linux/drivers/spi/spi-sun4i.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 - 2014 Allwinner Tech
   3 * Pan Nan <pannan@allwinnertech.com>
   4 *
   5 * Copyright (C) 2014 Maxime Ripard
   6 * Maxime Ripard <maxime.ripard@free-electrons.com>
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License as
  10 * published by the Free Software Foundation; either version 2 of
  11 * the License, or (at your option) any later version.
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/delay.h>
  16#include <linux/device.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/module.h>
  20#include <linux/platform_device.h>
  21#include <linux/pm_runtime.h>
  22
  23#include <linux/spi/spi.h>
  24
  25#define SUN4I_FIFO_DEPTH                64
  26
  27#define SUN4I_RXDATA_REG                0x00
  28
  29#define SUN4I_TXDATA_REG                0x04
  30
  31#define SUN4I_CTL_REG                   0x08
  32#define SUN4I_CTL_ENABLE                        BIT(0)
  33#define SUN4I_CTL_MASTER                        BIT(1)
  34#define SUN4I_CTL_CPHA                          BIT(2)
  35#define SUN4I_CTL_CPOL                          BIT(3)
  36#define SUN4I_CTL_CS_ACTIVE_LOW                 BIT(4)
  37#define SUN4I_CTL_LMTF                          BIT(6)
  38#define SUN4I_CTL_TF_RST                        BIT(8)
  39#define SUN4I_CTL_RF_RST                        BIT(9)
  40#define SUN4I_CTL_XCH                           BIT(10)
  41#define SUN4I_CTL_CS_MASK                       0x3000
  42#define SUN4I_CTL_CS(cs)                        (((cs) << 12) & SUN4I_CTL_CS_MASK)
  43#define SUN4I_CTL_DHB                           BIT(15)
  44#define SUN4I_CTL_CS_MANUAL                     BIT(16)
  45#define SUN4I_CTL_CS_LEVEL                      BIT(17)
  46#define SUN4I_CTL_TP                            BIT(18)
  47
  48#define SUN4I_INT_CTL_REG               0x0c
  49#define SUN4I_INT_CTL_RF_F34                    BIT(4)
  50#define SUN4I_INT_CTL_TF_E34                    BIT(12)
  51#define SUN4I_INT_CTL_TC                        BIT(16)
  52
  53#define SUN4I_INT_STA_REG               0x10
  54
  55#define SUN4I_DMA_CTL_REG               0x14
  56
  57#define SUN4I_WAIT_REG                  0x18
  58
  59#define SUN4I_CLK_CTL_REG               0x1c
  60#define SUN4I_CLK_CTL_CDR2_MASK                 0xff
  61#define SUN4I_CLK_CTL_CDR2(div)                 ((div) & SUN4I_CLK_CTL_CDR2_MASK)
  62#define SUN4I_CLK_CTL_CDR1_MASK                 0xf
  63#define SUN4I_CLK_CTL_CDR1(div)                 (((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
  64#define SUN4I_CLK_CTL_DRS                       BIT(12)
  65
  66#define SUN4I_MAX_XFER_SIZE                     0xffffff
  67
  68#define SUN4I_BURST_CNT_REG             0x20
  69#define SUN4I_BURST_CNT(cnt)                    ((cnt) & SUN4I_MAX_XFER_SIZE)
  70
  71#define SUN4I_XMIT_CNT_REG              0x24
  72#define SUN4I_XMIT_CNT(cnt)                     ((cnt) & SUN4I_MAX_XFER_SIZE)
  73
  74
  75#define SUN4I_FIFO_STA_REG              0x28
  76#define SUN4I_FIFO_STA_RF_CNT_MASK              0x7f
  77#define SUN4I_FIFO_STA_RF_CNT_BITS              0
  78#define SUN4I_FIFO_STA_TF_CNT_MASK              0x7f
  79#define SUN4I_FIFO_STA_TF_CNT_BITS              16
  80
  81struct sun4i_spi {
  82        struct spi_master       *master;
  83        void __iomem            *base_addr;
  84        struct clk              *hclk;
  85        struct clk              *mclk;
  86
  87        struct completion       done;
  88
  89        const u8                *tx_buf;
  90        u8                      *rx_buf;
  91        int                     len;
  92};
  93
  94static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg)
  95{
  96        return readl(sspi->base_addr + reg);
  97}
  98
  99static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value)
 100{
 101        writel(value, sspi->base_addr + reg);
 102}
 103
 104static inline u32 sun4i_spi_get_tx_fifo_count(struct sun4i_spi *sspi)
 105{
 106        u32 reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
 107
 108        reg >>= SUN4I_FIFO_STA_TF_CNT_BITS;
 109
 110        return reg & SUN4I_FIFO_STA_TF_CNT_MASK;
 111}
 112
 113static inline void sun4i_spi_enable_interrupt(struct sun4i_spi *sspi, u32 mask)
 114{
 115        u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
 116
 117        reg |= mask;
 118        sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
 119}
 120
 121static inline void sun4i_spi_disable_interrupt(struct sun4i_spi *sspi, u32 mask)
 122{
 123        u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
 124
 125        reg &= ~mask;
 126        sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
 127}
 128
 129static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len)
 130{
 131        u32 reg, cnt;
 132        u8 byte;
 133
 134        /* See how much data is available */
 135        reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
 136        reg &= SUN4I_FIFO_STA_RF_CNT_MASK;
 137        cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS;
 138
 139        if (len > cnt)
 140                len = cnt;
 141
 142        while (len--) {
 143                byte = readb(sspi->base_addr + SUN4I_RXDATA_REG);
 144                if (sspi->rx_buf)
 145                        *sspi->rx_buf++ = byte;
 146        }
 147}
 148
 149static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len)
 150{
 151        u32 cnt;
 152        u8 byte;
 153
 154        /* See how much data we can fit */
 155        cnt = SUN4I_FIFO_DEPTH - sun4i_spi_get_tx_fifo_count(sspi);
 156
 157        len = min3(len, (int)cnt, sspi->len);
 158
 159        while (len--) {
 160                byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
 161                writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG);
 162                sspi->len--;
 163        }
 164}
 165
 166static void sun4i_spi_set_cs(struct spi_device *spi, bool enable)
 167{
 168        struct sun4i_spi *sspi = spi_master_get_devdata(spi->master);
 169        u32 reg;
 170
 171        reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
 172
 173        reg &= ~SUN4I_CTL_CS_MASK;
 174        reg |= SUN4I_CTL_CS(spi->chip_select);
 175
 176        /* We want to control the chip select manually */
 177        reg |= SUN4I_CTL_CS_MANUAL;
 178
 179        if (enable)
 180                reg |= SUN4I_CTL_CS_LEVEL;
 181        else
 182                reg &= ~SUN4I_CTL_CS_LEVEL;
 183
 184        /*
 185         * Even though this looks irrelevant since we are supposed to
 186         * be controlling the chip select manually, this bit also
 187         * controls the levels of the chip select for inactive
 188         * devices.
 189         *
 190         * If we don't set it, the chip select level will go low by
 191         * default when the device is idle, which is not really
 192         * expected in the common case where the chip select is active
 193         * low.
 194         */
 195        if (spi->mode & SPI_CS_HIGH)
 196                reg &= ~SUN4I_CTL_CS_ACTIVE_LOW;
 197        else
 198                reg |= SUN4I_CTL_CS_ACTIVE_LOW;
 199
 200        sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
 201}
 202
 203static size_t sun4i_spi_max_transfer_size(struct spi_device *spi)
 204{
 205        return SUN4I_FIFO_DEPTH - 1;
 206}
 207
 208static int sun4i_spi_transfer_one(struct spi_master *master,
 209                                  struct spi_device *spi,
 210                                  struct spi_transfer *tfr)
 211{
 212        struct sun4i_spi *sspi = spi_master_get_devdata(master);
 213        unsigned int mclk_rate, div, timeout;
 214        unsigned int start, end, tx_time;
 215        unsigned int tx_len = 0;
 216        int ret = 0;
 217        u32 reg;
 218
 219        /* We don't support transfer larger than the FIFO */
 220        if (tfr->len > SUN4I_MAX_XFER_SIZE)
 221                return -EMSGSIZE;
 222
 223        if (tfr->tx_buf && tfr->len >= SUN4I_MAX_XFER_SIZE)
 224                return -EMSGSIZE;
 225
 226        reinit_completion(&sspi->done);
 227        sspi->tx_buf = tfr->tx_buf;
 228        sspi->rx_buf = tfr->rx_buf;
 229        sspi->len = tfr->len;
 230
 231        /* Clear pending interrupts */
 232        sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0);
 233
 234
 235        reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
 236
 237        /* Reset FIFOs */
 238        sun4i_spi_write(sspi, SUN4I_CTL_REG,
 239                        reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST);
 240
 241        /*
 242         * Setup the transfer control register: Chip Select,
 243         * polarities, etc.
 244         */
 245        if (spi->mode & SPI_CPOL)
 246                reg |= SUN4I_CTL_CPOL;
 247        else
 248                reg &= ~SUN4I_CTL_CPOL;
 249
 250        if (spi->mode & SPI_CPHA)
 251                reg |= SUN4I_CTL_CPHA;
 252        else
 253                reg &= ~SUN4I_CTL_CPHA;
 254
 255        if (spi->mode & SPI_LSB_FIRST)
 256                reg |= SUN4I_CTL_LMTF;
 257        else
 258                reg &= ~SUN4I_CTL_LMTF;
 259
 260
 261        /*
 262         * If it's a TX only transfer, we don't want to fill the RX
 263         * FIFO with bogus data
 264         */
 265        if (sspi->rx_buf)
 266                reg &= ~SUN4I_CTL_DHB;
 267        else
 268                reg |= SUN4I_CTL_DHB;
 269
 270        sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
 271
 272        /* Ensure that we have a parent clock fast enough */
 273        mclk_rate = clk_get_rate(sspi->mclk);
 274        if (mclk_rate < (2 * tfr->speed_hz)) {
 275                clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
 276                mclk_rate = clk_get_rate(sspi->mclk);
 277        }
 278
 279        /*
 280         * Setup clock divider.
 281         *
 282         * We have two choices there. Either we can use the clock
 283         * divide rate 1, which is calculated thanks to this formula:
 284         * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
 285         * Or we can use CDR2, which is calculated with the formula:
 286         * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
 287         * Wether we use the former or the latter is set through the
 288         * DRS bit.
 289         *
 290         * First try CDR2, and if we can't reach the expected
 291         * frequency, fall back to CDR1.
 292         */
 293        div = mclk_rate / (2 * tfr->speed_hz);
 294        if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) {
 295                if (div > 0)
 296                        div--;
 297
 298                reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS;
 299        } else {
 300                div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
 301                reg = SUN4I_CLK_CTL_CDR1(div);
 302        }
 303
 304        sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg);
 305
 306        /* Setup the transfer now... */
 307        if (sspi->tx_buf)
 308                tx_len = tfr->len;
 309
 310        /* Setup the counters */
 311        sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len));
 312        sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len));
 313
 314        /*
 315         * Fill the TX FIFO
 316         * Filling the FIFO fully causes timeout for some reason
 317         * at least on spi2 on A10s
 318         */
 319        sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH - 1);
 320
 321        /* Enable the interrupts */
 322        sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TC |
 323                                         SUN4I_INT_CTL_RF_F34);
 324        /* Only enable Tx FIFO interrupt if we really need it */
 325        if (tx_len > SUN4I_FIFO_DEPTH)
 326                sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
 327
 328        /* Start the transfer */
 329        reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
 330        sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH);
 331
 332        tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
 333        start = jiffies;
 334        timeout = wait_for_completion_timeout(&sspi->done,
 335                                              msecs_to_jiffies(tx_time));
 336        end = jiffies;
 337        if (!timeout) {
 338                dev_warn(&master->dev,
 339                         "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
 340                         dev_name(&spi->dev), tfr->len, tfr->speed_hz,
 341                         jiffies_to_msecs(end - start), tx_time);
 342                ret = -ETIMEDOUT;
 343                goto out;
 344        }
 345
 346
 347out:
 348        sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0);
 349
 350        return ret;
 351}
 352
 353static irqreturn_t sun4i_spi_handler(int irq, void *dev_id)
 354{
 355        struct sun4i_spi *sspi = dev_id;
 356        u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG);
 357
 358        /* Transfer complete */
 359        if (status & SUN4I_INT_CTL_TC) {
 360                sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC);
 361                sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
 362                complete(&sspi->done);
 363                return IRQ_HANDLED;
 364        }
 365
 366        /* Receive FIFO 3/4 full */
 367        if (status & SUN4I_INT_CTL_RF_F34) {
 368                sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
 369                /* Only clear the interrupt _after_ draining the FIFO */
 370                sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_RF_F34);
 371                return IRQ_HANDLED;
 372        }
 373
 374        /* Transmit FIFO 3/4 empty */
 375        if (status & SUN4I_INT_CTL_TF_E34) {
 376                sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH);
 377
 378                if (!sspi->len)
 379                        /* nothing left to transmit */
 380                        sun4i_spi_disable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
 381
 382                /* Only clear the interrupt _after_ re-seeding the FIFO */
 383                sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TF_E34);
 384
 385                return IRQ_HANDLED;
 386        }
 387
 388        return IRQ_NONE;
 389}
 390
 391static int sun4i_spi_runtime_resume(struct device *dev)
 392{
 393        struct spi_master *master = dev_get_drvdata(dev);
 394        struct sun4i_spi *sspi = spi_master_get_devdata(master);
 395        int ret;
 396
 397        ret = clk_prepare_enable(sspi->hclk);
 398        if (ret) {
 399                dev_err(dev, "Couldn't enable AHB clock\n");
 400                goto out;
 401        }
 402
 403        ret = clk_prepare_enable(sspi->mclk);
 404        if (ret) {
 405                dev_err(dev, "Couldn't enable module clock\n");
 406                goto err;
 407        }
 408
 409        sun4i_spi_write(sspi, SUN4I_CTL_REG,
 410                        SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP);
 411
 412        return 0;
 413
 414err:
 415        clk_disable_unprepare(sspi->hclk);
 416out:
 417        return ret;
 418}
 419
 420static int sun4i_spi_runtime_suspend(struct device *dev)
 421{
 422        struct spi_master *master = dev_get_drvdata(dev);
 423        struct sun4i_spi *sspi = spi_master_get_devdata(master);
 424
 425        clk_disable_unprepare(sspi->mclk);
 426        clk_disable_unprepare(sspi->hclk);
 427
 428        return 0;
 429}
 430
 431static int sun4i_spi_probe(struct platform_device *pdev)
 432{
 433        struct spi_master *master;
 434        struct sun4i_spi *sspi;
 435        struct resource *res;
 436        int ret = 0, irq;
 437
 438        master = spi_alloc_master(&pdev->dev, sizeof(struct sun4i_spi));
 439        if (!master) {
 440                dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
 441                return -ENOMEM;
 442        }
 443
 444        platform_set_drvdata(pdev, master);
 445        sspi = spi_master_get_devdata(master);
 446
 447        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 448        sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
 449        if (IS_ERR(sspi->base_addr)) {
 450                ret = PTR_ERR(sspi->base_addr);
 451                goto err_free_master;
 452        }
 453
 454        irq = platform_get_irq(pdev, 0);
 455        if (irq < 0) {
 456                dev_err(&pdev->dev, "No spi IRQ specified\n");
 457                ret = -ENXIO;
 458                goto err_free_master;
 459        }
 460
 461        ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler,
 462                               0, "sun4i-spi", sspi);
 463        if (ret) {
 464                dev_err(&pdev->dev, "Cannot request IRQ\n");
 465                goto err_free_master;
 466        }
 467
 468        sspi->master = master;
 469        master->max_speed_hz = 100 * 1000 * 1000;
 470        master->min_speed_hz = 3 * 1000;
 471        master->set_cs = sun4i_spi_set_cs;
 472        master->transfer_one = sun4i_spi_transfer_one;
 473        master->num_chipselect = 4;
 474        master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
 475        master->bits_per_word_mask = SPI_BPW_MASK(8);
 476        master->dev.of_node = pdev->dev.of_node;
 477        master->auto_runtime_pm = true;
 478        master->max_transfer_size = sun4i_spi_max_transfer_size;
 479
 480        sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
 481        if (IS_ERR(sspi->hclk)) {
 482                dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
 483                ret = PTR_ERR(sspi->hclk);
 484                goto err_free_master;
 485        }
 486
 487        sspi->mclk = devm_clk_get(&pdev->dev, "mod");
 488        if (IS_ERR(sspi->mclk)) {
 489                dev_err(&pdev->dev, "Unable to acquire module clock\n");
 490                ret = PTR_ERR(sspi->mclk);
 491                goto err_free_master;
 492        }
 493
 494        init_completion(&sspi->done);
 495
 496        /*
 497         * This wake-up/shutdown pattern is to be able to have the
 498         * device woken up, even if runtime_pm is disabled
 499         */
 500        ret = sun4i_spi_runtime_resume(&pdev->dev);
 501        if (ret) {
 502                dev_err(&pdev->dev, "Couldn't resume the device\n");
 503                goto err_free_master;
 504        }
 505
 506        pm_runtime_set_active(&pdev->dev);
 507        pm_runtime_enable(&pdev->dev);
 508        pm_runtime_idle(&pdev->dev);
 509
 510        ret = devm_spi_register_master(&pdev->dev, master);
 511        if (ret) {
 512                dev_err(&pdev->dev, "cannot register SPI master\n");
 513                goto err_pm_disable;
 514        }
 515
 516        return 0;
 517
 518err_pm_disable:
 519        pm_runtime_disable(&pdev->dev);
 520        sun4i_spi_runtime_suspend(&pdev->dev);
 521err_free_master:
 522        spi_master_put(master);
 523        return ret;
 524}
 525
 526static int sun4i_spi_remove(struct platform_device *pdev)
 527{
 528        pm_runtime_disable(&pdev->dev);
 529
 530        return 0;
 531}
 532
 533static const struct of_device_id sun4i_spi_match[] = {
 534        { .compatible = "allwinner,sun4i-a10-spi", },
 535        {}
 536};
 537MODULE_DEVICE_TABLE(of, sun4i_spi_match);
 538
 539static const struct dev_pm_ops sun4i_spi_pm_ops = {
 540        .runtime_resume         = sun4i_spi_runtime_resume,
 541        .runtime_suspend        = sun4i_spi_runtime_suspend,
 542};
 543
 544static struct platform_driver sun4i_spi_driver = {
 545        .probe  = sun4i_spi_probe,
 546        .remove = sun4i_spi_remove,
 547        .driver = {
 548                .name           = "sun4i-spi",
 549                .of_match_table = sun4i_spi_match,
 550                .pm             = &sun4i_spi_pm_ops,
 551        },
 552};
 553module_platform_driver(sun4i_spi_driver);
 554
 555MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
 556MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
 557MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver");
 558MODULE_LICENSE("GPL");
 559