linux/drivers/net/ethernet/sfc/nic.h
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2006-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#ifndef EFX_NIC_H
  12#define EFX_NIC_H
  13
  14#include <linux/net_tstamp.h>
  15#include <linux/i2c-algo-bit.h>
  16#include "net_driver.h"
  17#include "efx.h"
  18#include "mcdi.h"
  19
  20enum {
  21        EFX_REV_SIENA_A0 = 0,
  22        EFX_REV_HUNT_A0 = 1,
  23};
  24
  25static inline int efx_nic_rev(struct efx_nic *efx)
  26{
  27        return efx->type->revision;
  28}
  29
  30u32 efx_farch_fpga_ver(struct efx_nic *efx);
  31
  32/* Read the current event from the event queue */
  33static inline efx_qword_t *efx_event(struct efx_channel *channel,
  34                                     unsigned int index)
  35{
  36        return ((efx_qword_t *) (channel->eventq.buf.addr)) +
  37                (index & channel->eventq_mask);
  38}
  39
  40/* See if an event is present
  41 *
  42 * We check both the high and low dword of the event for all ones.  We
  43 * wrote all ones when we cleared the event, and no valid event can
  44 * have all ones in either its high or low dwords.  This approach is
  45 * robust against reordering.
  46 *
  47 * Note that using a single 64-bit comparison is incorrect; even
  48 * though the CPU read will be atomic, the DMA write may not be.
  49 */
  50static inline int efx_event_present(efx_qword_t *event)
  51{
  52        return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
  53                  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
  54}
  55
  56/* Returns a pointer to the specified transmit descriptor in the TX
  57 * descriptor queue belonging to the specified channel.
  58 */
  59static inline efx_qword_t *
  60efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
  61{
  62        return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
  63}
  64
  65/* Get partner of a TX queue, seen as part of the same net core queue */
  66static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
  67{
  68        if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
  69                return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
  70        else
  71                return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
  72}
  73
  74/* Report whether this TX queue would be empty for the given write_count.
  75 * May return false negative.
  76 */
  77static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
  78                                         unsigned int write_count)
  79{
  80        unsigned int empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
  81
  82        if (empty_read_count == 0)
  83                return false;
  84
  85        return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
  86}
  87
  88/* Decide whether we can use TX PIO, ie. write packet data directly into
  89 * a buffer on the device.  This can reduce latency at the expense of
  90 * throughput, so we only do this if both hardware and software TX rings
  91 * are empty.  This also ensures that only one packet at a time can be
  92 * using the PIO buffer.
  93 */
  94static inline bool efx_nic_may_tx_pio(struct efx_tx_queue *tx_queue)
  95{
  96        struct efx_tx_queue *partner = efx_tx_queue_partner(tx_queue);
  97        return tx_queue->piobuf &&
  98               __efx_nic_tx_is_empty(tx_queue, tx_queue->insert_count) &&
  99               __efx_nic_tx_is_empty(partner, partner->insert_count);
 100}
 101
 102/* Decide whether to push a TX descriptor to the NIC vs merely writing
 103 * the doorbell.  This can reduce latency when we are adding a single
 104 * descriptor to an empty queue, but is otherwise pointless.  Further,
 105 * Falcon and Siena have hardware bugs (SF bug 33851) that may be
 106 * triggered if we don't check this.
 107 * We use the write_count used for the last doorbell push, to get the
 108 * NIC's view of the tx queue.
 109 */
 110static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
 111                                            unsigned int write_count)
 112{
 113        bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
 114
 115        tx_queue->empty_read_count = 0;
 116        return was_empty && tx_queue->write_count - write_count == 1;
 117}
 118
 119/* Returns a pointer to the specified descriptor in the RX descriptor queue */
 120static inline efx_qword_t *
 121efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
 122{
 123        return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
 124}
 125
 126enum {
 127        PHY_TYPE_NONE = 0,
 128        PHY_TYPE_TXC43128 = 1,
 129        PHY_TYPE_88E1111 = 2,
 130        PHY_TYPE_SFX7101 = 3,
 131        PHY_TYPE_QT2022C2 = 4,
 132        PHY_TYPE_PM8358 = 6,
 133        PHY_TYPE_SFT9001A = 8,
 134        PHY_TYPE_QT2025C = 9,
 135        PHY_TYPE_SFT9001B = 10,
 136};
 137
 138/* Alignment of PCIe DMA boundaries (4KB) */
 139#define EFX_PAGE_SIZE   4096
 140/* Size and alignment of buffer table entries (same) */
 141#define EFX_BUF_SIZE    EFX_PAGE_SIZE
 142
 143/* NIC-generic software stats */
 144enum {
 145        GENERIC_STAT_rx_noskb_drops,
 146        GENERIC_STAT_rx_nodesc_trunc,
 147        GENERIC_STAT_COUNT
 148};
 149
 150enum {
 151        SIENA_STAT_tx_bytes = GENERIC_STAT_COUNT,
 152        SIENA_STAT_tx_good_bytes,
 153        SIENA_STAT_tx_bad_bytes,
 154        SIENA_STAT_tx_packets,
 155        SIENA_STAT_tx_bad,
 156        SIENA_STAT_tx_pause,
 157        SIENA_STAT_tx_control,
 158        SIENA_STAT_tx_unicast,
 159        SIENA_STAT_tx_multicast,
 160        SIENA_STAT_tx_broadcast,
 161        SIENA_STAT_tx_lt64,
 162        SIENA_STAT_tx_64,
 163        SIENA_STAT_tx_65_to_127,
 164        SIENA_STAT_tx_128_to_255,
 165        SIENA_STAT_tx_256_to_511,
 166        SIENA_STAT_tx_512_to_1023,
 167        SIENA_STAT_tx_1024_to_15xx,
 168        SIENA_STAT_tx_15xx_to_jumbo,
 169        SIENA_STAT_tx_gtjumbo,
 170        SIENA_STAT_tx_collision,
 171        SIENA_STAT_tx_single_collision,
 172        SIENA_STAT_tx_multiple_collision,
 173        SIENA_STAT_tx_excessive_collision,
 174        SIENA_STAT_tx_deferred,
 175        SIENA_STAT_tx_late_collision,
 176        SIENA_STAT_tx_excessive_deferred,
 177        SIENA_STAT_tx_non_tcpudp,
 178        SIENA_STAT_tx_mac_src_error,
 179        SIENA_STAT_tx_ip_src_error,
 180        SIENA_STAT_rx_bytes,
 181        SIENA_STAT_rx_good_bytes,
 182        SIENA_STAT_rx_bad_bytes,
 183        SIENA_STAT_rx_packets,
 184        SIENA_STAT_rx_good,
 185        SIENA_STAT_rx_bad,
 186        SIENA_STAT_rx_pause,
 187        SIENA_STAT_rx_control,
 188        SIENA_STAT_rx_unicast,
 189        SIENA_STAT_rx_multicast,
 190        SIENA_STAT_rx_broadcast,
 191        SIENA_STAT_rx_lt64,
 192        SIENA_STAT_rx_64,
 193        SIENA_STAT_rx_65_to_127,
 194        SIENA_STAT_rx_128_to_255,
 195        SIENA_STAT_rx_256_to_511,
 196        SIENA_STAT_rx_512_to_1023,
 197        SIENA_STAT_rx_1024_to_15xx,
 198        SIENA_STAT_rx_15xx_to_jumbo,
 199        SIENA_STAT_rx_gtjumbo,
 200        SIENA_STAT_rx_bad_gtjumbo,
 201        SIENA_STAT_rx_overflow,
 202        SIENA_STAT_rx_false_carrier,
 203        SIENA_STAT_rx_symbol_error,
 204        SIENA_STAT_rx_align_error,
 205        SIENA_STAT_rx_length_error,
 206        SIENA_STAT_rx_internal_error,
 207        SIENA_STAT_rx_nodesc_drop_cnt,
 208        SIENA_STAT_COUNT
 209};
 210
 211/**
 212 * struct siena_nic_data - Siena NIC state
 213 * @efx: Pointer back to main interface structure
 214 * @wol_filter_id: Wake-on-LAN packet filter id
 215 * @stats: Hardware statistics
 216 * @vf: Array of &struct siena_vf objects
 217 * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
 218 * @vfdi_status: Common VFDI status page to be dmad to VF address space.
 219 * @local_addr_list: List of local addresses. Protected by %local_lock.
 220 * @local_page_list: List of DMA addressable pages used to broadcast
 221 *      %local_addr_list. Protected by %local_lock.
 222 * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
 223 * @peer_work: Work item to broadcast peer addresses to VMs.
 224 */
 225struct siena_nic_data {
 226        struct efx_nic *efx;
 227        int wol_filter_id;
 228        u64 stats[SIENA_STAT_COUNT];
 229#ifdef CONFIG_SFC_SRIOV
 230        struct siena_vf *vf;
 231        struct efx_channel *vfdi_channel;
 232        unsigned vf_buftbl_base;
 233        struct efx_buffer vfdi_status;
 234        struct list_head local_addr_list;
 235        struct list_head local_page_list;
 236        struct mutex local_lock;
 237        struct work_struct peer_work;
 238#endif
 239};
 240
 241enum {
 242        EF10_STAT_port_tx_bytes = GENERIC_STAT_COUNT,
 243        EF10_STAT_port_tx_packets,
 244        EF10_STAT_port_tx_pause,
 245        EF10_STAT_port_tx_control,
 246        EF10_STAT_port_tx_unicast,
 247        EF10_STAT_port_tx_multicast,
 248        EF10_STAT_port_tx_broadcast,
 249        EF10_STAT_port_tx_lt64,
 250        EF10_STAT_port_tx_64,
 251        EF10_STAT_port_tx_65_to_127,
 252        EF10_STAT_port_tx_128_to_255,
 253        EF10_STAT_port_tx_256_to_511,
 254        EF10_STAT_port_tx_512_to_1023,
 255        EF10_STAT_port_tx_1024_to_15xx,
 256        EF10_STAT_port_tx_15xx_to_jumbo,
 257        EF10_STAT_port_rx_bytes,
 258        EF10_STAT_port_rx_bytes_minus_good_bytes,
 259        EF10_STAT_port_rx_good_bytes,
 260        EF10_STAT_port_rx_bad_bytes,
 261        EF10_STAT_port_rx_packets,
 262        EF10_STAT_port_rx_good,
 263        EF10_STAT_port_rx_bad,
 264        EF10_STAT_port_rx_pause,
 265        EF10_STAT_port_rx_control,
 266        EF10_STAT_port_rx_unicast,
 267        EF10_STAT_port_rx_multicast,
 268        EF10_STAT_port_rx_broadcast,
 269        EF10_STAT_port_rx_lt64,
 270        EF10_STAT_port_rx_64,
 271        EF10_STAT_port_rx_65_to_127,
 272        EF10_STAT_port_rx_128_to_255,
 273        EF10_STAT_port_rx_256_to_511,
 274        EF10_STAT_port_rx_512_to_1023,
 275        EF10_STAT_port_rx_1024_to_15xx,
 276        EF10_STAT_port_rx_15xx_to_jumbo,
 277        EF10_STAT_port_rx_gtjumbo,
 278        EF10_STAT_port_rx_bad_gtjumbo,
 279        EF10_STAT_port_rx_overflow,
 280        EF10_STAT_port_rx_align_error,
 281        EF10_STAT_port_rx_length_error,
 282        EF10_STAT_port_rx_nodesc_drops,
 283        EF10_STAT_port_rx_pm_trunc_bb_overflow,
 284        EF10_STAT_port_rx_pm_discard_bb_overflow,
 285        EF10_STAT_port_rx_pm_trunc_vfifo_full,
 286        EF10_STAT_port_rx_pm_discard_vfifo_full,
 287        EF10_STAT_port_rx_pm_trunc_qbb,
 288        EF10_STAT_port_rx_pm_discard_qbb,
 289        EF10_STAT_port_rx_pm_discard_mapping,
 290        EF10_STAT_port_rx_dp_q_disabled_packets,
 291        EF10_STAT_port_rx_dp_di_dropped_packets,
 292        EF10_STAT_port_rx_dp_streaming_packets,
 293        EF10_STAT_port_rx_dp_hlb_fetch,
 294        EF10_STAT_port_rx_dp_hlb_wait,
 295        EF10_STAT_rx_unicast,
 296        EF10_STAT_rx_unicast_bytes,
 297        EF10_STAT_rx_multicast,
 298        EF10_STAT_rx_multicast_bytes,
 299        EF10_STAT_rx_broadcast,
 300        EF10_STAT_rx_broadcast_bytes,
 301        EF10_STAT_rx_bad,
 302        EF10_STAT_rx_bad_bytes,
 303        EF10_STAT_rx_overflow,
 304        EF10_STAT_tx_unicast,
 305        EF10_STAT_tx_unicast_bytes,
 306        EF10_STAT_tx_multicast,
 307        EF10_STAT_tx_multicast_bytes,
 308        EF10_STAT_tx_broadcast,
 309        EF10_STAT_tx_broadcast_bytes,
 310        EF10_STAT_tx_bad,
 311        EF10_STAT_tx_bad_bytes,
 312        EF10_STAT_tx_overflow,
 313        EF10_STAT_COUNT
 314};
 315
 316/* Maximum number of TX PIO buffers we may allocate to a function.
 317 * This matches the total number of buffers on each SFC9100-family
 318 * controller.
 319 */
 320#define EF10_TX_PIOBUF_COUNT 16
 321
 322/**
 323 * struct efx_ef10_nic_data - EF10 architecture NIC state
 324 * @mcdi_buf: DMA buffer for MCDI
 325 * @warm_boot_count: Last seen MC warm boot count
 326 * @vi_base: Absolute index of first VI in this function
 327 * @n_allocated_vis: Number of VIs allocated to this function
 328 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
 329 * @must_restore_filters: Flag: filters have yet to be restored after MC reboot
 330 * @n_piobufs: Number of PIO buffers allocated to this function
 331 * @wc_membase: Base address of write-combining mapping of the memory BAR
 332 * @pio_write_base: Base address for writing PIO buffers
 333 * @pio_write_vi_base: Relative VI number for @pio_write_base
 334 * @piobuf_handle: Handle of each PIO buffer allocated
 335 * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
 336 *      reboot
 337 * @rx_rss_context: Firmware handle for our RSS context
 338 * @rx_rss_context_exclusive: Whether our RSS context is exclusive or shared
 339 * @stats: Hardware statistics
 340 * @workaround_35388: Flag: firmware supports workaround for bug 35388
 341 * @workaround_26807: Flag: firmware supports workaround for bug 26807
 342 * @workaround_61265: Flag: firmware supports workaround for bug 61265
 343 * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
 344 *      after MC reboot
 345 * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
 346 *      %MC_CMD_GET_CAPABILITIES response)
 347 * @datapath_caps2: Further Capabilities of datapath firmware (FLAGS2 field of
 348 * %MC_CMD_GET_CAPABILITIES response)
 349 * @rx_dpcpu_fw_id: Firmware ID of the RxDPCPU
 350 * @tx_dpcpu_fw_id: Firmware ID of the TxDPCPU
 351 * @vport_id: The function's vport ID, only relevant for PFs
 352 * @must_probe_vswitching: Flag: vswitching has yet to be setup after MC reboot
 353 * @pf_index: The number for this PF, or the parent PF if this is a VF
 354#ifdef CONFIG_SFC_SRIOV
 355 * @vf: Pointer to VF data structure
 356#endif
 357 * @vport_mac: The MAC address on the vport, only for PFs; VFs will be zero
 358 * @vlan_list: List of VLANs added over the interface. Serialised by vlan_lock.
 359 * @vlan_lock: Lock to serialize access to vlan_list.
 360 */
 361struct efx_ef10_nic_data {
 362        struct efx_buffer mcdi_buf;
 363        u16 warm_boot_count;
 364        unsigned int vi_base;
 365        unsigned int n_allocated_vis;
 366        bool must_realloc_vis;
 367        bool must_restore_filters;
 368        unsigned int n_piobufs;
 369        void __iomem *wc_membase, *pio_write_base;
 370        unsigned int pio_write_vi_base;
 371        unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
 372        bool must_restore_piobufs;
 373        u32 rx_rss_context;
 374        bool rx_rss_context_exclusive;
 375        u64 stats[EF10_STAT_COUNT];
 376        bool workaround_35388;
 377        bool workaround_26807;
 378        bool workaround_61265;
 379        bool must_check_datapath_caps;
 380        u32 datapath_caps;
 381        u32 datapath_caps2;
 382        unsigned int rx_dpcpu_fw_id;
 383        unsigned int tx_dpcpu_fw_id;
 384        unsigned int vport_id;
 385        bool must_probe_vswitching;
 386        unsigned int pf_index;
 387        u8 port_id[ETH_ALEN];
 388#ifdef CONFIG_SFC_SRIOV
 389        unsigned int vf_index;
 390        struct ef10_vf *vf;
 391#endif
 392        u8 vport_mac[ETH_ALEN];
 393        struct list_head vlan_list;
 394        struct mutex vlan_lock;
 395};
 396
 397int efx_init_sriov(void);
 398void efx_fini_sriov(void);
 399
 400struct ethtool_ts_info;
 401int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel);
 402void efx_ptp_defer_probe_with_channel(struct efx_nic *efx);
 403void efx_ptp_remove(struct efx_nic *efx);
 404int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr);
 405int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr);
 406void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
 407bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
 408int efx_ptp_get_mode(struct efx_nic *efx);
 409int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
 410                        unsigned int new_mode);
 411int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
 412void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
 413size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings);
 414size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats);
 415void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev);
 416void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
 417                                   struct sk_buff *skb);
 418static inline void efx_rx_skb_attach_timestamp(struct efx_channel *channel,
 419                                               struct sk_buff *skb)
 420{
 421        if (channel->sync_events_state == SYNC_EVENTS_VALID)
 422                __efx_rx_skb_attach_timestamp(channel, skb);
 423}
 424void efx_ptp_start_datapath(struct efx_nic *efx);
 425void efx_ptp_stop_datapath(struct efx_nic *efx);
 426
 427extern const struct efx_nic_type falcon_a1_nic_type;
 428extern const struct efx_nic_type falcon_b0_nic_type;
 429extern const struct efx_nic_type siena_a0_nic_type;
 430extern const struct efx_nic_type efx_hunt_a0_nic_type;
 431extern const struct efx_nic_type efx_hunt_a0_vf_nic_type;
 432
 433/**************************************************************************
 434 *
 435 * Externs
 436 *
 437 **************************************************************************
 438 */
 439
 440int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
 441
 442/* TX data path */
 443static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
 444{
 445        return tx_queue->efx->type->tx_probe(tx_queue);
 446}
 447static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
 448{
 449        tx_queue->efx->type->tx_init(tx_queue);
 450}
 451static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
 452{
 453        tx_queue->efx->type->tx_remove(tx_queue);
 454}
 455static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
 456{
 457        tx_queue->efx->type->tx_write(tx_queue);
 458}
 459
 460/* RX data path */
 461static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
 462{
 463        return rx_queue->efx->type->rx_probe(rx_queue);
 464}
 465static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
 466{
 467        rx_queue->efx->type->rx_init(rx_queue);
 468}
 469static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
 470{
 471        rx_queue->efx->type->rx_remove(rx_queue);
 472}
 473static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
 474{
 475        rx_queue->efx->type->rx_write(rx_queue);
 476}
 477static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
 478{
 479        rx_queue->efx->type->rx_defer_refill(rx_queue);
 480}
 481
 482/* Event data path */
 483static inline int efx_nic_probe_eventq(struct efx_channel *channel)
 484{
 485        return channel->efx->type->ev_probe(channel);
 486}
 487static inline int efx_nic_init_eventq(struct efx_channel *channel)
 488{
 489        return channel->efx->type->ev_init(channel);
 490}
 491static inline void efx_nic_fini_eventq(struct efx_channel *channel)
 492{
 493        channel->efx->type->ev_fini(channel);
 494}
 495static inline void efx_nic_remove_eventq(struct efx_channel *channel)
 496{
 497        channel->efx->type->ev_remove(channel);
 498}
 499static inline int
 500efx_nic_process_eventq(struct efx_channel *channel, int quota)
 501{
 502        return channel->efx->type->ev_process(channel, quota);
 503}
 504static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
 505{
 506        channel->efx->type->ev_read_ack(channel);
 507}
 508void efx_nic_event_test_start(struct efx_channel *channel);
 509
 510/* Falcon/Siena queue operations */
 511int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
 512void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
 513void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
 514void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
 515void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
 516unsigned int efx_farch_tx_limit_len(struct efx_tx_queue *tx_queue,
 517                                    dma_addr_t dma_addr, unsigned int len);
 518int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
 519void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
 520void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
 521void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
 522void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
 523void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
 524int efx_farch_ev_probe(struct efx_channel *channel);
 525int efx_farch_ev_init(struct efx_channel *channel);
 526void efx_farch_ev_fini(struct efx_channel *channel);
 527void efx_farch_ev_remove(struct efx_channel *channel);
 528int efx_farch_ev_process(struct efx_channel *channel, int quota);
 529void efx_farch_ev_read_ack(struct efx_channel *channel);
 530void efx_farch_ev_test_generate(struct efx_channel *channel);
 531
 532/* Falcon/Siena filter operations */
 533int efx_farch_filter_table_probe(struct efx_nic *efx);
 534void efx_farch_filter_table_restore(struct efx_nic *efx);
 535void efx_farch_filter_table_remove(struct efx_nic *efx);
 536void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
 537s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec,
 538                            bool replace);
 539int efx_farch_filter_remove_safe(struct efx_nic *efx,
 540                                 enum efx_filter_priority priority,
 541                                 u32 filter_id);
 542int efx_farch_filter_get_safe(struct efx_nic *efx,
 543                              enum efx_filter_priority priority, u32 filter_id,
 544                              struct efx_filter_spec *);
 545int efx_farch_filter_clear_rx(struct efx_nic *efx,
 546                              enum efx_filter_priority priority);
 547u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
 548                                   enum efx_filter_priority priority);
 549u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
 550s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
 551                                enum efx_filter_priority priority, u32 *buf,
 552                                u32 size);
 553#ifdef CONFIG_RFS_ACCEL
 554s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
 555                                struct efx_filter_spec *spec);
 556bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
 557                                     unsigned int index);
 558#endif
 559void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
 560
 561bool efx_nic_event_present(struct efx_channel *channel);
 562
 563/* Some statistics are computed as A - B where A and B each increase
 564 * linearly with some hardware counter(s) and the counters are read
 565 * asynchronously.  If the counters contributing to B are always read
 566 * after those contributing to A, the computed value may be lower than
 567 * the true value by some variable amount, and may decrease between
 568 * subsequent computations.
 569 *
 570 * We should never allow statistics to decrease or to exceed the true
 571 * value.  Since the computed value will never be greater than the
 572 * true value, we can achieve this by only storing the computed value
 573 * when it increases.
 574 */
 575static inline void efx_update_diff_stat(u64 *stat, u64 diff)
 576{
 577        if ((s64)(diff - *stat) > 0)
 578                *stat = diff;
 579}
 580
 581/* Interrupts */
 582int efx_nic_init_interrupt(struct efx_nic *efx);
 583int efx_nic_irq_test_start(struct efx_nic *efx);
 584void efx_nic_fini_interrupt(struct efx_nic *efx);
 585
 586/* Falcon/Siena interrupts */
 587void efx_farch_irq_enable_master(struct efx_nic *efx);
 588int efx_farch_irq_test_generate(struct efx_nic *efx);
 589void efx_farch_irq_disable_master(struct efx_nic *efx);
 590irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
 591irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
 592irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
 593
 594static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
 595{
 596        return ACCESS_ONCE(channel->event_test_cpu);
 597}
 598static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
 599{
 600        return ACCESS_ONCE(efx->last_irq_cpu);
 601}
 602
 603/* Global Resources */
 604int efx_nic_flush_queues(struct efx_nic *efx);
 605void siena_prepare_flush(struct efx_nic *efx);
 606int efx_farch_fini_dmaq(struct efx_nic *efx);
 607void efx_farch_finish_flr(struct efx_nic *efx);
 608void siena_finish_flush(struct efx_nic *efx);
 609void falcon_start_nic_stats(struct efx_nic *efx);
 610void falcon_stop_nic_stats(struct efx_nic *efx);
 611int falcon_reset_xaui(struct efx_nic *efx);
 612void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
 613void efx_farch_init_common(struct efx_nic *efx);
 614void efx_ef10_handle_drain_event(struct efx_nic *efx);
 615void efx_farch_rx_push_indir_table(struct efx_nic *efx);
 616
 617int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
 618                         unsigned int len, gfp_t gfp_flags);
 619void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
 620
 621/* Tests */
 622struct efx_farch_register_test {
 623        unsigned address;
 624        efx_oword_t mask;
 625};
 626int efx_farch_test_registers(struct efx_nic *efx,
 627                             const struct efx_farch_register_test *regs,
 628                             size_t n_regs);
 629
 630size_t efx_nic_get_regs_len(struct efx_nic *efx);
 631void efx_nic_get_regs(struct efx_nic *efx, void *buf);
 632
 633size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
 634                              const unsigned long *mask, u8 *names);
 635void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
 636                          const unsigned long *mask, u64 *stats,
 637                          const void *dma_buf, bool accumulate);
 638void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
 639
 640#define EFX_MAX_FLUSH_TIME 5000
 641
 642void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
 643                              efx_qword_t *event);
 644
 645#endif /* EFX_NIC_H */
 646