addr, net_dev->dev_addr);
2289        ether_addr_copy(net_dev->dev_addr, new_addr);
2290        if (efx->type->set_mac_address) {
2291                rc = efx->type->set_mac_address(efx);
2292                if (rc) {
2293                        ether_addr_copy(net_dev->dev_addr, old_addr);
2294                        return rc;
2295                }
2296        }
2297
2298        /* Reconfigure the MAC */
2299        mutex_lock(&efx->mac_lock);
2300        efx_mac_reconfigure(efx);
2301        mutex_unlock(&efx->mac_lock);
2302
2303        return 0;
2304}
2305
2306/* Context: netif_addr_lock held, BHs disabled. */
2307static void efx_set_rx_mode(struct net_device *net_dev)
2308{
2309        struct efx_nic *efx = netdev_priv(net_dev);
2310
2311        if (efx->port_enabled)
2312                queue_work(efx->workqueue, &efx->mac_work);
2313        /* Otherwise efx_start_port() will do this */
2314}
2315
2316static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2317{
2318        struct efx_nic *efx = netdev_priv(net_dev);
2319        int rc;
2320
2321        /* If disabling RX n-tuple filtering, clear existing filters */
2322        if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2323                rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
2324                if (rc)
2325                        return rc;
2326        }
2327
2328        /* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2329        if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
2330                /* efx_set_rx_mode() will schedule MAC work to update filters
2331                 * when a new features are finally set in net_dev.
2332                 */
2333                efx_set_rx_mode(net_dev);
2334        }
2335
2336        return 0;
2337}
2338
2339static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
2340{
2341        struct efx_nic *efx = netdev_priv(net_dev);
2342
2343        if (efx->type->vlan_rx_add_vid)
2344                return efx->type->vlan_rx_add_vid(efx, proto, vid);
2345        else
2346                return -EOPNOTSUPP;
2347}
2348
2349static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
2350{
2351        struct efx_nic *efx = netdev_priv(net_dev);
2352
2353        if (efx->type->vlan_rx_kill_vid)
2354                return efx->type->vlan_rx_kill_vid(efx, proto, vid);
2355        else
2356                return -EOPNOTSUPP;
2357}
2358
2359static const struct net_device_ops efx_netdev_ops = {
2360        .ndo_open               = efx_net_open,
2361        .ndo_stop               = efx_net_stop,
2362        .ndo_get_stats64        = efx_net_stats,
2363        .ndo_tx_timeout         = efx_watchdog,
2364        .ndo_start_xmit         = efx_hard_start_xmit,
2365        .ndo_validate_addr      = eth_validate_addr,
2366        .ndo_do_ioctl           = efx_ioctl,
2367        .ndo_change_mtu         = efx_change_mtu,
2368        .ndo_set_mac_address    = efx_set_mac_address,
2369        .ndo_set_rx_mode        = efx_set_rx_mode,
2370        .ndo_set_features       = efx_set_features,
2371        .ndo_vlan_rx_add_vid    = efx_vlan_rx_add_vid,
2372        .ndo_vlan_rx_kill_vid   = efx_vlan_rx_kill_vid,
2373#ifdef CONFIG_SFC_SRIOV
2374        .ndo_set_vf_mac         = efx_sriov_set_vf_mac,
2375        .ndo_set_vf_vlan        = efx_sriov_set_vf_vlan,
2376        .ndo_set_vf_spoofchk    = efx_sriov_set_vf_spoofchk,
2377        .ndo_get_vf_config      = efx_sriov_get_vf_config,
2378        .ndo_set_vf_link_state  = efx_sriov_set_vf_link_state,
2379        .ndo_get_phys_port_id   = efx_sriov_get_phys_port_id,
2380#endif
2381#ifdef CONFIG_NET_POLL_CONTROLLER
2382        .ndo_poll_controller = efx_netpoll,
2383#endif
2384        .ndo_setup_tc           = efx_setup_tc,
2385#ifdef CONFIG_NET_RX_BUSY_POLL
2386        .ndo_busy_poll          = efx_busy_poll,
2387#endif
2388#ifdef CONFIG_RFS_ACCEL
2389        .ndo_rx_flow_steer      = efx_filter_rfs,
2390#endif
2391};
2392
2393static void efx_update_name(struct efx_nic *efx)
2394{
2395        strcpy(efx->name, efx->net_dev->name);
2396        efx_mtd_rename(efx);
2397        efx_set_channel_names(efx);
2398}
2399
2400static int efx_netdev_event(struct notifier_block *this,
2401                            unsigned long event, void *ptr)
2402{
2403        struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2404
2405        if ((net_dev->netdev_ops == &efx_netdev_ops) &&
2406            event == NETDEV_CHANGENAME)
2407                efx_update_name(netdev_priv(net_dev));
2408
2409        return NOTIFY_DONE;
2410}
2411
2412static struct notifier_block efx_netdev_notifier = {
2413        .notifier_call = efx_netdev_event,
2414};
2415
2416static ssize_t
2417show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2418{
2419        struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2420        return sprintf(buf, "%d\n", efx->phy_type);
2421}
2422static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
2423
2424#ifdef CONFIG_SFC_MCDI_LOGGING
2425static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr,
2426                             char *buf)
2427{
2428        struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2429        struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2430
2431        return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
2432}
2433static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr,
2434                            const char *buf, size_t count)
2435{
2436        struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2437        struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
2438        bool enable = count > 0 && *buf != '0';
2439
2440        mcdi->logging_enabled = enable;
2441        return count;
2442}
2443static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log);
2444#endif
2445
2446static int efx_register_netdev(struct efx_nic *efx)
2447{
2448        struct net_device *net_dev = efx->net_dev;
2449        struct efx_channel *channel;
2450        int rc;
2451
2452        net_dev->watchdog_timeo = 5 * HZ;
2453        net_dev->irq = efx->pci_dev->irq;
2454        net_dev->netdev_ops = &efx_netdev_ops;
2455        if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
2456                net_dev->priv_flags |= IFF_UNICAST_FLT;
2457        net_dev->ethtool_ops = &efx_ethtool_ops;
2458        net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2459        net_dev->min_mtu = EFX_MIN_MTU;
2460        net_dev->max_mtu = EFX_MAX_MTU;
2461
2462        rtnl_lock();
2463
2464        /* Enable resets to be scheduled and check whether any were
2465         * already requested.  If so, the NIC is probably hosed so we
2466         * abort.
2467         */
2468        efx->state = STATE_READY;
2469        smp_mb(); /* ensure we change state before checking reset_pending */
2470        if (efx->reset_pending) {
2471                netif_err(efx, probe, efx->net_dev,
2472                          "aborting probe due to scheduled reset\n");
2473                rc = -EIO;
2474                goto fail_locked;
2475        }
2476
2477        rc = dev_alloc_name(net_dev, net_dev->name);
2478        if (rc < 0)
2479                goto fail_locked;
2480        efx_update_name(efx);
2481
2482        /* Always start with carrier off; PHY events will detect the link */
2483        netif_carrier_off(net_dev);
2484
2485        rc = register_netdevice(net_dev);
2486        if (rc)
2487                goto fail_locked;
2488
2489        efx_for_each_channel(channel, efx) {
2490                struct efx_tx_queue *tx_queue;
2491                efx_for_each_channel_tx_queue(tx_queue, channel)
2492                        efx_init_tx_queue_core_txq(tx_queue);
2493        }
2494
2495        efx_associate(efx);
2496
2497        rtnl_unlock();
2498
2499        rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2500        if (rc) {
2501                netif_err(efx, drv, efx->net_dev,
2502                          "failed to init net dev attributes\n");
2503                goto fail_registered;
2504        }
2505#ifdef CONFIG_SFC_MCDI_LOGGING
2506        rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2507        if (rc) {
2508                netif_err(efx, drv, efx->net_dev,
2509                          "failed to init net dev attributes\n");
2510                goto fail_attr_mcdi_logging;
2511        }
2512#endif
2513
2514        return 0;
2515
2516#ifdef CONFIG_SFC_MCDI_LOGGING
2517fail_attr_mcdi_logging:
2518        device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2519#endif
2520fail_registered:
2521        rtnl_lock();
2522        efx_dissociate(efx);
2523        unregister_netdevice(net_dev);
2524fail_locked:
2525        efx->state = STATE_UNINIT;
2526        rtnl_unlock();
2527        netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2528        return rc;
2529}
2530
2531static void efx_unregister_netdev(struct efx_nic *efx)
2532{
2533        if (!efx->net_dev)
2534                return;
2535
2536        BUG_ON(netdev_priv(efx->net_dev) != efx);
2537
2538        if (efx_dev_registered(efx)) {
2539                strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2540#ifdef CONFIG_SFC_MCDI_LOGGING
2541                device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
2542#endif
2543                device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2544                unregister_netdev(efx->net_dev);
2545        }
2546}
2547
2548/**************************************************************************
2549 *
2550 * Device reset and suspend
2551 *
2552 **************************************************************************/
2553
2554/* Tears down the entire software state and most of the hardware state
2555 * before reset.  */
2556void efx_reset_down(struct efx_nic *efx, enum reset_type method)
2557{
2558        EFX_ASSERT_RESET_SERIALISED(efx);
2559
2560        if (method == RESET_TYPE_MCDI_TIMEOUT)
2561                efx->type->prepare_flr(efx);
2562
2563        efx_stop_all(efx);
2564        efx_disable_interrupts(efx);
2565
2566        mutex_lock(&efx->mac_lock);
2567        if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2568            method != RESET_TYPE_DATAPATH)
2569                efx->phy_op->fini(efx);
2570        efx->type->fini(efx);
2571}
2572
2573/* This function will always ensure that the locks acquired in
2574 * efx_reset_down() are released. A failure return code indicates
2575 * that we were unable to reinitialise the hardware, and the
2576 * driver should be disabled. If ok is false, then the rx and tx
2577 * engines are not restarted, pending a RESET_DISABLE. */
2578int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2579{
2580        int rc;
2581
2582        EFX_ASSERT_RESET_SERIALISED(efx);
2583
2584        if (method == RESET_TYPE_MCDI_TIMEOUT)
2585                efx->type->finish_flr(efx);
2586
2587        /* Ensure that SRAM is initialised even if we're disabling the device */
2588        rc = efx->type->init(efx);
2589        if (rc) {
2590                netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2591                goto fail;
2592        }
2593
2594        if (!ok)
2595                goto fail;
2596
2597        if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2598            method != RESET_TYPE_DATAPATH) {
2599                rc = efx->phy_op->init(efx);
2600                if (rc)
2601                        goto fail;
2602                rc = efx->phy_op->reconfigure(efx);
2603                if (rc && rc != -EPERM)
2604                        netif_err(efx, drv, efx->net_dev,
2605                                  "could not restore PHY settings\n");
2606        }
2607
2608        rc = efx_enable_interrupts(efx);
2609        if (rc)
2610                goto fail;
2611
2612#ifdef CONFIG_SFC_SRIOV
2613        rc = efx->type->vswitching_restore(efx);
2614        if (rc) /* not fatal; the PF will still work fine */
2615                netif_warn(efx, probe, efx->net_dev,
2616                           "failed to restore vswitching rc=%d;"
2617                           " VFs may not function\n", rc);
2618#endif
2619
2620        down_read(&efx->filter_sem);
2621        efx_restore_filters(efx);
2622        up_read(&efx->filter_sem);
2623        if (efx->type->sriov_reset)
2624                efx->type->sriov_reset(efx);
2625
2626        mutex_unlock(&efx->mac_lock);
2627
2628        efx_start_all(efx);
2629
2630        return 0;
2631
2632fail:
2633        efx->port_initialized = false;
2634
2635        mutex_unlock(&efx->mac_lock);
2636
2637        return rc;
2638}
2639
2640/* Reset the NIC using the specified method.  Note that the reset may
2641 * fail, in which case the card will be left in an unusable state.
2642 *
2643 * Caller must hold the rtnl_lock.
2644 */
2645int efx_reset(struct efx_nic *efx, enum reset_type method)
2646{
2647        int rc, rc2;
2648        bool disabled;
2649
2650        netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2651                   RESET_TYPE(method));
2652
2653        efx_device_detach_sync(efx);
2654        efx_reset_down(efx, method);
2655
2656        rc = efx->type->reset(efx, method);
2657        if (rc) {
2658                netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2659                goto out;
2660        }
2661
2662        /* Clear flags for the scopes we covered.  We assume the NIC and
2663         * driver are now quiescent so that there is no race here.
2664         */
2665        if (method < RESET_TYPE_MAX_METHOD)
2666                efx->reset_pending &= -(1 << (method + 1));
2667        else /* it doesn't fit into the well-ordered scope hierarchy */
2668                __clear_bit(method, &efx->reset_pending);
2669
2670        /* Reinitialise bus-mastering, which may have been turned off before
2671         * the reset was scheduled. This is still appropriate, even in the
2672         * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2673         * can respond to requests. */
2674        pci_set_master(efx->pci_dev);
2675
2676out:
2677        /* Leave device stopped if necessary */
2678        disabled = rc ||
2679                method == RESET_TYPE_DISABLE ||
2680                method == RESET_TYPE_RECOVER_OR_DISABLE;
2681        rc2 = efx_reset_up(efx, method, !disabled);
2682        if (rc2) {
2683                disabled = true;
2684                if (!rc)
2685                        rc = rc2;
2686        }
2687
2688        if (disabled) {
2689                dev_close(efx->net_dev);
2690                netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2691                efx->state = STATE_DISABLED;
2692        } else {
2693                netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2694                netif_device_attach(efx->net_dev);
2695        }
2696        return rc;
2697}
2698
2699/* Try recovery mechanisms.
2700 * For now only EEH is supported.
2701 * Returns 0 if the recovery mechanisms are unsuccessful.
2702 * Returns a non-zero value otherwise.
2703 */
2704int efx_try_recovery(struct efx_nic *efx)
2705{
2706#ifdef CONFIG_EEH
2707        /* A PCI error can occur and not be seen by EEH because nothing
2708         * happens on the PCI bus. In this case the driver may fail and
2709         * schedule a 'recover or reset', leading to this recovery handler.
2710         * Manually call the eeh failure check function.
2711         */
2712        struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2713        if (eeh_dev_check_failure(eehdev)) {
2714                /* The EEH mechanisms will handle the error and reset the
2715                 * device if necessary.
2716                 */
2717                return 1;
2718        }
2719#endif
2720        return 0;
2721}
2722
2723static void efx_wait_for_bist_end(struct efx_nic *efx)
2724{
2725        int i;
2726
2727        for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
2728                if (efx_mcdi_poll_reboot(efx))
2729                        goto out;
2730                msleep(BIST_WAIT_DELAY_MS);
2731        }
2732
2733        netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
2734out:
2735        /* Either way unset the BIST flag. If we found no reboot we probably
2736         * won't recover, but we should try.
2737         */
2738        efx->mc_bist_for_other_fn = false;
2739}
2740
2741/* The worker thread exists so that code that cannot sleep can
2742 * schedule a reset for later.
2743 */
2744static void efx_reset_work(struct work_struct *data)
2745{
2746        struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2747        unsigned long pending;
2748        enum reset_type method;
2749
2750        pending = ACCESS_ONCE(efx->reset_pending);
2751        method = fls(pending) - 1;
2752
2753        if (method == RESET_TYPE_MC_BIST)
2754                efx_wait_for_bist_end(efx);
2755
2756        if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2757             method == RESET_TYPE_RECOVER_OR_ALL) &&
2758            efx_try_recovery(efx))
2759                return;
2760
2761        if (!pending)
2762                return;
2763
2764        rtnl_lock();
2765
2766        /* We checked the state in efx_schedule_reset() but it may
2767         * have changed by now.  Now that we have the RTNL lock,
2768         * it cannot change again.
2769         */
2770        if (efx->state == STATE_READY)
2771                (void)efx_reset(efx, method);
2772
2773        rtnl_unlock();
2774}
2775
2776void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2777{
2778        enum reset_type method;
2779
2780        if (efx->state == STATE_RECOVERY) {
2781                netif_dbg(efx, drv, efx->net_dev,
2782                          "recovering: skip scheduling %s reset\n",
2783                          RESET_TYPE(type));
2784                return;
2785        }
2786
2787        switch (type) {
2788        case RESET_TYPE_INVISIBLE:
2789        case RESET_TYPE_ALL:
2790        case RESET_TYPE_RECOVER_OR_ALL:
2791        case RESET_TYPE_WORLD:
2792        case RESET_TYPE_DISABLE:
2793        case RESET_TYPE_RECOVER_OR_DISABLE:
2794        case RESET_TYPE_DATAPATH:
2795        case RESET_TYPE_MC_BIST:
2796        case RESET_TYPE_MCDI_TIMEOUT:
2797                method = type;
2798                netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2799                          RESET_TYPE(method));
2800                break;
2801        default:
2802                method = efx->type->map_reset_reason(type);
2803                netif_dbg(efx, drv, efx->net_dev,
2804                          "scheduling %s reset for %s\n",
2805                          RESET_TYPE(method), RESET_TYPE(type));
2806                break;
2807        }
2808
2809        set_bit(method, &efx->reset_pending);
2810        smp_mb(); /* ensure we change reset_pending before checking state */
2811
2812        /* If we're not READY then just leave the flags set as the cue
2813         * to abort probing or reschedule the reset later.
2814         */
2815        if (ACCESS_ONCE(efx->state) != STATE_READY)
2816                return;
2817
2818        /* efx_process_channel() will no longer read events once a
2819         * reset is scheduled. So switch back to poll'd MCDI completions. */
2820        efx_mcdi_mode_poll(efx);
2821
2822        queue_work(reset_workqueue, &efx->reset_work);
2823}
2824
2825/**************************************************************************
2826 *
2827 * List of NICs we support
2828 *
2829 **************************************************************************/
2830
2831/* PCI device ID table */
2832static const struct pci_device_id efx_pci_table[] = {
2833        {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803),  /* SFC9020 */
2834         .driver_data = (unsigned long) &siena_a0_nic_type},
2835        {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813),  /* SFL9021 */
2836         .driver_data = (unsigned long) &siena_a0_nic_type},
2837        {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903),  /* SFC9120 PF */
2838         .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2839        {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903),  /* SFC9120 VF */
2840         .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2841        {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923),  /* SFC9140 PF */
2842         .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2843        {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923),  /* SFC9140 VF */
2844         .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2845        {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03),  /* SFC9220 PF */
2846         .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
2847        {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03),  /* SFC9220 VF */
2848         .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
2849        {0}                     /* end of list */
2850};
2851
2852/**************************************************************************
2853 *
2854 * Dummy PHY/MAC operations
2855 *
2856 * Can be used for some unimplemented operations
2857 * Needed so all function pointers are valid and do not have to be tested
2858 * before use
2859 *
2860 **************************************************************************/
2861int efx_port_dummy_op_int(struct efx_nic *efx)
2862{
2863        return 0;
2864}
2865void efx_port_dummy_op_void(struct efx_nic *efx) {}
2866
2867static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2868{
2869        return false;
2870}
2871
2872static const struct efx_phy_operations efx_dummy_phy_operations = {
2873        .init            = efx_port_dummy_op_int,
2874        .reconfigure     = efx_port_dummy_op_int,
2875        .poll            = efx_port_dummy_op_poll,
2876        .fini            = efx_port_dummy_op_void,
2877};
2878
2879/**************************************************************************
2880 *
2881 * Data housekeeping
2882 *
2883 **************************************************************************/
2884
2885/* This zeroes out and then fills in the invariants in a struct
2886 * efx_nic (including all sub-structures).
2887 */
2888static int efx_init_struct(struct efx_nic *efx,
2889                           struct pci_dev *pci_dev, struct net_device *net_dev)
2890{
2891        int i;
2892
2893        /* Initialise common structures */
2894        INIT_LIST_HEAD(&efx->node);
2895        INIT_LIST_HEAD(&efx->secondary_list);
2896        spin_lock_init(&efx->biu_lock);
2897#ifdef CONFIG_SFC_MTD
2898        INIT_LIST_HEAD(&efx->mtd_list);
2899#endif
2900        INIT_WORK(&efx->reset_work, efx_reset_work);
2901        INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2902        INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
2903        efx->pci_dev = pci_dev;
2904        efx->msg_enable = debug;
2905        efx->state = STATE_UNINIT;
2906        strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2907
2908        efx->net_dev = net_dev;
2909        efx->rx_prefix_size = efx->type->rx_prefix_size;
2910        efx->rx_ip_align =
2911                NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2912        efx->rx_packet_hash_offset =
2913                efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2914        efx->rx_packet_ts_offset =
2915                efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2916        spin_lock_init(&efx->stats_lock);
2917        mutex_init(&efx->mac_lock);
2918        efx->phy_op = &efx_dummy_phy_operations;
2919        efx->mdio.dev = net_dev;
2920        INIT_WORK(&efx->mac_work, efx_mac_work);
2921        init_waitqueue_head(&efx->flush_wq);
2922
2923        for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2924                efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2925                if (!efx->channel[i])
2926                        goto fail;
2927                efx->msi_context[i].efx = efx;
2928                efx->msi_context[i].index = i;
2929        }
2930
2931        /* Higher numbered interrupt modes are less capable! */
2932        efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2933                                  interrupt_mode);
2934
2935        /* Would be good to use the net_dev name, but we're too early */
2936        snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2937                 pci_name(pci_dev));
2938        efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2939        if (!efx->workqueue)
2940                goto fail;
2941
2942        return 0;
2943
2944fail:
2945        efx_fini_struct(efx);
2946        return -ENOMEM;
2947}
2948
2949static void efx_fini_struct(struct efx_nic *efx)
2950{
2951        int i;
2952
2953        for (i = 0; i < EFX_MAX_CHANNELS; i++)
2954                kfree(efx->channel[i]);
2955
2956        kfree(efx->vpd_sn);
2957
2958        if (efx->workqueue) {
2959                destroy_workqueue(efx->workqueue);
2960                efx->workqueue = NULL;
2961        }
2962}
2963
2964void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
2965{
2966        u64 n_rx_nodesc_trunc = 0;
2967        struct efx_channel *channel;
2968
2969        efx_for_each_channel(channel, efx)
2970                n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2971        stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2972        stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2973}
2974
2975/**************************************************************************
2976 *
2977 * PCI interface
2978 *
2979 **************************************************************************/
2980
2981/* Main body of final NIC shutdown code
2982 * This is called only at module unload (or hotplug removal).
2983 */
2984static void efx_pci_remove_main(struct efx_nic *efx)
2985{
2986        /* Flush reset_work. It can no longer be scheduled since we
2987         * are not READY.
2988         */
2989        BUG_ON(efx->state == STATE_READY);
2990        cancel_work_sync(&efx->reset_work);
2991
2992        efx_disable_interrupts(efx);
2993        efx_nic_fini_interrupt(efx);
2994        efx_fini_port(efx);
2995        efx->type->fini(efx);
2996        efx_fini_napi(efx);
2997        efx_remove_all(efx);
2998}
2999
3000/* Final NIC shutdown
3001 * This is called only at module unload (or hotplug removal).  A PF can call
3002 * this on its VFs to ensure they are unbound first.
3003 */
3004static void efx_pci_remove(struct pci_dev *pci_dev)
3005{
3006        struct efx_nic *efx;
3007
3008        efx = pci_get_drvdata(pci_dev);
3009        if (!efx)
3010                return;
3011
3012        /* Mark the NIC as fini, then stop the interface */
3013        rtnl_lock();
3014        efx_dissociate(efx);
3015        dev_close(efx->net_dev);
3016        efx_disable_interrupts(efx);
3017        efx->state = STATE_UNINIT;
3018        rtnl_unlock();
3019
3020        if (efx->type->sriov_fini)
3021                efx->type->sriov_fini(efx);
3022
3023        efx_unregister_netdev(efx);
3024
3025        efx_mtd_remove(efx);
3026
3027        efx_pci_remove_main(efx);
3028
3029        efx_fini_io(efx);
3030        netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
3031
3032        efx_fini_struct(efx);
3033        free_netdev(efx->net_dev);
3034
3035        pci_disable_pcie_error_reporting(pci_dev);
3036};
3037
3038/* NIC VPD information
3039 * Called during probe to display the part number of the
3040 * installed NIC.  VPD is potentially very large but this should
3041 * always appear within the first 512 bytes.
3042 */
3043#define SFC_VPD_LEN 512
3044static void efx_probe_vpd_strings(struct efx_nic *efx)
3045{
3046        struct pci_dev *dev = efx->pci_dev;
3047        char vpd_data[SFC_VPD_LEN];
3048        ssize_t vpd_size;
3049        int ro_start, ro_size, i, j;
3050
3051        /* Get the vpd data from the device */
3052        vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
3053        if (vpd_size <= 0) {
3054                netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
3055                return;
3056        }
3057
3058        /* Get the Read only section */
3059        ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
3060        if (ro_start < 0) {
3061                netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
3062                return;
3063        }
3064
3065        ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
3066        j = ro_size;
3067        i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3068        if (i + j > vpd_size)
3069                j = vpd_size - i;
3070
3071        /* Get the Part number */
3072        i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
3073        if (i < 0) {
3074                netif_err(efx, drv, efx->net_dev, "Part number not found\n");
3075                return;
3076        }
3077
3078        j = pci_vpd_info_field_size(&vpd_data[i]);
3079        i += PCI_VPD_INFO_FLD_HDR_SIZE;
3080        if (i + j > vpd_size) {
3081                netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
3082                return;
3083        }
3084
3085        netif_info(efx, drv, efx->net_dev,
3086                   "Part Number : %.*s\n", j, &vpd_data[i]);
3087
3088        i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
3089        j = ro_size;
3090        i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN");
3091        if (i < 0) {
3092                netif_err(efx, drv, efx->net_dev, "Serial number not found\n");
3093                return;
3094        }
3095
3096        j = pci_vpd_info_field_size(&vpd_data[i]);
3097        i += PCI_VPD_INFO_FLD_HDR_SIZE;
3098        if (i + j > vpd_size) {
3099                netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n");
3100                return;
3101        }
3102
3103        efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL);
3104        if (!efx->vpd_sn)
3105                return;
3106
3107        snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]);
3108}
3109
3110
3111/* Main body of NIC initialisation
3112 * This is called at module load (or hotplug insertion, theoretically).
3113 */
3114static int efx_pci_probe_main(struct efx_nic *efx)
3115{
3116        int rc;
3117
3118        /* Do start-of-day initialisation */
3119        rc = efx_probe_all(efx);
3120        if (rc)
3121                goto fail1;
3122
3123        efx_init_napi(efx);
3124
3125        rc = efx->type->init(efx);
3126        if (rc) {
3127                netif_err(efx, probe, efx->net_dev,
3128                          "failed to initialise NIC\n");
3129                goto fail3;
3130        }
3131
3132        rc = efx_init_port(efx);
3133        if (rc) {
3134                netif_err(efx, probe, efx->net_dev,
3135                          "failed to initialise port\n");
3136                goto fail4;
3137        }
3138
3139        rc = efx_nic_init_interrupt(efx);
3140        if (rc)
3141                goto fail5;
3142        rc = efx_enable_interrupts(efx);
3143        if (rc)
3144                goto fail6;
3145
3146        return 0;
3147
3148 fail6:
3149        efx_nic_fini_interrupt(efx);
3150 fail5:
3151        efx_fini_port(efx);
3152 fail4:
3153        efx->type->fini(efx);
3154 fail3:
3155        efx_fini_napi(efx);
3156        efx_remove_all(efx);
3157 fail1:
3158        return rc;
3159}
3160
3161/* NIC initialisation
3162 *
3163 * This is called at module load (or hotplug insertion,
3164 * theoretically).  It sets up PCI mappings, resets the NIC,
3165 * sets up and registers the network devices with the kernel and hooks
3166 * the interrupt service routine.  It does not prepare the device for
3167 * transmission; this is left to the first time one of the network
3168 * interfaces is brought up (i.e. efx_net_open).
3169 */
3170static int efx_pci_probe(struct pci_dev *pci_dev,
3171                         const struct pci_device_id *entry)
3172{
3173        struct net_device *net_dev;
3174        struct efx_nic *efx;
3175        int rc;
3176
3177        /* Allocate and initialise a struct net_device and struct efx_nic */
3178        net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
3179                                     EFX_MAX_RX_QUEUES);
3180        if (!net_dev)
3181                return -ENOMEM;
3182        efx = netdev_priv(net_dev);
3183        efx->type = (const struct efx_nic_type *) entry->driver_data;
3184        efx->fixed_features |= NETIF_F_HIGHDMA;
3185
3186        pci_set_drvdata(pci_dev, efx);
3187        SET_NETDEV_DEV(net_dev, &pci_dev->dev);
3188        rc = efx_init_struct(efx, pci_dev, net_dev);
3189        if (rc)
3190                goto fail1;
3191
3192        netif_info(efx, probe, efx->net_dev,
3193                   "Solarflare NIC detected\n");
3194
3195        if (!efx->type->is_vf)
3196                efx_probe_vpd_strings(efx);
3197
3198        /* Set up basic I/O (BAR mappings etc) */
3199        rc = efx_init_io(efx);
3200        if (rc)
3201                goto fail2;
3202
3203        rc = efx_pci_probe_main(efx);
3204        if (rc)
3205                goto fail3;
3206
3207        net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
3208                              NETIF_F_TSO | NETIF_F_RXCSUM);
3209        if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
3210                net_dev->features |= NETIF_F_TSO6;
3211        /* Check whether device supports TSO */
3212        if (!efx->type->tso_versions || !efx->type->tso_versions(efx))
3213                net_dev->features &= ~NETIF_F_ALL_TSO;
3214        /* Mask for features that also apply to VLAN devices */
3215        net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
3216                                   NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
3217                                   NETIF_F_RXCSUM);
3218
3219        net_dev->hw_features = net_dev->features & ~efx->fixed_features;
3220
3221        /* Disable VLAN filtering by default.  It may be enforced if
3222         * the feature is fixed (i.e. VLAN filters are required to
3223         * receive VLAN tagged packets due to vPort restrictions).
3224         */
3225        net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
3226        net_dev->features |= efx->fixed_features;
3227
3228        rc = efx_register_netdev(efx);
3229        if (rc)
3230                goto fail4;
3231
3232        if (efx->type->sriov_init) {
3233                rc = efx->type->sriov_init(efx);
3234                if (rc)
3235                        netif_err(efx, probe, efx->net_dev,
3236                                  "SR-IOV can't be enabled rc %d\n", rc);
3237        }
3238
3239        netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
3240
3241        /* Try to create MTDs, but allow this to fail */
3242        rtnl_lock();
3243        rc = efx_mtd_probe(efx);
3244        rtnl_unlock();
3245        if (rc && rc != -EPERM)
3246                netif_warn(efx, probe, efx->net_dev,
3247                           "failed to create MTDs (%d)\n", rc);
3248
3249        rc = pci_enable_pcie_error_reporting(pci_dev);
3250        if (rc && rc != -EINVAL)
3251                netif_notice(efx, probe, efx->net_dev,
3252                             "PCIE error reporting unavailable (%d).\n",
3253                             rc);
3254
3255        return 0;
3256
3257 fail4:
3258        efx_pci_remove_main(efx);
3259 fail3:
3260        efx_fini_io(efx);
3261 fail2:
3262        efx_fini_struct(efx);
3263 fail1:
3264        WARN_ON(rc > 0);
3265        netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
3266        free_netdev(net_dev);
3267        return rc;
3268}
3269
3270/* efx_pci_sriov_configure returns the actual number of Virtual Functions
3271 * enabled on success
3272 */
3273#ifdef CONFIG_SFC_SRIOV
3274static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
3275{
3276        int rc;
3277        struct efx_nic *efx = pci_get_drvdata(dev);
3278
3279        if (efx->type->sriov_configure) {
3280                rc = efx->type->sriov_configure(efx, num_vfs);
3281                if (rc)
3282                        return rc;
3283                else
3284                        return num_vfs;
3285        } else
3286                return -EOPNOTSUPP;
3287}
3288#endif
3289
3290static int efx_pm_freeze(struct device *dev)
3291{
3292        struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3293
3294        rtnl_lock();
3295
3296        if (efx->state != STATE_DISABLED) {
3297                efx->state = STATE_UNINIT;
3298
3299                efx_device_detach_sync(efx);
3300
3301                efx_stop_all(efx);
3302                efx_disable_interrupts(efx);
3303        }
3304
3305        rtnl_unlock();
3306
3307        return 0;
3308}
3309
3310static int efx_pm_thaw(struct device *dev)
3311{
3312        int rc;
3313        struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
3314
3315        rtnl_lock();
3316
3317        if (efx->state != STATE_DISABLED) {
3318                rc = efx_enable_interrupts(efx);
3319                if (rc)
3320                        goto fail;
3321
3322                mutex_lock(&efx->mac_lock);
3323                efx->phy_op->reconfigure(efx);
3324                mutex_unlock(&efx->mac_lock);
3325
3326                efx_start_all(efx);
3327
3328                netif_device_attach(efx->net_dev);
3329
3330                efx->state = STATE_READY;
3331
3332                efx->type->resume_wol(efx);
3333        }
3334
3335        rtnl_unlock();
3336
3337        /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
3338        queue_work(reset_workqueue, &efx->reset_work);
3339
3340        return 0;
3341
3342fail:
3343        rtnl_unlock();
3344
3345        return rc;
3346}
3347
3348static int efx_pm_poweroff(struct device *dev)
3349{
3350        struct pci_dev *pci_dev = to_pci_dev(dev);
3351        struct efx_nic *efx = pci_get_drvdata(pci_dev);
3352
3353        efx->type->fini(efx);
3354
3355        efx->reset_pending = 0;
3356
3357        pci_save_state(pci_dev);
3358        return pci_set_power_state(pci_dev, PCI_D3hot);
3359}
3360
3361/* Used for both resume and restore */
3362static int efx_pm_resume(struct device *dev)
3363{
3364        struct pci_dev *pci_dev = to_pci_dev(dev);
3365        struct efx_nic *efx = pci_get_drvdata(pci_dev);
3366        int rc;
3367
3368        rc = pci_set_power_state(pci_dev, PCI_D0);
3369        if (rc)
3370                return rc;
3371        pci_restore_state(pci_dev);
3372        rc = pci_enable_device(pci_dev);
3373        if (rc)
3374                return rc;
3375        pci_set_master(efx->pci_dev);
3376        rc = efx->type->reset(efx, RESET_TYPE_ALL);
3377        if (rc)
3378                return rc;
3379        rc = efx->type->init(efx);
3380        if (rc)
3381                return rc;
3382        rc = efx_pm_thaw(dev);
3383        return rc;
3384}
3385
3386static int efx_pm_suspend(struct device *dev)
3387{
3388        int rc;
3389
3390        efx_pm_freeze(dev);
3391        rc = efx_pm_poweroff(dev);
3392        if (rc)
3393                efx_pm_resume(dev);
3394        return rc;
3395}
3396
3397static const struct dev_pm_ops efx_pm_ops = {
3398        .suspend        = efx_pm_suspend,
3399        .resume         = efx_pm_resume,
3400        .freeze         = efx_pm_freeze,
3401        .thaw           = efx_pm_thaw,
3402        .poweroff       = efx_pm_poweroff,
3403        .restore        = efx_pm_resume,
3404};
3405
3406/* A PCI error affecting this device was detected.
3407 * At this point MMIO and DMA may be disabled.
3408 * Stop the software path and request a slot reset.
3409 */
3410static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
3411                                              enum pci_channel_state state)
3412{
3413        pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3414        struct efx_nic *efx = pci_get_drvdata(pdev);
3415
3416        if (state == pci_channel_io_perm_failure)
3417                return PCI_ERS_RESULT_DISCONNECT;
3418
3419        rtnl_lock();
3420
3421        if (efx->state != STATE_DISABLED) {
3422                efx->state = STATE_RECOVERY;
3423                efx->reset_pending = 0;
3424
3425                efx_device_detach_sync(efx);
3426
3427                efx_stop_all(efx);
3428                efx_disable_interrupts(efx);
3429
3430                status = PCI_ERS_RESULT_NEED_RESET;
3431        } else {
3432                /* If the interface is disabled we don't want to do anything
3433                 * with it.
3434                 */
3435                status = PCI_ERS_RESULT_RECOVERED;
3436        }
3437
3438        rtnl_unlock();
3439
3440        pci_disable_device(pdev);
3441
3442        return status;
3443}
3444
3445/* Fake a successful reset, which will be performed later in efx_io_resume. */
3446static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
3447{
3448        struct efx_nic *efx = pci_get_drvdata(pdev);
3449        pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3450        int rc;
3451
3452        if (pci_enable_device(pdev)) {
3453                netif_err(efx, hw, efx->net_dev,
3454                          "Cannot re-enable PCI device after reset.\n");
3455                status =  PCI_ERS_RESULT_DISCONNECT;
3456        }
3457
3458        rc = pci_cleanup_aer_uncorrect_error_status(pdev);
3459        if (rc) {
3460                netif_err(efx, hw, efx->net_dev,
3461                "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
3462                /* Non-fatal error. Continue. */
3463        }
3464
3465        return status;
3466}
3467
3468/* Perform the actual reset and resume I/O operations. */
3469static void efx_io_resume(struct pci_dev *pdev)
3470{
3471        struct efx_nic *efx = pci_get_drvdata(pdev);
3472        int rc;
3473
3474        rtnl_lock();
3475
3476        if (efx->state == STATE_DISABLED)
3477                goto out;
3478
3479        rc = efx_reset(efx, RESET_TYPE_ALL);
3480        if (rc) {
3481                netif_err(efx, hw, efx->net_dev,
3482                          "efx_reset failed after PCI error (%d)\n", rc);
3483        } else {
3484                efx->state = STATE_READY;
3485                netif_dbg(efx, hw, efx->net_dev,
3486                          "Done resetting and resuming IO after PCI error.\n");
3487        }
3488
3489out:
3490        rtnl_unlock();
3491}
3492
3493/* For simplicity and reliability, we always require a slot reset and try to
3494 * reset the hardware when a pci error affecting the device is detected.
3495 * We leave both the link_reset and mmio_enabled callback unimplemented:
3496 * with our request for slot reset the mmio_enabled callback will never be
3497 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3498 */
3499static const struct pci_error_handlers efx_err_handlers = {
3500        .error_detected = efx_io_error_detected,
3501        .slot_reset     = efx_io_slot_reset,
3502        .resume         = efx_io_resume,
3503};
3504
3505static struct pci_driver efx_pci_driver = {
3506        .name           = KBUILD_MODNAME,
3507        .id_table       = efx_pci_table,
3508        .probe          = efx_pci_probe,
3509        .remove         = efx_pci_remove,
3510        .driver.pm      = &efx_pm_ops,
3511        .err_handler    = &efx_err_handlers,
3512#ifdef CONFIG_SFC_SRIOV
3513        .sriov_configure = efx_pci_sriov_configure,
3514#endif
3515};
3516
3517/**************************************************************************
3518 *
3519 * Kernel module interface
3520 *
3521 *************************************************************************/
3522
3523module_param(interrupt_mode, uint, 0444);
3524MODULE_PARM_DESC(interrupt_mode,
3525                 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3526
3527static int __init efx_init_module(void)
3528{
3529        int rc;
3530
3531        printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
3532
3533        rc = register_netdevice_notifier(&efx_netdev_notifier);
3534        if (rc)
3535                goto err_notifier;
3536
3537#ifdef CONFIG_SFC_SRIOV
3538        rc = efx_init_sriov();
3539        if (rc)
3540                goto err_sriov;
3541#endif
3542
3543        reset_workqueue = create_singlethread_workqueue("sfc_reset");
3544        if (!reset_workqueue) {
3545                rc = -ENOMEM;
3546                goto err_reset;
3547        }
3548
3549        rc = pci_register_driver(&efx_pci_driver);
3550        if (rc < 0)
3551                goto err_pci;
3552
3553        return 0;
3554
3555 err_pci:
3556        destroy_workqueue(reset_workqueue);
3557 err_reset:
3558#ifdef CONFIG_SFC_SRIOV
3559        efx_fini_sriov();
3560 err_sriov:
3561#endif
3562        unregister_netdevice_notifier(&efx_netdev_notifier);
3563 err_notifier:
3564        return rc;
3565}
3566
3567static void __exit efx_exit_module(void)
3568{
3569        printk(KERN_INFO "Solarflare NET driver unloading\n");
3570
3571        pci_unregister_driver(&efx_pci_driver);
3572        destroy_workqueue(reset_workqueue);
3573#ifdef CONFIG_SFC_SRIOV
3574        efx_fini_sriov();
3575#endif
3576        unregister_netdevice_notifier(&efx_netdev_notifier);
3577
3578}
3579
3580module_init(efx_init_module);
3581module_exit(efx_exit_module);
3582
3583MODULE_AUTHOR("Solarflare Communications and "
3584              "Michael Brown <mbrown@fensystems.co.uk>");
3585MODULE_DESCRIPTION("Solarflare network driver");
3586MODULE_LICENSE("GPL");
3587MODULE_DEVICE_TABLE(pci, efx_pci_table);
3588