linux/fs/btrfs/ctree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/rbtree.h>
  22#include <linux/vmalloc.h>
  23#include "ctree.h"
  24#include "disk-io.h"
  25#include "transaction.h"
  26#include "print-tree.h"
  27#include "locking.h"
  28
  29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  30                      *root, struct btrfs_path *path, int level);
  31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  32                      *root, struct btrfs_key *ins_key,
  33                      struct btrfs_path *path, int data_size, int extend);
  34static int push_node_left(struct btrfs_trans_handle *trans,
  35                          struct btrfs_fs_info *fs_info,
  36                          struct extent_buffer *dst,
  37                          struct extent_buffer *src, int empty);
  38static int balance_node_right(struct btrfs_trans_handle *trans,
  39                              struct btrfs_fs_info *fs_info,
  40                              struct extent_buffer *dst_buf,
  41                              struct extent_buffer *src_buf);
  42static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  43                    int level, int slot);
  44static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
  45                                 struct extent_buffer *eb);
  46
  47struct btrfs_path *btrfs_alloc_path(void)
  48{
  49        return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  50}
  51
  52/*
  53 * set all locked nodes in the path to blocking locks.  This should
  54 * be done before scheduling
  55 */
  56noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  57{
  58        int i;
  59        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  60                if (!p->nodes[i] || !p->locks[i])
  61                        continue;
  62                btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  63                if (p->locks[i] == BTRFS_READ_LOCK)
  64                        p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  65                else if (p->locks[i] == BTRFS_WRITE_LOCK)
  66                        p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  67        }
  68}
  69
  70/*
  71 * reset all the locked nodes in the patch to spinning locks.
  72 *
  73 * held is used to keep lockdep happy, when lockdep is enabled
  74 * we set held to a blocking lock before we go around and
  75 * retake all the spinlocks in the path.  You can safely use NULL
  76 * for held
  77 */
  78noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  79                                        struct extent_buffer *held, int held_rw)
  80{
  81        int i;
  82
  83        if (held) {
  84                btrfs_set_lock_blocking_rw(held, held_rw);
  85                if (held_rw == BTRFS_WRITE_LOCK)
  86                        held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  87                else if (held_rw == BTRFS_READ_LOCK)
  88                        held_rw = BTRFS_READ_LOCK_BLOCKING;
  89        }
  90        btrfs_set_path_blocking(p);
  91
  92        for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  93                if (p->nodes[i] && p->locks[i]) {
  94                        btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  95                        if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  96                                p->locks[i] = BTRFS_WRITE_LOCK;
  97                        else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  98                                p->locks[i] = BTRFS_READ_LOCK;
  99                }
 100        }
 101
 102        if (held)
 103                btrfs_clear_lock_blocking_rw(held, held_rw);
 104}
 105
 106/* this also releases the path */
 107void btrfs_free_path(struct btrfs_path *p)
 108{
 109        if (!p)
 110                return;
 111        btrfs_release_path(p);
 112        kmem_cache_free(btrfs_path_cachep, p);
 113}
 114
 115/*
 116 * path release drops references on the extent buffers in the path
 117 * and it drops any locks held by this path
 118 *
 119 * It is safe to call this on paths that no locks or extent buffers held.
 120 */
 121noinline void btrfs_release_path(struct btrfs_path *p)
 122{
 123        int i;
 124
 125        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 126                p->slots[i] = 0;
 127                if (!p->nodes[i])
 128                        continue;
 129                if (p->locks[i]) {
 130                        btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 131                        p->locks[i] = 0;
 132                }
 133                free_extent_buffer(p->nodes[i]);
 134                p->nodes[i] = NULL;
 135        }
 136}
 137
 138/*
 139 * safely gets a reference on the root node of a tree.  A lock
 140 * is not taken, so a concurrent writer may put a different node
 141 * at the root of the tree.  See btrfs_lock_root_node for the
 142 * looping required.
 143 *
 144 * The extent buffer returned by this has a reference taken, so
 145 * it won't disappear.  It may stop being the root of the tree
 146 * at any time because there are no locks held.
 147 */
 148struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 149{
 150        struct extent_buffer *eb;
 151
 152        while (1) {
 153                rcu_read_lock();
 154                eb = rcu_dereference(root->node);
 155
 156                /*
 157                 * RCU really hurts here, we could free up the root node because
 158                 * it was COWed but we may not get the new root node yet so do
 159                 * the inc_not_zero dance and if it doesn't work then
 160                 * synchronize_rcu and try again.
 161                 */
 162                if (atomic_inc_not_zero(&eb->refs)) {
 163                        rcu_read_unlock();
 164                        break;
 165                }
 166                rcu_read_unlock();
 167                synchronize_rcu();
 168        }
 169        return eb;
 170}
 171
 172/* loop around taking references on and locking the root node of the
 173 * tree until you end up with a lock on the root.  A locked buffer
 174 * is returned, with a reference held.
 175 */
 176struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 177{
 178        struct extent_buffer *eb;
 179
 180        while (1) {
 181                eb = btrfs_root_node(root);
 182                btrfs_tree_lock(eb);
 183                if (eb == root->node)
 184                        break;
 185                btrfs_tree_unlock(eb);
 186                free_extent_buffer(eb);
 187        }
 188        return eb;
 189}
 190
 191/* loop around taking references on and locking the root node of the
 192 * tree until you end up with a lock on the root.  A locked buffer
 193 * is returned, with a reference held.
 194 */
 195static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 196{
 197        struct extent_buffer *eb;
 198
 199        while (1) {
 200                eb = btrfs_root_node(root);
 201                btrfs_tree_read_lock(eb);
 202                if (eb == root->node)
 203                        break;
 204                btrfs_tree_read_unlock(eb);
 205                free_extent_buffer(eb);
 206        }
 207        return eb;
 208}
 209
 210/* cowonly root (everything not a reference counted cow subvolume), just get
 211 * put onto a simple dirty list.  transaction.c walks this to make sure they
 212 * get properly updated on disk.
 213 */
 214static void add_root_to_dirty_list(struct btrfs_root *root)
 215{
 216        struct btrfs_fs_info *fs_info = root->fs_info;
 217
 218        if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 219            !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 220                return;
 221
 222        spin_lock(&fs_info->trans_lock);
 223        if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 224                /* Want the extent tree to be the last on the list */
 225                if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
 226                        list_move_tail(&root->dirty_list,
 227                                       &fs_info->dirty_cowonly_roots);
 228                else
 229                        list_move(&root->dirty_list,
 230                                  &fs_info->dirty_cowonly_roots);
 231        }
 232        spin_unlock(&fs_info->trans_lock);
 233}
 234
 235/*
 236 * used by snapshot creation to make a copy of a root for a tree with
 237 * a given objectid.  The buffer with the new root node is returned in
 238 * cow_ret, and this func returns zero on success or a negative error code.
 239 */
 240int btrfs_copy_root(struct btrfs_trans_handle *trans,
 241                      struct btrfs_root *root,
 242                      struct extent_buffer *buf,
 243                      struct extent_buffer **cow_ret, u64 new_root_objectid)
 244{
 245        struct btrfs_fs_info *fs_info = root->fs_info;
 246        struct extent_buffer *cow;
 247        int ret = 0;
 248        int level;
 249        struct btrfs_disk_key disk_key;
 250
 251        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 252                trans->transid != fs_info->running_transaction->transid);
 253        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 254                trans->transid != root->last_trans);
 255
 256        level = btrfs_header_level(buf);
 257        if (level == 0)
 258                btrfs_item_key(buf, &disk_key, 0);
 259        else
 260                btrfs_node_key(buf, &disk_key, 0);
 261
 262        cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 263                        &disk_key, level, buf->start, 0);
 264        if (IS_ERR(cow))
 265                return PTR_ERR(cow);
 266
 267        copy_extent_buffer_full(cow, buf);
 268        btrfs_set_header_bytenr(cow, cow->start);
 269        btrfs_set_header_generation(cow, trans->transid);
 270        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 271        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 272                                     BTRFS_HEADER_FLAG_RELOC);
 273        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 274                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 275        else
 276                btrfs_set_header_owner(cow, new_root_objectid);
 277
 278        write_extent_buffer_fsid(cow, fs_info->fsid);
 279
 280        WARN_ON(btrfs_header_generation(buf) > trans->transid);
 281        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 282                ret = btrfs_inc_ref(trans, root, cow, 1);
 283        else
 284                ret = btrfs_inc_ref(trans, root, cow, 0);
 285
 286        if (ret)
 287                return ret;
 288
 289        btrfs_mark_buffer_dirty(cow);
 290        *cow_ret = cow;
 291        return 0;
 292}
 293
 294enum mod_log_op {
 295        MOD_LOG_KEY_REPLACE,
 296        MOD_LOG_KEY_ADD,
 297        MOD_LOG_KEY_REMOVE,
 298        MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 299        MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 300        MOD_LOG_MOVE_KEYS,
 301        MOD_LOG_ROOT_REPLACE,
 302};
 303
 304struct tree_mod_move {
 305        int dst_slot;
 306        int nr_items;
 307};
 308
 309struct tree_mod_root {
 310        u64 logical;
 311        u8 level;
 312};
 313
 314struct tree_mod_elem {
 315        struct rb_node node;
 316        u64 logical;
 317        u64 seq;
 318        enum mod_log_op op;
 319
 320        /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 321        int slot;
 322
 323        /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 324        u64 generation;
 325
 326        /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 327        struct btrfs_disk_key key;
 328        u64 blockptr;
 329
 330        /* this is used for op == MOD_LOG_MOVE_KEYS */
 331        struct tree_mod_move move;
 332
 333        /* this is used for op == MOD_LOG_ROOT_REPLACE */
 334        struct tree_mod_root old_root;
 335};
 336
 337static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
 338{
 339        read_lock(&fs_info->tree_mod_log_lock);
 340}
 341
 342static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
 343{
 344        read_unlock(&fs_info->tree_mod_log_lock);
 345}
 346
 347static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
 348{
 349        write_lock(&fs_info->tree_mod_log_lock);
 350}
 351
 352static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
 353{
 354        write_unlock(&fs_info->tree_mod_log_lock);
 355}
 356
 357/*
 358 * Pull a new tree mod seq number for our operation.
 359 */
 360static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 361{
 362        return atomic64_inc_return(&fs_info->tree_mod_seq);
 363}
 364
 365/*
 366 * This adds a new blocker to the tree mod log's blocker list if the @elem
 367 * passed does not already have a sequence number set. So when a caller expects
 368 * to record tree modifications, it should ensure to set elem->seq to zero
 369 * before calling btrfs_get_tree_mod_seq.
 370 * Returns a fresh, unused tree log modification sequence number, even if no new
 371 * blocker was added.
 372 */
 373u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 374                           struct seq_list *elem)
 375{
 376        tree_mod_log_write_lock(fs_info);
 377        spin_lock(&fs_info->tree_mod_seq_lock);
 378        if (!elem->seq) {
 379                elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 380                list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 381        }
 382        spin_unlock(&fs_info->tree_mod_seq_lock);
 383        tree_mod_log_write_unlock(fs_info);
 384
 385        return elem->seq;
 386}
 387
 388void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 389                            struct seq_list *elem)
 390{
 391        struct rb_root *tm_root;
 392        struct rb_node *node;
 393        struct rb_node *next;
 394        struct seq_list *cur_elem;
 395        struct tree_mod_elem *tm;
 396        u64 min_seq = (u64)-1;
 397        u64 seq_putting = elem->seq;
 398
 399        if (!seq_putting)
 400                return;
 401
 402        spin_lock(&fs_info->tree_mod_seq_lock);
 403        list_del(&elem->list);
 404        elem->seq = 0;
 405
 406        list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 407                if (cur_elem->seq < min_seq) {
 408                        if (seq_putting > cur_elem->seq) {
 409                                /*
 410                                 * blocker with lower sequence number exists, we
 411                                 * cannot remove anything from the log
 412                                 */
 413                                spin_unlock(&fs_info->tree_mod_seq_lock);
 414                                return;
 415                        }
 416                        min_seq = cur_elem->seq;
 417                }
 418        }
 419        spin_unlock(&fs_info->tree_mod_seq_lock);
 420
 421        /*
 422         * anything that's lower than the lowest existing (read: blocked)
 423         * sequence number can be removed from the tree.
 424         */
 425        tree_mod_log_write_lock(fs_info);
 426        tm_root = &fs_info->tree_mod_log;
 427        for (node = rb_first(tm_root); node; node = next) {
 428                next = rb_next(node);
 429                tm = container_of(node, struct tree_mod_elem, node);
 430                if (tm->seq > min_seq)
 431                        continue;
 432                rb_erase(node, tm_root);
 433                kfree(tm);
 434        }
 435        tree_mod_log_write_unlock(fs_info);
 436}
 437
 438/*
 439 * key order of the log:
 440 *       node/leaf start address -> sequence
 441 *
 442 * The 'start address' is the logical address of the *new* root node
 443 * for root replace operations, or the logical address of the affected
 444 * block for all other operations.
 445 *
 446 * Note: must be called with write lock (tree_mod_log_write_lock).
 447 */
 448static noinline int
 449__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 450{
 451        struct rb_root *tm_root;
 452        struct rb_node **new;
 453        struct rb_node *parent = NULL;
 454        struct tree_mod_elem *cur;
 455
 456        BUG_ON(!tm);
 457
 458        tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 459
 460        tm_root = &fs_info->tree_mod_log;
 461        new = &tm_root->rb_node;
 462        while (*new) {
 463                cur = container_of(*new, struct tree_mod_elem, node);
 464                parent = *new;
 465                if (cur->logical < tm->logical)
 466                        new = &((*new)->rb_left);
 467                else if (cur->logical > tm->logical)
 468                        new = &((*new)->rb_right);
 469                else if (cur->seq < tm->seq)
 470                        new = &((*new)->rb_left);
 471                else if (cur->seq > tm->seq)
 472                        new = &((*new)->rb_right);
 473                else
 474                        return -EEXIST;
 475        }
 476
 477        rb_link_node(&tm->node, parent, new);
 478        rb_insert_color(&tm->node, tm_root);
 479        return 0;
 480}
 481
 482/*
 483 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 484 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 485 * this until all tree mod log insertions are recorded in the rb tree and then
 486 * call tree_mod_log_write_unlock() to release.
 487 */
 488static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 489                                    struct extent_buffer *eb) {
 490        smp_mb();
 491        if (list_empty(&(fs_info)->tree_mod_seq_list))
 492                return 1;
 493        if (eb && btrfs_header_level(eb) == 0)
 494                return 1;
 495
 496        tree_mod_log_write_lock(fs_info);
 497        if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 498                tree_mod_log_write_unlock(fs_info);
 499                return 1;
 500        }
 501
 502        return 0;
 503}
 504
 505/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 506static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 507                                    struct extent_buffer *eb)
 508{
 509        smp_mb();
 510        if (list_empty(&(fs_info)->tree_mod_seq_list))
 511                return 0;
 512        if (eb && btrfs_header_level(eb) == 0)
 513                return 0;
 514
 515        return 1;
 516}
 517
 518static struct tree_mod_elem *
 519alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 520                    enum mod_log_op op, gfp_t flags)
 521{
 522        struct tree_mod_elem *tm;
 523
 524        tm = kzalloc(sizeof(*tm), flags);
 525        if (!tm)
 526                return NULL;
 527
 528        tm->logical = eb->start;
 529        if (op != MOD_LOG_KEY_ADD) {
 530                btrfs_node_key(eb, &tm->key, slot);
 531                tm->blockptr = btrfs_node_blockptr(eb, slot);
 532        }
 533        tm->op = op;
 534        tm->slot = slot;
 535        tm->generation = btrfs_node_ptr_generation(eb, slot);
 536        RB_CLEAR_NODE(&tm->node);
 537
 538        return tm;
 539}
 540
 541static noinline int
 542tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
 543                        struct extent_buffer *eb, int slot,
 544                        enum mod_log_op op, gfp_t flags)
 545{
 546        struct tree_mod_elem *tm;
 547        int ret;
 548
 549        if (!tree_mod_need_log(fs_info, eb))
 550                return 0;
 551
 552        tm = alloc_tree_mod_elem(eb, slot, op, flags);
 553        if (!tm)
 554                return -ENOMEM;
 555
 556        if (tree_mod_dont_log(fs_info, eb)) {
 557                kfree(tm);
 558                return 0;
 559        }
 560
 561        ret = __tree_mod_log_insert(fs_info, tm);
 562        tree_mod_log_write_unlock(fs_info);
 563        if (ret)
 564                kfree(tm);
 565
 566        return ret;
 567}
 568
 569static noinline int
 570tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
 571                         struct extent_buffer *eb, int dst_slot, int src_slot,
 572                         int nr_items, gfp_t flags)
 573{
 574        struct tree_mod_elem *tm = NULL;
 575        struct tree_mod_elem **tm_list = NULL;
 576        int ret = 0;
 577        int i;
 578        int locked = 0;
 579
 580        if (!tree_mod_need_log(fs_info, eb))
 581                return 0;
 582
 583        tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
 584        if (!tm_list)
 585                return -ENOMEM;
 586
 587        tm = kzalloc(sizeof(*tm), flags);
 588        if (!tm) {
 589                ret = -ENOMEM;
 590                goto free_tms;
 591        }
 592
 593        tm->logical = eb->start;
 594        tm->slot = src_slot;
 595        tm->move.dst_slot = dst_slot;
 596        tm->move.nr_items = nr_items;
 597        tm->op = MOD_LOG_MOVE_KEYS;
 598
 599        for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 600                tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 601                    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
 602                if (!tm_list[i]) {
 603                        ret = -ENOMEM;
 604                        goto free_tms;
 605                }
 606        }
 607
 608        if (tree_mod_dont_log(fs_info, eb))
 609                goto free_tms;
 610        locked = 1;
 611
 612        /*
 613         * When we override something during the move, we log these removals.
 614         * This can only happen when we move towards the beginning of the
 615         * buffer, i.e. dst_slot < src_slot.
 616         */
 617        for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 618                ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 619                if (ret)
 620                        goto free_tms;
 621        }
 622
 623        ret = __tree_mod_log_insert(fs_info, tm);
 624        if (ret)
 625                goto free_tms;
 626        tree_mod_log_write_unlock(fs_info);
 627        kfree(tm_list);
 628
 629        return 0;
 630free_tms:
 631        for (i = 0; i < nr_items; i++) {
 632                if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 633                        rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 634                kfree(tm_list[i]);
 635        }
 636        if (locked)
 637                tree_mod_log_write_unlock(fs_info);
 638        kfree(tm_list);
 639        kfree(tm);
 640
 641        return ret;
 642}
 643
 644static inline int
 645__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 646                       struct tree_mod_elem **tm_list,
 647                       int nritems)
 648{
 649        int i, j;
 650        int ret;
 651
 652        for (i = nritems - 1; i >= 0; i--) {
 653                ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 654                if (ret) {
 655                        for (j = nritems - 1; j > i; j--)
 656                                rb_erase(&tm_list[j]->node,
 657                                         &fs_info->tree_mod_log);
 658                        return ret;
 659                }
 660        }
 661
 662        return 0;
 663}
 664
 665static noinline int
 666tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
 667                         struct extent_buffer *old_root,
 668                         struct extent_buffer *new_root, gfp_t flags,
 669                         int log_removal)
 670{
 671        struct tree_mod_elem *tm = NULL;
 672        struct tree_mod_elem **tm_list = NULL;
 673        int nritems = 0;
 674        int ret = 0;
 675        int i;
 676
 677        if (!tree_mod_need_log(fs_info, NULL))
 678                return 0;
 679
 680        if (log_removal && btrfs_header_level(old_root) > 0) {
 681                nritems = btrfs_header_nritems(old_root);
 682                tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 683                                  flags);
 684                if (!tm_list) {
 685                        ret = -ENOMEM;
 686                        goto free_tms;
 687                }
 688                for (i = 0; i < nritems; i++) {
 689                        tm_list[i] = alloc_tree_mod_elem(old_root, i,
 690                            MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
 691                        if (!tm_list[i]) {
 692                                ret = -ENOMEM;
 693                                goto free_tms;
 694                        }
 695                }
 696        }
 697
 698        tm = kzalloc(sizeof(*tm), flags);
 699        if (!tm) {
 700                ret = -ENOMEM;
 701                goto free_tms;
 702        }
 703
 704        tm->logical = new_root->start;
 705        tm->old_root.logical = old_root->start;
 706        tm->old_root.level = btrfs_header_level(old_root);
 707        tm->generation = btrfs_header_generation(old_root);
 708        tm->op = MOD_LOG_ROOT_REPLACE;
 709
 710        if (tree_mod_dont_log(fs_info, NULL))
 711                goto free_tms;
 712
 713        if (tm_list)
 714                ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 715        if (!ret)
 716                ret = __tree_mod_log_insert(fs_info, tm);
 717
 718        tree_mod_log_write_unlock(fs_info);
 719        if (ret)
 720                goto free_tms;
 721        kfree(tm_list);
 722
 723        return ret;
 724
 725free_tms:
 726        if (tm_list) {
 727                for (i = 0; i < nritems; i++)
 728                        kfree(tm_list[i]);
 729                kfree(tm_list);
 730        }
 731        kfree(tm);
 732
 733        return ret;
 734}
 735
 736static struct tree_mod_elem *
 737__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 738                      int smallest)
 739{
 740        struct rb_root *tm_root;
 741        struct rb_node *node;
 742        struct tree_mod_elem *cur = NULL;
 743        struct tree_mod_elem *found = NULL;
 744
 745        tree_mod_log_read_lock(fs_info);
 746        tm_root = &fs_info->tree_mod_log;
 747        node = tm_root->rb_node;
 748        while (node) {
 749                cur = container_of(node, struct tree_mod_elem, node);
 750                if (cur->logical < start) {
 751                        node = node->rb_left;
 752                } else if (cur->logical > start) {
 753                        node = node->rb_right;
 754                } else if (cur->seq < min_seq) {
 755                        node = node->rb_left;
 756                } else if (!smallest) {
 757                        /* we want the node with the highest seq */
 758                        if (found)
 759                                BUG_ON(found->seq > cur->seq);
 760                        found = cur;
 761                        node = node->rb_left;
 762                } else if (cur->seq > min_seq) {
 763                        /* we want the node with the smallest seq */
 764                        if (found)
 765                                BUG_ON(found->seq < cur->seq);
 766                        found = cur;
 767                        node = node->rb_right;
 768                } else {
 769                        found = cur;
 770                        break;
 771                }
 772        }
 773        tree_mod_log_read_unlock(fs_info);
 774
 775        return found;
 776}
 777
 778/*
 779 * this returns the element from the log with the smallest time sequence
 780 * value that's in the log (the oldest log item). any element with a time
 781 * sequence lower than min_seq will be ignored.
 782 */
 783static struct tree_mod_elem *
 784tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 785                           u64 min_seq)
 786{
 787        return __tree_mod_log_search(fs_info, start, min_seq, 1);
 788}
 789
 790/*
 791 * this returns the element from the log with the largest time sequence
 792 * value that's in the log (the most recent log item). any element with
 793 * a time sequence lower than min_seq will be ignored.
 794 */
 795static struct tree_mod_elem *
 796tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 797{
 798        return __tree_mod_log_search(fs_info, start, min_seq, 0);
 799}
 800
 801static noinline int
 802tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 803                     struct extent_buffer *src, unsigned long dst_offset,
 804                     unsigned long src_offset, int nr_items)
 805{
 806        int ret = 0;
 807        struct tree_mod_elem **tm_list = NULL;
 808        struct tree_mod_elem **tm_list_add, **tm_list_rem;
 809        int i;
 810        int locked = 0;
 811
 812        if (!tree_mod_need_log(fs_info, NULL))
 813                return 0;
 814
 815        if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 816                return 0;
 817
 818        tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 819                          GFP_NOFS);
 820        if (!tm_list)
 821                return -ENOMEM;
 822
 823        tm_list_add = tm_list;
 824        tm_list_rem = tm_list + nr_items;
 825        for (i = 0; i < nr_items; i++) {
 826                tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 827                    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 828                if (!tm_list_rem[i]) {
 829                        ret = -ENOMEM;
 830                        goto free_tms;
 831                }
 832
 833                tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 834                    MOD_LOG_KEY_ADD, GFP_NOFS);
 835                if (!tm_list_add[i]) {
 836                        ret = -ENOMEM;
 837                        goto free_tms;
 838                }
 839        }
 840
 841        if (tree_mod_dont_log(fs_info, NULL))
 842                goto free_tms;
 843        locked = 1;
 844
 845        for (i = 0; i < nr_items; i++) {
 846                ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 847                if (ret)
 848                        goto free_tms;
 849                ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 850                if (ret)
 851                        goto free_tms;
 852        }
 853
 854        tree_mod_log_write_unlock(fs_info);
 855        kfree(tm_list);
 856
 857        return 0;
 858
 859free_tms:
 860        for (i = 0; i < nr_items * 2; i++) {
 861                if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 862                        rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 863                kfree(tm_list[i]);
 864        }
 865        if (locked)
 866                tree_mod_log_write_unlock(fs_info);
 867        kfree(tm_list);
 868
 869        return ret;
 870}
 871
 872static inline void
 873tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 874                     int dst_offset, int src_offset, int nr_items)
 875{
 876        int ret;
 877        ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
 878                                       nr_items, GFP_NOFS);
 879        BUG_ON(ret < 0);
 880}
 881
 882static noinline void
 883tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
 884                          struct extent_buffer *eb, int slot, int atomic)
 885{
 886        int ret;
 887
 888        ret = tree_mod_log_insert_key(fs_info, eb, slot,
 889                                        MOD_LOG_KEY_REPLACE,
 890                                        atomic ? GFP_ATOMIC : GFP_NOFS);
 891        BUG_ON(ret < 0);
 892}
 893
 894static noinline int
 895tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
 896{
 897        struct tree_mod_elem **tm_list = NULL;
 898        int nritems = 0;
 899        int i;
 900        int ret = 0;
 901
 902        if (btrfs_header_level(eb) == 0)
 903                return 0;
 904
 905        if (!tree_mod_need_log(fs_info, NULL))
 906                return 0;
 907
 908        nritems = btrfs_header_nritems(eb);
 909        tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 910        if (!tm_list)
 911                return -ENOMEM;
 912
 913        for (i = 0; i < nritems; i++) {
 914                tm_list[i] = alloc_tree_mod_elem(eb, i,
 915                    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 916                if (!tm_list[i]) {
 917                        ret = -ENOMEM;
 918                        goto free_tms;
 919                }
 920        }
 921
 922        if (tree_mod_dont_log(fs_info, eb))
 923                goto free_tms;
 924
 925        ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 926        tree_mod_log_write_unlock(fs_info);
 927        if (ret)
 928                goto free_tms;
 929        kfree(tm_list);
 930
 931        return 0;
 932
 933free_tms:
 934        for (i = 0; i < nritems; i++)
 935                kfree(tm_list[i]);
 936        kfree(tm_list);
 937
 938        return ret;
 939}
 940
 941static noinline void
 942tree_mod_log_set_root_pointer(struct btrfs_root *root,
 943                              struct extent_buffer *new_root_node,
 944                              int log_removal)
 945{
 946        int ret;
 947        ret = tree_mod_log_insert_root(root->fs_info, root->node,
 948                                       new_root_node, GFP_NOFS, log_removal);
 949        BUG_ON(ret < 0);
 950}
 951
 952/*
 953 * check if the tree block can be shared by multiple trees
 954 */
 955int btrfs_block_can_be_shared(struct btrfs_root *root,
 956                              struct extent_buffer *buf)
 957{
 958        /*
 959         * Tree blocks not in reference counted trees and tree roots
 960         * are never shared. If a block was allocated after the last
 961         * snapshot and the block was not allocated by tree relocation,
 962         * we know the block is not shared.
 963         */
 964        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 965            buf != root->node && buf != root->commit_root &&
 966            (btrfs_header_generation(buf) <=
 967             btrfs_root_last_snapshot(&root->root_item) ||
 968             btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 969                return 1;
 970#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 971        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 972            btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 973                return 1;
 974#endif
 975        return 0;
 976}
 977
 978static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 979                                       struct btrfs_root *root,
 980                                       struct extent_buffer *buf,
 981                                       struct extent_buffer *cow,
 982                                       int *last_ref)
 983{
 984        struct btrfs_fs_info *fs_info = root->fs_info;
 985        u64 refs;
 986        u64 owner;
 987        u64 flags;
 988        u64 new_flags = 0;
 989        int ret;
 990
 991        /*
 992         * Backrefs update rules:
 993         *
 994         * Always use full backrefs for extent pointers in tree block
 995         * allocated by tree relocation.
 996         *
 997         * If a shared tree block is no longer referenced by its owner
 998         * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 999         * use full backrefs for extent pointers in tree block.
1000         *
1001         * If a tree block is been relocating
1002         * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1003         * use full backrefs for extent pointers in tree block.
1004         * The reason for this is some operations (such as drop tree)
1005         * are only allowed for blocks use full backrefs.
1006         */
1007
1008        if (btrfs_block_can_be_shared(root, buf)) {
1009                ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
1010                                               btrfs_header_level(buf), 1,
1011                                               &refs, &flags);
1012                if (ret)
1013                        return ret;
1014                if (refs == 0) {
1015                        ret = -EROFS;
1016                        btrfs_handle_fs_error(fs_info, ret, NULL);
1017                        return ret;
1018                }
1019        } else {
1020                refs = 1;
1021                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1022                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1023                        flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1024                else
1025                        flags = 0;
1026        }
1027
1028        owner = btrfs_header_owner(buf);
1029        BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1030               !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1031
1032        if (refs > 1) {
1033                if ((owner == root->root_key.objectid ||
1034                     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1035                    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1036                        ret = btrfs_inc_ref(trans, root, buf, 1);
1037                        BUG_ON(ret); /* -ENOMEM */
1038
1039                        if (root->root_key.objectid ==
1040                            BTRFS_TREE_RELOC_OBJECTID) {
1041                                ret = btrfs_dec_ref(trans, root, buf, 0);
1042                                BUG_ON(ret); /* -ENOMEM */
1043                                ret = btrfs_inc_ref(trans, root, cow, 1);
1044                                BUG_ON(ret); /* -ENOMEM */
1045                        }
1046                        new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1047                } else {
1048
1049                        if (root->root_key.objectid ==
1050                            BTRFS_TREE_RELOC_OBJECTID)
1051                                ret = btrfs_inc_ref(trans, root, cow, 1);
1052                        else
1053                                ret = btrfs_inc_ref(trans, root, cow, 0);
1054                        BUG_ON(ret); /* -ENOMEM */
1055                }
1056                if (new_flags != 0) {
1057                        int level = btrfs_header_level(buf);
1058
1059                        ret = btrfs_set_disk_extent_flags(trans, fs_info,
1060                                                          buf->start,
1061                                                          buf->len,
1062                                                          new_flags, level, 0);
1063                        if (ret)
1064                                return ret;
1065                }
1066        } else {
1067                if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1068                        if (root->root_key.objectid ==
1069                            BTRFS_TREE_RELOC_OBJECTID)
1070                                ret = btrfs_inc_ref(trans, root, cow, 1);
1071                        else
1072                                ret = btrfs_inc_ref(trans, root, cow, 0);
1073                        BUG_ON(ret); /* -ENOMEM */
1074                        ret = btrfs_dec_ref(trans, root, buf, 1);
1075                        BUG_ON(ret); /* -ENOMEM */
1076                }
1077                clean_tree_block(trans, fs_info, buf);
1078                *last_ref = 1;
1079        }
1080        return 0;
1081}
1082
1083/*
1084 * does the dirty work in cow of a single block.  The parent block (if
1085 * supplied) is updated to point to the new cow copy.  The new buffer is marked
1086 * dirty and returned locked.  If you modify the block it needs to be marked
1087 * dirty again.
1088 *
1089 * search_start -- an allocation hint for the new block
1090 *
1091 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1092 * bytes the allocator should try to find free next to the block it returns.
1093 * This is just a hint and may be ignored by the allocator.
1094 */
1095static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1096                             struct btrfs_root *root,
1097                             struct extent_buffer *buf,
1098                             struct extent_buffer *parent, int parent_slot,
1099                             struct extent_buffer **cow_ret,
1100                             u64 search_start, u64 empty_size)
1101{
1102        struct btrfs_fs_info *fs_info = root->fs_info;
1103        struct btrfs_disk_key disk_key;
1104        struct extent_buffer *cow;
1105        int level, ret;
1106        int last_ref = 0;
1107        int unlock_orig = 0;
1108        u64 parent_start = 0;
1109
1110        if (*cow_ret == buf)
1111                unlock_orig = 1;
1112
1113        btrfs_assert_tree_locked(buf);
1114
1115        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1116                trans->transid != fs_info->running_transaction->transid);
1117        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1118                trans->transid != root->last_trans);
1119
1120        level = btrfs_header_level(buf);
1121
1122        if (level == 0)
1123                btrfs_item_key(buf, &disk_key, 0);
1124        else
1125                btrfs_node_key(buf, &disk_key, 0);
1126
1127        if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1128                parent_start = parent->start;
1129
1130        cow = btrfs_alloc_tree_block(trans, root, parent_start,
1131                        root->root_key.objectid, &disk_key, level,
1132                        search_start, empty_size);
1133        if (IS_ERR(cow))
1134                return PTR_ERR(cow);
1135
1136        /* cow is set to blocking by btrfs_init_new_buffer */
1137
1138        copy_extent_buffer_full(cow, buf);
1139        btrfs_set_header_bytenr(cow, cow->start);
1140        btrfs_set_header_generation(cow, trans->transid);
1141        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1142        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1143                                     BTRFS_HEADER_FLAG_RELOC);
1144        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1145                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1146        else
1147                btrfs_set_header_owner(cow, root->root_key.objectid);
1148
1149        write_extent_buffer_fsid(cow, fs_info->fsid);
1150
1151        ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1152        if (ret) {
1153                btrfs_abort_transaction(trans, ret);
1154                return ret;
1155        }
1156
1157        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1158                ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1159                if (ret) {
1160                        btrfs_abort_transaction(trans, ret);
1161                        return ret;
1162                }
1163        }
1164
1165        if (buf == root->node) {
1166                WARN_ON(parent && parent != buf);
1167                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1168                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1169                        parent_start = buf->start;
1170
1171                extent_buffer_get(cow);
1172                tree_mod_log_set_root_pointer(root, cow, 1);
1173                rcu_assign_pointer(root->node, cow);
1174
1175                btrfs_free_tree_block(trans, root, buf, parent_start,
1176                                      last_ref);
1177                free_extent_buffer(buf);
1178                add_root_to_dirty_list(root);
1179        } else {
1180                WARN_ON(trans->transid != btrfs_header_generation(parent));
1181                tree_mod_log_insert_key(fs_info, parent, parent_slot,
1182                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
1183                btrfs_set_node_blockptr(parent, parent_slot,
1184                                        cow->start);
1185                btrfs_set_node_ptr_generation(parent, parent_slot,
1186                                              trans->transid);
1187                btrfs_mark_buffer_dirty(parent);
1188                if (last_ref) {
1189                        ret = tree_mod_log_free_eb(fs_info, buf);
1190                        if (ret) {
1191                                btrfs_abort_transaction(trans, ret);
1192                                return ret;
1193                        }
1194                }
1195                btrfs_free_tree_block(trans, root, buf, parent_start,
1196                                      last_ref);
1197        }
1198        if (unlock_orig)
1199                btrfs_tree_unlock(buf);
1200        free_extent_buffer_stale(buf);
1201        btrfs_mark_buffer_dirty(cow);
1202        *cow_ret = cow;
1203        return 0;
1204}
1205
1206/*
1207 * returns the logical address of the oldest predecessor of the given root.
1208 * entries older than time_seq are ignored.
1209 */
1210static struct tree_mod_elem *
1211__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1212                           struct extent_buffer *eb_root, u64 time_seq)
1213{
1214        struct tree_mod_elem *tm;
1215        struct tree_mod_elem *found = NULL;
1216        u64 root_logical = eb_root->start;
1217        int looped = 0;
1218
1219        if (!time_seq)
1220                return NULL;
1221
1222        /*
1223         * the very last operation that's logged for a root is the
1224         * replacement operation (if it is replaced at all). this has
1225         * the logical address of the *new* root, making it the very
1226         * first operation that's logged for this root.
1227         */
1228        while (1) {
1229                tm = tree_mod_log_search_oldest(fs_info, root_logical,
1230                                                time_seq);
1231                if (!looped && !tm)
1232                        return NULL;
1233                /*
1234                 * if there are no tree operation for the oldest root, we simply
1235                 * return it. this should only happen if that (old) root is at
1236                 * level 0.
1237                 */
1238                if (!tm)
1239                        break;
1240
1241                /*
1242                 * if there's an operation that's not a root replacement, we
1243                 * found the oldest version of our root. normally, we'll find a
1244                 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1245                 */
1246                if (tm->op != MOD_LOG_ROOT_REPLACE)
1247                        break;
1248
1249                found = tm;
1250                root_logical = tm->old_root.logical;
1251                looped = 1;
1252        }
1253
1254        /* if there's no old root to return, return what we found instead */
1255        if (!found)
1256                found = tm;
1257
1258        return found;
1259}
1260
1261/*
1262 * tm is a pointer to the first operation to rewind within eb. then, all
1263 * previous operations will be rewound (until we reach something older than
1264 * time_seq).
1265 */
1266static void
1267__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1268                      u64 time_seq, struct tree_mod_elem *first_tm)
1269{
1270        u32 n;
1271        struct rb_node *next;
1272        struct tree_mod_elem *tm = first_tm;
1273        unsigned long o_dst;
1274        unsigned long o_src;
1275        unsigned long p_size = sizeof(struct btrfs_key_ptr);
1276
1277        n = btrfs_header_nritems(eb);
1278        tree_mod_log_read_lock(fs_info);
1279        while (tm && tm->seq >= time_seq) {
1280                /*
1281                 * all the operations are recorded with the operator used for
1282                 * the modification. as we're going backwards, we do the
1283                 * opposite of each operation here.
1284                 */
1285                switch (tm->op) {
1286                case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1287                        BUG_ON(tm->slot < n);
1288                        /* Fallthrough */
1289                case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1290                case MOD_LOG_KEY_REMOVE:
1291                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1292                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1293                        btrfs_set_node_ptr_generation(eb, tm->slot,
1294                                                      tm->generation);
1295                        n++;
1296                        break;
1297                case MOD_LOG_KEY_REPLACE:
1298                        BUG_ON(tm->slot >= n);
1299                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1300                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1301                        btrfs_set_node_ptr_generation(eb, tm->slot,
1302                                                      tm->generation);
1303                        break;
1304                case MOD_LOG_KEY_ADD:
1305                        /* if a move operation is needed it's in the log */
1306                        n--;
1307                        break;
1308                case MOD_LOG_MOVE_KEYS:
1309                        o_dst = btrfs_node_key_ptr_offset(tm->slot);
1310                        o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1311                        memmove_extent_buffer(eb, o_dst, o_src,
1312                                              tm->move.nr_items * p_size);
1313                        break;
1314                case MOD_LOG_ROOT_REPLACE:
1315                        /*
1316                         * this operation is special. for roots, this must be
1317                         * handled explicitly before rewinding.
1318                         * for non-roots, this operation may exist if the node
1319                         * was a root: root A -> child B; then A gets empty and
1320                         * B is promoted to the new root. in the mod log, we'll
1321                         * have a root-replace operation for B, a tree block
1322                         * that is no root. we simply ignore that operation.
1323                         */
1324                        break;
1325                }
1326                next = rb_next(&tm->node);
1327                if (!next)
1328                        break;
1329                tm = container_of(next, struct tree_mod_elem, node);
1330                if (tm->logical != first_tm->logical)
1331                        break;
1332        }
1333        tree_mod_log_read_unlock(fs_info);
1334        btrfs_set_header_nritems(eb, n);
1335}
1336
1337/*
1338 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1339 * is returned. If rewind operations happen, a fresh buffer is returned. The
1340 * returned buffer is always read-locked. If the returned buffer is not the
1341 * input buffer, the lock on the input buffer is released and the input buffer
1342 * is freed (its refcount is decremented).
1343 */
1344static struct extent_buffer *
1345tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1346                    struct extent_buffer *eb, u64 time_seq)
1347{
1348        struct extent_buffer *eb_rewin;
1349        struct tree_mod_elem *tm;
1350
1351        if (!time_seq)
1352                return eb;
1353
1354        if (btrfs_header_level(eb) == 0)
1355                return eb;
1356
1357        tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1358        if (!tm)
1359                return eb;
1360
1361        btrfs_set_path_blocking(path);
1362        btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1363
1364        if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1365                BUG_ON(tm->slot != 0);
1366                eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1367                if (!eb_rewin) {
1368                        btrfs_tree_read_unlock_blocking(eb);
1369                        free_extent_buffer(eb);
1370                        return NULL;
1371                }
1372                btrfs_set_header_bytenr(eb_rewin, eb->start);
1373                btrfs_set_header_backref_rev(eb_rewin,
1374                                             btrfs_header_backref_rev(eb));
1375                btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1376                btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1377        } else {
1378                eb_rewin = btrfs_clone_extent_buffer(eb);
1379                if (!eb_rewin) {
1380                        btrfs_tree_read_unlock_blocking(eb);
1381                        free_extent_buffer(eb);
1382                        return NULL;
1383                }
1384        }
1385
1386        btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1387        btrfs_tree_read_unlock_blocking(eb);
1388        free_extent_buffer(eb);
1389
1390        extent_buffer_get(eb_rewin);
1391        btrfs_tree_read_lock(eb_rewin);
1392        __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1393        WARN_ON(btrfs_header_nritems(eb_rewin) >
1394                BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1395
1396        return eb_rewin;
1397}
1398
1399/*
1400 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1401 * value. If there are no changes, the current root->root_node is returned. If
1402 * anything changed in between, there's a fresh buffer allocated on which the
1403 * rewind operations are done. In any case, the returned buffer is read locked.
1404 * Returns NULL on error (with no locks held).
1405 */
1406static inline struct extent_buffer *
1407get_old_root(struct btrfs_root *root, u64 time_seq)
1408{
1409        struct btrfs_fs_info *fs_info = root->fs_info;
1410        struct tree_mod_elem *tm;
1411        struct extent_buffer *eb = NULL;
1412        struct extent_buffer *eb_root;
1413        struct extent_buffer *old;
1414        struct tree_mod_root *old_root = NULL;
1415        u64 old_generation = 0;
1416        u64 logical;
1417
1418        eb_root = btrfs_read_lock_root_node(root);
1419        tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq);
1420        if (!tm)
1421                return eb_root;
1422
1423        if (tm->op == MOD_LOG_ROOT_REPLACE) {
1424                old_root = &tm->old_root;
1425                old_generation = tm->generation;
1426                logical = old_root->logical;
1427        } else {
1428                logical = eb_root->start;
1429        }
1430
1431        tm = tree_mod_log_search(fs_info, logical, time_seq);
1432        if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1433                btrfs_tree_read_unlock(eb_root);
1434                free_extent_buffer(eb_root);
1435                old = read_tree_block(fs_info, logical, 0);
1436                if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1437                        if (!IS_ERR(old))
1438                                free_extent_buffer(old);
1439                        btrfs_warn(fs_info,
1440                                   "failed to read tree block %llu from get_old_root",
1441                                   logical);
1442                } else {
1443                        eb = btrfs_clone_extent_buffer(old);
1444                        free_extent_buffer(old);
1445                }
1446        } else if (old_root) {
1447                btrfs_tree_read_unlock(eb_root);
1448                free_extent_buffer(eb_root);
1449                eb = alloc_dummy_extent_buffer(fs_info, logical);
1450        } else {
1451                btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1452                eb = btrfs_clone_extent_buffer(eb_root);
1453                btrfs_tree_read_unlock_blocking(eb_root);
1454                free_extent_buffer(eb_root);
1455        }
1456
1457        if (!eb)
1458                return NULL;
1459        extent_buffer_get(eb);
1460        btrfs_tree_read_lock(eb);
1461        if (old_root) {
1462                btrfs_set_header_bytenr(eb, eb->start);
1463                btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1464                btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1465                btrfs_set_header_level(eb, old_root->level);
1466                btrfs_set_header_generation(eb, old_generation);
1467        }
1468        if (tm)
1469                __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1470        else
1471                WARN_ON(btrfs_header_level(eb) != 0);
1472        WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1473
1474        return eb;
1475}
1476
1477int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1478{
1479        struct tree_mod_elem *tm;
1480        int level;
1481        struct extent_buffer *eb_root = btrfs_root_node(root);
1482
1483        tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1484        if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1485                level = tm->old_root.level;
1486        } else {
1487                level = btrfs_header_level(eb_root);
1488        }
1489        free_extent_buffer(eb_root);
1490
1491        return level;
1492}
1493
1494static inline int should_cow_block(struct btrfs_trans_handle *trans,
1495                                   struct btrfs_root *root,
1496                                   struct extent_buffer *buf)
1497{
1498        if (btrfs_is_testing(root->fs_info))
1499                return 0;
1500
1501        /* ensure we can see the force_cow */
1502        smp_rmb();
1503
1504        /*
1505         * We do not need to cow a block if
1506         * 1) this block is not created or changed in this transaction;
1507         * 2) this block does not belong to TREE_RELOC tree;
1508         * 3) the root is not forced COW.
1509         *
1510         * What is forced COW:
1511         *    when we create snapshot during committing the transaction,
1512         *    after we've finished coping src root, we must COW the shared
1513         *    block to ensure the metadata consistency.
1514         */
1515        if (btrfs_header_generation(buf) == trans->transid &&
1516            !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1517            !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1518              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1519            !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1520                return 0;
1521        return 1;
1522}
1523
1524/*
1525 * cows a single block, see __btrfs_cow_block for the real work.
1526 * This version of it has extra checks so that a block isn't COWed more than
1527 * once per transaction, as long as it hasn't been written yet
1528 */
1529noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1530                    struct btrfs_root *root, struct extent_buffer *buf,
1531                    struct extent_buffer *parent, int parent_slot,
1532                    struct extent_buffer **cow_ret)
1533{
1534        struct btrfs_fs_info *fs_info = root->fs_info;
1535        u64 search_start;
1536        int ret;
1537
1538        if (trans->transaction != fs_info->running_transaction)
1539                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1540                       trans->transid,
1541                       fs_info->running_transaction->transid);
1542
1543        if (trans->transid != fs_info->generation)
1544                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1545                       trans->transid, fs_info->generation);
1546
1547        if (!should_cow_block(trans, root, buf)) {
1548                trans->dirty = true;
1549                *cow_ret = buf;
1550                return 0;
1551        }
1552
1553        search_start = buf->start & ~((u64)SZ_1G - 1);
1554
1555        if (parent)
1556                btrfs_set_lock_blocking(parent);
1557        btrfs_set_lock_blocking(buf);
1558
1559        ret = __btrfs_cow_block(trans, root, buf, parent,
1560                                 parent_slot, cow_ret, search_start, 0);
1561
1562        trace_btrfs_cow_block(root, buf, *cow_ret);
1563
1564        return ret;
1565}
1566
1567/*
1568 * helper function for defrag to decide if two blocks pointed to by a
1569 * node are actually close by
1570 */
1571static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1572{
1573        if (blocknr < other && other - (blocknr + blocksize) < 32768)
1574                return 1;
1575        if (blocknr > other && blocknr - (other + blocksize) < 32768)
1576                return 1;
1577        return 0;
1578}
1579
1580/*
1581 * compare two keys in a memcmp fashion
1582 */
1583static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1584{
1585        struct btrfs_key k1;
1586
1587        btrfs_disk_key_to_cpu(&k1, disk);
1588
1589        return btrfs_comp_cpu_keys(&k1, k2);
1590}
1591
1592/*
1593 * same as comp_keys only with two btrfs_key's
1594 */
1595int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1596{
1597        if (k1->objectid > k2->objectid)
1598                return 1;
1599        if (k1->objectid < k2->objectid)
1600                return -1;
1601        if (k1->type > k2->type)
1602                return 1;
1603        if (k1->type < k2->type)
1604                return -1;
1605        if (k1->offset > k2->offset)
1606                return 1;
1607        if (k1->offset < k2->offset)
1608                return -1;
1609        return 0;
1610}
1611
1612/*
1613 * this is used by the defrag code to go through all the
1614 * leaves pointed to by a node and reallocate them so that
1615 * disk order is close to key order
1616 */
1617int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1618                       struct btrfs_root *root, struct extent_buffer *parent,
1619                       int start_slot, u64 *last_ret,
1620                       struct btrfs_key *progress)
1621{
1622        struct btrfs_fs_info *fs_info = root->fs_info;
1623        struct extent_buffer *cur;
1624        u64 blocknr;
1625        u64 gen;
1626        u64 search_start = *last_ret;
1627        u64 last_block = 0;
1628        u64 other;
1629        u32 parent_nritems;
1630        int end_slot;
1631        int i;
1632        int err = 0;
1633        int parent_level;
1634        int uptodate;
1635        u32 blocksize;
1636        int progress_passed = 0;
1637        struct btrfs_disk_key disk_key;
1638
1639        parent_level = btrfs_header_level(parent);
1640
1641        WARN_ON(trans->transaction != fs_info->running_transaction);
1642        WARN_ON(trans->transid != fs_info->generation);
1643
1644        parent_nritems = btrfs_header_nritems(parent);
1645        blocksize = fs_info->nodesize;
1646        end_slot = parent_nritems - 1;
1647
1648        if (parent_nritems <= 1)
1649                return 0;
1650
1651        btrfs_set_lock_blocking(parent);
1652
1653        for (i = start_slot; i <= end_slot; i++) {
1654                int close = 1;
1655
1656                btrfs_node_key(parent, &disk_key, i);
1657                if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1658                        continue;
1659
1660                progress_passed = 1;
1661                blocknr = btrfs_node_blockptr(parent, i);
1662                gen = btrfs_node_ptr_generation(parent, i);
1663                if (last_block == 0)
1664                        last_block = blocknr;
1665
1666                if (i > 0) {
1667                        other = btrfs_node_blockptr(parent, i - 1);
1668                        close = close_blocks(blocknr, other, blocksize);
1669                }
1670                if (!close && i < end_slot) {
1671                        other = btrfs_node_blockptr(parent, i + 1);
1672                        close = close_blocks(blocknr, other, blocksize);
1673                }
1674                if (close) {
1675                        last_block = blocknr;
1676                        continue;
1677                }
1678
1679                cur = find_extent_buffer(fs_info, blocknr);
1680                if (cur)
1681                        uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1682                else
1683                        uptodate = 0;
1684                if (!cur || !uptodate) {
1685                        if (!cur) {
1686                                cur = read_tree_block(fs_info, blocknr, gen);
1687                                if (IS_ERR(cur)) {
1688                                        return PTR_ERR(cur);
1689                                } else if (!extent_buffer_uptodate(cur)) {
1690                                        free_extent_buffer(cur);
1691                                        return -EIO;
1692                                }
1693                        } else if (!uptodate) {
1694                                err = btrfs_read_buffer(cur, gen);
1695                                if (err) {
1696                                        free_extent_buffer(cur);
1697                                        return err;
1698                                }
1699                        }
1700                }
1701                if (search_start == 0)
1702                        search_start = last_block;
1703
1704                btrfs_tree_lock(cur);
1705                btrfs_set_lock_blocking(cur);
1706                err = __btrfs_cow_block(trans, root, cur, parent, i,
1707                                        &cur, search_start,
1708                                        min(16 * blocksize,
1709                                            (end_slot - i) * blocksize));
1710                if (err) {
1711                        btrfs_tree_unlock(cur);
1712                        free_extent_buffer(cur);
1713                        break;
1714                }
1715                search_start = cur->start;
1716                last_block = cur->start;
1717                *last_ret = search_start;
1718                btrfs_tree_unlock(cur);
1719                free_extent_buffer(cur);
1720        }
1721        return err;
1722}
1723
1724/*
1725 * search for key in the extent_buffer.  The items start at offset p,
1726 * and they are item_size apart.  There are 'max' items in p.
1727 *
1728 * the slot in the array is returned via slot, and it points to
1729 * the place where you would insert key if it is not found in
1730 * the array.
1731 *
1732 * slot may point to max if the key is bigger than all of the keys
1733 */
1734static noinline int generic_bin_search(struct extent_buffer *eb,
1735                                       unsigned long p,
1736                                       int item_size, struct btrfs_key *key,
1737                                       int max, int *slot)
1738{
1739        int low = 0;
1740        int high = max;
1741        int mid;
1742        int ret;
1743        struct btrfs_disk_key *tmp = NULL;
1744        struct btrfs_disk_key unaligned;
1745        unsigned long offset;
1746        char *kaddr = NULL;
1747        unsigned long map_start = 0;
1748        unsigned long map_len = 0;
1749        int err;
1750
1751        if (low > high) {
1752                btrfs_err(eb->fs_info,
1753                 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1754                          __func__, low, high, eb->start,
1755                          btrfs_header_owner(eb), btrfs_header_level(eb));
1756                return -EINVAL;
1757        }
1758
1759        while (low < high) {
1760                mid = (low + high) / 2;
1761                offset = p + mid * item_size;
1762
1763                if (!kaddr || offset < map_start ||
1764                    (offset + sizeof(struct btrfs_disk_key)) >
1765                    map_start + map_len) {
1766
1767                        err = map_private_extent_buffer(eb, offset,
1768                                                sizeof(struct btrfs_disk_key),
1769                                                &kaddr, &map_start, &map_len);
1770
1771                        if (!err) {
1772                                tmp = (struct btrfs_disk_key *)(kaddr + offset -
1773                                                        map_start);
1774                        } else if (err == 1) {
1775                                read_extent_buffer(eb, &unaligned,
1776                                                   offset, sizeof(unaligned));
1777                                tmp = &unaligned;
1778                        } else {
1779                                return err;
1780                        }
1781
1782                } else {
1783                        tmp = (struct btrfs_disk_key *)(kaddr + offset -
1784                                                        map_start);
1785                }
1786                ret = comp_keys(tmp, key);
1787
1788                if (ret < 0)
1789                        low = mid + 1;
1790                else if (ret > 0)
1791                        high = mid;
1792                else {
1793                        *slot = mid;
1794                        return 0;
1795                }
1796        }
1797        *slot = low;
1798        return 1;
1799}
1800
1801/*
1802 * simple bin_search frontend that does the right thing for
1803 * leaves vs nodes
1804 */
1805static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1806                      int level, int *slot)
1807{
1808        if (level == 0)
1809                return generic_bin_search(eb,
1810                                          offsetof(struct btrfs_leaf, items),
1811                                          sizeof(struct btrfs_item),
1812                                          key, btrfs_header_nritems(eb),
1813                                          slot);
1814        else
1815                return generic_bin_search(eb,
1816                                          offsetof(struct btrfs_node, ptrs),
1817                                          sizeof(struct btrfs_key_ptr),
1818                                          key, btrfs_header_nritems(eb),
1819                                          slot);
1820}
1821
1822int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1823                     int level, int *slot)
1824{
1825        return bin_search(eb, key, level, slot);
1826}
1827
1828static void root_add_used(struct btrfs_root *root, u32 size)
1829{
1830        spin_lock(&root->accounting_lock);
1831        btrfs_set_root_used(&root->root_item,
1832                            btrfs_root_used(&root->root_item) + size);
1833        spin_unlock(&root->accounting_lock);
1834}
1835
1836static void root_sub_used(struct btrfs_root *root, u32 size)
1837{
1838        spin_lock(&root->accounting_lock);
1839        btrfs_set_root_used(&root->root_item,
1840                            btrfs_root_used(&root->root_item) - size);
1841        spin_unlock(&root->accounting_lock);
1842}
1843
1844/* given a node and slot number, this reads the blocks it points to.  The
1845 * extent buffer is returned with a reference taken (but unlocked).
1846 */
1847static noinline struct extent_buffer *
1848read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1849               int slot)
1850{
1851        int level = btrfs_header_level(parent);
1852        struct extent_buffer *eb;
1853
1854        if (slot < 0 || slot >= btrfs_header_nritems(parent))
1855                return ERR_PTR(-ENOENT);
1856
1857        BUG_ON(level == 0);
1858
1859        eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1860                             btrfs_node_ptr_generation(parent, slot));
1861        if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1862                free_extent_buffer(eb);
1863                eb = ERR_PTR(-EIO);
1864        }
1865
1866        return eb;
1867}
1868
1869/*
1870 * node level balancing, used to make sure nodes are in proper order for
1871 * item deletion.  We balance from the top down, so we have to make sure
1872 * that a deletion won't leave an node completely empty later on.
1873 */
1874static noinline int balance_level(struct btrfs_trans_handle *trans,
1875                         struct btrfs_root *root,
1876                         struct btrfs_path *path, int level)
1877{
1878        struct btrfs_fs_info *fs_info = root->fs_info;
1879        struct extent_buffer *right = NULL;
1880        struct extent_buffer *mid;
1881        struct extent_buffer *left = NULL;
1882        struct extent_buffer *parent = NULL;
1883        int ret = 0;
1884        int wret;
1885        int pslot;
1886        int orig_slot = path->slots[level];
1887        u64 orig_ptr;
1888
1889        if (level == 0)
1890                return 0;
1891
1892        mid = path->nodes[level];
1893
1894        WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1895                path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1896        WARN_ON(btrfs_header_generation(mid) != trans->transid);
1897
1898        orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1899
1900        if (level < BTRFS_MAX_LEVEL - 1) {
1901                parent = path->nodes[level + 1];
1902                pslot = path->slots[level + 1];
1903        }
1904
1905        /*
1906         * deal with the case where there is only one pointer in the root
1907         * by promoting the node below to a root
1908         */
1909        if (!parent) {
1910                struct extent_buffer *child;
1911
1912                if (btrfs_header_nritems(mid) != 1)
1913                        return 0;
1914
1915                /* promote the child to a root */
1916                child = read_node_slot(fs_info, mid, 0);
1917                if (IS_ERR(child)) {
1918                        ret = PTR_ERR(child);
1919                        btrfs_handle_fs_error(fs_info, ret, NULL);
1920                        goto enospc;
1921                }
1922
1923                btrfs_tree_lock(child);
1924                btrfs_set_lock_blocking(child);
1925                ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1926                if (ret) {
1927                        btrfs_tree_unlock(child);
1928                        free_extent_buffer(child);
1929                        goto enospc;
1930                }
1931
1932                tree_mod_log_set_root_pointer(root, child, 1);
1933                rcu_assign_pointer(root->node, child);
1934
1935                add_root_to_dirty_list(root);
1936                btrfs_tree_unlock(child);
1937
1938                path->locks[level] = 0;
1939                path->nodes[level] = NULL;
1940                clean_tree_block(trans, fs_info, mid);
1941                btrfs_tree_unlock(mid);
1942                /* once for the path */
1943                free_extent_buffer(mid);
1944
1945                root_sub_used(root, mid->len);
1946                btrfs_free_tree_block(trans, root, mid, 0, 1);
1947                /* once for the root ptr */
1948                free_extent_buffer_stale(mid);
1949                return 0;
1950        }
1951        if (btrfs_header_nritems(mid) >
1952            BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1953                return 0;
1954
1955        left = read_node_slot(fs_info, parent, pslot - 1);
1956        if (IS_ERR(left))
1957                left = NULL;
1958
1959        if (left) {
1960                btrfs_tree_lock(left);
1961                btrfs_set_lock_blocking(left);
1962                wret = btrfs_cow_block(trans, root, left,
1963                                       parent, pslot - 1, &left);
1964                if (wret) {
1965                        ret = wret;
1966                        goto enospc;
1967                }
1968        }
1969
1970        right = read_node_slot(fs_info, parent, pslot + 1);
1971        if (IS_ERR(right))
1972                right = NULL;
1973
1974        if (right) {
1975                btrfs_tree_lock(right);
1976                btrfs_set_lock_blocking(right);
1977                wret = btrfs_cow_block(trans, root, right,
1978                                       parent, pslot + 1, &right);
1979                if (wret) {
1980                        ret = wret;
1981                        goto enospc;
1982                }
1983        }
1984
1985        /* first, try to make some room in the middle buffer */
1986        if (left) {
1987                orig_slot += btrfs_header_nritems(left);
1988                wret = push_node_left(trans, fs_info, left, mid, 1);
1989                if (wret < 0)
1990                        ret = wret;
1991        }
1992
1993        /*
1994         * then try to empty the right most buffer into the middle
1995         */
1996        if (right) {
1997                wret = push_node_left(trans, fs_info, mid, right, 1);
1998                if (wret < 0 && wret != -ENOSPC)
1999                        ret = wret;
2000                if (btrfs_header_nritems(right) == 0) {
2001                        clean_tree_block(trans, fs_info, right);
2002                        btrfs_tree_unlock(right);
2003                        del_ptr(root, path, level + 1, pslot + 1);
2004                        root_sub_used(root, right->len);
2005                        btrfs_free_tree_block(trans, root, right, 0, 1);
2006                        free_extent_buffer_stale(right);
2007                        right = NULL;
2008                } else {
2009                        struct btrfs_disk_key right_key;
2010                        btrfs_node_key(right, &right_key, 0);
2011                        tree_mod_log_set_node_key(fs_info, parent,
2012                                                  pslot + 1, 0);
2013                        btrfs_set_node_key(parent, &right_key, pslot + 1);
2014                        btrfs_mark_buffer_dirty(parent);
2015                }
2016        }
2017        if (btrfs_header_nritems(mid) == 1) {
2018                /*
2019                 * we're not allowed to leave a node with one item in the
2020                 * tree during a delete.  A deletion from lower in the tree
2021                 * could try to delete the only pointer in this node.
2022                 * So, pull some keys from the left.
2023                 * There has to be a left pointer at this point because
2024                 * otherwise we would have pulled some pointers from the
2025                 * right
2026                 */
2027                if (!left) {
2028                        ret = -EROFS;
2029                        btrfs_handle_fs_error(fs_info, ret, NULL);
2030                        goto enospc;
2031                }
2032                wret = balance_node_right(trans, fs_info, mid, left);
2033                if (wret < 0) {
2034                        ret = wret;
2035                        goto enospc;
2036                }
2037                if (wret == 1) {
2038                        wret = push_node_left(trans, fs_info, left, mid, 1);
2039                        if (wret < 0)
2040                                ret = wret;
2041                }
2042                BUG_ON(wret == 1);
2043        }
2044        if (btrfs_header_nritems(mid) == 0) {
2045                clean_tree_block(trans, fs_info, mid);
2046                btrfs_tree_unlock(mid);
2047                del_ptr(root, path, level + 1, pslot);
2048                root_sub_used(root, mid->len);
2049                btrfs_free_tree_block(trans, root, mid, 0, 1);
2050                free_extent_buffer_stale(mid);
2051                mid = NULL;
2052        } else {
2053                /* update the parent key to reflect our changes */
2054                struct btrfs_disk_key mid_key;
2055                btrfs_node_key(mid, &mid_key, 0);
2056                tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
2057                btrfs_set_node_key(parent, &mid_key, pslot);
2058                btrfs_mark_buffer_dirty(parent);
2059        }
2060
2061        /* update the path */
2062        if (left) {
2063                if (btrfs_header_nritems(left) > orig_slot) {
2064                        extent_buffer_get(left);
2065                        /* left was locked after cow */
2066                        path->nodes[level] = left;
2067                        path->slots[level + 1] -= 1;
2068                        path->slots[level] = orig_slot;
2069                        if (mid) {
2070                                btrfs_tree_unlock(mid);
2071                                free_extent_buffer(mid);
2072                        }
2073                } else {
2074                        orig_slot -= btrfs_header_nritems(left);
2075                        path->slots[level] = orig_slot;
2076                }
2077        }
2078        /* double check we haven't messed things up */
2079        if (orig_ptr !=
2080            btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2081                BUG();
2082enospc:
2083        if (right) {
2084                btrfs_tree_unlock(right);
2085                free_extent_buffer(right);
2086        }
2087        if (left) {
2088                if (path->nodes[level] != left)
2089                        btrfs_tree_unlock(left);
2090                free_extent_buffer(left);
2091        }
2092        return ret;
2093}
2094
2095/* Node balancing for insertion.  Here we only split or push nodes around
2096 * when they are completely full.  This is also done top down, so we
2097 * have to be pessimistic.
2098 */
2099static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2100                                          struct btrfs_root *root,
2101                                          struct btrfs_path *path, int level)
2102{
2103        struct btrfs_fs_info *fs_info = root->fs_info;
2104        struct extent_buffer *right = NULL;
2105        struct extent_buffer *mid;
2106        struct extent_buffer *left = NULL;
2107        struct extent_buffer *parent = NULL;
2108        int ret = 0;
2109        int wret;
2110        int pslot;
2111        int orig_slot = path->slots[level];
2112
2113        if (level == 0)
2114                return 1;
2115
2116        mid = path->nodes[level];
2117        WARN_ON(btrfs_header_generation(mid) != trans->transid);
2118
2119        if (level < BTRFS_MAX_LEVEL - 1) {
2120                parent = path->nodes[level + 1];
2121                pslot = path->slots[level + 1];
2122        }
2123
2124        if (!parent)
2125                return 1;
2126
2127        left = read_node_slot(fs_info, parent, pslot - 1);
2128        if (IS_ERR(left))
2129                left = NULL;
2130
2131        /* first, try to make some room in the middle buffer */
2132        if (left) {
2133                u32 left_nr;
2134
2135                btrfs_tree_lock(left);
2136                btrfs_set_lock_blocking(left);
2137
2138                left_nr = btrfs_header_nritems(left);
2139                if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2140                        wret = 1;
2141                } else {
2142                        ret = btrfs_cow_block(trans, root, left, parent,
2143                                              pslot - 1, &left);
2144                        if (ret)
2145                                wret = 1;
2146                        else {
2147                                wret = push_node_left(trans, fs_info,
2148                                                      left, mid, 0);
2149                        }
2150                }
2151                if (wret < 0)
2152                        ret = wret;
2153                if (wret == 0) {
2154                        struct btrfs_disk_key disk_key;
2155                        orig_slot += left_nr;
2156                        btrfs_node_key(mid, &disk_key, 0);
2157                        tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
2158                        btrfs_set_node_key(parent, &disk_key, pslot);
2159                        btrfs_mark_buffer_dirty(parent);
2160                        if (btrfs_header_nritems(left) > orig_slot) {
2161                                path->nodes[level] = left;
2162                                path->slots[level + 1] -= 1;
2163                                path->slots[level] = orig_slot;
2164                                btrfs_tree_unlock(mid);
2165                                free_extent_buffer(mid);
2166                        } else {
2167                                orig_slot -=
2168                                        btrfs_header_nritems(left);
2169                                path->slots[level] = orig_slot;
2170                                btrfs_tree_unlock(left);
2171                                free_extent_buffer(left);
2172                        }
2173                        return 0;
2174                }
2175                btrfs_tree_unlock(left);
2176                free_extent_buffer(left);
2177        }
2178        right = read_node_slot(fs_info, parent, pslot + 1);
2179        if (IS_ERR(right))
2180                right = NULL;
2181
2182        /*
2183         * then try to empty the right most buffer into the middle
2184         */
2185        if (right) {
2186                u32 right_nr;
2187
2188                btrfs_tree_lock(right);
2189                btrfs_set_lock_blocking(right);
2190
2191                right_nr = btrfs_header_nritems(right);
2192                if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2193                        wret = 1;
2194                } else {
2195                        ret = btrfs_cow_block(trans, root, right,
2196                                              parent, pslot + 1,
2197                                              &right);
2198                        if (ret)
2199                                wret = 1;
2200                        else {
2201                                wret = balance_node_right(trans, fs_info,
2202                                                          right, mid);
2203                        }
2204                }
2205                if (wret < 0)
2206                        ret = wret;
2207                if (wret == 0) {
2208                        struct btrfs_disk_key disk_key;
2209
2210                        btrfs_node_key(right, &disk_key, 0);
2211                        tree_mod_log_set_node_key(fs_info, parent,
2212                                                  pslot + 1, 0);
2213                        btrfs_set_node_key(parent, &disk_key, pslot + 1);
2214                        btrfs_mark_buffer_dirty(parent);
2215
2216                        if (btrfs_header_nritems(mid) <= orig_slot) {
2217                                path->nodes[level] = right;
2218                                path->slots[level + 1] += 1;
2219                                path->slots[level] = orig_slot -
2220                                        btrfs_header_nritems(mid);
2221                                btrfs_tree_unlock(mid);
2222                                free_extent_buffer(mid);
2223                        } else {
2224                                btrfs_tree_unlock(right);
2225                                free_extent_buffer(right);
2226                        }
2227                        return 0;
2228                }
2229                btrfs_tree_unlock(right);
2230                free_extent_buffer(right);
2231        }
2232        return 1;
2233}
2234
2235/*
2236 * readahead one full node of leaves, finding things that are close
2237 * to the block in 'slot', and triggering ra on them.
2238 */
2239static void reada_for_search(struct btrfs_fs_info *fs_info,
2240                             struct btrfs_path *path,
2241                             int level, int slot, u64 objectid)
2242{
2243        struct extent_buffer *node;
2244        struct btrfs_disk_key disk_key;
2245        u32 nritems;
2246        u64 search;
2247        u64 target;
2248        u64 nread = 0;
2249        struct extent_buffer *eb;
2250        u32 nr;
2251        u32 blocksize;
2252        u32 nscan = 0;
2253
2254        if (level != 1)
2255                return;
2256
2257        if (!path->nodes[level])
2258                return;
2259
2260        node = path->nodes[level];
2261
2262        search = btrfs_node_blockptr(node, slot);
2263        blocksize = fs_info->nodesize;
2264        eb = find_extent_buffer(fs_info, search);
2265        if (eb) {
2266                free_extent_buffer(eb);
2267                return;
2268        }
2269
2270        target = search;
2271
2272        nritems = btrfs_header_nritems(node);
2273        nr = slot;
2274
2275        while (1) {
2276                if (path->reada == READA_BACK) {
2277                        if (nr == 0)
2278                                break;
2279                        nr--;
2280                } else if (path->reada == READA_FORWARD) {
2281                        nr++;
2282                        if (nr >= nritems)
2283                                break;
2284                }
2285                if (path->reada == READA_BACK && objectid) {
2286                        btrfs_node_key(node, &disk_key, nr);
2287                        if (btrfs_disk_key_objectid(&disk_key) != objectid)
2288                                break;
2289                }
2290                search = btrfs_node_blockptr(node, nr);
2291                if ((search <= target && target - search <= 65536) ||
2292                    (search > target && search - target <= 65536)) {
2293                        readahead_tree_block(fs_info, search);
2294                        nread += blocksize;
2295                }
2296                nscan++;
2297                if ((nread > 65536 || nscan > 32))
2298                        break;
2299        }
2300}
2301
2302static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2303                                       struct btrfs_path *path, int level)
2304{
2305        int slot;
2306        int nritems;
2307        struct extent_buffer *parent;
2308        struct extent_buffer *eb;
2309        u64 gen;
2310        u64 block1 = 0;
2311        u64 block2 = 0;
2312
2313        parent = path->nodes[level + 1];
2314        if (!parent)
2315                return;
2316
2317        nritems = btrfs_header_nritems(parent);
2318        slot = path->slots[level + 1];
2319
2320        if (slot > 0) {
2321                block1 = btrfs_node_blockptr(parent, slot - 1);
2322                gen = btrfs_node_ptr_generation(parent, slot - 1);
2323                eb = find_extent_buffer(fs_info, block1);
2324                /*
2325                 * if we get -eagain from btrfs_buffer_uptodate, we
2326                 * don't want to return eagain here.  That will loop
2327                 * forever
2328                 */
2329                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2330                        block1 = 0;
2331                free_extent_buffer(eb);
2332        }
2333        if (slot + 1 < nritems) {
2334                block2 = btrfs_node_blockptr(parent, slot + 1);
2335                gen = btrfs_node_ptr_generation(parent, slot + 1);
2336                eb = find_extent_buffer(fs_info, block2);
2337                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2338                        block2 = 0;
2339                free_extent_buffer(eb);
2340        }
2341
2342        if (block1)
2343                readahead_tree_block(fs_info, block1);
2344        if (block2)
2345                readahead_tree_block(fs_info, block2);
2346}
2347
2348
2349/*
2350 * when we walk down the tree, it is usually safe to unlock the higher layers
2351 * in the tree.  The exceptions are when our path goes through slot 0, because
2352 * operations on the tree might require changing key pointers higher up in the
2353 * tree.
2354 *
2355 * callers might also have set path->keep_locks, which tells this code to keep
2356 * the lock if the path points to the last slot in the block.  This is part of
2357 * walking through the tree, and selecting the next slot in the higher block.
2358 *
2359 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2360 * if lowest_unlock is 1, level 0 won't be unlocked
2361 */
2362static noinline void unlock_up(struct btrfs_path *path, int level,
2363                               int lowest_unlock, int min_write_lock_level,
2364                               int *write_lock_level)
2365{
2366        int i;
2367        int skip_level = level;
2368        int no_skips = 0;
2369        struct extent_buffer *t;
2370
2371        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2372                if (!path->nodes[i])
2373                        break;
2374                if (!path->locks[i])
2375                        break;
2376                if (!no_skips && path->slots[i] == 0) {
2377                        skip_level = i + 1;
2378                        continue;
2379                }
2380                if (!no_skips && path->keep_locks) {
2381                        u32 nritems;
2382                        t = path->nodes[i];
2383                        nritems = btrfs_header_nritems(t);
2384                        if (nritems < 1 || path->slots[i] >= nritems - 1) {
2385                                skip_level = i + 1;
2386                                continue;
2387                        }
2388                }
2389                if (skip_level < i && i >= lowest_unlock)
2390                        no_skips = 1;
2391
2392                t = path->nodes[i];
2393                if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2394                        btrfs_tree_unlock_rw(t, path->locks[i]);
2395                        path->locks[i] = 0;
2396                        if (write_lock_level &&
2397                            i > min_write_lock_level &&
2398                            i <= *write_lock_level) {
2399                                *write_lock_level = i - 1;
2400                        }
2401                }
2402        }
2403}
2404
2405/*
2406 * This releases any locks held in the path starting at level and
2407 * going all the way up to the root.
2408 *
2409 * btrfs_search_slot will keep the lock held on higher nodes in a few
2410 * corner cases, such as COW of the block at slot zero in the node.  This
2411 * ignores those rules, and it should only be called when there are no
2412 * more updates to be done higher up in the tree.
2413 */
2414noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2415{
2416        int i;
2417
2418        if (path->keep_locks)
2419                return;
2420
2421        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2422                if (!path->nodes[i])
2423                        continue;
2424                if (!path->locks[i])
2425                        continue;
2426                btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2427                path->locks[i] = 0;
2428        }
2429}
2430
2431/*
2432 * helper function for btrfs_search_slot.  The goal is to find a block
2433 * in cache without setting the path to blocking.  If we find the block
2434 * we return zero and the path is unchanged.
2435 *
2436 * If we can't find the block, we set the path blocking and do some
2437 * reada.  -EAGAIN is returned and the search must be repeated.
2438 */
2439static int
2440read_block_for_search(struct btrfs_trans_handle *trans,
2441                       struct btrfs_root *root, struct btrfs_path *p,
2442                       struct extent_buffer **eb_ret, int level, int slot,
2443                       struct btrfs_key *key, u64 time_seq)
2444{
2445        struct btrfs_fs_info *fs_info = root->fs_info;
2446        u64 blocknr;
2447        u64 gen;
2448        struct extent_buffer *b = *eb_ret;
2449        struct extent_buffer *tmp;
2450        int ret;
2451
2452        blocknr = btrfs_node_blockptr(b, slot);
2453        gen = btrfs_node_ptr_generation(b, slot);
2454
2455        tmp = find_extent_buffer(fs_info, blocknr);
2456        if (tmp) {
2457                /* first we do an atomic uptodate check */
2458                if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2459                        *eb_ret = tmp;
2460                        return 0;
2461                }
2462
2463                /* the pages were up to date, but we failed
2464                 * the generation number check.  Do a full
2465                 * read for the generation number that is correct.
2466                 * We must do this without dropping locks so
2467                 * we can trust our generation number
2468                 */
2469                btrfs_set_path_blocking(p);
2470
2471                /* now we're allowed to do a blocking uptodate check */
2472                ret = btrfs_read_buffer(tmp, gen);
2473                if (!ret) {
2474                        *eb_ret = tmp;
2475                        return 0;
2476                }
2477                free_extent_buffer(tmp);
2478                btrfs_release_path(p);
2479                return -EIO;
2480        }
2481
2482        /*
2483         * reduce lock contention at high levels
2484         * of the btree by dropping locks before
2485         * we read.  Don't release the lock on the current
2486         * level because we need to walk this node to figure
2487         * out which blocks to read.
2488         */
2489        btrfs_unlock_up_safe(p, level + 1);
2490        btrfs_set_path_blocking(p);
2491
2492        free_extent_buffer(tmp);
2493        if (p->reada != READA_NONE)
2494                reada_for_search(fs_info, p, level, slot, key->objectid);
2495
2496        btrfs_release_path(p);
2497
2498        ret = -EAGAIN;
2499        tmp = read_tree_block(fs_info, blocknr, 0);
2500        if (!IS_ERR(tmp)) {
2501                /*
2502                 * If the read above didn't mark this buffer up to date,
2503                 * it will never end up being up to date.  Set ret to EIO now
2504                 * and give up so that our caller doesn't loop forever
2505                 * on our EAGAINs.
2506                 */
2507                if (!btrfs_buffer_uptodate(tmp, 0, 0))
2508                        ret = -EIO;
2509                free_extent_buffer(tmp);
2510        } else {
2511                ret = PTR_ERR(tmp);
2512        }
2513        return ret;
2514}
2515
2516/*
2517 * helper function for btrfs_search_slot.  This does all of the checks
2518 * for node-level blocks and does any balancing required based on
2519 * the ins_len.
2520 *
2521 * If no extra work was required, zero is returned.  If we had to
2522 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2523 * start over
2524 */
2525static int
2526setup_nodes_for_search(struct btrfs_trans_handle *trans,
2527                       struct btrfs_root *root, struct btrfs_path *p,
2528                       struct extent_buffer *b, int level, int ins_len,
2529                       int *write_lock_level)
2530{
2531        struct btrfs_fs_info *fs_info = root->fs_info;
2532        int ret;
2533
2534        if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2535            BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2536                int sret;
2537
2538                if (*write_lock_level < level + 1) {
2539                        *write_lock_level = level + 1;
2540                        btrfs_release_path(p);
2541                        goto again;
2542                }
2543
2544                btrfs_set_path_blocking(p);
2545                reada_for_balance(fs_info, p, level);
2546                sret = split_node(trans, root, p, level);
2547                btrfs_clear_path_blocking(p, NULL, 0);
2548
2549                BUG_ON(sret > 0);
2550                if (sret) {
2551                        ret = sret;
2552                        goto done;
2553                }
2554                b = p->nodes[level];
2555        } else if (ins_len < 0 && btrfs_header_nritems(b) <
2556                   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2557                int sret;
2558
2559                if (*write_lock_level < level + 1) {
2560                        *write_lock_level = level + 1;
2561                        btrfs_release_path(p);
2562                        goto again;
2563                }
2564
2565                btrfs_set_path_blocking(p);
2566                reada_for_balance(fs_info, p, level);
2567                sret = balance_level(trans, root, p, level);
2568                btrfs_clear_path_blocking(p, NULL, 0);
2569
2570                if (sret) {
2571                        ret = sret;
2572                        goto done;
2573                }
2574                b = p->nodes[level];
2575                if (!b) {
2576                        btrfs_release_path(p);
2577                        goto again;
2578                }
2579                BUG_ON(btrfs_header_nritems(b) == 1);
2580        }
2581        return 0;
2582
2583again:
2584        ret = -EAGAIN;
2585done:
2586        return ret;
2587}
2588
2589static void key_search_validate(struct extent_buffer *b,
2590                                struct btrfs_key *key,
2591                                int level)
2592{
2593#ifdef CONFIG_BTRFS_ASSERT
2594        struct btrfs_disk_key disk_key;
2595
2596        btrfs_cpu_key_to_disk(&disk_key, key);
2597
2598        if (level == 0)
2599                ASSERT(!memcmp_extent_buffer(b, &disk_key,
2600                    offsetof(struct btrfs_leaf, items[0].key),
2601                    sizeof(disk_key)));
2602        else
2603                ASSERT(!memcmp_extent_buffer(b, &disk_key,
2604                    offsetof(struct btrfs_node, ptrs[0].key),
2605                    sizeof(disk_key)));
2606#endif
2607}
2608
2609static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2610                      int level, int *prev_cmp, int *slot)
2611{
2612        if (*prev_cmp != 0) {
2613                *prev_cmp = bin_search(b, key, level, slot);
2614                return *prev_cmp;
2615        }
2616
2617        key_search_validate(b, key, level);
2618        *slot = 0;
2619
2620        return 0;
2621}
2622
2623int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2624                u64 iobjectid, u64 ioff, u8 key_type,
2625                struct btrfs_key *found_key)
2626{
2627        int ret;
2628        struct btrfs_key key;
2629        struct extent_buffer *eb;
2630
2631        ASSERT(path);
2632        ASSERT(found_key);
2633
2634        key.type = key_type;
2635        key.objectid = iobjectid;
2636        key.offset = ioff;
2637
2638        ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2639        if (ret < 0)
2640                return ret;
2641
2642        eb = path->nodes[0];
2643        if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2644                ret = btrfs_next_leaf(fs_root, path);
2645                if (ret)
2646                        return ret;
2647                eb = path->nodes[0];
2648        }
2649
2650        btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2651        if (found_key->type != key.type ||
2652                        found_key->objectid != key.objectid)
2653                return 1;
2654
2655        return 0;
2656}
2657
2658/*
2659 * look for key in the tree.  path is filled in with nodes along the way
2660 * if key is found, we return zero and you can find the item in the leaf
2661 * level of the path (level 0)
2662 *
2663 * If the key isn't found, the path points to the slot where it should
2664 * be inserted, and 1 is returned.  If there are other errors during the
2665 * search a negative error number is returned.
2666 *
2667 * if ins_len > 0, nodes and leaves will be split as we walk down the
2668 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2669 * possible)
2670 */
2671int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2672                      *root, struct btrfs_key *key, struct btrfs_path *p, int
2673                      ins_len, int cow)
2674{
2675        struct btrfs_fs_info *fs_info = root->fs_info;
2676        struct extent_buffer *b;
2677        int slot;
2678        int ret;
2679        int err;
2680        int level;
2681        int lowest_unlock = 1;
2682        int root_lock;
2683        /* everything at write_lock_level or lower must be write locked */
2684        int write_lock_level = 0;
2685        u8 lowest_level = 0;
2686        int min_write_lock_level;
2687        int prev_cmp;
2688
2689        lowest_level = p->lowest_level;
2690        WARN_ON(lowest_level && ins_len > 0);
2691        WARN_ON(p->nodes[0] != NULL);
2692        BUG_ON(!cow && ins_len);
2693
2694        if (ins_len < 0) {
2695                lowest_unlock = 2;
2696
2697                /* when we are removing items, we might have to go up to level
2698                 * two as we update tree pointers  Make sure we keep write
2699                 * for those levels as well
2700                 */
2701                write_lock_level = 2;
2702        } else if (ins_len > 0) {
2703                /*
2704                 * for inserting items, make sure we have a write lock on
2705                 * level 1 so we can update keys
2706                 */
2707                write_lock_level = 1;
2708        }
2709
2710        if (!cow)
2711                write_lock_level = -1;
2712
2713        if (cow && (p->keep_locks || p->lowest_level))
2714                write_lock_level = BTRFS_MAX_LEVEL;
2715
2716        min_write_lock_level = write_lock_level;
2717
2718again:
2719        prev_cmp = -1;
2720        /*
2721         * we try very hard to do read locks on the root
2722         */
2723        root_lock = BTRFS_READ_LOCK;
2724        level = 0;
2725        if (p->search_commit_root) {
2726                /*
2727                 * the commit roots are read only
2728                 * so we always do read locks
2729                 */
2730                if (p->need_commit_sem)
2731                        down_read(&fs_info->commit_root_sem);
2732                b = root->commit_root;
2733                extent_buffer_get(b);
2734                level = btrfs_header_level(b);
2735                if (p->need_commit_sem)
2736                        up_read(&fs_info->commit_root_sem);
2737                if (!p->skip_locking)
2738                        btrfs_tree_read_lock(b);
2739        } else {
2740                if (p->skip_locking) {
2741                        b = btrfs_root_node(root);
2742                        level = btrfs_header_level(b);
2743                } else {
2744                        /* we don't know the level of the root node
2745                         * until we actually have it read locked
2746                         */
2747                        b = btrfs_read_lock_root_node(root);
2748                        level = btrfs_header_level(b);
2749                        if (level <= write_lock_level) {
2750                                /* whoops, must trade for write lock */
2751                                btrfs_tree_read_unlock(b);
2752                                free_extent_buffer(b);
2753                                b = btrfs_lock_root_node(root);
2754                                root_lock = BTRFS_WRITE_LOCK;
2755
2756                                /* the level might have changed, check again */
2757                                level = btrfs_header_level(b);
2758                        }
2759                }
2760        }
2761        p->nodes[level] = b;
2762        if (!p->skip_locking)
2763                p->locks[level] = root_lock;
2764
2765        while (b) {
2766                level = btrfs_header_level(b);
2767
2768                /*
2769                 * setup the path here so we can release it under lock
2770                 * contention with the cow code
2771                 */
2772                if (cow) {
2773                        /*
2774                         * if we don't really need to cow this block
2775                         * then we don't want to set the path blocking,
2776                         * so we test it here
2777                         */
2778                        if (!should_cow_block(trans, root, b)) {
2779                                trans->dirty = true;
2780                                goto cow_done;
2781                        }
2782
2783                        /*
2784                         * must have write locks on this node and the
2785                         * parent
2786                         */
2787                        if (level > write_lock_level ||
2788                            (level + 1 > write_lock_level &&
2789                            level + 1 < BTRFS_MAX_LEVEL &&
2790                            p->nodes[level + 1])) {
2791                                write_lock_level = level + 1;
2792                                btrfs_release_path(p);
2793                                goto again;
2794                        }
2795
2796                        btrfs_set_path_blocking(p);
2797                        err = btrfs_cow_block(trans, root, b,
2798                                              p->nodes[level + 1],
2799                                              p->slots[level + 1], &b);
2800                        if (err) {
2801                                ret = err;
2802                                goto done;
2803                        }
2804                }
2805cow_done:
2806                p->nodes[level] = b;
2807                btrfs_clear_path_blocking(p, NULL, 0);
2808
2809                /*
2810                 * we have a lock on b and as long as we aren't changing
2811                 * the tree, there is no way to for the items in b to change.
2812                 * It is safe to drop the lock on our parent before we
2813                 * go through the expensive btree search on b.
2814                 *
2815                 * If we're inserting or deleting (ins_len != 0), then we might
2816                 * be changing slot zero, which may require changing the parent.
2817                 * So, we can't drop the lock until after we know which slot
2818                 * we're operating on.
2819                 */
2820                if (!ins_len && !p->keep_locks) {
2821                        int u = level + 1;
2822
2823                        if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2824                                btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2825                                p->locks[u] = 0;
2826                        }
2827                }
2828
2829                ret = key_search(b, key, level, &prev_cmp, &slot);
2830                if (ret < 0)
2831                        goto done;
2832
2833                if (level != 0) {
2834                        int dec = 0;
2835                        if (ret && slot > 0) {
2836                                dec = 1;
2837                                slot -= 1;
2838                        }
2839                        p->slots[level] = slot;
2840                        err = setup_nodes_for_search(trans, root, p, b, level,
2841                                             ins_len, &write_lock_level);
2842                        if (err == -EAGAIN)
2843                                goto again;
2844                        if (err) {
2845                                ret = err;
2846                                goto done;
2847                        }
2848                        b = p->nodes[level];
2849                        slot = p->slots[level];
2850
2851                        /*
2852                         * slot 0 is special, if we change the key
2853                         * we have to update the parent pointer
2854                         * which means we must have a write lock
2855                         * on the parent
2856                         */
2857                        if (slot == 0 && ins_len &&
2858                            write_lock_level < level + 1) {
2859                                write_lock_level = level + 1;
2860                                btrfs_release_path(p);
2861                                goto again;
2862                        }
2863
2864                        unlock_up(p, level, lowest_unlock,
2865                                  min_write_lock_level, &write_lock_level);
2866
2867                        if (level == lowest_level) {
2868                                if (dec)
2869                                        p->slots[level]++;
2870                                goto done;
2871                        }
2872
2873                        err = read_block_for_search(trans, root, p,
2874                                                    &b, level, slot, key, 0);
2875                        if (err == -EAGAIN)
2876                                goto again;
2877                        if (err) {
2878                                ret = err;
2879                                goto done;
2880                        }
2881
2882                        if (!p->skip_locking) {
2883                                level = btrfs_header_level(b);
2884                                if (level <= write_lock_level) {
2885                                        err = btrfs_try_tree_write_lock(b);
2886                                        if (!err) {
2887                                                btrfs_set_path_blocking(p);
2888                                                btrfs_tree_lock(b);
2889                                                btrfs_clear_path_blocking(p, b,
2890                                                                  BTRFS_WRITE_LOCK);
2891                                        }
2892                                        p->locks[level] = BTRFS_WRITE_LOCK;
2893                                } else {
2894                                        err = btrfs_tree_read_lock_atomic(b);
2895                                        if (!err) {
2896                                                btrfs_set_path_blocking(p);
2897                                                btrfs_tree_read_lock(b);
2898                                                btrfs_clear_path_blocking(p, b,
2899                                                                  BTRFS_READ_LOCK);
2900                                        }
2901                                        p->locks[level] = BTRFS_READ_LOCK;
2902                                }
2903                                p->nodes[level] = b;
2904                        }
2905                } else {
2906                        p->slots[level] = slot;
2907                        if (ins_len > 0 &&
2908                            btrfs_leaf_free_space(fs_info, b) < ins_len) {
2909                                if (write_lock_level < 1) {
2910                                        write_lock_level = 1;
2911                                        btrfs_release_path(p);
2912                                        goto again;
2913                                }
2914
2915                                btrfs_set_path_blocking(p);
2916                                err = split_leaf(trans, root, key,
2917                                                 p, ins_len, ret == 0);
2918                                btrfs_clear_path_blocking(p, NULL, 0);
2919
2920                                BUG_ON(err > 0);
2921                                if (err) {
2922                                        ret = err;
2923                                        goto done;
2924                                }
2925                        }
2926                        if (!p->search_for_split)
2927                                unlock_up(p, level, lowest_unlock,
2928                                          min_write_lock_level, &write_lock_level);
2929                        goto done;
2930                }
2931        }
2932        ret = 1;
2933done:
2934        /*
2935         * we don't really know what they plan on doing with the path
2936         * from here on, so for now just mark it as blocking
2937         */
2938        if (!p->leave_spinning)
2939                btrfs_set_path_blocking(p);
2940        if (ret < 0 && !p->skip_release_on_error)
2941                btrfs_release_path(p);
2942        return ret;
2943}
2944
2945/*
2946 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2947 * current state of the tree together with the operations recorded in the tree
2948 * modification log to search for the key in a previous version of this tree, as
2949 * denoted by the time_seq parameter.
2950 *
2951 * Naturally, there is no support for insert, delete or cow operations.
2952 *
2953 * The resulting path and return value will be set up as if we called
2954 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2955 */
2956int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2957                          struct btrfs_path *p, u64 time_seq)
2958{
2959        struct btrfs_fs_info *fs_info = root->fs_info;
2960        struct extent_buffer *b;
2961        int slot;
2962        int ret;
2963        int err;
2964        int level;
2965        int lowest_unlock = 1;
2966        u8 lowest_level = 0;
2967        int prev_cmp = -1;
2968
2969        lowest_level = p->lowest_level;
2970        WARN_ON(p->nodes[0] != NULL);
2971
2972        if (p->search_commit_root) {
2973                BUG_ON(time_seq);
2974                return btrfs_search_slot(NULL, root, key, p, 0, 0);
2975        }
2976
2977again:
2978        b = get_old_root(root, time_seq);
2979        level = btrfs_header_level(b);
2980        p->locks[level] = BTRFS_READ_LOCK;
2981
2982        while (b) {
2983                level = btrfs_header_level(b);
2984                p->nodes[level] = b;
2985                btrfs_clear_path_blocking(p, NULL, 0);
2986
2987                /*
2988                 * we have a lock on b and as long as we aren't changing
2989                 * the tree, there is no way to for the items in b to change.
2990                 * It is safe to drop the lock on our parent before we
2991                 * go through the expensive btree search on b.
2992                 */
2993                btrfs_unlock_up_safe(p, level + 1);
2994
2995                /*
2996                 * Since we can unwind ebs we want to do a real search every
2997                 * time.
2998                 */
2999                prev_cmp = -1;
3000                ret = key_search(b, key, level, &prev_cmp, &slot);
3001
3002                if (level != 0) {
3003                        int dec = 0;
3004                        if (ret && slot > 0) {
3005                                dec = 1;
3006                                slot -= 1;
3007                        }
3008                        p->slots[level] = slot;
3009                        unlock_up(p, level, lowest_unlock, 0, NULL);
3010
3011                        if (level == lowest_level) {
3012                                if (dec)
3013                                        p->slots[level]++;
3014                                goto done;
3015                        }
3016
3017                        err = read_block_for_search(NULL, root, p, &b, level,
3018                                                    slot, key, time_seq);
3019                        if (err == -EAGAIN)
3020                                goto again;
3021                        if (err) {
3022                                ret = err;
3023                                goto done;
3024                        }
3025
3026                        level = btrfs_header_level(b);
3027                        err = btrfs_tree_read_lock_atomic(b);
3028                        if (!err) {
3029                                btrfs_set_path_blocking(p);
3030                                btrfs_tree_read_lock(b);
3031                                btrfs_clear_path_blocking(p, b,
3032                                                          BTRFS_READ_LOCK);
3033                        }
3034                        b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3035                        if (!b) {
3036                                ret = -ENOMEM;
3037                                goto done;
3038                        }
3039                        p->locks[level] = BTRFS_READ_LOCK;
3040                        p->nodes[level] = b;
3041                } else {
3042                        p->slots[level] = slot;
3043                        unlock_up(p, level, lowest_unlock, 0, NULL);
3044                        goto done;
3045                }
3046        }
3047        ret = 1;
3048done:
3049        if (!p->leave_spinning)
3050                btrfs_set_path_blocking(p);
3051        if (ret < 0)
3052                btrfs_release_path(p);
3053
3054        return ret;
3055}
3056
3057/*
3058 * helper to use instead of search slot if no exact match is needed but
3059 * instead the next or previous item should be returned.
3060 * When find_higher is true, the next higher item is returned, the next lower
3061 * otherwise.
3062 * When return_any and find_higher are both true, and no higher item is found,
3063 * return the next lower instead.
3064 * When return_any is true and find_higher is false, and no lower item is found,
3065 * return the next higher instead.
3066 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3067 * < 0 on error
3068 */
3069int btrfs_search_slot_for_read(struct btrfs_root *root,
3070                               struct btrfs_key *key, struct btrfs_path *p,
3071                               int find_higher, int return_any)
3072{
3073        int ret;
3074        struct extent_buffer *leaf;
3075
3076again:
3077        ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3078        if (ret <= 0)
3079                return ret;
3080        /*
3081         * a return value of 1 means the path is at the position where the
3082         * item should be inserted. Normally this is the next bigger item,
3083         * but in case the previous item is the last in a leaf, path points
3084         * to the first free slot in the previous leaf, i.e. at an invalid
3085         * item.
3086         */
3087        leaf = p->nodes[0];
3088
3089        if (find_higher) {
3090                if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3091                        ret = btrfs_next_leaf(root, p);
3092                        if (ret <= 0)
3093                                return ret;
3094                        if (!return_any)
3095                                return 1;
3096                        /*
3097                         * no higher item found, return the next
3098                         * lower instead
3099                         */
3100                        return_any = 0;
3101                        find_higher = 0;
3102                        btrfs_release_path(p);
3103                        goto again;
3104                }
3105        } else {
3106                if (p->slots[0] == 0) {
3107                        ret = btrfs_prev_leaf(root, p);
3108                        if (ret < 0)
3109                                return ret;
3110                        if (!ret) {
3111                                leaf = p->nodes[0];
3112                                if (p->slots[0] == btrfs_header_nritems(leaf))
3113                                        p->slots[0]--;
3114                                return 0;
3115                        }
3116                        if (!return_any)
3117                                return 1;
3118                        /*
3119                         * no lower item found, return the next
3120                         * higher instead
3121                         */
3122                        return_any = 0;
3123                        find_higher = 1;
3124                        btrfs_release_path(p);
3125                        goto again;
3126                } else {
3127                        --p->slots[0];
3128                }
3129        }
3130        return 0;
3131}
3132
3133/*
3134 * adjust the pointers going up the tree, starting at level
3135 * making sure the right key of each node is points to 'key'.
3136 * This is used after shifting pointers to the left, so it stops
3137 * fixing up pointers when a given leaf/node is not in slot 0 of the
3138 * higher levels
3139 *
3140 */
3141static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3142                           struct btrfs_path *path,
3143                           struct btrfs_disk_key *key, int level)
3144{
3145        int i;
3146        struct extent_buffer *t;
3147
3148        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3149                int tslot = path->slots[i];
3150                if (!path->nodes[i])
3151                        break;
3152                t = path->nodes[i];
3153                tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3154                btrfs_set_node_key(t, key, tslot);
3155                btrfs_mark_buffer_dirty(path->nodes[i]);
3156                if (tslot != 0)
3157                        break;
3158        }
3159}
3160
3161/*
3162 * update item key.
3163 *
3164 * This function isn't completely safe. It's the caller's responsibility
3165 * that the new key won't break the order
3166 */
3167void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3168                             struct btrfs_path *path,
3169                             struct btrfs_key *new_key)
3170{
3171        struct btrfs_disk_key disk_key;
3172        struct extent_buffer *eb;
3173        int slot;
3174
3175        eb = path->nodes[0];
3176        slot = path->slots[0];
3177        if (slot > 0) {
3178                btrfs_item_key(eb, &disk_key, slot - 1);
3179                BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3180        }
3181        if (slot < btrfs_header_nritems(eb) - 1) {
3182                btrfs_item_key(eb, &disk_key, slot + 1);
3183                BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3184        }
3185
3186        btrfs_cpu_key_to_disk(&disk_key, new_key);
3187        btrfs_set_item_key(eb, &disk_key, slot);
3188        btrfs_mark_buffer_dirty(eb);
3189        if (slot == 0)
3190                fixup_low_keys(fs_info, path, &disk_key, 1);
3191}
3192
3193/*
3194 * try to push data from one node into the next node left in the
3195 * tree.
3196 *
3197 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3198 * error, and > 0 if there was no room in the left hand block.
3199 */
3200static int push_node_left(struct btrfs_trans_handle *trans,
3201                          struct btrfs_fs_info *fs_info,
3202                          struct extent_buffer *dst,
3203                          struct extent_buffer *src, int empty)
3204{
3205        int push_items = 0;
3206        int src_nritems;
3207        int dst_nritems;
3208        int ret = 0;
3209
3210        src_nritems = btrfs_header_nritems(src);
3211        dst_nritems = btrfs_header_nritems(dst);
3212        push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3213        WARN_ON(btrfs_header_generation(src) != trans->transid);
3214        WARN_ON(btrfs_header_generation(dst) != trans->transid);
3215
3216        if (!empty && src_nritems <= 8)
3217                return 1;
3218
3219        if (push_items <= 0)
3220                return 1;
3221
3222        if (empty) {
3223                push_items = min(src_nritems, push_items);
3224                if (push_items < src_nritems) {
3225                        /* leave at least 8 pointers in the node if
3226                         * we aren't going to empty it
3227                         */
3228                        if (src_nritems - push_items < 8) {
3229                                if (push_items <= 8)
3230                                        return 1;
3231                                push_items -= 8;
3232                        }
3233                }
3234        } else
3235                push_items = min(src_nritems - 8, push_items);
3236
3237        ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3238                                   push_items);
3239        if (ret) {
3240                btrfs_abort_transaction(trans, ret);
3241                return ret;
3242        }
3243        copy_extent_buffer(dst, src,
3244                           btrfs_node_key_ptr_offset(dst_nritems),
3245                           btrfs_node_key_ptr_offset(0),
3246                           push_items * sizeof(struct btrfs_key_ptr));
3247
3248        if (push_items < src_nritems) {
3249                /*
3250                 * don't call tree_mod_log_eb_move here, key removal was already
3251                 * fully logged by tree_mod_log_eb_copy above.
3252                 */
3253                memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3254                                      btrfs_node_key_ptr_offset(push_items),
3255                                      (src_nritems - push_items) *
3256                                      sizeof(struct btrfs_key_ptr));
3257        }
3258        btrfs_set_header_nritems(src, src_nritems - push_items);
3259        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3260        btrfs_mark_buffer_dirty(src);
3261        btrfs_mark_buffer_dirty(dst);
3262
3263        return ret;
3264}
3265
3266/*
3267 * try to push data from one node into the next node right in the
3268 * tree.
3269 *
3270 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3271 * error, and > 0 if there was no room in the right hand block.
3272 *
3273 * this will  only push up to 1/2 the contents of the left node over
3274 */
3275static int balance_node_right(struct btrfs_trans_handle *trans,
3276                              struct btrfs_fs_info *fs_info,
3277                              struct extent_buffer *dst,
3278                              struct extent_buffer *src)
3279{
3280        int push_items = 0;
3281        int max_push;
3282        int src_nritems;
3283        int dst_nritems;
3284        int ret = 0;
3285
3286        WARN_ON(btrfs_header_generation(src) != trans->transid);
3287        WARN_ON(btrfs_header_generation(dst) != trans->transid);
3288
3289        src_nritems = btrfs_header_nritems(src);
3290        dst_nritems = btrfs_header_nritems(dst);
3291        push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3292        if (push_items <= 0)
3293                return 1;
3294
3295        if (src_nritems < 4)
3296                return 1;
3297
3298        max_push = src_nritems / 2 + 1;
3299        /* don't try to empty the node */
3300        if (max_push >= src_nritems)
3301                return 1;
3302
3303        if (max_push < push_items)
3304                push_items = max_push;
3305
3306        tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems);
3307        memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3308                                      btrfs_node_key_ptr_offset(0),
3309                                      (dst_nritems) *
3310                                      sizeof(struct btrfs_key_ptr));
3311
3312        ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3313                                   src_nritems - push_items, push_items);
3314        if (ret) {
3315                btrfs_abort_transaction(trans, ret);
3316                return ret;
3317        }
3318        copy_extent_buffer(dst, src,
3319                           btrfs_node_key_ptr_offset(0),
3320                           btrfs_node_key_ptr_offset(src_nritems - push_items),
3321                           push_items * sizeof(struct btrfs_key_ptr));
3322
3323        btrfs_set_header_nritems(src, src_nritems - push_items);
3324        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3325
3326        btrfs_mark_buffer_dirty(src);
3327        btrfs_mark_buffer_dirty(dst);
3328
3329        return ret;
3330}
3331
3332/*
3333 * helper function to insert a new root level in the tree.
3334 * A new node is allocated, and a single item is inserted to
3335 * point to the existing root
3336 *
3337 * returns zero on success or < 0 on failure.
3338 */
3339static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3340                           struct btrfs_root *root,
3341                           struct btrfs_path *path, int level)
3342{
3343        struct btrfs_fs_info *fs_info = root->fs_info;
3344        u64 lower_gen;
3345        struct extent_buffer *lower;
3346        struct extent_buffer *c;
3347        struct extent_buffer *old;
3348        struct btrfs_disk_key lower_key;
3349
3350        BUG_ON(path->nodes[level]);
3351        BUG_ON(path->nodes[level-1] != root->node);
3352
3353        lower = path->nodes[level-1];
3354        if (level == 1)
3355                btrfs_item_key(lower, &lower_key, 0);
3356        else
3357                btrfs_node_key(lower, &lower_key, 0);
3358
3359        c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3360                                   &lower_key, level, root->node->start, 0);
3361        if (IS_ERR(c))
3362                return PTR_ERR(c);
3363
3364        root_add_used(root, fs_info->nodesize);
3365
3366        memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
3367        btrfs_set_header_nritems(c, 1);
3368        btrfs_set_header_level(c, level);
3369        btrfs_set_header_bytenr(c, c->start);
3370        btrfs_set_header_generation(c, trans->transid);
3371        btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3372        btrfs_set_header_owner(c, root->root_key.objectid);
3373
3374        write_extent_buffer_fsid(c, fs_info->fsid);
3375        write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
3376
3377        btrfs_set_node_key(c, &lower_key, 0);
3378        btrfs_set_node_blockptr(c, 0, lower->start);
3379        lower_gen = btrfs_header_generation(lower);
3380        WARN_ON(lower_gen != trans->transid);
3381
3382        btrfs_set_node_ptr_generation(c, 0, lower_gen);
3383
3384        btrfs_mark_buffer_dirty(c);
3385
3386        old = root->node;
3387        tree_mod_log_set_root_pointer(root, c, 0);
3388        rcu_assign_pointer(root->node, c);
3389
3390        /* the super has an extra ref to root->node */
3391        free_extent_buffer(old);
3392
3393        add_root_to_dirty_list(root);
3394        extent_buffer_get(c);
3395        path->nodes[level] = c;
3396        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3397        path->slots[level] = 0;
3398        return 0;
3399}
3400
3401/*
3402 * worker function to insert a single pointer in a node.
3403 * the node should have enough room for the pointer already
3404 *
3405 * slot and level indicate where you want the key to go, and
3406 * blocknr is the block the key points to.
3407 */
3408static void insert_ptr(struct btrfs_trans_handle *trans,
3409                       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3410                       struct btrfs_disk_key *key, u64 bytenr,
3411                       int slot, int level)
3412{
3413        struct extent_buffer *lower;
3414        int nritems;
3415        int ret;
3416
3417        BUG_ON(!path->nodes[level]);
3418        btrfs_assert_tree_locked(path->nodes[level]);
3419        lower = path->nodes[level];
3420        nritems = btrfs_header_nritems(lower);
3421        BUG_ON(slot > nritems);
3422        BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3423        if (slot != nritems) {
3424                if (level)
3425                        tree_mod_log_eb_move(fs_info, lower, slot + 1,
3426                                             slot, nritems - slot);
3427                memmove_extent_buffer(lower,
3428                              btrfs_node_key_ptr_offset(slot + 1),
3429                              btrfs_node_key_ptr_offset(slot),
3430                              (nritems - slot) * sizeof(struct btrfs_key_ptr));
3431        }
3432        if (level) {
3433                ret = tree_mod_log_insert_key(fs_info, lower, slot,
3434                                              MOD_LOG_KEY_ADD, GFP_NOFS);
3435                BUG_ON(ret < 0);
3436        }
3437        btrfs_set_node_key(lower, key, slot);
3438        btrfs_set_node_blockptr(lower, slot, bytenr);
3439        WARN_ON(trans->transid == 0);
3440        btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3441        btrfs_set_header_nritems(lower, nritems + 1);
3442        btrfs_mark_buffer_dirty(lower);
3443}
3444
3445/*
3446 * split the node at the specified level in path in two.
3447 * The path is corrected to point to the appropriate node after the split
3448 *
3449 * Before splitting this tries to make some room in the node by pushing
3450 * left and right, if either one works, it returns right away.
3451 *
3452 * returns 0 on success and < 0 on failure
3453 */
3454static noinline int split_node(struct btrfs_trans_handle *trans,
3455                               struct btrfs_root *root,
3456                               struct btrfs_path *path, int level)
3457{
3458        struct btrfs_fs_info *fs_info = root->fs_info;
3459        struct extent_buffer *c;
3460        struct extent_buffer *split;
3461        struct btrfs_disk_key disk_key;
3462        int mid;
3463        int ret;
3464        u32 c_nritems;
3465
3466        c = path->nodes[level];
3467        WARN_ON(btrfs_header_generation(c) != trans->transid);
3468        if (c == root->node) {
3469                /*
3470                 * trying to split the root, lets make a new one
3471                 *
3472                 * tree mod log: We don't log_removal old root in
3473                 * insert_new_root, because that root buffer will be kept as a
3474                 * normal node. We are going to log removal of half of the
3475                 * elements below with tree_mod_log_eb_copy. We're holding a
3476                 * tree lock on the buffer, which is why we cannot race with
3477                 * other tree_mod_log users.
3478                 */
3479                ret = insert_new_root(trans, root, path, level + 1);
3480                if (ret)
3481                        return ret;
3482        } else {
3483                ret = push_nodes_for_insert(trans, root, path, level);
3484                c = path->nodes[level];
3485                if (!ret && btrfs_header_nritems(c) <
3486                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3487                        return 0;
3488                if (ret < 0)
3489                        return ret;
3490        }
3491
3492        c_nritems = btrfs_header_nritems(c);
3493        mid = (c_nritems + 1) / 2;
3494        btrfs_node_key(c, &disk_key, mid);
3495
3496        split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3497                        &disk_key, level, c->start, 0);
3498        if (IS_ERR(split))
3499                return PTR_ERR(split);
3500
3501        root_add_used(root, fs_info->nodesize);
3502
3503        memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
3504        btrfs_set_header_level(split, btrfs_header_level(c));
3505        btrfs_set_header_bytenr(split, split->start);
3506        btrfs_set_header_generation(split, trans->transid);
3507        btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3508        btrfs_set_header_owner(split, root->root_key.objectid);
3509        write_extent_buffer_fsid(split, fs_info->fsid);
3510        write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
3511
3512        ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3513        if (ret) {
3514                btrfs_abort_transaction(trans, ret);
3515                return ret;
3516        }
3517        copy_extent_buffer(split, c,
3518                           btrfs_node_key_ptr_offset(0),
3519                           btrfs_node_key_ptr_offset(mid),
3520                           (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3521        btrfs_set_header_nritems(split, c_nritems - mid);
3522        btrfs_set_header_nritems(c, mid);
3523        ret = 0;
3524
3525        btrfs_mark_buffer_dirty(c);
3526        btrfs_mark_buffer_dirty(split);
3527
3528        insert_ptr(trans, fs_info, path, &disk_key, split->start,
3529                   path->slots[level + 1] + 1, level + 1);
3530
3531        if (path->slots[level] >= mid) {
3532                path->slots[level] -= mid;
3533                btrfs_tree_unlock(c);
3534                free_extent_buffer(c);
3535                path->nodes[level] = split;
3536                path->slots[level + 1] += 1;
3537        } else {
3538                btrfs_tree_unlock(split);
3539                free_extent_buffer(split);
3540        }
3541        return ret;
3542}
3543
3544/*
3545 * how many bytes are required to store the items in a leaf.  start
3546 * and nr indicate which items in the leaf to check.  This totals up the
3547 * space used both by the item structs and the item data
3548 */
3549static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3550{
3551        struct btrfs_item *start_item;
3552        struct btrfs_item *end_item;
3553        struct btrfs_map_token token;
3554        int data_len;
3555        int nritems = btrfs_header_nritems(l);
3556        int end = min(nritems, start + nr) - 1;
3557
3558        if (!nr)
3559                return 0;
3560        btrfs_init_map_token(&token);
3561        start_item = btrfs_item_nr(start);
3562        end_item = btrfs_item_nr(end);
3563        data_len = btrfs_token_item_offset(l, start_item, &token) +
3564                btrfs_token_item_size(l, start_item, &token);
3565        data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3566        data_len += sizeof(struct btrfs_item) * nr;
3567        WARN_ON(data_len < 0);
3568        return data_len;
3569}
3570
3571/*
3572 * The space between the end of the leaf items and
3573 * the start of the leaf data.  IOW, how much room
3574 * the leaf has left for both items and data
3575 */
3576noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3577                                   struct extent_buffer *leaf)
3578{
3579        int nritems = btrfs_header_nritems(leaf);
3580        int ret;
3581
3582        ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3583        if (ret < 0) {
3584                btrfs_crit(fs_info,
3585                           "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3586                           ret,
3587                           (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3588                           leaf_space_used(leaf, 0, nritems), nritems);
3589        }
3590        return ret;
3591}
3592
3593/*
3594 * min slot controls the lowest index we're willing to push to the
3595 * right.  We'll push up to and including min_slot, but no lower
3596 */
3597static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3598                                      struct btrfs_fs_info *fs_info,
3599                                      struct btrfs_path *path,
3600                                      int data_size, int empty,
3601                                      struct extent_buffer *right,
3602                                      int free_space, u32 left_nritems,
3603                                      u32 min_slot)
3604{
3605        struct extent_buffer *left = path->nodes[0];
3606        struct extent_buffer *upper = path->nodes[1];
3607        struct btrfs_map_token token;
3608        struct btrfs_disk_key disk_key;
3609        int slot;
3610        u32 i;
3611        int push_space = 0;
3612        int push_items = 0;
3613        struct btrfs_item *item;
3614        u32 nr;
3615        u32 right_nritems;
3616        u32 data_end;
3617        u32 this_item_size;
3618
3619        btrfs_init_map_token(&token);
3620
3621        if (empty)
3622                nr = 0;
3623        else
3624                nr = max_t(u32, 1, min_slot);
3625
3626        if (path->slots[0] >= left_nritems)
3627                push_space += data_size;
3628
3629        slot = path->slots[1];
3630        i = left_nritems - 1;
3631        while (i >= nr) {
3632                item = btrfs_item_nr(i);
3633
3634                if (!empty && push_items > 0) {
3635                        if (path->slots[0] > i)
3636                                break;
3637                        if (path->slots[0] == i) {
3638                                int space = btrfs_leaf_free_space(fs_info, left);
3639                                if (space + push_space * 2 > free_space)
3640                                        break;
3641                        }
3642                }
3643
3644                if (path->slots[0] == i)
3645                        push_space += data_size;
3646
3647                this_item_size = btrfs_item_size(left, item);
3648                if (this_item_size + sizeof(*item) + push_space > free_space)
3649                        break;
3650
3651                push_items++;
3652                push_space += this_item_size + sizeof(*item);
3653                if (i == 0)
3654                        break;
3655                i--;
3656        }
3657
3658        if (push_items == 0)
3659                goto out_unlock;
3660
3661        WARN_ON(!empty && push_items == left_nritems);
3662
3663        /* push left to right */
3664        right_nritems = btrfs_header_nritems(right);
3665
3666        push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3667        push_space -= leaf_data_end(fs_info, left);
3668
3669        /* make room in the right data area */
3670        data_end = leaf_data_end(fs_info, right);
3671        memmove_extent_buffer(right,
3672                              btrfs_leaf_data(right) + data_end - push_space,
3673                              btrfs_leaf_data(right) + data_end,
3674                              BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3675
3676        /* copy from the left data area */
3677        copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3678                     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3679                     btrfs_leaf_data(left) + leaf_data_end(fs_info, left),
3680                     push_space);
3681
3682        memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3683                              btrfs_item_nr_offset(0),
3684                              right_nritems * sizeof(struct btrfs_item));
3685
3686        /* copy the items from left to right */
3687        copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3688                   btrfs_item_nr_offset(left_nritems - push_items),
3689                   push_items * sizeof(struct btrfs_item));
3690
3691        /* update the item pointers */
3692        right_nritems += push_items;
3693        btrfs_set_header_nritems(right, right_nritems);
3694        push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3695        for (i = 0; i < right_nritems; i++) {
3696                item = btrfs_item_nr(i);
3697                push_space -= btrfs_token_item_size(right, item, &token);
3698                btrfs_set_token_item_offset(right, item, push_space, &token);
3699        }
3700
3701        left_nritems -= push_items;
3702        btrfs_set_header_nritems(left, left_nritems);
3703
3704        if (left_nritems)
3705                btrfs_mark_buffer_dirty(left);
3706        else
3707                clean_tree_block(trans, fs_info, left);
3708
3709        btrfs_mark_buffer_dirty(right);
3710
3711        btrfs_item_key(right, &disk_key, 0);
3712        btrfs_set_node_key(upper, &disk_key, slot + 1);
3713        btrfs_mark_buffer_dirty(upper);
3714
3715        /* then fixup the leaf pointer in the path */
3716        if (path->slots[0] >= left_nritems) {
3717                path->slots[0] -= left_nritems;
3718                if (btrfs_header_nritems(path->nodes[0]) == 0)
3719                        clean_tree_block(trans, fs_info, path->nodes[0]);
3720                btrfs_tree_unlock(path->nodes[0]);
3721                free_extent_buffer(path->nodes[0]);
3722                path->nodes[0] = right;
3723                path->slots[1] += 1;
3724        } else {
3725                btrfs_tree_unlock(right);
3726                free_extent_buffer(right);
3727        }
3728        return 0;
3729
3730out_unlock:
3731        btrfs_tree_unlock(right);
3732        free_extent_buffer(right);
3733        return 1;
3734}
3735
3736/*
3737 * push some data in the path leaf to the right, trying to free up at
3738 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3739 *
3740 * returns 1 if the push failed because the other node didn't have enough
3741 * room, 0 if everything worked out and < 0 if there were major errors.
3742 *
3743 * this will push starting from min_slot to the end of the leaf.  It won't
3744 * push any slot lower than min_slot
3745 */
3746static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3747                           *root, struct btrfs_path *path,
3748                           int min_data_size, int data_size,
3749                           int empty, u32 min_slot)
3750{
3751        struct btrfs_fs_info *fs_info = root->fs_info;
3752        struct extent_buffer *left = path->nodes[0];
3753        struct extent_buffer *right;
3754        struct extent_buffer *upper;
3755        int slot;
3756        int free_space;
3757        u32 left_nritems;
3758        int ret;
3759
3760        if (!path->nodes[1])
3761                return 1;
3762
3763        slot = path->slots[1];
3764        upper = path->nodes[1];
3765        if (slot >= btrfs_header_nritems(upper) - 1)
3766                return 1;
3767
3768        btrfs_assert_tree_locked(path->nodes[1]);
3769
3770        right = read_node_slot(fs_info, upper, slot + 1);
3771        /*
3772         * slot + 1 is not valid or we fail to read the right node,
3773         * no big deal, just return.
3774         */
3775        if (IS_ERR(right))
3776                return 1;
3777
3778        btrfs_tree_lock(right);
3779        btrfs_set_lock_blocking(right);
3780
3781        free_space = btrfs_leaf_free_space(fs_info, right);
3782        if (free_space < data_size)
3783                goto out_unlock;
3784
3785        /* cow and double check */
3786        ret = btrfs_cow_block(trans, root, right, upper,
3787                              slot + 1, &right);
3788        if (ret)
3789                goto out_unlock;
3790
3791        free_space = btrfs_leaf_free_space(fs_info, right);
3792        if (free_space < data_size)
3793                goto out_unlock;
3794
3795        left_nritems = btrfs_header_nritems(left);
3796        if (left_nritems == 0)
3797                goto out_unlock;
3798
3799        if (path->slots[0] == left_nritems && !empty) {
3800                /* Key greater than all keys in the leaf, right neighbor has
3801                 * enough room for it and we're not emptying our leaf to delete
3802                 * it, therefore use right neighbor to insert the new item and
3803                 * no need to touch/dirty our left leaft. */
3804                btrfs_tree_unlock(left);
3805                free_extent_buffer(left);
3806                path->nodes[0] = right;
3807                path->slots[0] = 0;
3808                path->slots[1]++;
3809                return 0;
3810        }
3811
3812        return __push_leaf_right(trans, fs_info, path, min_data_size, empty,
3813                                right, free_space, left_nritems, min_slot);
3814out_unlock:
3815        btrfs_tree_unlock(right);
3816        free_extent_buffer(right);
3817        return 1;
3818}
3819
3820/*
3821 * push some data in the path leaf to the left, trying to free up at
3822 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3823 *
3824 * max_slot can put a limit on how far into the leaf we'll push items.  The
3825 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3826 * items
3827 */
3828static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3829                                     struct btrfs_fs_info *fs_info,
3830                                     struct btrfs_path *path, int data_size,
3831                                     int empty, struct extent_buffer *left,
3832                                     int free_space, u32 right_nritems,
3833                                     u32 max_slot)
3834{
3835        struct btrfs_disk_key disk_key;
3836        struct extent_buffer *right = path->nodes[0];
3837        int i;
3838        int push_space = 0;
3839        int push_items = 0;
3840        struct btrfs_item *item;
3841        u32 old_left_nritems;
3842        u32 nr;
3843        int ret = 0;
3844        u32 this_item_size;
3845        u32 old_left_item_size;
3846        struct btrfs_map_token token;
3847
3848        btrfs_init_map_token(&token);
3849
3850        if (empty)
3851                nr = min(right_nritems, max_slot);
3852        else
3853                nr = min(right_nritems - 1, max_slot);
3854
3855        for (i = 0; i < nr; i++) {
3856                item = btrfs_item_nr(i);
3857
3858                if (!empty && push_items > 0) {
3859                        if (path->slots[0] < i)
3860                                break;
3861                        if (path->slots[0] == i) {
3862                                int space = btrfs_leaf_free_space(fs_info, right);
3863                                if (space + push_space * 2 > free_space)
3864                                        break;
3865                        }
3866                }
3867
3868                if (path->slots[0] == i)
3869                        push_space += data_size;
3870
3871                this_item_size = btrfs_item_size(right, item);
3872                if (this_item_size + sizeof(*item) + push_space > free_space)
3873                        break;
3874
3875                push_items++;
3876                push_space += this_item_size + sizeof(*item);
3877        }
3878
3879        if (push_items == 0) {
3880                ret = 1;
3881                goto out;
3882        }
3883        WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3884
3885        /* push data from right to left */
3886        copy_extent_buffer(left, right,
3887                           btrfs_item_nr_offset(btrfs_header_nritems(left)),
3888                           btrfs_item_nr_offset(0),
3889                           push_items * sizeof(struct btrfs_item));
3890
3891        push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3892                     btrfs_item_offset_nr(right, push_items - 1);
3893
3894        copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3895                     leaf_data_end(fs_info, left) - push_space,
3896                     btrfs_leaf_data(right) +
3897                     btrfs_item_offset_nr(right, push_items - 1),
3898                     push_space);
3899        old_left_nritems = btrfs_header_nritems(left);
3900        BUG_ON(old_left_nritems <= 0);
3901
3902        old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3903        for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3904                u32 ioff;
3905
3906                item = btrfs_item_nr(i);
3907
3908                ioff = btrfs_token_item_offset(left, item, &token);
3909                btrfs_set_token_item_offset(left, item,
3910                      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3911                      &token);
3912        }
3913        btrfs_set_header_nritems(left, old_left_nritems + push_items);
3914
3915        /* fixup right node */
3916        if (push_items > right_nritems)
3917                WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3918                       right_nritems);
3919
3920        if (push_items < right_nritems) {
3921                push_space = btrfs_item_offset_nr(right, push_items - 1) -
3922                                                  leaf_data_end(fs_info, right);
3923                memmove_extent_buffer(right, btrfs_leaf_data(right) +
3924                                      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3925                                      btrfs_leaf_data(right) +
3926                                      leaf_data_end(fs_info, right), push_space);
3927
3928                memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3929                              btrfs_item_nr_offset(push_items),
3930                             (btrfs_header_nritems(right) - push_items) *
3931                             sizeof(struct btrfs_item));
3932        }
3933        right_nritems -= push_items;
3934        btrfs_set_header_nritems(right, right_nritems);
3935        push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3936        for (i = 0; i < right_nritems; i++) {
3937                item = btrfs_item_nr(i);
3938
3939                push_space = push_space - btrfs_token_item_size(right,
3940                                                                item, &token);
3941                btrfs_set_token_item_offset(right, item, push_space, &token);
3942        }
3943
3944        btrfs_mark_buffer_dirty(left);
3945        if (right_nritems)
3946                btrfs_mark_buffer_dirty(right);
3947        else
3948                clean_tree_block(trans, fs_info, right);
3949
3950        btrfs_item_key(right, &disk_key, 0);
3951        fixup_low_keys(fs_info, path, &disk_key, 1);
3952
3953        /* then fixup the leaf pointer in the path */
3954        if (path->slots[0] < push_items) {
3955                path->slots[0] += old_left_nritems;
3956                btrfs_tree_unlock(path->nodes[0]);
3957                free_extent_buffer(path->nodes[0]);
3958                path->nodes[0] = left;
3959                path->slots[1] -= 1;
3960        } else {
3961                btrfs_tree_unlock(left);
3962                free_extent_buffer(left);
3963                path->slots[0] -= push_items;
3964        }
3965        BUG_ON(path->slots[0] < 0);
3966        return ret;
3967out:
3968        btrfs_tree_unlock(left);
3969        free_extent_buffer(left);
3970        return ret;
3971}
3972
3973/*
3974 * push some data in the path leaf to the left, trying to free up at
3975 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3976 *
3977 * max_slot can put a limit on how far into the leaf we'll push items.  The
3978 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3979 * items
3980 */
3981static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3982                          *root, struct btrfs_path *path, int min_data_size,
3983                          int data_size, int empty, u32 max_slot)
3984{
3985        struct btrfs_fs_info *fs_info = root->fs_info;
3986        struct extent_buffer *right = path->nodes[0];
3987        struct extent_buffer *left;
3988        int slot;
3989        int free_space;
3990        u32 right_nritems;
3991        int ret = 0;
3992
3993        slot = path->slots[1];
3994        if (slot == 0)
3995                return 1;
3996        if (!path->nodes[1])
3997                return 1;
3998
3999        right_nritems = btrfs_header_nritems(right);
4000        if (right_nritems == 0)
4001                return 1;
4002
4003        btrfs_assert_tree_locked(path->nodes[1]);
4004
4005        left = read_node_slot(fs_info, path->nodes[1], slot - 1);
4006        /*
4007         * slot - 1 is not valid or we fail to read the left node,
4008         * no big deal, just return.
4009         */
4010        if (IS_ERR(left))
4011                return 1;
4012
4013        btrfs_tree_lock(left);
4014        btrfs_set_lock_blocking(left);
4015
4016        free_space = btrfs_leaf_free_space(fs_info, left);
4017        if (free_space < data_size) {
4018                ret = 1;
4019                goto out;
4020        }
4021
4022        /* cow and double check */
4023        ret = btrfs_cow_block(trans, root, left,
4024                              path->nodes[1], slot - 1, &left);
4025        if (ret) {
4026                /* we hit -ENOSPC, but it isn't fatal here */
4027                if (ret == -ENOSPC)
4028                        ret = 1;
4029                goto out;
4030        }
4031
4032        free_space = btrfs_leaf_free_space(fs_info, left);
4033        if (free_space < data_size) {
4034                ret = 1;
4035                goto out;
4036        }
4037
4038        return __push_leaf_left(trans, fs_info, path, min_data_size,
4039                               empty, left, free_space, right_nritems,
4040                               max_slot);
4041out:
4042        btrfs_tree_unlock(left);
4043        free_extent_buffer(left);
4044        return ret;
4045}
4046
4047/*
4048 * split the path's leaf in two, making sure there is at least data_size
4049 * available for the resulting leaf level of the path.
4050 */
4051static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4052                                    struct btrfs_fs_info *fs_info,
4053                                    struct btrfs_path *path,
4054                                    struct extent_buffer *l,
4055                                    struct extent_buffer *right,
4056                                    int slot, int mid, int nritems)
4057{
4058        int data_copy_size;
4059        int rt_data_off;
4060        int i;
4061        struct btrfs_disk_key disk_key;
4062        struct btrfs_map_token token;
4063
4064        btrfs_init_map_token(&token);
4065
4066        nritems = nritems - mid;
4067        btrfs_set_header_nritems(right, nritems);
4068        data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4069
4070        copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4071                           btrfs_item_nr_offset(mid),
4072                           nritems * sizeof(struct btrfs_item));
4073
4074        copy_extent_buffer(right, l,
4075                     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(fs_info) -
4076                     data_copy_size, btrfs_leaf_data(l) +
4077                     leaf_data_end(fs_info, l), data_copy_size);
4078
4079        rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4080
4081        for (i = 0; i < nritems; i++) {
4082                struct btrfs_item *item = btrfs_item_nr(i);
4083                u32 ioff;
4084
4085                ioff = btrfs_token_item_offset(right, item, &token);
4086                btrfs_set_token_item_offset(right, item,
4087                                            ioff + rt_data_off, &token);
4088        }
4089
4090        btrfs_set_header_nritems(l, mid);
4091        btrfs_item_key(right, &disk_key, 0);
4092        insert_ptr(trans, fs_info, path, &disk_key, right->start,
4093                   path->slots[1] + 1, 1);
4094
4095        btrfs_mark_buffer_dirty(right);
4096        btrfs_mark_buffer_dirty(l);
4097        BUG_ON(path->slots[0] != slot);
4098
4099        if (mid <= slot) {
4100                btrfs_tree_unlock(path->nodes[0]);
4101                free_extent_buffer(path->nodes[0]);
4102                path->nodes[0] = right;
4103                path->slots[0] -= mid;
4104                path->slots[1] += 1;
4105        } else {
4106                btrfs_tree_unlock(right);
4107                free_extent_buffer(right);
4108        }
4109
4110        BUG_ON(path->slots[0] < 0);
4111}
4112
4113/*
4114 * double splits happen when we need to insert a big item in the middle
4115 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4116 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4117 *          A                 B                 C
4118 *
4119 * We avoid this by trying to push the items on either side of our target
4120 * into the adjacent leaves.  If all goes well we can avoid the double split
4121 * completely.
4122 */
4123static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4124                                          struct btrfs_root *root,
4125                                          struct btrfs_path *path,
4126                                          int data_size)
4127{
4128        struct btrfs_fs_info *fs_info = root->fs_info;
4129        int ret;
4130        int progress = 0;
4131        int slot;
4132        u32 nritems;
4133        int space_needed = data_size;
4134
4135        slot = path->slots[0];
4136        if (slot < btrfs_header_nritems(path->nodes[0]))
4137                space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4138
4139        /*
4140         * try to push all the items after our slot into the
4141         * right leaf
4142         */
4143        ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4144        if (ret < 0)
4145                return ret;
4146
4147        if (ret == 0)
4148                progress++;
4149
4150        nritems = btrfs_header_nritems(path->nodes[0]);
4151        /*
4152         * our goal is to get our slot at the start or end of a leaf.  If
4153         * we've done so we're done
4154         */
4155        if (path->slots[0] == 0 || path->slots[0] == nritems)
4156                return 0;
4157
4158        if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4159                return 0;
4160
4161        /* try to push all the items before our slot into the next leaf */
4162        slot = path->slots[0];
4163        ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4164        if (ret < 0)
4165                return ret;
4166
4167        if (ret == 0)
4168                progress++;
4169
4170        if (progress)
4171                return 0;
4172        return 1;
4173}
4174
4175/*
4176 * split the path's leaf in two, making sure there is at least data_size
4177 * available for the resulting leaf level of the path.
4178 *
4179 * returns 0 if all went well and < 0 on failure.
4180 */
4181static noinline int split_leaf(struct btrfs_trans_handle *trans,
4182                               struct btrfs_root *root,
4183                               struct btrfs_key *ins_key,
4184                               struct btrfs_path *path, int data_size,
4185                               int extend)
4186{
4187        struct btrfs_disk_key disk_key;
4188        struct extent_buffer *l;
4189        u32 nritems;
4190        int mid;
4191        int slot;
4192        struct extent_buffer *right;
4193        struct btrfs_fs_info *fs_info = root->fs_info;
4194        int ret = 0;
4195        int wret;
4196        int split;
4197        int num_doubles = 0;
4198        int tried_avoid_double = 0;
4199
4200        l = path->nodes[0];
4201        slot = path->slots[0];
4202        if (extend && data_size + btrfs_item_size_nr(l, slot) +
4203            sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4204                return -EOVERFLOW;
4205
4206        /* first try to make some room by pushing left and right */
4207        if (data_size && path->nodes[1]) {
4208                int space_needed = data_size;
4209
4210                if (slot < btrfs_header_nritems(l))
4211                        space_needed -= btrfs_leaf_free_space(fs_info, l);
4212
4213                wret = push_leaf_right(trans, root, path, space_needed,
4214                                       space_needed, 0, 0);
4215                if (wret < 0)
4216                        return wret;
4217                if (wret) {
4218                        wret = push_leaf_left(trans, root, path, space_needed,
4219                                              space_needed, 0, (u32)-1);
4220                        if (wret < 0)
4221                                return wret;
4222                }
4223                l = path->nodes[0];
4224
4225                /* did the pushes work? */
4226                if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4227                        return 0;
4228        }
4229
4230        if (!path->nodes[1]) {
4231                ret = insert_new_root(trans, root, path, 1);
4232                if (ret)
4233                        return ret;
4234        }
4235again:
4236        split = 1;
4237        l = path->nodes[0];
4238        slot = path->slots[0];
4239        nritems = btrfs_header_nritems(l);
4240        mid = (nritems + 1) / 2;
4241
4242        if (mid <= slot) {
4243                if (nritems == 1 ||
4244                    leaf_space_used(l, mid, nritems - mid) + data_size >
4245                        BTRFS_LEAF_DATA_SIZE(fs_info)) {
4246                        if (slot >= nritems) {
4247                                split = 0;
4248                        } else {
4249                                mid = slot;
4250                                if (mid != nritems &&
4251                                    leaf_space_used(l, mid, nritems - mid) +
4252                                    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4253                                        if (data_size && !tried_avoid_double)
4254                                                goto push_for_double;
4255                                        split = 2;
4256                                }
4257                        }
4258                }
4259        } else {
4260                if (leaf_space_used(l, 0, mid) + data_size >
4261                        BTRFS_LEAF_DATA_SIZE(fs_info)) {
4262                        if (!extend && data_size && slot == 0) {
4263                                split = 0;
4264                        } else if ((extend || !data_size) && slot == 0) {
4265                                mid = 1;
4266                        } else {
4267                                mid = slot;
4268                                if (mid != nritems &&
4269                                    leaf_space_used(l, mid, nritems - mid) +
4270                                    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4271                                        if (data_size && !tried_avoid_double)
4272                                                goto push_for_double;
4273                                        split = 2;
4274                                }
4275                        }
4276                }
4277        }
4278
4279        if (split == 0)
4280                btrfs_cpu_key_to_disk(&disk_key, ins_key);
4281        else
4282                btrfs_item_key(l, &disk_key, mid);
4283
4284        right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4285                        &disk_key, 0, l->start, 0);
4286        if (IS_ERR(right))
4287                return PTR_ERR(right);
4288
4289        root_add_used(root, fs_info->nodesize);
4290
4291        memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
4292        btrfs_set_header_bytenr(right, right->start);
4293        btrfs_set_header_generation(right, trans->transid);
4294        btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4295        btrfs_set_header_owner(right, root->root_key.objectid);
4296        btrfs_set_header_level(right, 0);
4297        write_extent_buffer_fsid(right, fs_info->fsid);
4298        write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
4299
4300        if (split == 0) {
4301                if (mid <= slot) {
4302                        btrfs_set_header_nritems(right, 0);
4303                        insert_ptr(trans, fs_info, path, &disk_key,
4304                                   right->start, path->slots[1] + 1, 1);
4305                        btrfs_tree_unlock(path->nodes[0]);
4306                        free_extent_buffer(path->nodes[0]);
4307                        path->nodes[0] = right;
4308                        path->slots[0] = 0;
4309                        path->slots[1] += 1;
4310                } else {
4311                        btrfs_set_header_nritems(right, 0);
4312                        insert_ptr(trans, fs_info, path, &disk_key,
4313                                   right->start, path->slots[1], 1);
4314                        btrfs_tree_unlock(path->nodes[0]);
4315                        free_extent_buffer(path->nodes[0]);
4316                        path->nodes[0] = right;
4317                        path->slots[0] = 0;
4318                        if (path->slots[1] == 0)
4319                                fixup_low_keys(fs_info, path, &disk_key, 1);
4320                }
4321                /*
4322                 * We create a new leaf 'right' for the required ins_len and
4323                 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4324                 * the content of ins_len to 'right'.
4325                 */
4326                return ret;
4327        }
4328
4329        copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
4330
4331        if (split == 2) {
4332                BUG_ON(num_doubles != 0);
4333                num_doubles++;
4334                goto again;
4335        }
4336
4337        return 0;
4338
4339push_for_double:
4340        push_for_double_split(trans, root, path, data_size);
4341        tried_avoid_double = 1;
4342        if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4343                return 0;
4344        goto again;
4345}
4346
4347static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4348                                         struct btrfs_root *root,
4349                                         struct btrfs_path *path, int ins_len)
4350{
4351        struct btrfs_fs_info *fs_info = root->fs_info;
4352        struct btrfs_key key;
4353        struct extent_buffer *leaf;
4354        struct btrfs_file_extent_item *fi;
4355        u64 extent_len = 0;
4356        u32 item_size;
4357        int ret;
4358
4359        leaf = path->nodes[0];
4360        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4361
4362        BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4363               key.type != BTRFS_EXTENT_CSUM_KEY);
4364
4365        if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4366                return 0;
4367
4368        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4369        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4370                fi = btrfs_item_ptr(leaf, path->slots[0],
4371                                    struct btrfs_file_extent_item);
4372                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4373        }
4374        btrfs_release_path(path);
4375
4376        path->keep_locks = 1;
4377        path->search_for_split = 1;
4378        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4379        path->search_for_split = 0;
4380        if (ret > 0)
4381                ret = -EAGAIN;
4382        if (ret < 0)
4383                goto err;
4384
4385        ret = -EAGAIN;
4386        leaf = path->nodes[0];
4387        /* if our item isn't there, return now */
4388        if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4389                goto err;
4390
4391        /* the leaf has  changed, it now has room.  return now */
4392        if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4393                goto err;
4394
4395        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4396                fi = btrfs_item_ptr(leaf, path->slots[0],
4397                                    struct btrfs_file_extent_item);
4398                if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4399                        goto err;
4400        }
4401
4402        btrfs_set_path_blocking(path);
4403        ret = split_leaf(trans, root, &key, path, ins_len, 1);
4404        if (ret)
4405                goto err;
4406
4407        path->keep_locks = 0;
4408        btrfs_unlock_up_safe(path, 1);
4409        return 0;
4410err:
4411        path->keep_locks = 0;
4412        return ret;
4413}
4414
4415static noinline int split_item(struct btrfs_trans_handle *trans,
4416                               struct btrfs_fs_info *fs_info,
4417                               struct btrfs_path *path,
4418                               struct btrfs_key *new_key,
4419                               unsigned long split_offset)
4420{
4421        struct extent_buffer *leaf;
4422        struct btrfs_item *item;
4423        struct btrfs_item *new_item;
4424        int slot;
4425        char *buf;
4426        u32 nritems;
4427        u32 item_size;
4428        u32 orig_offset;
4429        struct btrfs_disk_key disk_key;
4430
4431        leaf = path->nodes[0];
4432        BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4433
4434        btrfs_set_path_blocking(path);
4435
4436        item = btrfs_item_nr(path->slots[0]);
4437        orig_offset = btrfs_item_offset(leaf, item);
4438        item_size = btrfs_item_size(leaf, item);
4439
4440        buf = kmalloc(item_size, GFP_NOFS);
4441        if (!buf)
4442                return -ENOMEM;
4443
4444        read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4445                            path->slots[0]), item_size);
4446
4447        slot = path->slots[0] + 1;
4448        nritems = btrfs_header_nritems(leaf);
4449        if (slot != nritems) {
4450                /* shift the items */
4451                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4452                                btrfs_item_nr_offset(slot),
4453                                (nritems - slot) * sizeof(struct btrfs_item));
4454        }
4455
4456        btrfs_cpu_key_to_disk(&disk_key, new_key);
4457        btrfs_set_item_key(leaf, &disk_key, slot);
4458
4459        new_item = btrfs_item_nr(slot);
4460
4461        btrfs_set_item_offset(leaf, new_item, orig_offset);
4462        btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4463
4464        btrfs_set_item_offset(leaf, item,
4465                              orig_offset + item_size - split_offset);
4466        btrfs_set_item_size(leaf, item, split_offset);
4467
4468        btrfs_set_header_nritems(leaf, nritems + 1);
4469
4470        /* write the data for the start of the original item */
4471        write_extent_buffer(leaf, buf,
4472                            btrfs_item_ptr_offset(leaf, path->slots[0]),
4473                            split_offset);
4474
4475        /* write the data for the new item */
4476        write_extent_buffer(leaf, buf + split_offset,
4477                            btrfs_item_ptr_offset(leaf, slot),
4478                            item_size - split_offset);
4479        btrfs_mark_buffer_dirty(leaf);
4480
4481        BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4482        kfree(buf);
4483        return 0;
4484}
4485
4486/*
4487 * This function splits a single item into two items,
4488 * giving 'new_key' to the new item and splitting the
4489 * old one at split_offset (from the start of the item).
4490 *
4491 * The path may be released by this operation.  After
4492 * the split, the path is pointing to the old item.  The
4493 * new item is going to be in the same node as the old one.
4494 *
4495 * Note, the item being split must be smaller enough to live alone on
4496 * a tree block with room for one extra struct btrfs_item
4497 *
4498 * This allows us to split the item in place, keeping a lock on the
4499 * leaf the entire time.
4500 */
4501int btrfs_split_item(struct btrfs_trans_handle *trans,
4502                     struct btrfs_root *root,
4503                     struct btrfs_path *path,
4504                     struct btrfs_key *new_key,
4505                     unsigned long split_offset)
4506{
4507        int ret;
4508        ret = setup_leaf_for_split(trans, root, path,
4509                                   sizeof(struct btrfs_item));
4510        if (ret)
4511                return ret;
4512
4513        ret = split_item(trans, root->fs_info, path, new_key, split_offset);
4514        return ret;
4515}
4516
4517/*
4518 * This function duplicate a item, giving 'new_key' to the new item.
4519 * It guarantees both items live in the same tree leaf and the new item
4520 * is contiguous with the original item.
4521 *
4522 * This allows us to split file extent in place, keeping a lock on the
4523 * leaf the entire time.
4524 */
4525int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4526                         struct btrfs_root *root,
4527                         struct btrfs_path *path,
4528                         struct btrfs_key *new_key)
4529{
4530        struct extent_buffer *leaf;
4531        int ret;
4532        u32 item_size;
4533
4534        leaf = path->nodes[0];
4535        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4536        ret = setup_leaf_for_split(trans, root, path,
4537                                   item_size + sizeof(struct btrfs_item));
4538        if (ret)
4539                return ret;
4540
4541        path->slots[0]++;
4542        setup_items_for_insert(root, path, new_key, &item_size,
4543                               item_size, item_size +
4544                               sizeof(struct btrfs_item), 1);
4545        leaf = path->nodes[0];
4546        memcpy_extent_buffer(leaf,
4547                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4548                             btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4549                             item_size);
4550        return 0;
4551}
4552
4553/*
4554 * make the item pointed to by the path smaller.  new_size indicates
4555 * how small to make it, and from_end tells us if we just chop bytes
4556 * off the end of the item or if we shift the item to chop bytes off
4557 * the front.
4558 */
4559void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4560                         struct btrfs_path *path, u32 new_size, int from_end)
4561{
4562        int slot;
4563        struct extent_buffer *leaf;
4564        struct btrfs_item *item;
4565        u32 nritems;
4566        unsigned int data_end;
4567        unsigned int old_data_start;
4568        unsigned int old_size;
4569        unsigned int size_diff;
4570        int i;
4571        struct btrfs_map_token token;
4572
4573        btrfs_init_map_token(&token);
4574
4575        leaf = path->nodes[0];
4576        slot = path->slots[0];
4577
4578        old_size = btrfs_item_size_nr(leaf, slot);
4579        if (old_size == new_size)
4580                return;
4581
4582        nritems = btrfs_header_nritems(leaf);
4583        data_end = leaf_data_end(fs_info, leaf);
4584
4585        old_data_start = btrfs_item_offset_nr(leaf, slot);
4586
4587        size_diff = old_size - new_size;
4588
4589        BUG_ON(slot < 0);
4590        BUG_ON(slot >= nritems);
4591
4592        /*
4593         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4594         */
4595        /* first correct the data pointers */
4596        for (i = slot; i < nritems; i++) {
4597                u32 ioff;
4598                item = btrfs_item_nr(i);
4599
4600                ioff = btrfs_token_item_offset(leaf, item, &token);
4601                btrfs_set_token_item_offset(leaf, item,
4602                                            ioff + size_diff, &token);
4603        }
4604
4605        /* shift the data */
4606        if (from_end) {
4607                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4608                              data_end + size_diff, btrfs_leaf_data(leaf) +
4609                              data_end, old_data_start + new_size - data_end);
4610        } else {
4611                struct btrfs_disk_key disk_key;
4612                u64 offset;
4613
4614                btrfs_item_key(leaf, &disk_key, slot);
4615
4616                if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4617                        unsigned long ptr;
4618                        struct btrfs_file_extent_item *fi;
4619
4620                        fi = btrfs_item_ptr(leaf, slot,
4621                                            struct btrfs_file_extent_item);
4622                        fi = (struct btrfs_file_extent_item *)(
4623                             (unsigned long)fi - size_diff);
4624
4625                        if (btrfs_file_extent_type(leaf, fi) ==
4626                            BTRFS_FILE_EXTENT_INLINE) {
4627                                ptr = btrfs_item_ptr_offset(leaf, slot);
4628                                memmove_extent_buffer(leaf, ptr,
4629                                      (unsigned long)fi,
4630                                      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4631                        }
4632                }
4633
4634                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4635                              data_end + size_diff, btrfs_leaf_data(leaf) +
4636                              data_end, old_data_start - data_end);
4637
4638                offset = btrfs_disk_key_offset(&disk_key);
4639                btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4640                btrfs_set_item_key(leaf, &disk_key, slot);
4641                if (slot == 0)
4642                        fixup_low_keys(fs_info, path, &disk_key, 1);
4643        }
4644
4645        item = btrfs_item_nr(slot);
4646        btrfs_set_item_size(leaf, item, new_size);
4647        btrfs_mark_buffer_dirty(leaf);
4648
4649        if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4650                btrfs_print_leaf(fs_info, leaf);
4651                BUG();
4652        }
4653}
4654
4655/*
4656 * make the item pointed to by the path bigger, data_size is the added size.
4657 */
4658void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4659                       u32 data_size)
4660{
4661        int slot;
4662        struct extent_buffer *leaf;
4663        struct btrfs_item *item;
4664        u32 nritems;
4665        unsigned int data_end;
4666        unsigned int old_data;
4667        unsigned int old_size;
4668        int i;
4669        struct btrfs_map_token token;
4670
4671        btrfs_init_map_token(&token);
4672
4673        leaf = path->nodes[0];
4674
4675        nritems = btrfs_header_nritems(leaf);
4676        data_end = leaf_data_end(fs_info, leaf);
4677
4678        if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4679                btrfs_print_leaf(fs_info, leaf);
4680                BUG();
4681        }
4682        slot = path->slots[0];
4683        old_data = btrfs_item_end_nr(leaf, slot);
4684
4685        BUG_ON(slot < 0);
4686        if (slot >= nritems) {
4687                btrfs_print_leaf(fs_info, leaf);
4688                btrfs_crit(fs_info, "slot %d too large, nritems %d",
4689                           slot, nritems);
4690                BUG_ON(1);
4691        }
4692
4693        /*
4694         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4695         */
4696        /* first correct the data pointers */
4697        for (i = slot; i < nritems; i++) {
4698                u32 ioff;
4699                item = btrfs_item_nr(i);
4700
4701                ioff = btrfs_token_item_offset(leaf, item, &token);
4702                btrfs_set_token_item_offset(leaf, item,
4703                                            ioff - data_size, &token);
4704        }
4705
4706        /* shift the data */
4707        memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4708                      data_end - data_size, btrfs_leaf_data(leaf) +
4709                      data_end, old_data - data_end);
4710
4711        data_end = old_data;
4712        old_size = btrfs_item_size_nr(leaf, slot);
4713        item = btrfs_item_nr(slot);
4714        btrfs_set_item_size(leaf, item, old_size + data_size);
4715        btrfs_mark_buffer_dirty(leaf);
4716
4717        if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4718                btrfs_print_leaf(fs_info, leaf);
4719                BUG();
4720        }
4721}
4722
4723/*
4724 * this is a helper for btrfs_insert_empty_items, the main goal here is
4725 * to save stack depth by doing the bulk of the work in a function
4726 * that doesn't call btrfs_search_slot
4727 */
4728void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4729                            struct btrfs_key *cpu_key, u32 *data_size,
4730                            u32 total_data, u32 total_size, int nr)
4731{
4732        struct btrfs_fs_info *fs_info = root->fs_info;
4733        struct btrfs_item *item;
4734        int i;
4735        u32 nritems;
4736        unsigned int data_end;
4737        struct btrfs_disk_key disk_key;
4738        struct extent_buffer *leaf;
4739        int slot;
4740        struct btrfs_map_token token;
4741
4742        if (path->slots[0] == 0) {
4743                btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4744                fixup_low_keys(fs_info, path, &disk_key, 1);
4745        }
4746        btrfs_unlock_up_safe(path, 1);
4747
4748        btrfs_init_map_token(&token);
4749
4750        leaf = path->nodes[0];
4751        slot = path->slots[0];
4752
4753        nritems = btrfs_header_nritems(leaf);
4754        data_end = leaf_data_end(fs_info, leaf);
4755
4756        if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4757                btrfs_print_leaf(fs_info, leaf);
4758                btrfs_crit(fs_info, "not enough freespace need %u have %d",
4759                           total_size, btrfs_leaf_free_space(fs_info, leaf));
4760                BUG();
4761        }
4762
4763        if (slot != nritems) {
4764                unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4765
4766                if (old_data < data_end) {
4767                        btrfs_print_leaf(fs_info, leaf);
4768                        btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4769                                   slot, old_data, data_end);
4770                        BUG_ON(1);
4771                }
4772                /*
4773                 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4774                 */
4775                /* first correct the data pointers */
4776                for (i = slot; i < nritems; i++) {
4777                        u32 ioff;
4778
4779                        item = btrfs_item_nr(i);
4780                        ioff = btrfs_token_item_offset(leaf, item, &token);
4781                        btrfs_set_token_item_offset(leaf, item,
4782                                                    ioff - total_data, &token);
4783                }
4784                /* shift the items */
4785                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4786                              btrfs_item_nr_offset(slot),
4787                              (nritems - slot) * sizeof(struct btrfs_item));
4788
4789                /* shift the data */
4790                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4791                              data_end - total_data, btrfs_leaf_data(leaf) +
4792                              data_end, old_data - data_end);
4793                data_end = old_data;
4794        }
4795
4796        /* setup the item for the new data */
4797        for (i = 0; i < nr; i++) {
4798                btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4799                btrfs_set_item_key(leaf, &disk_key, slot + i);
4800                item = btrfs_item_nr(slot + i);
4801                btrfs_set_token_item_offset(leaf, item,
4802                                            data_end - data_size[i], &token);
4803                data_end -= data_size[i];
4804                btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4805        }
4806
4807        btrfs_set_header_nritems(leaf, nritems + nr);
4808        btrfs_mark_buffer_dirty(leaf);
4809
4810        if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4811                btrfs_print_leaf(fs_info, leaf);
4812                BUG();
4813        }
4814}
4815
4816/*
4817 * Given a key and some data, insert items into the tree.
4818 * This does all the path init required, making room in the tree if needed.
4819 */
4820int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4821                            struct btrfs_root *root,
4822                            struct btrfs_path *path,
4823                            struct btrfs_key *cpu_key, u32 *data_size,
4824                            int nr)
4825{
4826        int ret = 0;
4827        int slot;
4828        int i;
4829        u32 total_size = 0;
4830        u32 total_data = 0;
4831
4832        for (i = 0; i < nr; i++)
4833                total_data += data_size[i];
4834
4835        total_size = total_data + (nr * sizeof(struct btrfs_item));
4836        ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4837        if (ret == 0)
4838                return -EEXIST;
4839        if (ret < 0)
4840                return ret;
4841
4842        slot = path->slots[0];
4843        BUG_ON(slot < 0);
4844
4845        setup_items_for_insert(root, path, cpu_key, data_size,
4846                               total_data, total_size, nr);
4847        return 0;
4848}
4849
4850/*
4851 * Given a key and some data, insert an item into the tree.
4852 * This does all the path init required, making room in the tree if needed.
4853 */
4854int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4855                      *root, struct btrfs_key *cpu_key, void *data, u32
4856                      data_size)
4857{
4858        int ret = 0;
4859        struct btrfs_path *path;
4860        struct extent_buffer *leaf;
4861        unsigned long ptr;
4862
4863        path = btrfs_alloc_path();
4864        if (!path)
4865                return -ENOMEM;
4866        ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4867        if (!ret) {
4868                leaf = path->nodes[0];
4869                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4870                write_extent_buffer(leaf, data, ptr, data_size);
4871                btrfs_mark_buffer_dirty(leaf);
4872        }
4873        btrfs_free_path(path);
4874        return ret;
4875}
4876
4877/*
4878 * delete the pointer from a given node.
4879 *
4880 * the tree should have been previously balanced so the deletion does not
4881 * empty a node.
4882 */
4883static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4884                    int level, int slot)
4885{
4886        struct btrfs_fs_info *fs_info = root->fs_info;
4887        struct extent_buffer *parent = path->nodes[level];
4888        u32 nritems;
4889        int ret;
4890
4891        nritems = btrfs_header_nritems(parent);
4892        if (slot != nritems - 1) {
4893                if (level)
4894                        tree_mod_log_eb_move(fs_info, parent, slot,
4895                                             slot + 1, nritems - slot - 1);
4896                memmove_extent_buffer(parent,
4897                              btrfs_node_key_ptr_offset(slot),
4898                              btrfs_node_key_ptr_offset(slot + 1),
4899                              sizeof(struct btrfs_key_ptr) *
4900                              (nritems - slot - 1));
4901        } else if (level) {
4902                ret = tree_mod_log_insert_key(fs_info, parent, slot,
4903                                              MOD_LOG_KEY_REMOVE, GFP_NOFS);
4904                BUG_ON(ret < 0);
4905        }
4906
4907        nritems--;
4908        btrfs_set_header_nritems(parent, nritems);
4909        if (nritems == 0 && parent == root->node) {
4910                BUG_ON(btrfs_header_level(root->node) != 1);
4911                /* just turn the root into a leaf and break */
4912                btrfs_set_header_level(root->node, 0);
4913        } else if (slot == 0) {
4914                struct btrfs_disk_key disk_key;
4915
4916                btrfs_node_key(parent, &disk_key, 0);
4917                fixup_low_keys(fs_info, path, &disk_key, level + 1);
4918        }
4919        btrfs_mark_buffer_dirty(parent);
4920}
4921
4922/*
4923 * a helper function to delete the leaf pointed to by path->slots[1] and
4924 * path->nodes[1].
4925 *
4926 * This deletes the pointer in path->nodes[1] and frees the leaf
4927 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4928 *
4929 * The path must have already been setup for deleting the leaf, including
4930 * all the proper balancing.  path->nodes[1] must be locked.
4931 */
4932static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4933                                    struct btrfs_root *root,
4934                                    struct btrfs_path *path,
4935                                    struct extent_buffer *leaf)
4936{
4937        WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4938        del_ptr(root, path, 1, path->slots[1]);
4939
4940        /*
4941         * btrfs_free_extent is expensive, we want to make sure we
4942         * aren't holding any locks when we call it
4943         */
4944        btrfs_unlock_up_safe(path, 0);
4945
4946        root_sub_used(root, leaf->len);
4947
4948        extent_buffer_get(leaf);
4949        btrfs_free_tree_block(trans, root, leaf, 0, 1);
4950        free_extent_buffer_stale(leaf);
4951}
4952/*
4953 * delete the item at the leaf level in path.  If that empties
4954 * the leaf, remove it from the tree
4955 */
4956int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4957                    struct btrfs_path *path, int slot, int nr)
4958{
4959        struct btrfs_fs_info *fs_info = root->fs_info;
4960        struct extent_buffer *leaf;
4961        struct btrfs_item *item;
4962        u32 last_off;
4963        u32 dsize = 0;
4964        int ret = 0;
4965        int wret;
4966        int i;
4967        u32 nritems;
4968        struct btrfs_map_token token;
4969
4970        btrfs_init_map_token(&token);
4971
4972        leaf = path->nodes[0];
4973        last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4974
4975        for (i = 0; i < nr; i++)
4976                dsize += btrfs_item_size_nr(leaf, slot + i);
4977
4978        nritems = btrfs_header_nritems(leaf);
4979
4980        if (slot + nr != nritems) {
4981                int data_end = leaf_data_end(fs_info, leaf);
4982
4983                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4984                              data_end + dsize,
4985                              btrfs_leaf_data(leaf) + data_end,
4986                              last_off - data_end);
4987
4988                for (i = slot + nr; i < nritems; i++) {
4989                        u32 ioff;
4990
4991                        item = btrfs_item_nr(i);
4992                        ioff = btrfs_token_item_offset(leaf, item, &token);
4993                        btrfs_set_token_item_offset(leaf, item,
4994                                                    ioff + dsize, &token);
4995                }
4996
4997                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4998                              btrfs_item_nr_offset(slot + nr),
4999                              sizeof(struct btrfs_item) *
5000                              (nritems - slot - nr));
5001        }
5002        btrfs_set_header_nritems(leaf, nritems - nr);
5003        nritems -= nr;
5004
5005        /* delete the leaf if we've emptied it */
5006        if (nritems == 0) {
5007                if (leaf == root->node) {
5008                        btrfs_set_header_level(leaf, 0);
5009                } else {
5010                        btrfs_set_path_blocking(path);
5011                        clean_tree_block(trans, fs_info, leaf);
5012                        btrfs_del_leaf(trans, root, path, leaf);
5013                }
5014        } else {
5015                int used = leaf_space_used(leaf, 0, nritems);
5016                if (slot == 0) {
5017                        struct btrfs_disk_key disk_key;
5018
5019                        btrfs_item_key(leaf, &disk_key, 0);
5020                        fixup_low_keys(fs_info, path, &disk_key, 1);
5021                }
5022
5023                /* delete the leaf if it is mostly empty */
5024                if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5025                        /* push_leaf_left fixes the path.
5026                         * make sure the path still points to our leaf
5027                         * for possible call to del_ptr below
5028                         */
5029                        slot = path->slots[1];
5030                        extent_buffer_get(leaf);
5031
5032                        btrfs_set_path_blocking(path);
5033                        wret = push_leaf_left(trans, root, path, 1, 1,
5034                                              1, (u32)-1);
5035                        if (wret < 0 && wret != -ENOSPC)
5036                                ret = wret;
5037
5038                        if (path->nodes[0] == leaf &&
5039                            btrfs_header_nritems(leaf)) {
5040                                wret = push_leaf_right(trans, root, path, 1,
5041                                                       1, 1, 0);
5042                                if (wret < 0 && wret != -ENOSPC)
5043                                        ret = wret;
5044                        }
5045
5046                        if (btrfs_header_nritems(leaf) == 0) {
5047                                path->slots[1] = slot;
5048                                btrfs_del_leaf(trans, root, path, leaf);
5049                                free_extent_buffer(leaf);
5050                                ret = 0;
5051                        } else {
5052                                /* if we're still in the path, make sure
5053                                 * we're dirty.  Otherwise, one of the
5054                                 * push_leaf functions must have already
5055                                 * dirtied this buffer
5056                                 */
5057                                if (path->nodes[0] == leaf)
5058                                        btrfs_mark_buffer_dirty(leaf);
5059                                free_extent_buffer(leaf);
5060                        }
5061                } else {
5062                        btrfs_mark_buffer_dirty(leaf);
5063                }
5064        }
5065        return ret;
5066}
5067
5068/*
5069 * search the tree again to find a leaf with lesser keys
5070 * returns 0 if it found something or 1 if there are no lesser leaves.
5071 * returns < 0 on io errors.
5072 *
5073 * This may release the path, and so you may lose any locks held at the
5074 * time you call it.
5075 */
5076int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5077{
5078        struct btrfs_key key;
5079        struct btrfs_disk_key found_key;
5080        int ret;
5081
5082        btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5083
5084        if (key.offset > 0) {
5085                key.offset--;
5086        } else if (key.type > 0) {
5087                key.type--;
5088                key.offset = (u64)-1;
5089        } else if (key.objectid > 0) {
5090                key.objectid--;
5091                key.type = (u8)-1;
5092                key.offset = (u64)-1;
5093        } else {
5094                return 1;
5095        }
5096
5097        btrfs_release_path(path);
5098        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5099        if (ret < 0)
5100                return ret;
5101        btrfs_item_key(path->nodes[0], &found_key, 0);
5102        ret = comp_keys(&found_key, &key);
5103        /*
5104         * We might have had an item with the previous key in the tree right
5105         * before we released our path. And after we released our path, that
5106         * item might have been pushed to the first slot (0) of the leaf we
5107         * were holding due to a tree balance. Alternatively, an item with the
5108         * previous key can exist as the only element of a leaf (big fat item).
5109         * Therefore account for these 2 cases, so that our callers (like
5110         * btrfs_previous_item) don't miss an existing item with a key matching
5111         * the previous key we computed above.
5112         */
5113        if (ret <= 0)
5114                return 0;
5115        return 1;
5116}
5117
5118/*
5119 * A helper function to walk down the tree starting at min_key, and looking
5120 * for nodes or leaves that are have a minimum transaction id.
5121 * This is used by the btree defrag code, and tree logging
5122 *
5123 * This does not cow, but it does stuff the starting key it finds back
5124 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5125 * key and get a writable path.
5126 *
5127 * This does lock as it descends, and path->keep_locks should be set
5128 * to 1 by the caller.
5129 *
5130 * This honors path->lowest_level to prevent descent past a given level
5131 * of the tree.
5132 *
5133 * min_trans indicates the oldest transaction that you are interested
5134 * in walking through.  Any nodes or leaves older than min_trans are
5135 * skipped over (without reading them).
5136 *
5137 * returns zero if something useful was found, < 0 on error and 1 if there
5138 * was nothing in the tree that matched the search criteria.
5139 */
5140int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5141                         struct btrfs_path *path,
5142                         u64 min_trans)
5143{
5144        struct btrfs_fs_info *fs_info = root->fs_info;
5145        struct extent_buffer *cur;
5146        struct btrfs_key found_key;
5147        int slot;
5148        int sret;
5149        u32 nritems;
5150        int level;
5151        int ret = 1;
5152        int keep_locks = path->keep_locks;
5153
5154        path->keep_locks = 1;
5155again:
5156        cur = btrfs_read_lock_root_node(root);
5157        level = btrfs_header_level(cur);
5158        WARN_ON(path->nodes[level]);
5159        path->nodes[level] = cur;
5160        path->locks[level] = BTRFS_READ_LOCK;
5161
5162        if (btrfs_header_generation(cur) < min_trans) {
5163                ret = 1;
5164                goto out;
5165        }
5166        while (1) {
5167                nritems = btrfs_header_nritems(cur);
5168                level = btrfs_header_level(cur);
5169                sret = bin_search(cur, min_key, level, &slot);
5170
5171                /* at the lowest level, we're done, setup the path and exit */
5172                if (level == path->lowest_level) {
5173                        if (slot >= nritems)
5174                                goto find_next_key;
5175                        ret = 0;
5176                        path->slots[level] = slot;
5177                        btrfs_item_key_to_cpu(cur, &found_key, slot);
5178                        goto out;
5179                }
5180                if (sret && slot > 0)
5181                        slot--;
5182                /*
5183                 * check this node pointer against the min_trans parameters.
5184                 * If it is too old, old, skip to the next one.
5185                 */
5186                while (slot < nritems) {
5187                        u64 gen;
5188
5189                        gen = btrfs_node_ptr_generation(cur, slot);
5190                        if (gen < min_trans) {
5191                                slot++;
5192                                continue;
5193                        }
5194                        break;
5195                }
5196find_next_key:
5197                /*
5198                 * we didn't find a candidate key in this node, walk forward
5199                 * and find another one
5200                 */
5201                if (slot >= nritems) {
5202                        path->slots[level] = slot;
5203                        btrfs_set_path_blocking(path);
5204                        sret = btrfs_find_next_key(root, path, min_key, level,
5205                                                  min_trans);
5206                        if (sret == 0) {
5207                                btrfs_release_path(path);
5208                                goto again;
5209                        } else {
5210                                goto out;
5211                        }
5212                }
5213                /* save our key for returning back */
5214                btrfs_node_key_to_cpu(cur, &found_key, slot);
5215                path->slots[level] = slot;
5216                if (level == path->lowest_level) {
5217                        ret = 0;
5218                        goto out;
5219                }
5220                btrfs_set_path_blocking(path);
5221                cur = read_node_slot(fs_info, cur, slot);
5222                if (IS_ERR(cur)) {
5223                        ret = PTR_ERR(cur);
5224                        goto out;
5225                }
5226
5227                btrfs_tree_read_lock(cur);
5228
5229                path->locks[level - 1] = BTRFS_READ_LOCK;
5230                path->nodes[level - 1] = cur;
5231                unlock_up(path, level, 1, 0, NULL);
5232                btrfs_clear_path_blocking(path, NULL, 0);
5233        }
5234out:
5235        path->keep_locks = keep_locks;
5236        if (ret == 0) {
5237                btrfs_unlock_up_safe(path, path->lowest_level + 1);
5238                btrfs_set_path_blocking(path);
5239                memcpy(min_key, &found_key, sizeof(found_key));
5240        }
5241        return ret;
5242}
5243
5244static int tree_move_down(struct btrfs_fs_info *fs_info,
5245                           struct btrfs_path *path,
5246                           int *level, int root_level)
5247{
5248        struct extent_buffer *eb;
5249
5250        BUG_ON(*level == 0);
5251        eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5252        if (IS_ERR(eb))
5253                return PTR_ERR(eb);
5254
5255        path->nodes[*level - 1] = eb;
5256        path->slots[*level - 1] = 0;
5257        (*level)--;
5258        return 0;
5259}
5260
5261static int tree_move_next_or_upnext(struct btrfs_fs_info *fs_info,
5262                                    struct btrfs_path *path,
5263                                    int *level, int root_level)
5264{
5265        int ret = 0;
5266        int nritems;
5267        nritems = btrfs_header_nritems(path->nodes[*level]);
5268
5269        path->slots[*level]++;
5270
5271        while (path->slots[*level] >= nritems) {
5272                if (*level == root_level)
5273                        return -1;
5274
5275                /* move upnext */
5276                path->slots[*level] = 0;
5277                free_extent_buffer(path->nodes[*level]);
5278                path->nodes[*level] = NULL;
5279                (*level)++;
5280                path->slots[*level]++;
5281
5282                nritems = btrfs_header_nritems(path->nodes[*level]);
5283                ret = 1;
5284        }
5285        return ret;
5286}
5287
5288/*
5289 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5290 * or down.
5291 */
5292static int tree_advance(struct btrfs_fs_info *fs_info,
5293                        struct btrfs_path *path,
5294                        int *level, int root_level,
5295                        int allow_down,
5296                        struct btrfs_key *key)
5297{
5298        int ret;
5299
5300        if (*level == 0 || !allow_down) {
5301                ret = tree_move_next_or_upnext(fs_info, path, level,
5302                                               root_level);
5303        } else {
5304                ret = tree_move_down(fs_info, path, level, root_level);
5305        }
5306        if (ret >= 0) {
5307                if (*level == 0)
5308                        btrfs_item_key_to_cpu(path->nodes[*level], key,
5309                                        path->slots[*level]);
5310                else
5311                        btrfs_node_key_to_cpu(path->nodes[*level], key,
5312                                        path->slots[*level]);
5313        }
5314        return ret;
5315}
5316
5317static int tree_compare_item(struct btrfs_path *left_path,
5318                             struct btrfs_path *right_path,
5319                             char *tmp_buf)
5320{
5321        int cmp;
5322        int len1, len2;
5323        unsigned long off1, off2;
5324
5325        len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5326        len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5327        if (len1 != len2)
5328                return 1;
5329
5330        off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5331        off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5332                                right_path->slots[0]);
5333
5334        read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5335
5336        cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5337        if (cmp)
5338                return 1;
5339        return 0;
5340}
5341
5342#define ADVANCE 1
5343#define ADVANCE_ONLY_NEXT -1
5344
5345/*
5346 * This function compares two trees and calls the provided callback for
5347 * every changed/new/deleted item it finds.
5348 * If shared tree blocks are encountered, whole subtrees are skipped, making
5349 * the compare pretty fast on snapshotted subvolumes.
5350 *
5351 * This currently works on commit roots only. As commit roots are read only,
5352 * we don't do any locking. The commit roots are protected with transactions.
5353 * Transactions are ended and rejoined when a commit is tried in between.
5354 *
5355 * This function checks for modifications done to the trees while comparing.
5356 * If it detects a change, it aborts immediately.
5357 */
5358int btrfs_compare_trees(struct btrfs_root *left_root,
5359                        struct btrfs_root *right_root,
5360                        btrfs_changed_cb_t changed_cb, void *ctx)
5361{
5362        struct btrfs_fs_info *fs_info = left_root->fs_info;
5363        int ret;
5364        int cmp;
5365        struct btrfs_path *left_path = NULL;
5366        struct btrfs_path *right_path = NULL;
5367        struct btrfs_key left_key;
5368        struct btrfs_key right_key;
5369        char *tmp_buf = NULL;
5370        int left_root_level;
5371        int right_root_level;
5372        int left_level;
5373        int right_level;
5374        int left_end_reached;
5375        int right_end_reached;
5376        int advance_left;
5377        int advance_right;
5378        u64 left_blockptr;
5379        u64 right_blockptr;
5380        u64 left_gen;
5381        u64 right_gen;
5382
5383        left_path = btrfs_alloc_path();
5384        if (!left_path) {
5385                ret = -ENOMEM;
5386                goto out;
5387        }
5388        right_path = btrfs_alloc_path();
5389        if (!right_path) {
5390                ret = -ENOMEM;
5391                goto out;
5392        }
5393
5394        tmp_buf = kmalloc(fs_info->nodesize, GFP_KERNEL | __GFP_NOWARN);
5395        if (!tmp_buf) {
5396                tmp_buf = vmalloc(fs_info->nodesize);
5397                if (!tmp_buf) {
5398                        ret = -ENOMEM;
5399                        goto out;
5400                }
5401        }
5402
5403        left_path->search_commit_root = 1;
5404        left_path->skip_locking = 1;
5405        right_path->search_commit_root = 1;
5406        right_path->skip_locking = 1;
5407
5408        /*
5409         * Strategy: Go to the first items of both trees. Then do
5410         *
5411         * If both trees are at level 0
5412         *   Compare keys of current items
5413         *     If left < right treat left item as new, advance left tree
5414         *       and repeat
5415         *     If left > right treat right item as deleted, advance right tree
5416         *       and repeat
5417         *     If left == right do deep compare of items, treat as changed if
5418         *       needed, advance both trees and repeat
5419         * If both trees are at the same level but not at level 0
5420         *   Compare keys of current nodes/leafs
5421         *     If left < right advance left tree and repeat
5422         *     If left > right advance right tree and repeat
5423         *     If left == right compare blockptrs of the next nodes/leafs
5424         *       If they match advance both trees but stay at the same level
5425         *         and repeat
5426         *       If they don't match advance both trees while allowing to go
5427         *         deeper and repeat
5428         * If tree levels are different
5429         *   Advance the tree that needs it and repeat
5430         *
5431         * Advancing a tree means:
5432         *   If we are at level 0, try to go to the next slot. If that's not
5433         *   possible, go one level up and repeat. Stop when we found a level
5434         *   where we could go to the next slot. We may at this point be on a
5435         *   node or a leaf.
5436         *
5437         *   If we are not at level 0 and not on shared tree blocks, go one
5438         *   level deeper.
5439         *
5440         *   If we are not at level 0 and on shared tree blocks, go one slot to
5441         *   the right if possible or go up and right.
5442         */
5443
5444        down_read(&fs_info->commit_root_sem);
5445        left_level = btrfs_header_level(left_root->commit_root);
5446        left_root_level = left_level;
5447        left_path->nodes[left_level] = left_root->commit_root;
5448        extent_buffer_get(left_path->nodes[left_level]);
5449
5450        right_level = btrfs_header_level(right_root->commit_root);
5451        right_root_level = right_level;
5452        right_path->nodes[right_level] = right_root->commit_root;
5453        extent_buffer_get(right_path->nodes[right_level]);
5454        up_read(&fs_info->commit_root_sem);
5455
5456        if (left_level == 0)
5457                btrfs_item_key_to_cpu(left_path->nodes[left_level],
5458                                &left_key, left_path->slots[left_level]);
5459        else
5460                btrfs_node_key_to_cpu(left_path->nodes[left_level],
5461                                &left_key, left_path->slots[left_level]);
5462        if (right_level == 0)
5463                btrfs_item_key_to_cpu(right_path->nodes[right_level],
5464                                &right_key, right_path->slots[right_level]);
5465        else
5466                btrfs_node_key_to_cpu(right_path->nodes[right_level],
5467                                &right_key, right_path->slots[right_level]);
5468
5469        left_end_reached = right_end_reached = 0;
5470        advance_left = advance_right = 0;
5471
5472        while (1) {
5473                if (advance_left && !left_end_reached) {
5474                        ret = tree_advance(fs_info, left_path, &left_level,
5475                                        left_root_level,
5476                                        advance_left != ADVANCE_ONLY_NEXT,
5477                                        &left_key);
5478                        if (ret == -1)
5479                                left_end_reached = ADVANCE;
5480                        else if (ret < 0)
5481                                goto out;
5482                        advance_left = 0;
5483                }
5484                if (advance_right && !right_end_reached) {
5485                        ret = tree_advance(fs_info, right_path, &right_level,
5486                                        right_root_level,
5487                                        advance_right != ADVANCE_ONLY_NEXT,
5488                                        &right_key);
5489                        if (ret == -1)
5490                                right_end_reached = ADVANCE;
5491                        else if (ret < 0)
5492                                goto out;
5493                        advance_right = 0;
5494                }
5495
5496                if (left_end_reached && right_end_reached) {
5497                        ret = 0;
5498                        goto out;
5499                } else if (left_end_reached) {
5500                        if (right_level == 0) {
5501                                ret = changed_cb(left_root, right_root,
5502                                                left_path, right_path,
5503                                                &right_key,
5504                                                BTRFS_COMPARE_TREE_DELETED,
5505                                                ctx);
5506                                if (ret < 0)
5507                                        goto out;
5508                        }
5509                        advance_right = ADVANCE;
5510                        continue;
5511                } else if (right_end_reached) {
5512                        if (left_level == 0) {
5513                                ret = changed_cb(left_root, right_root,
5514                                                left_path, right_path,
5515                                                &left_key,
5516                                                BTRFS_COMPARE_TREE_NEW,
5517                                                ctx);
5518                                if (ret < 0)
5519                                        goto out;
5520                        }
5521                        advance_left = ADVANCE;
5522                        continue;
5523                }
5524
5525                if (left_level == 0 && right_level == 0) {
5526                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5527                        if (cmp < 0) {
5528                                ret = changed_cb(left_root, right_root,
5529                                                left_path, right_path,
5530                                                &left_key,
5531                                                BTRFS_COMPARE_TREE_NEW,
5532                                                ctx);
5533                                if (ret < 0)
5534                                        goto out;
5535                                advance_left = ADVANCE;
5536                        } else if (cmp > 0) {
5537                                ret = changed_cb(left_root, right_root,
5538                                                left_path, right_path,
5539                                                &right_key,
5540                                                BTRFS_COMPARE_TREE_DELETED,
5541                                                ctx);
5542                                if (ret < 0)
5543                                        goto out;
5544                                advance_right = ADVANCE;
5545                        } else {
5546                                enum btrfs_compare_tree_result result;
5547
5548                                WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5549                                ret = tree_compare_item(left_path, right_path,
5550                                                        tmp_buf);
5551                                if (ret)
5552                                        result = BTRFS_COMPARE_TREE_CHANGED;
5553                                else
5554                                        result = BTRFS_COMPARE_TREE_SAME;
5555                                ret = changed_cb(left_root, right_root,
5556                                                 left_path, right_path,
5557                                                 &left_key, result, ctx);
5558                                if (ret < 0)
5559                                        goto out;
5560                                advance_left = ADVANCE;
5561                                advance_right = ADVANCE;
5562                        }
5563                } else if (left_level == right_level) {
5564                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5565                        if (cmp < 0) {
5566                                advance_left = ADVANCE;
5567                        } else if (cmp > 0) {
5568                                advance_right = ADVANCE;
5569                        } else {
5570                                left_blockptr = btrfs_node_blockptr(
5571                                                left_path->nodes[left_level],
5572                                                left_path->slots[left_level]);
5573                                right_blockptr = btrfs_node_blockptr(
5574                                                right_path->nodes[right_level],
5575                                                right_path->slots[right_level]);
5576                                left_gen = btrfs_node_ptr_generation(
5577                                                left_path->nodes[left_level],
5578                                                left_path->slots[left_level]);
5579                                right_gen = btrfs_node_ptr_generation(
5580                                                right_path->nodes[right_level],
5581                                                right_path->slots[right_level]);
5582                                if (left_blockptr == right_blockptr &&
5583                                    left_gen == right_gen) {
5584                                        /*
5585                                         * As we're on a shared block, don't
5586                                         * allow to go deeper.
5587                                         */
5588                                        advance_left = ADVANCE_ONLY_NEXT;
5589                                        advance_right = ADVANCE_ONLY_NEXT;
5590                                } else {
5591                                        advance_left = ADVANCE;
5592                                        advance_right = ADVANCE;
5593                                }
5594                        }
5595                } else if (left_level < right_level) {
5596                        advance_right = ADVANCE;
5597                } else {
5598                        advance_left = ADVANCE;
5599                }
5600        }
5601
5602out:
5603        btrfs_free_path(left_path);
5604        btrfs_free_path(right_path);
5605        kvfree(tmp_buf);
5606        return ret;
5607}
5608
5609/*
5610 * this is similar to btrfs_next_leaf, but does not try to preserve
5611 * and fixup the path.  It looks for and returns the next key in the
5612 * tree based on the current path and the min_trans parameters.
5613 *
5614 * 0 is returned if another key is found, < 0 if there are any errors
5615 * and 1 is returned if there are no higher keys in the tree
5616 *
5617 * path->keep_locks should be set to 1 on the search made before
5618 * calling this function.
5619 */
5620int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5621                        struct btrfs_key *key, int level, u64 min_trans)
5622{
5623        int slot;
5624        struct extent_buffer *c;
5625
5626        WARN_ON(!path->keep_locks);
5627        while (level < BTRFS_MAX_LEVEL) {
5628                if (!path->nodes[level])
5629                        return 1;
5630
5631                slot = path->slots[level] + 1;
5632                c = path->nodes[level];
5633next:
5634                if (slot >= btrfs_header_nritems(c)) {
5635                        int ret;
5636                        int orig_lowest;
5637                        struct btrfs_key cur_key;
5638                        if (level + 1 >= BTRFS_MAX_LEVEL ||
5639                            !path->nodes[level + 1])
5640                                return 1;
5641
5642                        if (path->locks[level + 1]) {
5643                                level++;
5644                                continue;
5645                        }
5646
5647                        slot = btrfs_header_nritems(c) - 1;
5648                        if (level == 0)
5649                                btrfs_item_key_to_cpu(c, &cur_key, slot);
5650                        else
5651                                btrfs_node_key_to_cpu(c, &cur_key, slot);
5652
5653                        orig_lowest = path->lowest_level;
5654                        btrfs_release_path(path);
5655                        path->lowest_level = level;
5656                        ret = btrfs_search_slot(NULL, root, &cur_key, path,
5657                                                0, 0);
5658                        path->lowest_level = orig_lowest;
5659                        if (ret < 0)
5660                                return ret;
5661
5662                        c = path->nodes[level];
5663                        slot = path->slots[level];
5664                        if (ret == 0)
5665                                slot++;
5666                        goto next;
5667                }
5668
5669                if (level == 0)
5670                        btrfs_item_key_to_cpu(c, key, slot);
5671                else {
5672                        u64 gen = btrfs_node_ptr_generation(c, slot);
5673
5674                        if (gen < min_trans) {
5675                                slot++;
5676                                goto next;
5677                        }
5678                        btrfs_node_key_to_cpu(c, key, slot);
5679                }
5680                return 0;
5681        }
5682        return 1;
5683}
5684
5685/*
5686 * search the tree again to find a leaf with greater keys
5687 * returns 0 if it found something or 1 if there are no greater leaves.
5688 * returns < 0 on io errors.
5689 */
5690int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5691{
5692        return btrfs_next_old_leaf(root, path, 0);
5693}
5694
5695int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5696                        u64 time_seq)
5697{
5698        int slot;
5699        int level;
5700        struct extent_buffer *c;
5701        struct extent_buffer *next;
5702        struct btrfs_key key;
5703        u32 nritems;
5704        int ret;
5705        int old_spinning = path->leave_spinning;
5706        int next_rw_lock = 0;
5707
5708        nritems = btrfs_header_nritems(path->nodes[0]);
5709        if (nritems == 0)
5710                return 1;
5711
5712        btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5713again:
5714        level = 1;
5715        next = NULL;
5716        next_rw_lock = 0;
5717        btrfs_release_path(path);
5718
5719        path->keep_locks = 1;
5720        path->leave_spinning = 1;
5721
5722        if (time_seq)
5723                ret = btrfs_search_old_slot(root, &key, path, time_seq);
5724        else
5725                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5726        path->keep_locks = 0;
5727
5728        if (ret < 0)
5729                return ret;
5730
5731        nritems = btrfs_header_nritems(path->nodes[0]);
5732        /*
5733         * by releasing the path above we dropped all our locks.  A balance
5734         * could have added more items next to the key that used to be
5735         * at the very end of the block.  So, check again here and
5736         * advance the path if there are now more items available.
5737         */
5738        if (nritems > 0 && path->slots[0] < nritems - 1) {
5739                if (ret == 0)
5740                        path->slots[0]++;
5741                ret = 0;
5742                goto done;
5743        }
5744        /*
5745         * So the above check misses one case:
5746         * - after releasing the path above, someone has removed the item that
5747         *   used to be at the very end of the block, and balance between leafs
5748         *   gets another one with bigger key.offset to replace it.
5749         *
5750         * This one should be returned as well, or we can get leaf corruption
5751         * later(esp. in __btrfs_drop_extents()).
5752         *
5753         * And a bit more explanation about this check,
5754         * with ret > 0, the key isn't found, the path points to the slot
5755         * where it should be inserted, so the path->slots[0] item must be the
5756         * bigger one.
5757         */
5758        if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5759                ret = 0;
5760                goto done;
5761        }
5762
5763        while (level < BTRFS_MAX_LEVEL) {
5764                if (!path->nodes[level]) {
5765                        ret = 1;
5766                        goto done;
5767                }
5768
5769                slot = path->slots[level] + 1;
5770                c = path->nodes[level];
5771                if (slot >= btrfs_header_nritems(c)) {
5772                        level++;
5773                        if (level == BTRFS_MAX_LEVEL) {
5774                                ret = 1;
5775                                goto done;
5776                        }
5777                        continue;
5778                }
5779
5780                if (next) {
5781                        btrfs_tree_unlock_rw(next, next_rw_lock);
5782                        free_extent_buffer(next);
5783                }
5784
5785                next = c;
5786                next_rw_lock = path->locks[level];
5787                ret = read_block_for_search(NULL, root, path, &next, level,
5788                                            slot, &key, 0);
5789                if (ret == -EAGAIN)
5790                        goto again;
5791
5792                if (ret < 0) {
5793                        btrfs_release_path(path);
5794                        goto done;
5795                }
5796
5797                if (!path->skip_locking) {
5798                        ret = btrfs_try_tree_read_lock(next);
5799                        if (!ret && time_seq) {
5800                                /*
5801                                 * If we don't get the lock, we may be racing
5802                                 * with push_leaf_left, holding that lock while
5803                                 * itself waiting for the leaf we've currently
5804                                 * locked. To solve this situation, we give up
5805                                 * on our lock and cycle.
5806                                 */
5807                                free_extent_buffer(next);
5808                                btrfs_release_path(path);
5809                                cond_resched();
5810                                goto again;
5811                        }
5812                        if (!ret) {
5813                                btrfs_set_path_blocking(path);
5814                                btrfs_tree_read_lock(next);
5815                                btrfs_clear_path_blocking(path, next,
5816                                                          BTRFS_READ_LOCK);
5817                        }
5818                        next_rw_lock = BTRFS_READ_LOCK;
5819                }
5820                break;
5821        }
5822        path->slots[level] = slot;
5823        while (1) {
5824                level--;
5825                c = path->nodes[level];
5826                if (path->locks[level])
5827                        btrfs_tree_unlock_rw(c, path->locks[level]);
5828
5829                free_extent_buffer(c);
5830                path->nodes[level] = next;
5831                path->slots[level] = 0;
5832                if (!path->skip_locking)
5833                        path->locks[level] = next_rw_lock;
5834                if (!level)
5835                        break;
5836
5837                ret = read_block_for_search(NULL, root, path, &next, level,
5838                                            0, &key, 0);
5839                if (ret == -EAGAIN)
5840                        goto again;
5841
5842                if (ret < 0) {
5843                        btrfs_release_path(path);
5844                        goto done;
5845                }
5846
5847                if (!path->skip_locking) {
5848                        ret = btrfs_try_tree_read_lock(next);
5849                        if (!ret) {
5850                                btrfs_set_path_blocking(path);
5851                                btrfs_tree_read_lock(next);
5852                                btrfs_clear_path_blocking(path, next,
5853                                                          BTRFS_READ_LOCK);
5854                        }
5855                        next_rw_lock = BTRFS_READ_LOCK;
5856                }
5857        }
5858        ret = 0;
5859done:
5860        unlock_up(path, 0, 1, 0, NULL);
5861        path->leave_spinning = old_spinning;
5862        if (!old_spinning)
5863                btrfs_set_path_blocking(path);
5864
5865        return ret;
5866}
5867
5868/*
5869 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5870 * searching until it gets past min_objectid or finds an item of 'type'
5871 *
5872 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5873 */
5874int btrfs_previous_item(struct btrfs_root *root,
5875                        struct btrfs_path *path, u64 min_objectid,
5876                        int type)
5877{
5878        struct btrfs_key found_key;
5879        struct extent_buffer *leaf;
5880        u32 nritems;
5881        int ret;
5882
5883        while (1) {
5884                if (path->slots[0] == 0) {
5885                        btrfs_set_path_blocking(path);
5886                        ret = btrfs_prev_leaf(root, path);
5887                        if (ret != 0)
5888                                return ret;
5889                } else {
5890                        path->slots[0]--;
5891                }
5892                leaf = path->nodes[0];
5893                nritems = btrfs_header_nritems(leaf);
5894                if (nritems == 0)
5895                        return 1;
5896                if (path->slots[0] == nritems)
5897                        path->slots[0]--;
5898
5899                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5900                if (found_key.objectid < min_objectid)
5901                        break;
5902                if (found_key.type == type)
5903                        return 0;
5904                if (found_key.objectid == min_objectid &&
5905                    found_key.type < type)
5906                        break;
5907        }
5908        return 1;
5909}
5910
5911/*
5912 * search in extent tree to find a previous Metadata/Data extent item with
5913 * min objecitd.
5914 *
5915 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5916 */
5917int btrfs_previous_extent_item(struct btrfs_root *root,
5918                        struct btrfs_path *path, u64 min_objectid)
5919{
5920        struct btrfs_key found_key;
5921        struct extent_buffer *leaf;
5922        u32 nritems;
5923        int ret;
5924
5925        while (1) {
5926                if (path->slots[0] == 0) {
5927                        btrfs_set_path_blocking(path);
5928                        ret = btrfs_prev_leaf(root, path);
5929                        if (ret != 0)
5930                                return ret;
5931                } else {
5932                        path->slots[0]--;
5933                }
5934                leaf = path->nodes[0];
5935                nritems = btrfs_header_nritems(leaf);
5936                if (nritems == 0)
5937                        return 1;
5938                if (path->slots[0] == nritems)
5939                        path->slots[0]--;
5940
5941                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5942                if (found_key.objectid < min_objectid)
5943                        break;
5944                if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5945                    found_key.type == BTRFS_METADATA_ITEM_KEY)
5946                        return 0;
5947                if (found_key.objectid == min_objectid &&
5948                    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5949                        break;
5950        }
5951        return 1;
5952}
5953