linux/drivers/rtc/rtc-cmos.c
<<
>>
Prefs
   1/*
   2 * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
   3 *
   4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
   5 * Copyright (C) 2006 David Brownell (convert to new framework)
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; either version
  10 * 2 of the License, or (at your option) any later version.
  11 */
  12
  13/*
  14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
  15 * That defined the register interface now provided by all PCs, some
  16 * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
  17 * integrate an MC146818 clone in their southbridge, and boards use
  18 * that instead of discrete clones like the DS12887 or M48T86.  There
  19 * are also clones that connect using the LPC bus.
  20 *
  21 * That register API is also used directly by various other drivers
  22 * (notably for integrated NVRAM), infrastructure (x86 has code to
  23 * bypass the RTC framework, directly reading the RTC during boot
  24 * and updating minutes/seconds for systems using NTP synch) and
  25 * utilities (like userspace 'hwclock', if no /dev node exists).
  26 *
  27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
  28 * interrupts disabled, holding the global rtc_lock, to exclude those
  29 * other drivers and utilities on correctly configured systems.
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/kernel.h>
  35#include <linux/module.h>
  36#include <linux/init.h>
  37#include <linux/interrupt.h>
  38#include <linux/spinlock.h>
  39#include <linux/platform_device.h>
  40#include <linux/log2.h>
  41#include <linux/pm.h>
  42#include <linux/of.h>
  43#include <linux/of_platform.h>
  44
  45/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
  46#include <linux/mc146818rtc.h>
  47
  48struct cmos_rtc {
  49        struct rtc_device       *rtc;
  50        struct device           *dev;
  51        int                     irq;
  52        struct resource         *iomem;
  53        time64_t                alarm_expires;
  54
  55        void                    (*wake_on)(struct device *);
  56        void                    (*wake_off)(struct device *);
  57
  58        u8                      enabled_wake;
  59        u8                      suspend_ctrl;
  60
  61        /* newer hardware extends the original register set */
  62        u8                      day_alrm;
  63        u8                      mon_alrm;
  64        u8                      century;
  65
  66        struct rtc_wkalrm       saved_wkalrm;
  67};
  68
  69/* both platform and pnp busses use negative numbers for invalid irqs */
  70#define is_valid_irq(n)         ((n) > 0)
  71
  72static const char driver_name[] = "rtc_cmos";
  73
  74/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
  75 * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
  76 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
  77 */
  78#define RTC_IRQMASK     (RTC_PF | RTC_AF | RTC_UF)
  79
  80static inline int is_intr(u8 rtc_intr)
  81{
  82        if (!(rtc_intr & RTC_IRQF))
  83                return 0;
  84        return rtc_intr & RTC_IRQMASK;
  85}
  86
  87/*----------------------------------------------------------------*/
  88
  89/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
  90 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
  91 * used in a broken "legacy replacement" mode.  The breakage includes
  92 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
  93 * other (better) use.
  94 *
  95 * When that broken mode is in use, platform glue provides a partial
  96 * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
  97 * want to use HPET for anything except those IRQs though...
  98 */
  99#ifdef CONFIG_HPET_EMULATE_RTC
 100#include <asm/hpet.h>
 101#else
 102
 103static inline int is_hpet_enabled(void)
 104{
 105        return 0;
 106}
 107
 108static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
 109{
 110        return 0;
 111}
 112
 113static inline int hpet_set_rtc_irq_bit(unsigned long mask)
 114{
 115        return 0;
 116}
 117
 118static inline int
 119hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
 120{
 121        return 0;
 122}
 123
 124static inline int hpet_set_periodic_freq(unsigned long freq)
 125{
 126        return 0;
 127}
 128
 129static inline int hpet_rtc_dropped_irq(void)
 130{
 131        return 0;
 132}
 133
 134static inline int hpet_rtc_timer_init(void)
 135{
 136        return 0;
 137}
 138
 139extern irq_handler_t hpet_rtc_interrupt;
 140
 141static inline int hpet_register_irq_handler(irq_handler_t handler)
 142{
 143        return 0;
 144}
 145
 146static inline int hpet_unregister_irq_handler(irq_handler_t handler)
 147{
 148        return 0;
 149}
 150
 151#endif
 152
 153/*----------------------------------------------------------------*/
 154
 155#ifdef RTC_PORT
 156
 157/* Most newer x86 systems have two register banks, the first used
 158 * for RTC and NVRAM and the second only for NVRAM.  Caller must
 159 * own rtc_lock ... and we won't worry about access during NMI.
 160 */
 161#define can_bank2       true
 162
 163static inline unsigned char cmos_read_bank2(unsigned char addr)
 164{
 165        outb(addr, RTC_PORT(2));
 166        return inb(RTC_PORT(3));
 167}
 168
 169static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 170{
 171        outb(addr, RTC_PORT(2));
 172        outb(val, RTC_PORT(3));
 173}
 174
 175#else
 176
 177#define can_bank2       false
 178
 179static inline unsigned char cmos_read_bank2(unsigned char addr)
 180{
 181        return 0;
 182}
 183
 184static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 185{
 186}
 187
 188#endif
 189
 190/*----------------------------------------------------------------*/
 191
 192static int cmos_read_time(struct device *dev, struct rtc_time *t)
 193{
 194        /*
 195         * If pm_trace abused the RTC for storage, set the timespec to 0,
 196         * which tells the caller that this RTC value is unusable.
 197         */
 198        if (!pm_trace_rtc_valid())
 199                return -EIO;
 200
 201        /* REVISIT:  if the clock has a "century" register, use
 202         * that instead of the heuristic in mc146818_get_time().
 203         * That'll make Y3K compatility (year > 2070) easy!
 204         */
 205        mc146818_get_time(t);
 206        return 0;
 207}
 208
 209static int cmos_set_time(struct device *dev, struct rtc_time *t)
 210{
 211        /* REVISIT:  set the "century" register if available
 212         *
 213         * NOTE: this ignores the issue whereby updating the seconds
 214         * takes effect exactly 500ms after we write the register.
 215         * (Also queueing and other delays before we get this far.)
 216         */
 217        return mc146818_set_time(t);
 218}
 219
 220static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
 221{
 222        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 223        unsigned char   rtc_control;
 224
 225        if (!is_valid_irq(cmos->irq))
 226                return -EIO;
 227
 228        /* Basic alarms only support hour, minute, and seconds fields.
 229         * Some also support day and month, for alarms up to a year in
 230         * the future.
 231         */
 232
 233        spin_lock_irq(&rtc_lock);
 234        t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
 235        t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
 236        t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
 237
 238        if (cmos->day_alrm) {
 239                /* ignore upper bits on readback per ACPI spec */
 240                t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
 241                if (!t->time.tm_mday)
 242                        t->time.tm_mday = -1;
 243
 244                if (cmos->mon_alrm) {
 245                        t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
 246                        if (!t->time.tm_mon)
 247                                t->time.tm_mon = -1;
 248                }
 249        }
 250
 251        rtc_control = CMOS_READ(RTC_CONTROL);
 252        spin_unlock_irq(&rtc_lock);
 253
 254        if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 255                if (((unsigned)t->time.tm_sec) < 0x60)
 256                        t->time.tm_sec = bcd2bin(t->time.tm_sec);
 257                else
 258                        t->time.tm_sec = -1;
 259                if (((unsigned)t->time.tm_min) < 0x60)
 260                        t->time.tm_min = bcd2bin(t->time.tm_min);
 261                else
 262                        t->time.tm_min = -1;
 263                if (((unsigned)t->time.tm_hour) < 0x24)
 264                        t->time.tm_hour = bcd2bin(t->time.tm_hour);
 265                else
 266                        t->time.tm_hour = -1;
 267
 268                if (cmos->day_alrm) {
 269                        if (((unsigned)t->time.tm_mday) <= 0x31)
 270                                t->time.tm_mday = bcd2bin(t->time.tm_mday);
 271                        else
 272                                t->time.tm_mday = -1;
 273
 274                        if (cmos->mon_alrm) {
 275                                if (((unsigned)t->time.tm_mon) <= 0x12)
 276                                        t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
 277                                else
 278                                        t->time.tm_mon = -1;
 279                        }
 280                }
 281        }
 282
 283        t->enabled = !!(rtc_control & RTC_AIE);
 284        t->pending = 0;
 285
 286        return 0;
 287}
 288
 289static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
 290{
 291        unsigned char   rtc_intr;
 292
 293        /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
 294         * allegedly some older rtcs need that to handle irqs properly
 295         */
 296        rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
 297
 298        if (is_hpet_enabled())
 299                return;
 300
 301        rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 302        if (is_intr(rtc_intr))
 303                rtc_update_irq(cmos->rtc, 1, rtc_intr);
 304}
 305
 306static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
 307{
 308        unsigned char   rtc_control;
 309
 310        /* flush any pending IRQ status, notably for update irqs,
 311         * before we enable new IRQs
 312         */
 313        rtc_control = CMOS_READ(RTC_CONTROL);
 314        cmos_checkintr(cmos, rtc_control);
 315
 316        rtc_control |= mask;
 317        CMOS_WRITE(rtc_control, RTC_CONTROL);
 318        hpet_set_rtc_irq_bit(mask);
 319
 320        cmos_checkintr(cmos, rtc_control);
 321}
 322
 323static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
 324{
 325        unsigned char   rtc_control;
 326
 327        rtc_control = CMOS_READ(RTC_CONTROL);
 328        rtc_control &= ~mask;
 329        CMOS_WRITE(rtc_control, RTC_CONTROL);
 330        hpet_mask_rtc_irq_bit(mask);
 331
 332        cmos_checkintr(cmos, rtc_control);
 333}
 334
 335static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
 336{
 337        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 338        struct rtc_time now;
 339
 340        cmos_read_time(dev, &now);
 341
 342        if (!cmos->day_alrm) {
 343                time64_t t_max_date;
 344                time64_t t_alrm;
 345
 346                t_max_date = rtc_tm_to_time64(&now);
 347                t_max_date += 24 * 60 * 60 - 1;
 348                t_alrm = rtc_tm_to_time64(&t->time);
 349                if (t_alrm > t_max_date) {
 350                        dev_err(dev,
 351                                "Alarms can be up to one day in the future\n");
 352                        return -EINVAL;
 353                }
 354        } else if (!cmos->mon_alrm) {
 355                struct rtc_time max_date = now;
 356                time64_t t_max_date;
 357                time64_t t_alrm;
 358                int max_mday;
 359
 360                if (max_date.tm_mon == 11) {
 361                        max_date.tm_mon = 0;
 362                        max_date.tm_year += 1;
 363                } else {
 364                        max_date.tm_mon += 1;
 365                }
 366                max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
 367                if (max_date.tm_mday > max_mday)
 368                        max_date.tm_mday = max_mday;
 369
 370                t_max_date = rtc_tm_to_time64(&max_date);
 371                t_max_date -= 1;
 372                t_alrm = rtc_tm_to_time64(&t->time);
 373                if (t_alrm > t_max_date) {
 374                        dev_err(dev,
 375                                "Alarms can be up to one month in the future\n");
 376                        return -EINVAL;
 377                }
 378        } else {
 379                struct rtc_time max_date = now;
 380                time64_t t_max_date;
 381                time64_t t_alrm;
 382                int max_mday;
 383
 384                max_date.tm_year += 1;
 385                max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
 386                if (max_date.tm_mday > max_mday)
 387                        max_date.tm_mday = max_mday;
 388
 389                t_max_date = rtc_tm_to_time64(&max_date);
 390                t_max_date -= 1;
 391                t_alrm = rtc_tm_to_time64(&t->time);
 392                if (t_alrm > t_max_date) {
 393                        dev_err(dev,
 394                                "Alarms can be up to one year in the future\n");
 395                        return -EINVAL;
 396                }
 397        }
 398
 399        return 0;
 400}
 401
 402static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
 403{
 404        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 405        unsigned char mon, mday, hrs, min, sec, rtc_control;
 406        int ret;
 407
 408        if (!is_valid_irq(cmos->irq))
 409                return -EIO;
 410
 411        ret = cmos_validate_alarm(dev, t);
 412        if (ret < 0)
 413                return ret;
 414
 415        mon = t->time.tm_mon + 1;
 416        mday = t->time.tm_mday;
 417        hrs = t->time.tm_hour;
 418        min = t->time.tm_min;
 419        sec = t->time.tm_sec;
 420
 421        rtc_control = CMOS_READ(RTC_CONTROL);
 422        if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 423                /* Writing 0xff means "don't care" or "match all".  */
 424                mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
 425                mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
 426                hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
 427                min = (min < 60) ? bin2bcd(min) : 0xff;
 428                sec = (sec < 60) ? bin2bcd(sec) : 0xff;
 429        }
 430
 431        spin_lock_irq(&rtc_lock);
 432
 433        /* next rtc irq must not be from previous alarm setting */
 434        cmos_irq_disable(cmos, RTC_AIE);
 435
 436        /* update alarm */
 437        CMOS_WRITE(hrs, RTC_HOURS_ALARM);
 438        CMOS_WRITE(min, RTC_MINUTES_ALARM);
 439        CMOS_WRITE(sec, RTC_SECONDS_ALARM);
 440
 441        /* the system may support an "enhanced" alarm */
 442        if (cmos->day_alrm) {
 443                CMOS_WRITE(mday, cmos->day_alrm);
 444                if (cmos->mon_alrm)
 445                        CMOS_WRITE(mon, cmos->mon_alrm);
 446        }
 447
 448        /* FIXME the HPET alarm glue currently ignores day_alrm
 449         * and mon_alrm ...
 450         */
 451        hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
 452
 453        if (t->enabled)
 454                cmos_irq_enable(cmos, RTC_AIE);
 455
 456        spin_unlock_irq(&rtc_lock);
 457
 458        cmos->alarm_expires = rtc_tm_to_time64(&t->time);
 459
 460        return 0;
 461}
 462
 463static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
 464{
 465        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 466        unsigned long   flags;
 467
 468        if (!is_valid_irq(cmos->irq))
 469                return -EINVAL;
 470
 471        spin_lock_irqsave(&rtc_lock, flags);
 472
 473        if (enabled)
 474                cmos_irq_enable(cmos, RTC_AIE);
 475        else
 476                cmos_irq_disable(cmos, RTC_AIE);
 477
 478        spin_unlock_irqrestore(&rtc_lock, flags);
 479        return 0;
 480}
 481
 482#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
 483
 484static int cmos_procfs(struct device *dev, struct seq_file *seq)
 485{
 486        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 487        unsigned char   rtc_control, valid;
 488
 489        spin_lock_irq(&rtc_lock);
 490        rtc_control = CMOS_READ(RTC_CONTROL);
 491        valid = CMOS_READ(RTC_VALID);
 492        spin_unlock_irq(&rtc_lock);
 493
 494        /* NOTE:  at least ICH6 reports battery status using a different
 495         * (non-RTC) bit; and SQWE is ignored on many current systems.
 496         */
 497        seq_printf(seq,
 498                   "periodic_IRQ\t: %s\n"
 499                   "update_IRQ\t: %s\n"
 500                   "HPET_emulated\t: %s\n"
 501                   // "square_wave\t: %s\n"
 502                   "BCD\t\t: %s\n"
 503                   "DST_enable\t: %s\n"
 504                   "periodic_freq\t: %d\n"
 505                   "batt_status\t: %s\n",
 506                   (rtc_control & RTC_PIE) ? "yes" : "no",
 507                   (rtc_control & RTC_UIE) ? "yes" : "no",
 508                   is_hpet_enabled() ? "yes" : "no",
 509                   // (rtc_control & RTC_SQWE) ? "yes" : "no",
 510                   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
 511                   (rtc_control & RTC_DST_EN) ? "yes" : "no",
 512                   cmos->rtc->irq_freq,
 513                   (valid & RTC_VRT) ? "okay" : "dead");
 514
 515        return 0;
 516}
 517
 518#else
 519#define cmos_procfs     NULL
 520#endif
 521
 522static const struct rtc_class_ops cmos_rtc_ops = {
 523        .read_time              = cmos_read_time,
 524        .set_time               = cmos_set_time,
 525        .read_alarm             = cmos_read_alarm,
 526        .set_alarm              = cmos_set_alarm,
 527        .proc                   = cmos_procfs,
 528        .alarm_irq_enable       = cmos_alarm_irq_enable,
 529};
 530
 531/*----------------------------------------------------------------*/
 532
 533/*
 534 * All these chips have at least 64 bytes of address space, shared by
 535 * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
 536 * by boot firmware.  Modern chips have 128 or 256 bytes.
 537 */
 538
 539#define NVRAM_OFFSET    (RTC_REG_D + 1)
 540
 541static ssize_t
 542cmos_nvram_read(struct file *filp, struct kobject *kobj,
 543                struct bin_attribute *attr,
 544                char *buf, loff_t off, size_t count)
 545{
 546        int     retval;
 547
 548        off += NVRAM_OFFSET;
 549        spin_lock_irq(&rtc_lock);
 550        for (retval = 0; count; count--, off++, retval++) {
 551                if (off < 128)
 552                        *buf++ = CMOS_READ(off);
 553                else if (can_bank2)
 554                        *buf++ = cmos_read_bank2(off);
 555                else
 556                        break;
 557        }
 558        spin_unlock_irq(&rtc_lock);
 559
 560        return retval;
 561}
 562
 563static ssize_t
 564cmos_nvram_write(struct file *filp, struct kobject *kobj,
 565                struct bin_attribute *attr,
 566                char *buf, loff_t off, size_t count)
 567{
 568        struct cmos_rtc *cmos;
 569        int             retval;
 570
 571        cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
 572
 573        /* NOTE:  on at least PCs and Ataris, the boot firmware uses a
 574         * checksum on part of the NVRAM data.  That's currently ignored
 575         * here.  If userspace is smart enough to know what fields of
 576         * NVRAM to update, updating checksums is also part of its job.
 577         */
 578        off += NVRAM_OFFSET;
 579        spin_lock_irq(&rtc_lock);
 580        for (retval = 0; count; count--, off++, retval++) {
 581                /* don't trash RTC registers */
 582                if (off == cmos->day_alrm
 583                                || off == cmos->mon_alrm
 584                                || off == cmos->century)
 585                        buf++;
 586                else if (off < 128)
 587                        CMOS_WRITE(*buf++, off);
 588                else if (can_bank2)
 589                        cmos_write_bank2(*buf++, off);
 590                else
 591                        break;
 592        }
 593        spin_unlock_irq(&rtc_lock);
 594
 595        return retval;
 596}
 597
 598static struct bin_attribute nvram = {
 599        .attr = {
 600                .name   = "nvram",
 601                .mode   = S_IRUGO | S_IWUSR,
 602        },
 603
 604        .read   = cmos_nvram_read,
 605        .write  = cmos_nvram_write,
 606        /* size gets set up later */
 607};
 608
 609/*----------------------------------------------------------------*/
 610
 611static struct cmos_rtc  cmos_rtc;
 612
 613static irqreturn_t cmos_interrupt(int irq, void *p)
 614{
 615        u8              irqstat;
 616        u8              rtc_control;
 617
 618        spin_lock(&rtc_lock);
 619
 620        /* When the HPET interrupt handler calls us, the interrupt
 621         * status is passed as arg1 instead of the irq number.  But
 622         * always clear irq status, even when HPET is in the way.
 623         *
 624         * Note that HPET and RTC are almost certainly out of phase,
 625         * giving different IRQ status ...
 626         */
 627        irqstat = CMOS_READ(RTC_INTR_FLAGS);
 628        rtc_control = CMOS_READ(RTC_CONTROL);
 629        if (is_hpet_enabled())
 630                irqstat = (unsigned long)irq & 0xF0;
 631
 632        /* If we were suspended, RTC_CONTROL may not be accurate since the
 633         * bios may have cleared it.
 634         */
 635        if (!cmos_rtc.suspend_ctrl)
 636                irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 637        else
 638                irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
 639
 640        /* All Linux RTC alarms should be treated as if they were oneshot.
 641         * Similar code may be needed in system wakeup paths, in case the
 642         * alarm woke the system.
 643         */
 644        if (irqstat & RTC_AIE) {
 645                cmos_rtc.suspend_ctrl &= ~RTC_AIE;
 646                rtc_control &= ~RTC_AIE;
 647                CMOS_WRITE(rtc_control, RTC_CONTROL);
 648                hpet_mask_rtc_irq_bit(RTC_AIE);
 649                CMOS_READ(RTC_INTR_FLAGS);
 650        }
 651        spin_unlock(&rtc_lock);
 652
 653        if (is_intr(irqstat)) {
 654                rtc_update_irq(p, 1, irqstat);
 655                return IRQ_HANDLED;
 656        } else
 657                return IRQ_NONE;
 658}
 659
 660#ifdef  CONFIG_PNP
 661#define INITSECTION
 662
 663#else
 664#define INITSECTION     __init
 665#endif
 666
 667static int INITSECTION
 668cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
 669{
 670        struct cmos_rtc_board_info      *info = dev_get_platdata(dev);
 671        int                             retval = 0;
 672        unsigned char                   rtc_control;
 673        unsigned                        address_space;
 674        u32                             flags = 0;
 675
 676        /* there can be only one ... */
 677        if (cmos_rtc.dev)
 678                return -EBUSY;
 679
 680        if (!ports)
 681                return -ENODEV;
 682
 683        /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
 684         *
 685         * REVISIT non-x86 systems may instead use memory space resources
 686         * (needing ioremap etc), not i/o space resources like this ...
 687         */
 688        if (RTC_IOMAPPED)
 689                ports = request_region(ports->start, resource_size(ports),
 690                                       driver_name);
 691        else
 692                ports = request_mem_region(ports->start, resource_size(ports),
 693                                           driver_name);
 694        if (!ports) {
 695                dev_dbg(dev, "i/o registers already in use\n");
 696                return -EBUSY;
 697        }
 698
 699        cmos_rtc.irq = rtc_irq;
 700        cmos_rtc.iomem = ports;
 701
 702        /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
 703         * driver did, but don't reject unknown configs.   Old hardware
 704         * won't address 128 bytes.  Newer chips have multiple banks,
 705         * though they may not be listed in one I/O resource.
 706         */
 707#if     defined(CONFIG_ATARI)
 708        address_space = 64;
 709#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
 710                        || defined(__sparc__) || defined(__mips__) \
 711                        || defined(__powerpc__) || defined(CONFIG_MN10300)
 712        address_space = 128;
 713#else
 714#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
 715        address_space = 128;
 716#endif
 717        if (can_bank2 && ports->end > (ports->start + 1))
 718                address_space = 256;
 719
 720        /* For ACPI systems extension info comes from the FADT.  On others,
 721         * board specific setup provides it as appropriate.  Systems where
 722         * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
 723         * some almost-clones) can provide hooks to make that behave.
 724         *
 725         * Note that ACPI doesn't preclude putting these registers into
 726         * "extended" areas of the chip, including some that we won't yet
 727         * expect CMOS_READ and friends to handle.
 728         */
 729        if (info) {
 730                if (info->flags)
 731                        flags = info->flags;
 732                if (info->address_space)
 733                        address_space = info->address_space;
 734
 735                if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
 736                        cmos_rtc.day_alrm = info->rtc_day_alarm;
 737                if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
 738                        cmos_rtc.mon_alrm = info->rtc_mon_alarm;
 739                if (info->rtc_century && info->rtc_century < 128)
 740                        cmos_rtc.century = info->rtc_century;
 741
 742                if (info->wake_on && info->wake_off) {
 743                        cmos_rtc.wake_on = info->wake_on;
 744                        cmos_rtc.wake_off = info->wake_off;
 745                }
 746        }
 747
 748        cmos_rtc.dev = dev;
 749        dev_set_drvdata(dev, &cmos_rtc);
 750
 751        cmos_rtc.rtc = rtc_device_register(driver_name, dev,
 752                                &cmos_rtc_ops, THIS_MODULE);
 753        if (IS_ERR(cmos_rtc.rtc)) {
 754                retval = PTR_ERR(cmos_rtc.rtc);
 755                goto cleanup0;
 756        }
 757
 758        rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
 759
 760        spin_lock_irq(&rtc_lock);
 761
 762        if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
 763                /* force periodic irq to CMOS reset default of 1024Hz;
 764                 *
 765                 * REVISIT it's been reported that at least one x86_64 ALI
 766                 * mobo doesn't use 32KHz here ... for portability we might
 767                 * need to do something about other clock frequencies.
 768                 */
 769                cmos_rtc.rtc->irq_freq = 1024;
 770                hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
 771                CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
 772        }
 773
 774        /* disable irqs */
 775        if (is_valid_irq(rtc_irq))
 776                cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
 777
 778        rtc_control = CMOS_READ(RTC_CONTROL);
 779
 780        spin_unlock_irq(&rtc_lock);
 781
 782        if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
 783                dev_warn(dev, "only 24-hr supported\n");
 784                retval = -ENXIO;
 785                goto cleanup1;
 786        }
 787
 788        hpet_rtc_timer_init();
 789
 790        if (is_valid_irq(rtc_irq)) {
 791                irq_handler_t rtc_cmos_int_handler;
 792
 793                if (is_hpet_enabled()) {
 794                        rtc_cmos_int_handler = hpet_rtc_interrupt;
 795                        retval = hpet_register_irq_handler(cmos_interrupt);
 796                        if (retval) {
 797                                hpet_mask_rtc_irq_bit(RTC_IRQMASK);
 798                                dev_warn(dev, "hpet_register_irq_handler "
 799                                                " failed in rtc_init().");
 800                                goto cleanup1;
 801                        }
 802                } else
 803                        rtc_cmos_int_handler = cmos_interrupt;
 804
 805                retval = request_irq(rtc_irq, rtc_cmos_int_handler,
 806                                IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
 807                                cmos_rtc.rtc);
 808                if (retval < 0) {
 809                        dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
 810                        goto cleanup1;
 811                }
 812        }
 813
 814        /* export at least the first block of NVRAM */
 815        nvram.size = address_space - NVRAM_OFFSET;
 816        retval = sysfs_create_bin_file(&dev->kobj, &nvram);
 817        if (retval < 0) {
 818                dev_dbg(dev, "can't create nvram file? %d\n", retval);
 819                goto cleanup2;
 820        }
 821
 822        dev_info(dev, "%s%s, %zd bytes nvram%s\n",
 823                !is_valid_irq(rtc_irq) ? "no alarms" :
 824                        cmos_rtc.mon_alrm ? "alarms up to one year" :
 825                        cmos_rtc.day_alrm ? "alarms up to one month" :
 826                        "alarms up to one day",
 827                cmos_rtc.century ? ", y3k" : "",
 828                nvram.size,
 829                is_hpet_enabled() ? ", hpet irqs" : "");
 830
 831        return 0;
 832
 833cleanup2:
 834        if (is_valid_irq(rtc_irq))
 835                free_irq(rtc_irq, cmos_rtc.rtc);
 836cleanup1:
 837        cmos_rtc.dev = NULL;
 838        rtc_device_unregister(cmos_rtc.rtc);
 839cleanup0:
 840        if (RTC_IOMAPPED)
 841                release_region(ports->start, resource_size(ports));
 842        else
 843                release_mem_region(ports->start, resource_size(ports));
 844        return retval;
 845}
 846
 847static void cmos_do_shutdown(int rtc_irq)
 848{
 849        spin_lock_irq(&rtc_lock);
 850        if (is_valid_irq(rtc_irq))
 851                cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
 852        spin_unlock_irq(&rtc_lock);
 853}
 854
 855static void cmos_do_remove(struct device *dev)
 856{
 857        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 858        struct resource *ports;
 859
 860        cmos_do_shutdown(cmos->irq);
 861
 862        sysfs_remove_bin_file(&dev->kobj, &nvram);
 863
 864        if (is_valid_irq(cmos->irq)) {
 865                free_irq(cmos->irq, cmos->rtc);
 866                hpet_unregister_irq_handler(cmos_interrupt);
 867        }
 868
 869        rtc_device_unregister(cmos->rtc);
 870        cmos->rtc = NULL;
 871
 872        ports = cmos->iomem;
 873        if (RTC_IOMAPPED)
 874                release_region(ports->start, resource_size(ports));
 875        else
 876                release_mem_region(ports->start, resource_size(ports));
 877        cmos->iomem = NULL;
 878
 879        cmos->dev = NULL;
 880}
 881
 882static int cmos_aie_poweroff(struct device *dev)
 883{
 884        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 885        struct rtc_time now;
 886        time64_t t_now;
 887        int retval = 0;
 888        unsigned char rtc_control;
 889
 890        if (!cmos->alarm_expires)
 891                return -EINVAL;
 892
 893        spin_lock_irq(&rtc_lock);
 894        rtc_control = CMOS_READ(RTC_CONTROL);
 895        spin_unlock_irq(&rtc_lock);
 896
 897        /* We only care about the situation where AIE is disabled. */
 898        if (rtc_control & RTC_AIE)
 899                return -EBUSY;
 900
 901        cmos_read_time(dev, &now);
 902        t_now = rtc_tm_to_time64(&now);
 903
 904        /*
 905         * When enabling "RTC wake-up" in BIOS setup, the machine reboots
 906         * automatically right after shutdown on some buggy boxes.
 907         * This automatic rebooting issue won't happen when the alarm
 908         * time is larger than now+1 seconds.
 909         *
 910         * If the alarm time is equal to now+1 seconds, the issue can be
 911         * prevented by cancelling the alarm.
 912         */
 913        if (cmos->alarm_expires == t_now + 1) {
 914                struct rtc_wkalrm alarm;
 915
 916                /* Cancel the AIE timer by configuring the past time. */
 917                rtc_time64_to_tm(t_now - 1, &alarm.time);
 918                alarm.enabled = 0;
 919                retval = cmos_set_alarm(dev, &alarm);
 920        } else if (cmos->alarm_expires > t_now + 1) {
 921                retval = -EBUSY;
 922        }
 923
 924        return retval;
 925}
 926
 927static int cmos_suspend(struct device *dev)
 928{
 929        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 930        unsigned char   tmp;
 931
 932        /* only the alarm might be a wakeup event source */
 933        spin_lock_irq(&rtc_lock);
 934        cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
 935        if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
 936                unsigned char   mask;
 937
 938                if (device_may_wakeup(dev))
 939                        mask = RTC_IRQMASK & ~RTC_AIE;
 940                else
 941                        mask = RTC_IRQMASK;
 942                tmp &= ~mask;
 943                CMOS_WRITE(tmp, RTC_CONTROL);
 944                hpet_mask_rtc_irq_bit(mask);
 945
 946                cmos_checkintr(cmos, tmp);
 947        }
 948        spin_unlock_irq(&rtc_lock);
 949
 950        if (tmp & RTC_AIE) {
 951                cmos->enabled_wake = 1;
 952                if (cmos->wake_on)
 953                        cmos->wake_on(dev);
 954                else
 955                        enable_irq_wake(cmos->irq);
 956        }
 957
 958        cmos_read_alarm(dev, &cmos->saved_wkalrm);
 959
 960        dev_dbg(dev, "suspend%s, ctrl %02x\n",
 961                        (tmp & RTC_AIE) ? ", alarm may wake" : "",
 962                        tmp);
 963
 964        return 0;
 965}
 966
 967/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
 968 * after a detour through G3 "mechanical off", although the ACPI spec
 969 * says wakeup should only work from G1/S4 "hibernate".  To most users,
 970 * distinctions between S4 and S5 are pointless.  So when the hardware
 971 * allows, don't draw that distinction.
 972 */
 973static inline int cmos_poweroff(struct device *dev)
 974{
 975        if (!IS_ENABLED(CONFIG_PM))
 976                return -ENOSYS;
 977
 978        return cmos_suspend(dev);
 979}
 980
 981static void cmos_check_wkalrm(struct device *dev)
 982{
 983        struct cmos_rtc *cmos = dev_get_drvdata(dev);
 984        struct rtc_wkalrm current_alarm;
 985        time64_t t_current_expires;
 986        time64_t t_saved_expires;
 987
 988        cmos_read_alarm(dev, &current_alarm);
 989        t_current_expires = rtc_tm_to_time64(&current_alarm.time);
 990        t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
 991        if (t_current_expires != t_saved_expires ||
 992            cmos->saved_wkalrm.enabled != current_alarm.enabled) {
 993                cmos_set_alarm(dev, &cmos->saved_wkalrm);
 994        }
 995}
 996
 997static void cmos_check_acpi_rtc_status(struct device *dev,
 998                                       unsigned char *rtc_control);
 999
1000static int __maybe_unused cmos_resume(struct device *dev)
1001{
1002        struct cmos_rtc *cmos = dev_get_drvdata(dev);
1003        unsigned char tmp;
1004
1005        if (cmos->enabled_wake) {
1006                if (cmos->wake_off)
1007                        cmos->wake_off(dev);
1008                else
1009                        disable_irq_wake(cmos->irq);
1010                cmos->enabled_wake = 0;
1011        }
1012
1013        /* The BIOS might have changed the alarm, restore it */
1014        cmos_check_wkalrm(dev);
1015
1016        spin_lock_irq(&rtc_lock);
1017        tmp = cmos->suspend_ctrl;
1018        cmos->suspend_ctrl = 0;
1019        /* re-enable any irqs previously active */
1020        if (tmp & RTC_IRQMASK) {
1021                unsigned char   mask;
1022
1023                if (device_may_wakeup(dev))
1024                        hpet_rtc_timer_init();
1025
1026                do {
1027                        CMOS_WRITE(tmp, RTC_CONTROL);
1028                        hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1029
1030                        mask = CMOS_READ(RTC_INTR_FLAGS);
1031                        mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1032                        if (!is_hpet_enabled() || !is_intr(mask))
1033                                break;
1034
1035                        /* force one-shot behavior if HPET blocked
1036                         * the wake alarm's irq
1037                         */
1038                        rtc_update_irq(cmos->rtc, 1, mask);
1039                        tmp &= ~RTC_AIE;
1040                        hpet_mask_rtc_irq_bit(RTC_AIE);
1041                } while (mask & RTC_AIE);
1042
1043                if (tmp & RTC_AIE)
1044                        cmos_check_acpi_rtc_status(dev, &tmp);
1045        }
1046        spin_unlock_irq(&rtc_lock);
1047
1048        dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1049
1050        return 0;
1051}
1052
1053static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1054
1055/*----------------------------------------------------------------*/
1056
1057/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1058 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1059 * probably list them in similar PNPBIOS tables; so PNP is more common.
1060 *
1061 * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1062 * predate even PNPBIOS should set up platform_bus devices.
1063 */
1064
1065#ifdef  CONFIG_ACPI
1066
1067#include <linux/acpi.h>
1068
1069static u32 rtc_handler(void *context)
1070{
1071        struct device *dev = context;
1072        struct cmos_rtc *cmos = dev_get_drvdata(dev);
1073        unsigned char rtc_control = 0;
1074        unsigned char rtc_intr;
1075        unsigned long flags;
1076
1077        spin_lock_irqsave(&rtc_lock, flags);
1078        if (cmos_rtc.suspend_ctrl)
1079                rtc_control = CMOS_READ(RTC_CONTROL);
1080        if (rtc_control & RTC_AIE) {
1081                cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1082                CMOS_WRITE(rtc_control, RTC_CONTROL);
1083                rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1084                rtc_update_irq(cmos->rtc, 1, rtc_intr);
1085        }
1086        spin_unlock_irqrestore(&rtc_lock, flags);
1087
1088        pm_wakeup_event(dev, 0);
1089        acpi_clear_event(ACPI_EVENT_RTC);
1090        acpi_disable_event(ACPI_EVENT_RTC, 0);
1091        return ACPI_INTERRUPT_HANDLED;
1092}
1093
1094static inline void rtc_wake_setup(struct device *dev)
1095{
1096        acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1097        /*
1098         * After the RTC handler is installed, the Fixed_RTC event should
1099         * be disabled. Only when the RTC alarm is set will it be enabled.
1100         */
1101        acpi_clear_event(ACPI_EVENT_RTC);
1102        acpi_disable_event(ACPI_EVENT_RTC, 0);
1103}
1104
1105static void rtc_wake_on(struct device *dev)
1106{
1107        acpi_clear_event(ACPI_EVENT_RTC);
1108        acpi_enable_event(ACPI_EVENT_RTC, 0);
1109}
1110
1111static void rtc_wake_off(struct device *dev)
1112{
1113        acpi_disable_event(ACPI_EVENT_RTC, 0);
1114}
1115
1116/* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1117 * its device node and pass extra config data.  This helps its driver use
1118 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1119 * that this board's RTC is wakeup-capable (per ACPI spec).
1120 */
1121static struct cmos_rtc_board_info acpi_rtc_info;
1122
1123static void cmos_wake_setup(struct device *dev)
1124{
1125        if (acpi_disabled)
1126                return;
1127
1128        rtc_wake_setup(dev);
1129        acpi_rtc_info.wake_on = rtc_wake_on;
1130        acpi_rtc_info.wake_off = rtc_wake_off;
1131
1132        /* workaround bug in some ACPI tables */
1133        if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1134                dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1135                        acpi_gbl_FADT.month_alarm);
1136                acpi_gbl_FADT.month_alarm = 0;
1137        }
1138
1139        acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1140        acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1141        acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1142
1143        /* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1144        if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1145                dev_info(dev, "RTC can wake from S4\n");
1146
1147        dev->platform_data = &acpi_rtc_info;
1148
1149        /* RTC always wakes from S1/S2/S3, and often S4/STD */
1150        device_init_wakeup(dev, 1);
1151}
1152
1153static void cmos_check_acpi_rtc_status(struct device *dev,
1154                                       unsigned char *rtc_control)
1155{
1156        struct cmos_rtc *cmos = dev_get_drvdata(dev);
1157        acpi_event_status rtc_status;
1158        acpi_status status;
1159
1160        if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1161                return;
1162
1163        status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1164        if (ACPI_FAILURE(status)) {
1165                dev_err(dev, "Could not get RTC status\n");
1166        } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1167                unsigned char mask;
1168                *rtc_control &= ~RTC_AIE;
1169                CMOS_WRITE(*rtc_control, RTC_CONTROL);
1170                mask = CMOS_READ(RTC_INTR_FLAGS);
1171                rtc_update_irq(cmos->rtc, 1, mask);
1172        }
1173}
1174
1175#else
1176
1177static void cmos_wake_setup(struct device *dev)
1178{
1179}
1180
1181static void cmos_check_acpi_rtc_status(struct device *dev,
1182                                       unsigned char *rtc_control)
1183{
1184}
1185
1186#endif
1187
1188#ifdef  CONFIG_PNP
1189
1190#include <linux/pnp.h>
1191
1192static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1193{
1194        cmos_wake_setup(&pnp->dev);
1195
1196        if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1197                /* Some machines contain a PNP entry for the RTC, but
1198                 * don't define the IRQ. It should always be safe to
1199                 * hardcode it in these cases
1200                 */
1201                return cmos_do_probe(&pnp->dev,
1202                                pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1203        else
1204                return cmos_do_probe(&pnp->dev,
1205                                pnp_get_resource(pnp, IORESOURCE_IO, 0),
1206                                pnp_irq(pnp, 0));
1207}
1208
1209static void cmos_pnp_remove(struct pnp_dev *pnp)
1210{
1211        cmos_do_remove(&pnp->dev);
1212}
1213
1214static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1215{
1216        struct device *dev = &pnp->dev;
1217        struct cmos_rtc *cmos = dev_get_drvdata(dev);
1218
1219        if (system_state == SYSTEM_POWER_OFF) {
1220                int retval = cmos_poweroff(dev);
1221
1222                if (cmos_aie_poweroff(dev) < 0 && !retval)
1223                        return;
1224        }
1225
1226        cmos_do_shutdown(cmos->irq);
1227}
1228
1229static const struct pnp_device_id rtc_ids[] = {
1230        { .id = "PNP0b00", },
1231        { .id = "PNP0b01", },
1232        { .id = "PNP0b02", },
1233        { },
1234};
1235MODULE_DEVICE_TABLE(pnp, rtc_ids);
1236
1237static struct pnp_driver cmos_pnp_driver = {
1238        .name           = (char *) driver_name,
1239        .id_table       = rtc_ids,
1240        .probe          = cmos_pnp_probe,
1241        .remove         = cmos_pnp_remove,
1242        .shutdown       = cmos_pnp_shutdown,
1243
1244        /* flag ensures resume() gets called, and stops syslog spam */
1245        .flags          = PNP_DRIVER_RES_DO_NOT_CHANGE,
1246        .driver         = {
1247                        .pm = &cmos_pm_ops,
1248        },
1249};
1250
1251#endif  /* CONFIG_PNP */
1252
1253#ifdef CONFIG_OF
1254static const struct of_device_id of_cmos_match[] = {
1255        {
1256                .compatible = "motorola,mc146818",
1257        },
1258        { },
1259};
1260MODULE_DEVICE_TABLE(of, of_cmos_match);
1261
1262static __init void cmos_of_init(struct platform_device *pdev)
1263{
1264        struct device_node *node = pdev->dev.of_node;
1265        struct rtc_time time;
1266        int ret;
1267        const __be32 *val;
1268
1269        if (!node)
1270                return;
1271
1272        val = of_get_property(node, "ctrl-reg", NULL);
1273        if (val)
1274                CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1275
1276        val = of_get_property(node, "freq-reg", NULL);
1277        if (val)
1278                CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1279
1280        cmos_read_time(&pdev->dev, &time);
1281        ret = rtc_valid_tm(&time);
1282        if (ret) {
1283                struct rtc_time def_time = {
1284                        .tm_year = 1,
1285                        .tm_mday = 1,
1286                };
1287                cmos_set_time(&pdev->dev, &def_time);
1288        }
1289}
1290#else
1291static inline void cmos_of_init(struct platform_device *pdev) {}
1292#endif
1293/*----------------------------------------------------------------*/
1294
1295/* Platform setup should have set up an RTC device, when PNP is
1296 * unavailable ... this could happen even on (older) PCs.
1297 */
1298
1299static int __init cmos_platform_probe(struct platform_device *pdev)
1300{
1301        struct resource *resource;
1302        int irq;
1303
1304        cmos_of_init(pdev);
1305        cmos_wake_setup(&pdev->dev);
1306
1307        if (RTC_IOMAPPED)
1308                resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1309        else
1310                resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1311        irq = platform_get_irq(pdev, 0);
1312        if (irq < 0)
1313                irq = -1;
1314
1315        return cmos_do_probe(&pdev->dev, resource, irq);
1316}
1317
1318static int cmos_platform_remove(struct platform_device *pdev)
1319{
1320        cmos_do_remove(&pdev->dev);
1321        return 0;
1322}
1323
1324static void cmos_platform_shutdown(struct platform_device *pdev)
1325{
1326        struct device *dev = &pdev->dev;
1327        struct cmos_rtc *cmos = dev_get_drvdata(dev);
1328
1329        if (system_state == SYSTEM_POWER_OFF) {
1330                int retval = cmos_poweroff(dev);
1331
1332                if (cmos_aie_poweroff(dev) < 0 && !retval)
1333                        return;
1334        }
1335
1336        cmos_do_shutdown(cmos->irq);
1337}
1338
1339/* work with hotplug and coldplug */
1340MODULE_ALIAS("platform:rtc_cmos");
1341
1342static struct platform_driver cmos_platform_driver = {
1343        .remove         = cmos_platform_remove,
1344        .shutdown       = cmos_platform_shutdown,
1345        .driver = {
1346                .name           = driver_name,
1347                .pm             = &cmos_pm_ops,
1348                .of_match_table = of_match_ptr(of_cmos_match),
1349        }
1350};
1351
1352#ifdef CONFIG_PNP
1353static bool pnp_driver_registered;
1354#endif
1355static bool platform_driver_registered;
1356
1357static int __init cmos_init(void)
1358{
1359        int retval = 0;
1360
1361#ifdef  CONFIG_PNP
1362        retval = pnp_register_driver(&cmos_pnp_driver);
1363        if (retval == 0)
1364                pnp_driver_registered = true;
1365#endif
1366
1367        if (!cmos_rtc.dev) {
1368                retval = platform_driver_probe(&cmos_platform_driver,
1369                                               cmos_platform_probe);
1370                if (retval == 0)
1371                        platform_driver_registered = true;
1372        }
1373
1374        if (retval == 0)
1375                return 0;
1376
1377#ifdef  CONFIG_PNP
1378        if (pnp_driver_registered)
1379                pnp_unregister_driver(&cmos_pnp_driver);
1380#endif
1381        return retval;
1382}
1383module_init(cmos_init);
1384
1385static void __exit cmos_exit(void)
1386{
1387#ifdef  CONFIG_PNP
1388        if (pnp_driver_registered)
1389                pnp_unregister_driver(&cmos_pnp_driver);
1390#endif
1391        if (platform_driver_registered)
1392                platform_driver_unregister(&cmos_platform_driver);
1393}
1394module_exit(cmos_exit);
1395
1396
1397MODULE_AUTHOR("David Brownell");
1398MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1399MODULE_LICENSE("GPL");
1400