1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/kernel.h>
35#include <linux/module.h>
36#include <linux/init.h>
37#include <linux/interrupt.h>
38#include <linux/spinlock.h>
39#include <linux/platform_device.h>
40#include <linux/log2.h>
41#include <linux/pm.h>
42#include <linux/of.h>
43#include <linux/of_platform.h>
44
45
46#include <linux/mc146818rtc.h>
47
48struct cmos_rtc {
49 struct rtc_device *rtc;
50 struct device *dev;
51 int irq;
52 struct resource *iomem;
53 time64_t alarm_expires;
54
55 void (*wake_on)(struct device *);
56 void (*wake_off)(struct device *);
57
58 u8 enabled_wake;
59 u8 suspend_ctrl;
60
61
62 u8 day_alrm;
63 u8 mon_alrm;
64 u8 century;
65
66 struct rtc_wkalrm saved_wkalrm;
67};
68
69
70#define is_valid_irq(n) ((n) > 0)
71
72static const char driver_name[] = "rtc_cmos";
73
74
75
76
77
78#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
79
80static inline int is_intr(u8 rtc_intr)
81{
82 if (!(rtc_intr & RTC_IRQF))
83 return 0;
84 return rtc_intr & RTC_IRQMASK;
85}
86
87
88
89
90
91
92
93
94
95
96
97
98
99#ifdef CONFIG_HPET_EMULATE_RTC
100#include <asm/hpet.h>
101#else
102
103static inline int is_hpet_enabled(void)
104{
105 return 0;
106}
107
108static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
109{
110 return 0;
111}
112
113static inline int hpet_set_rtc_irq_bit(unsigned long mask)
114{
115 return 0;
116}
117
118static inline int
119hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
120{
121 return 0;
122}
123
124static inline int hpet_set_periodic_freq(unsigned long freq)
125{
126 return 0;
127}
128
129static inline int hpet_rtc_dropped_irq(void)
130{
131 return 0;
132}
133
134static inline int hpet_rtc_timer_init(void)
135{
136 return 0;
137}
138
139extern irq_handler_t hpet_rtc_interrupt;
140
141static inline int hpet_register_irq_handler(irq_handler_t handler)
142{
143 return 0;
144}
145
146static inline int hpet_unregister_irq_handler(irq_handler_t handler)
147{
148 return 0;
149}
150
151#endif
152
153
154
155#ifdef RTC_PORT
156
157
158
159
160
161#define can_bank2 true
162
163static inline unsigned char cmos_read_bank2(unsigned char addr)
164{
165 outb(addr, RTC_PORT(2));
166 return inb(RTC_PORT(3));
167}
168
169static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
170{
171 outb(addr, RTC_PORT(2));
172 outb(val, RTC_PORT(3));
173}
174
175#else
176
177#define can_bank2 false
178
179static inline unsigned char cmos_read_bank2(unsigned char addr)
180{
181 return 0;
182}
183
184static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
185{
186}
187
188#endif
189
190
191
192static int cmos_read_time(struct device *dev, struct rtc_time *t)
193{
194
195
196
197
198 if (!pm_trace_rtc_valid())
199 return -EIO;
200
201
202
203
204
205 mc146818_get_time(t);
206 return 0;
207}
208
209static int cmos_set_time(struct device *dev, struct rtc_time *t)
210{
211
212
213
214
215
216
217 return mc146818_set_time(t);
218}
219
220static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
221{
222 struct cmos_rtc *cmos = dev_get_drvdata(dev);
223 unsigned char rtc_control;
224
225 if (!is_valid_irq(cmos->irq))
226 return -EIO;
227
228
229
230
231
232
233 spin_lock_irq(&rtc_lock);
234 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
235 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
236 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
237
238 if (cmos->day_alrm) {
239
240 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
241 if (!t->time.tm_mday)
242 t->time.tm_mday = -1;
243
244 if (cmos->mon_alrm) {
245 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
246 if (!t->time.tm_mon)
247 t->time.tm_mon = -1;
248 }
249 }
250
251 rtc_control = CMOS_READ(RTC_CONTROL);
252 spin_unlock_irq(&rtc_lock);
253
254 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
255 if (((unsigned)t->time.tm_sec) < 0x60)
256 t->time.tm_sec = bcd2bin(t->time.tm_sec);
257 else
258 t->time.tm_sec = -1;
259 if (((unsigned)t->time.tm_min) < 0x60)
260 t->time.tm_min = bcd2bin(t->time.tm_min);
261 else
262 t->time.tm_min = -1;
263 if (((unsigned)t->time.tm_hour) < 0x24)
264 t->time.tm_hour = bcd2bin(t->time.tm_hour);
265 else
266 t->time.tm_hour = -1;
267
268 if (cmos->day_alrm) {
269 if (((unsigned)t->time.tm_mday) <= 0x31)
270 t->time.tm_mday = bcd2bin(t->time.tm_mday);
271 else
272 t->time.tm_mday = -1;
273
274 if (cmos->mon_alrm) {
275 if (((unsigned)t->time.tm_mon) <= 0x12)
276 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
277 else
278 t->time.tm_mon = -1;
279 }
280 }
281 }
282
283 t->enabled = !!(rtc_control & RTC_AIE);
284 t->pending = 0;
285
286 return 0;
287}
288
289static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
290{
291 unsigned char rtc_intr;
292
293
294
295
296 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
297
298 if (is_hpet_enabled())
299 return;
300
301 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
302 if (is_intr(rtc_intr))
303 rtc_update_irq(cmos->rtc, 1, rtc_intr);
304}
305
306static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
307{
308 unsigned char rtc_control;
309
310
311
312
313 rtc_control = CMOS_READ(RTC_CONTROL);
314 cmos_checkintr(cmos, rtc_control);
315
316 rtc_control |= mask;
317 CMOS_WRITE(rtc_control, RTC_CONTROL);
318 hpet_set_rtc_irq_bit(mask);
319
320 cmos_checkintr(cmos, rtc_control);
321}
322
323static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
324{
325 unsigned char rtc_control;
326
327 rtc_control = CMOS_READ(RTC_CONTROL);
328 rtc_control &= ~mask;
329 CMOS_WRITE(rtc_control, RTC_CONTROL);
330 hpet_mask_rtc_irq_bit(mask);
331
332 cmos_checkintr(cmos, rtc_control);
333}
334
335static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
336{
337 struct cmos_rtc *cmos = dev_get_drvdata(dev);
338 struct rtc_time now;
339
340 cmos_read_time(dev, &now);
341
342 if (!cmos->day_alrm) {
343 time64_t t_max_date;
344 time64_t t_alrm;
345
346 t_max_date = rtc_tm_to_time64(&now);
347 t_max_date += 24 * 60 * 60 - 1;
348 t_alrm = rtc_tm_to_time64(&t->time);
349 if (t_alrm > t_max_date) {
350 dev_err(dev,
351 "Alarms can be up to one day in the future\n");
352 return -EINVAL;
353 }
354 } else if (!cmos->mon_alrm) {
355 struct rtc_time max_date = now;
356 time64_t t_max_date;
357 time64_t t_alrm;
358 int max_mday;
359
360 if (max_date.tm_mon == 11) {
361 max_date.tm_mon = 0;
362 max_date.tm_year += 1;
363 } else {
364 max_date.tm_mon += 1;
365 }
366 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
367 if (max_date.tm_mday > max_mday)
368 max_date.tm_mday = max_mday;
369
370 t_max_date = rtc_tm_to_time64(&max_date);
371 t_max_date -= 1;
372 t_alrm = rtc_tm_to_time64(&t->time);
373 if (t_alrm > t_max_date) {
374 dev_err(dev,
375 "Alarms can be up to one month in the future\n");
376 return -EINVAL;
377 }
378 } else {
379 struct rtc_time max_date = now;
380 time64_t t_max_date;
381 time64_t t_alrm;
382 int max_mday;
383
384 max_date.tm_year += 1;
385 max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
386 if (max_date.tm_mday > max_mday)
387 max_date.tm_mday = max_mday;
388
389 t_max_date = rtc_tm_to_time64(&max_date);
390 t_max_date -= 1;
391 t_alrm = rtc_tm_to_time64(&t->time);
392 if (t_alrm > t_max_date) {
393 dev_err(dev,
394 "Alarms can be up to one year in the future\n");
395 return -EINVAL;
396 }
397 }
398
399 return 0;
400}
401
402static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
403{
404 struct cmos_rtc *cmos = dev_get_drvdata(dev);
405 unsigned char mon, mday, hrs, min, sec, rtc_control;
406 int ret;
407
408 if (!is_valid_irq(cmos->irq))
409 return -EIO;
410
411 ret = cmos_validate_alarm(dev, t);
412 if (ret < 0)
413 return ret;
414
415 mon = t->time.tm_mon + 1;
416 mday = t->time.tm_mday;
417 hrs = t->time.tm_hour;
418 min = t->time.tm_min;
419 sec = t->time.tm_sec;
420
421 rtc_control = CMOS_READ(RTC_CONTROL);
422 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
423
424 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
425 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
426 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
427 min = (min < 60) ? bin2bcd(min) : 0xff;
428 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
429 }
430
431 spin_lock_irq(&rtc_lock);
432
433
434 cmos_irq_disable(cmos, RTC_AIE);
435
436
437 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
438 CMOS_WRITE(min, RTC_MINUTES_ALARM);
439 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
440
441
442 if (cmos->day_alrm) {
443 CMOS_WRITE(mday, cmos->day_alrm);
444 if (cmos->mon_alrm)
445 CMOS_WRITE(mon, cmos->mon_alrm);
446 }
447
448
449
450
451 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
452
453 if (t->enabled)
454 cmos_irq_enable(cmos, RTC_AIE);
455
456 spin_unlock_irq(&rtc_lock);
457
458 cmos->alarm_expires = rtc_tm_to_time64(&t->time);
459
460 return 0;
461}
462
463static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
464{
465 struct cmos_rtc *cmos = dev_get_drvdata(dev);
466 unsigned long flags;
467
468 if (!is_valid_irq(cmos->irq))
469 return -EINVAL;
470
471 spin_lock_irqsave(&rtc_lock, flags);
472
473 if (enabled)
474 cmos_irq_enable(cmos, RTC_AIE);
475 else
476 cmos_irq_disable(cmos, RTC_AIE);
477
478 spin_unlock_irqrestore(&rtc_lock, flags);
479 return 0;
480}
481
482#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
483
484static int cmos_procfs(struct device *dev, struct seq_file *seq)
485{
486 struct cmos_rtc *cmos = dev_get_drvdata(dev);
487 unsigned char rtc_control, valid;
488
489 spin_lock_irq(&rtc_lock);
490 rtc_control = CMOS_READ(RTC_CONTROL);
491 valid = CMOS_READ(RTC_VALID);
492 spin_unlock_irq(&rtc_lock);
493
494
495
496
497 seq_printf(seq,
498 "periodic_IRQ\t: %s\n"
499 "update_IRQ\t: %s\n"
500 "HPET_emulated\t: %s\n"
501
502 "BCD\t\t: %s\n"
503 "DST_enable\t: %s\n"
504 "periodic_freq\t: %d\n"
505 "batt_status\t: %s\n",
506 (rtc_control & RTC_PIE) ? "yes" : "no",
507 (rtc_control & RTC_UIE) ? "yes" : "no",
508 is_hpet_enabled() ? "yes" : "no",
509
510 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
511 (rtc_control & RTC_DST_EN) ? "yes" : "no",
512 cmos->rtc->irq_freq,
513 (valid & RTC_VRT) ? "okay" : "dead");
514
515 return 0;
516}
517
518#else
519#define cmos_procfs NULL
520#endif
521
522static const struct rtc_class_ops cmos_rtc_ops = {
523 .read_time = cmos_read_time,
524 .set_time = cmos_set_time,
525 .read_alarm = cmos_read_alarm,
526 .set_alarm = cmos_set_alarm,
527 .proc = cmos_procfs,
528 .alarm_irq_enable = cmos_alarm_irq_enable,
529};
530
531
532
533
534
535
536
537
538
539#define NVRAM_OFFSET (RTC_REG_D + 1)
540
541static ssize_t
542cmos_nvram_read(struct file *filp, struct kobject *kobj,
543 struct bin_attribute *attr,
544 char *buf, loff_t off, size_t count)
545{
546 int retval;
547
548 off += NVRAM_OFFSET;
549 spin_lock_irq(&rtc_lock);
550 for (retval = 0; count; count--, off++, retval++) {
551 if (off < 128)
552 *buf++ = CMOS_READ(off);
553 else if (can_bank2)
554 *buf++ = cmos_read_bank2(off);
555 else
556 break;
557 }
558 spin_unlock_irq(&rtc_lock);
559
560 return retval;
561}
562
563static ssize_t
564cmos_nvram_write(struct file *filp, struct kobject *kobj,
565 struct bin_attribute *attr,
566 char *buf, loff_t off, size_t count)
567{
568 struct cmos_rtc *cmos;
569 int retval;
570
571 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
572
573
574
575
576
577
578 off += NVRAM_OFFSET;
579 spin_lock_irq(&rtc_lock);
580 for (retval = 0; count; count--, off++, retval++) {
581
582 if (off == cmos->day_alrm
583 || off == cmos->mon_alrm
584 || off == cmos->century)
585 buf++;
586 else if (off < 128)
587 CMOS_WRITE(*buf++, off);
588 else if (can_bank2)
589 cmos_write_bank2(*buf++, off);
590 else
591 break;
592 }
593 spin_unlock_irq(&rtc_lock);
594
595 return retval;
596}
597
598static struct bin_attribute nvram = {
599 .attr = {
600 .name = "nvram",
601 .mode = S_IRUGO | S_IWUSR,
602 },
603
604 .read = cmos_nvram_read,
605 .write = cmos_nvram_write,
606
607};
608
609
610
611static struct cmos_rtc cmos_rtc;
612
613static irqreturn_t cmos_interrupt(int irq, void *p)
614{
615 u8 irqstat;
616 u8 rtc_control;
617
618 spin_lock(&rtc_lock);
619
620
621
622
623
624
625
626
627 irqstat = CMOS_READ(RTC_INTR_FLAGS);
628 rtc_control = CMOS_READ(RTC_CONTROL);
629 if (is_hpet_enabled())
630 irqstat = (unsigned long)irq & 0xF0;
631
632
633
634
635 if (!cmos_rtc.suspend_ctrl)
636 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
637 else
638 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
639
640
641
642
643
644 if (irqstat & RTC_AIE) {
645 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
646 rtc_control &= ~RTC_AIE;
647 CMOS_WRITE(rtc_control, RTC_CONTROL);
648 hpet_mask_rtc_irq_bit(RTC_AIE);
649 CMOS_READ(RTC_INTR_FLAGS);
650 }
651 spin_unlock(&rtc_lock);
652
653 if (is_intr(irqstat)) {
654 rtc_update_irq(p, 1, irqstat);
655 return IRQ_HANDLED;
656 } else
657 return IRQ_NONE;
658}
659
660#ifdef CONFIG_PNP
661#define INITSECTION
662
663#else
664#define INITSECTION __init
665#endif
666
667static int INITSECTION
668cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
669{
670 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
671 int retval = 0;
672 unsigned char rtc_control;
673 unsigned address_space;
674 u32 flags = 0;
675
676
677 if (cmos_rtc.dev)
678 return -EBUSY;
679
680 if (!ports)
681 return -ENODEV;
682
683
684
685
686
687
688 if (RTC_IOMAPPED)
689 ports = request_region(ports->start, resource_size(ports),
690 driver_name);
691 else
692 ports = request_mem_region(ports->start, resource_size(ports),
693 driver_name);
694 if (!ports) {
695 dev_dbg(dev, "i/o registers already in use\n");
696 return -EBUSY;
697 }
698
699 cmos_rtc.irq = rtc_irq;
700 cmos_rtc.iomem = ports;
701
702
703
704
705
706
707#if defined(CONFIG_ATARI)
708 address_space = 64;
709#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
710 || defined(__sparc__) || defined(__mips__) \
711 || defined(__powerpc__) || defined(CONFIG_MN10300)
712 address_space = 128;
713#else
714#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
715 address_space = 128;
716#endif
717 if (can_bank2 && ports->end > (ports->start + 1))
718 address_space = 256;
719
720
721
722
723
724
725
726
727
728
729 if (info) {
730 if (info->flags)
731 flags = info->flags;
732 if (info->address_space)
733 address_space = info->address_space;
734
735 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
736 cmos_rtc.day_alrm = info->rtc_day_alarm;
737 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
738 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
739 if (info->rtc_century && info->rtc_century < 128)
740 cmos_rtc.century = info->rtc_century;
741
742 if (info->wake_on && info->wake_off) {
743 cmos_rtc.wake_on = info->wake_on;
744 cmos_rtc.wake_off = info->wake_off;
745 }
746 }
747
748 cmos_rtc.dev = dev;
749 dev_set_drvdata(dev, &cmos_rtc);
750
751 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
752 &cmos_rtc_ops, THIS_MODULE);
753 if (IS_ERR(cmos_rtc.rtc)) {
754 retval = PTR_ERR(cmos_rtc.rtc);
755 goto cleanup0;
756 }
757
758 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
759
760 spin_lock_irq(&rtc_lock);
761
762 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
763
764
765
766
767
768
769 cmos_rtc.rtc->irq_freq = 1024;
770 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
771 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
772 }
773
774
775 if (is_valid_irq(rtc_irq))
776 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
777
778 rtc_control = CMOS_READ(RTC_CONTROL);
779
780 spin_unlock_irq(&rtc_lock);
781
782 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
783 dev_warn(dev, "only 24-hr supported\n");
784 retval = -ENXIO;
785 goto cleanup1;
786 }
787
788 hpet_rtc_timer_init();
789
790 if (is_valid_irq(rtc_irq)) {
791 irq_handler_t rtc_cmos_int_handler;
792
793 if (is_hpet_enabled()) {
794 rtc_cmos_int_handler = hpet_rtc_interrupt;
795 retval = hpet_register_irq_handler(cmos_interrupt);
796 if (retval) {
797 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
798 dev_warn(dev, "hpet_register_irq_handler "
799 " failed in rtc_init().");
800 goto cleanup1;
801 }
802 } else
803 rtc_cmos_int_handler = cmos_interrupt;
804
805 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
806 IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
807 cmos_rtc.rtc);
808 if (retval < 0) {
809 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
810 goto cleanup1;
811 }
812 }
813
814
815 nvram.size = address_space - NVRAM_OFFSET;
816 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
817 if (retval < 0) {
818 dev_dbg(dev, "can't create nvram file? %d\n", retval);
819 goto cleanup2;
820 }
821
822 dev_info(dev, "%s%s, %zd bytes nvram%s\n",
823 !is_valid_irq(rtc_irq) ? "no alarms" :
824 cmos_rtc.mon_alrm ? "alarms up to one year" :
825 cmos_rtc.day_alrm ? "alarms up to one month" :
826 "alarms up to one day",
827 cmos_rtc.century ? ", y3k" : "",
828 nvram.size,
829 is_hpet_enabled() ? ", hpet irqs" : "");
830
831 return 0;
832
833cleanup2:
834 if (is_valid_irq(rtc_irq))
835 free_irq(rtc_irq, cmos_rtc.rtc);
836cleanup1:
837 cmos_rtc.dev = NULL;
838 rtc_device_unregister(cmos_rtc.rtc);
839cleanup0:
840 if (RTC_IOMAPPED)
841 release_region(ports->start, resource_size(ports));
842 else
843 release_mem_region(ports->start, resource_size(ports));
844 return retval;
845}
846
847static void cmos_do_shutdown(int rtc_irq)
848{
849 spin_lock_irq(&rtc_lock);
850 if (is_valid_irq(rtc_irq))
851 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
852 spin_unlock_irq(&rtc_lock);
853}
854
855static void cmos_do_remove(struct device *dev)
856{
857 struct cmos_rtc *cmos = dev_get_drvdata(dev);
858 struct resource *ports;
859
860 cmos_do_shutdown(cmos->irq);
861
862 sysfs_remove_bin_file(&dev->kobj, &nvram);
863
864 if (is_valid_irq(cmos->irq)) {
865 free_irq(cmos->irq, cmos->rtc);
866 hpet_unregister_irq_handler(cmos_interrupt);
867 }
868
869 rtc_device_unregister(cmos->rtc);
870 cmos->rtc = NULL;
871
872 ports = cmos->iomem;
873 if (RTC_IOMAPPED)
874 release_region(ports->start, resource_size(ports));
875 else
876 release_mem_region(ports->start, resource_size(ports));
877 cmos->iomem = NULL;
878
879 cmos->dev = NULL;
880}
881
882static int cmos_aie_poweroff(struct device *dev)
883{
884 struct cmos_rtc *cmos = dev_get_drvdata(dev);
885 struct rtc_time now;
886 time64_t t_now;
887 int retval = 0;
888 unsigned char rtc_control;
889
890 if (!cmos->alarm_expires)
891 return -EINVAL;
892
893 spin_lock_irq(&rtc_lock);
894 rtc_control = CMOS_READ(RTC_CONTROL);
895 spin_unlock_irq(&rtc_lock);
896
897
898 if (rtc_control & RTC_AIE)
899 return -EBUSY;
900
901 cmos_read_time(dev, &now);
902 t_now = rtc_tm_to_time64(&now);
903
904
905
906
907
908
909
910
911
912
913 if (cmos->alarm_expires == t_now + 1) {
914 struct rtc_wkalrm alarm;
915
916
917 rtc_time64_to_tm(t_now - 1, &alarm.time);
918 alarm.enabled = 0;
919 retval = cmos_set_alarm(dev, &alarm);
920 } else if (cmos->alarm_expires > t_now + 1) {
921 retval = -EBUSY;
922 }
923
924 return retval;
925}
926
927static int cmos_suspend(struct device *dev)
928{
929 struct cmos_rtc *cmos = dev_get_drvdata(dev);
930 unsigned char tmp;
931
932
933 spin_lock_irq(&rtc_lock);
934 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
935 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
936 unsigned char mask;
937
938 if (device_may_wakeup(dev))
939 mask = RTC_IRQMASK & ~RTC_AIE;
940 else
941 mask = RTC_IRQMASK;
942 tmp &= ~mask;
943 CMOS_WRITE(tmp, RTC_CONTROL);
944 hpet_mask_rtc_irq_bit(mask);
945
946 cmos_checkintr(cmos, tmp);
947 }
948 spin_unlock_irq(&rtc_lock);
949
950 if (tmp & RTC_AIE) {
951 cmos->enabled_wake = 1;
952 if (cmos->wake_on)
953 cmos->wake_on(dev);
954 else
955 enable_irq_wake(cmos->irq);
956 }
957
958 cmos_read_alarm(dev, &cmos->saved_wkalrm);
959
960 dev_dbg(dev, "suspend%s, ctrl %02x\n",
961 (tmp & RTC_AIE) ? ", alarm may wake" : "",
962 tmp);
963
964 return 0;
965}
966
967
968
969
970
971
972
973static inline int cmos_poweroff(struct device *dev)
974{
975 if (!IS_ENABLED(CONFIG_PM))
976 return -ENOSYS;
977
978 return cmos_suspend(dev);
979}
980
981static void cmos_check_wkalrm(struct device *dev)
982{
983 struct cmos_rtc *cmos = dev_get_drvdata(dev);
984 struct rtc_wkalrm current_alarm;
985 time64_t t_current_expires;
986 time64_t t_saved_expires;
987
988 cmos_read_alarm(dev, ¤t_alarm);
989 t_current_expires = rtc_tm_to_time64(¤t_alarm.time);
990 t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
991 if (t_current_expires != t_saved_expires ||
992 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
993 cmos_set_alarm(dev, &cmos->saved_wkalrm);
994 }
995}
996
997static void cmos_check_acpi_rtc_status(struct device *dev,
998 unsigned char *rtc_control);
999
1000static int __maybe_unused cmos_resume(struct device *dev)
1001{
1002 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1003 unsigned char tmp;
1004
1005 if (cmos->enabled_wake) {
1006 if (cmos->wake_off)
1007 cmos->wake_off(dev);
1008 else
1009 disable_irq_wake(cmos->irq);
1010 cmos->enabled_wake = 0;
1011 }
1012
1013
1014 cmos_check_wkalrm(dev);
1015
1016 spin_lock_irq(&rtc_lock);
1017 tmp = cmos->suspend_ctrl;
1018 cmos->suspend_ctrl = 0;
1019
1020 if (tmp & RTC_IRQMASK) {
1021 unsigned char mask;
1022
1023 if (device_may_wakeup(dev))
1024 hpet_rtc_timer_init();
1025
1026 do {
1027 CMOS_WRITE(tmp, RTC_CONTROL);
1028 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1029
1030 mask = CMOS_READ(RTC_INTR_FLAGS);
1031 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1032 if (!is_hpet_enabled() || !is_intr(mask))
1033 break;
1034
1035
1036
1037
1038 rtc_update_irq(cmos->rtc, 1, mask);
1039 tmp &= ~RTC_AIE;
1040 hpet_mask_rtc_irq_bit(RTC_AIE);
1041 } while (mask & RTC_AIE);
1042
1043 if (tmp & RTC_AIE)
1044 cmos_check_acpi_rtc_status(dev, &tmp);
1045 }
1046 spin_unlock_irq(&rtc_lock);
1047
1048 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1049
1050 return 0;
1051}
1052
1053static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065#ifdef CONFIG_ACPI
1066
1067#include <linux/acpi.h>
1068
1069static u32 rtc_handler(void *context)
1070{
1071 struct device *dev = context;
1072 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1073 unsigned char rtc_control = 0;
1074 unsigned char rtc_intr;
1075 unsigned long flags;
1076
1077 spin_lock_irqsave(&rtc_lock, flags);
1078 if (cmos_rtc.suspend_ctrl)
1079 rtc_control = CMOS_READ(RTC_CONTROL);
1080 if (rtc_control & RTC_AIE) {
1081 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1082 CMOS_WRITE(rtc_control, RTC_CONTROL);
1083 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1084 rtc_update_irq(cmos->rtc, 1, rtc_intr);
1085 }
1086 spin_unlock_irqrestore(&rtc_lock, flags);
1087
1088 pm_wakeup_event(dev, 0);
1089 acpi_clear_event(ACPI_EVENT_RTC);
1090 acpi_disable_event(ACPI_EVENT_RTC, 0);
1091 return ACPI_INTERRUPT_HANDLED;
1092}
1093
1094static inline void rtc_wake_setup(struct device *dev)
1095{
1096 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1097
1098
1099
1100
1101 acpi_clear_event(ACPI_EVENT_RTC);
1102 acpi_disable_event(ACPI_EVENT_RTC, 0);
1103}
1104
1105static void rtc_wake_on(struct device *dev)
1106{
1107 acpi_clear_event(ACPI_EVENT_RTC);
1108 acpi_enable_event(ACPI_EVENT_RTC, 0);
1109}
1110
1111static void rtc_wake_off(struct device *dev)
1112{
1113 acpi_disable_event(ACPI_EVENT_RTC, 0);
1114}
1115
1116
1117
1118
1119
1120
1121static struct cmos_rtc_board_info acpi_rtc_info;
1122
1123static void cmos_wake_setup(struct device *dev)
1124{
1125 if (acpi_disabled)
1126 return;
1127
1128 rtc_wake_setup(dev);
1129 acpi_rtc_info.wake_on = rtc_wake_on;
1130 acpi_rtc_info.wake_off = rtc_wake_off;
1131
1132
1133 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1134 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1135 acpi_gbl_FADT.month_alarm);
1136 acpi_gbl_FADT.month_alarm = 0;
1137 }
1138
1139 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1140 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1141 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1142
1143
1144 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1145 dev_info(dev, "RTC can wake from S4\n");
1146
1147 dev->platform_data = &acpi_rtc_info;
1148
1149
1150 device_init_wakeup(dev, 1);
1151}
1152
1153static void cmos_check_acpi_rtc_status(struct device *dev,
1154 unsigned char *rtc_control)
1155{
1156 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1157 acpi_event_status rtc_status;
1158 acpi_status status;
1159
1160 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1161 return;
1162
1163 status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1164 if (ACPI_FAILURE(status)) {
1165 dev_err(dev, "Could not get RTC status\n");
1166 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1167 unsigned char mask;
1168 *rtc_control &= ~RTC_AIE;
1169 CMOS_WRITE(*rtc_control, RTC_CONTROL);
1170 mask = CMOS_READ(RTC_INTR_FLAGS);
1171 rtc_update_irq(cmos->rtc, 1, mask);
1172 }
1173}
1174
1175#else
1176
1177static void cmos_wake_setup(struct device *dev)
1178{
1179}
1180
1181static void cmos_check_acpi_rtc_status(struct device *dev,
1182 unsigned char *rtc_control)
1183{
1184}
1185
1186#endif
1187
1188#ifdef CONFIG_PNP
1189
1190#include <linux/pnp.h>
1191
1192static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1193{
1194 cmos_wake_setup(&pnp->dev);
1195
1196 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1197
1198
1199
1200
1201 return cmos_do_probe(&pnp->dev,
1202 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1203 else
1204 return cmos_do_probe(&pnp->dev,
1205 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1206 pnp_irq(pnp, 0));
1207}
1208
1209static void cmos_pnp_remove(struct pnp_dev *pnp)
1210{
1211 cmos_do_remove(&pnp->dev);
1212}
1213
1214static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1215{
1216 struct device *dev = &pnp->dev;
1217 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1218
1219 if (system_state == SYSTEM_POWER_OFF) {
1220 int retval = cmos_poweroff(dev);
1221
1222 if (cmos_aie_poweroff(dev) < 0 && !retval)
1223 return;
1224 }
1225
1226 cmos_do_shutdown(cmos->irq);
1227}
1228
1229static const struct pnp_device_id rtc_ids[] = {
1230 { .id = "PNP0b00", },
1231 { .id = "PNP0b01", },
1232 { .id = "PNP0b02", },
1233 { },
1234};
1235MODULE_DEVICE_TABLE(pnp, rtc_ids);
1236
1237static struct pnp_driver cmos_pnp_driver = {
1238 .name = (char *) driver_name,
1239 .id_table = rtc_ids,
1240 .probe = cmos_pnp_probe,
1241 .remove = cmos_pnp_remove,
1242 .shutdown = cmos_pnp_shutdown,
1243
1244
1245 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1246 .driver = {
1247 .pm = &cmos_pm_ops,
1248 },
1249};
1250
1251#endif
1252
1253#ifdef CONFIG_OF
1254static const struct of_device_id of_cmos_match[] = {
1255 {
1256 .compatible = "motorola,mc146818",
1257 },
1258 { },
1259};
1260MODULE_DEVICE_TABLE(of, of_cmos_match);
1261
1262static __init void cmos_of_init(struct platform_device *pdev)
1263{
1264 struct device_node *node = pdev->dev.of_node;
1265 struct rtc_time time;
1266 int ret;
1267 const __be32 *val;
1268
1269 if (!node)
1270 return;
1271
1272 val = of_get_property(node, "ctrl-reg", NULL);
1273 if (val)
1274 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1275
1276 val = of_get_property(node, "freq-reg", NULL);
1277 if (val)
1278 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1279
1280 cmos_read_time(&pdev->dev, &time);
1281 ret = rtc_valid_tm(&time);
1282 if (ret) {
1283 struct rtc_time def_time = {
1284 .tm_year = 1,
1285 .tm_mday = 1,
1286 };
1287 cmos_set_time(&pdev->dev, &def_time);
1288 }
1289}
1290#else
1291static inline void cmos_of_init(struct platform_device *pdev) {}
1292#endif
1293
1294
1295
1296
1297
1298
1299static int __init cmos_platform_probe(struct platform_device *pdev)
1300{
1301 struct resource *resource;
1302 int irq;
1303
1304 cmos_of_init(pdev);
1305 cmos_wake_setup(&pdev->dev);
1306
1307 if (RTC_IOMAPPED)
1308 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1309 else
1310 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1311 irq = platform_get_irq(pdev, 0);
1312 if (irq < 0)
1313 irq = -1;
1314
1315 return cmos_do_probe(&pdev->dev, resource, irq);
1316}
1317
1318static int cmos_platform_remove(struct platform_device *pdev)
1319{
1320 cmos_do_remove(&pdev->dev);
1321 return 0;
1322}
1323
1324static void cmos_platform_shutdown(struct platform_device *pdev)
1325{
1326 struct device *dev = &pdev->dev;
1327 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1328
1329 if (system_state == SYSTEM_POWER_OFF) {
1330 int retval = cmos_poweroff(dev);
1331
1332 if (cmos_aie_poweroff(dev) < 0 && !retval)
1333 return;
1334 }
1335
1336 cmos_do_shutdown(cmos->irq);
1337}
1338
1339
1340MODULE_ALIAS("platform:rtc_cmos");
1341
1342static struct platform_driver cmos_platform_driver = {
1343 .remove = cmos_platform_remove,
1344 .shutdown = cmos_platform_shutdown,
1345 .driver = {
1346 .name = driver_name,
1347 .pm = &cmos_pm_ops,
1348 .of_match_table = of_match_ptr(of_cmos_match),
1349 }
1350};
1351
1352#ifdef CONFIG_PNP
1353static bool pnp_driver_registered;
1354#endif
1355static bool platform_driver_registered;
1356
1357static int __init cmos_init(void)
1358{
1359 int retval = 0;
1360
1361#ifdef CONFIG_PNP
1362 retval = pnp_register_driver(&cmos_pnp_driver);
1363 if (retval == 0)
1364 pnp_driver_registered = true;
1365#endif
1366
1367 if (!cmos_rtc.dev) {
1368 retval = platform_driver_probe(&cmos_platform_driver,
1369 cmos_platform_probe);
1370 if (retval == 0)
1371 platform_driver_registered = true;
1372 }
1373
1374 if (retval == 0)
1375 return 0;
1376
1377#ifdef CONFIG_PNP
1378 if (pnp_driver_registered)
1379 pnp_unregister_driver(&cmos_pnp_driver);
1380#endif
1381 return retval;
1382}
1383module_init(cmos_init);
1384
1385static void __exit cmos_exit(void)
1386{
1387#ifdef CONFIG_PNP
1388 if (pnp_driver_registered)
1389 pnp_unregister_driver(&cmos_pnp_driver);
1390#endif
1391 if (platform_driver_registered)
1392 platform_driver_unregister(&cmos_platform_driver);
1393}
1394module_exit(cmos_exit);
1395
1396
1397MODULE_AUTHOR("David Brownell");
1398MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1399MODULE_LICENSE("GPL");
1400