linux/fs/btrfs/free-space-cache.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2008 Red Hat.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/pagemap.h>
  20#include <linux/sched.h>
  21#include <linux/slab.h>
  22#include <linux/math64.h>
  23#include <linux/ratelimit.h>
  24#include "ctree.h"
  25#include "free-space-cache.h"
  26#include "transaction.h"
  27#include "disk-io.h"
  28#include "extent_io.h"
  29#include "inode-map.h"
  30#include "volumes.h"
  31
  32#define BITS_PER_BITMAP         (PAGE_SIZE * 8UL)
  33#define MAX_CACHE_BYTES_PER_GIG SZ_32K
  34
  35struct btrfs_trim_range {
  36        u64 start;
  37        u64 bytes;
  38        struct list_head list;
  39};
  40
  41static int link_free_space(struct btrfs_free_space_ctl *ctl,
  42                           struct btrfs_free_space *info);
  43static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
  44                              struct btrfs_free_space *info);
  45static int btrfs_wait_cache_io_root(struct btrfs_root *root,
  46                             struct btrfs_trans_handle *trans,
  47                             struct btrfs_io_ctl *io_ctl,
  48                             struct btrfs_path *path);
  49
  50static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
  51                                               struct btrfs_path *path,
  52                                               u64 offset)
  53{
  54        struct btrfs_fs_info *fs_info = root->fs_info;
  55        struct btrfs_key key;
  56        struct btrfs_key location;
  57        struct btrfs_disk_key disk_key;
  58        struct btrfs_free_space_header *header;
  59        struct extent_buffer *leaf;
  60        struct inode *inode = NULL;
  61        int ret;
  62
  63        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  64        key.offset = offset;
  65        key.type = 0;
  66
  67        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  68        if (ret < 0)
  69                return ERR_PTR(ret);
  70        if (ret > 0) {
  71                btrfs_release_path(path);
  72                return ERR_PTR(-ENOENT);
  73        }
  74
  75        leaf = path->nodes[0];
  76        header = btrfs_item_ptr(leaf, path->slots[0],
  77                                struct btrfs_free_space_header);
  78        btrfs_free_space_key(leaf, header, &disk_key);
  79        btrfs_disk_key_to_cpu(&location, &disk_key);
  80        btrfs_release_path(path);
  81
  82        inode = btrfs_iget(fs_info->sb, &location, root, NULL);
  83        if (IS_ERR(inode))
  84                return inode;
  85        if (is_bad_inode(inode)) {
  86                iput(inode);
  87                return ERR_PTR(-ENOENT);
  88        }
  89
  90        mapping_set_gfp_mask(inode->i_mapping,
  91                        mapping_gfp_constraint(inode->i_mapping,
  92                        ~(__GFP_FS | __GFP_HIGHMEM)));
  93
  94        return inode;
  95}
  96
  97struct inode *lookup_free_space_inode(struct btrfs_root *root,
  98                                      struct btrfs_block_group_cache
  99                                      *block_group, struct btrfs_path *path)
 100{
 101        struct inode *inode = NULL;
 102        struct btrfs_fs_info *fs_info = root->fs_info;
 103        u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 104
 105        spin_lock(&block_group->lock);
 106        if (block_group->inode)
 107                inode = igrab(block_group->inode);
 108        spin_unlock(&block_group->lock);
 109        if (inode)
 110                return inode;
 111
 112        inode = __lookup_free_space_inode(root, path,
 113                                          block_group->key.objectid);
 114        if (IS_ERR(inode))
 115                return inode;
 116
 117        spin_lock(&block_group->lock);
 118        if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 119                btrfs_info(fs_info, "Old style space inode found, converting.");
 120                BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 121                        BTRFS_INODE_NODATACOW;
 122                block_group->disk_cache_state = BTRFS_DC_CLEAR;
 123        }
 124
 125        if (!block_group->iref) {
 126                block_group->inode = igrab(inode);
 127                block_group->iref = 1;
 128        }
 129        spin_unlock(&block_group->lock);
 130
 131        return inode;
 132}
 133
 134static int __create_free_space_inode(struct btrfs_root *root,
 135                                     struct btrfs_trans_handle *trans,
 136                                     struct btrfs_path *path,
 137                                     u64 ino, u64 offset)
 138{
 139        struct btrfs_key key;
 140        struct btrfs_disk_key disk_key;
 141        struct btrfs_free_space_header *header;
 142        struct btrfs_inode_item *inode_item;
 143        struct extent_buffer *leaf;
 144        u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
 145        int ret;
 146
 147        ret = btrfs_insert_empty_inode(trans, root, path, ino);
 148        if (ret)
 149                return ret;
 150
 151        /* We inline crc's for the free disk space cache */
 152        if (ino != BTRFS_FREE_INO_OBJECTID)
 153                flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 154
 155        leaf = path->nodes[0];
 156        inode_item = btrfs_item_ptr(leaf, path->slots[0],
 157                                    struct btrfs_inode_item);
 158        btrfs_item_key(leaf, &disk_key, path->slots[0]);
 159        memzero_extent_buffer(leaf, (unsigned long)inode_item,
 160                             sizeof(*inode_item));
 161        btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 162        btrfs_set_inode_size(leaf, inode_item, 0);
 163        btrfs_set_inode_nbytes(leaf, inode_item, 0);
 164        btrfs_set_inode_uid(leaf, inode_item, 0);
 165        btrfs_set_inode_gid(leaf, inode_item, 0);
 166        btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 167        btrfs_set_inode_flags(leaf, inode_item, flags);
 168        btrfs_set_inode_nlink(leaf, inode_item, 1);
 169        btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 170        btrfs_set_inode_block_group(leaf, inode_item, offset);
 171        btrfs_mark_buffer_dirty(leaf);
 172        btrfs_release_path(path);
 173
 174        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 175        key.offset = offset;
 176        key.type = 0;
 177        ret = btrfs_insert_empty_item(trans, root, path, &key,
 178                                      sizeof(struct btrfs_free_space_header));
 179        if (ret < 0) {
 180                btrfs_release_path(path);
 181                return ret;
 182        }
 183
 184        leaf = path->nodes[0];
 185        header = btrfs_item_ptr(leaf, path->slots[0],
 186                                struct btrfs_free_space_header);
 187        memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
 188        btrfs_set_free_space_key(leaf, header, &disk_key);
 189        btrfs_mark_buffer_dirty(leaf);
 190        btrfs_release_path(path);
 191
 192        return 0;
 193}
 194
 195int create_free_space_inode(struct btrfs_root *root,
 196                            struct btrfs_trans_handle *trans,
 197                            struct btrfs_block_group_cache *block_group,
 198                            struct btrfs_path *path)
 199{
 200        int ret;
 201        u64 ino;
 202
 203        ret = btrfs_find_free_objectid(root, &ino);
 204        if (ret < 0)
 205                return ret;
 206
 207        return __create_free_space_inode(root, trans, path, ino,
 208                                         block_group->key.objectid);
 209}
 210
 211int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
 212                                       struct btrfs_block_rsv *rsv)
 213{
 214        u64 needed_bytes;
 215        int ret;
 216
 217        /* 1 for slack space, 1 for updating the inode */
 218        needed_bytes = btrfs_calc_trunc_metadata_size(fs_info, 1) +
 219                btrfs_calc_trans_metadata_size(fs_info, 1);
 220
 221        spin_lock(&rsv->lock);
 222        if (rsv->reserved < needed_bytes)
 223                ret = -ENOSPC;
 224        else
 225                ret = 0;
 226        spin_unlock(&rsv->lock);
 227        return ret;
 228}
 229
 230int btrfs_truncate_free_space_cache(struct btrfs_root *root,
 231                                    struct btrfs_trans_handle *trans,
 232                                    struct btrfs_block_group_cache *block_group,
 233                                    struct inode *inode)
 234{
 235        int ret = 0;
 236        struct btrfs_path *path = btrfs_alloc_path();
 237        bool locked = false;
 238
 239        if (!path) {
 240                ret = -ENOMEM;
 241                goto fail;
 242        }
 243
 244        if (block_group) {
 245                locked = true;
 246                mutex_lock(&trans->transaction->cache_write_mutex);
 247                if (!list_empty(&block_group->io_list)) {
 248                        list_del_init(&block_group->io_list);
 249
 250                        btrfs_wait_cache_io(trans, block_group, path);
 251                        btrfs_put_block_group(block_group);
 252                }
 253
 254                /*
 255                 * now that we've truncated the cache away, its no longer
 256                 * setup or written
 257                 */
 258                spin_lock(&block_group->lock);
 259                block_group->disk_cache_state = BTRFS_DC_CLEAR;
 260                spin_unlock(&block_group->lock);
 261        }
 262        btrfs_free_path(path);
 263
 264        btrfs_i_size_write(inode, 0);
 265        truncate_pagecache(inode, 0);
 266
 267        /*
 268         * We don't need an orphan item because truncating the free space cache
 269         * will never be split across transactions.
 270         * We don't need to check for -EAGAIN because we're a free space
 271         * cache inode
 272         */
 273        ret = btrfs_truncate_inode_items(trans, root, inode,
 274                                         0, BTRFS_EXTENT_DATA_KEY);
 275        if (ret)
 276                goto fail;
 277
 278        ret = btrfs_update_inode(trans, root, inode);
 279
 280fail:
 281        if (locked)
 282                mutex_unlock(&trans->transaction->cache_write_mutex);
 283        if (ret)
 284                btrfs_abort_transaction(trans, ret);
 285
 286        return ret;
 287}
 288
 289static int readahead_cache(struct inode *inode)
 290{
 291        struct file_ra_state *ra;
 292        unsigned long last_index;
 293
 294        ra = kzalloc(sizeof(*ra), GFP_NOFS);
 295        if (!ra)
 296                return -ENOMEM;
 297
 298        file_ra_state_init(ra, inode->i_mapping);
 299        last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 300
 301        page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
 302
 303        kfree(ra);
 304
 305        return 0;
 306}
 307
 308static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 309                       int write)
 310{
 311        int num_pages;
 312        int check_crcs = 0;
 313
 314        num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 315
 316        if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
 317                check_crcs = 1;
 318
 319        /* Make sure we can fit our crcs into the first page */
 320        if (write && check_crcs &&
 321            (num_pages * sizeof(u32)) >= PAGE_SIZE)
 322                return -ENOSPC;
 323
 324        memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
 325
 326        io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
 327        if (!io_ctl->pages)
 328                return -ENOMEM;
 329
 330        io_ctl->num_pages = num_pages;
 331        io_ctl->fs_info = btrfs_sb(inode->i_sb);
 332        io_ctl->check_crcs = check_crcs;
 333        io_ctl->inode = inode;
 334
 335        return 0;
 336}
 337
 338static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
 339{
 340        kfree(io_ctl->pages);
 341        io_ctl->pages = NULL;
 342}
 343
 344static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
 345{
 346        if (io_ctl->cur) {
 347                io_ctl->cur = NULL;
 348                io_ctl->orig = NULL;
 349        }
 350}
 351
 352static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
 353{
 354        ASSERT(io_ctl->index < io_ctl->num_pages);
 355        io_ctl->page = io_ctl->pages[io_ctl->index++];
 356        io_ctl->cur = page_address(io_ctl->page);
 357        io_ctl->orig = io_ctl->cur;
 358        io_ctl->size = PAGE_SIZE;
 359        if (clear)
 360                memset(io_ctl->cur, 0, PAGE_SIZE);
 361}
 362
 363static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
 364{
 365        int i;
 366
 367        io_ctl_unmap_page(io_ctl);
 368
 369        for (i = 0; i < io_ctl->num_pages; i++) {
 370                if (io_ctl->pages[i]) {
 371                        ClearPageChecked(io_ctl->pages[i]);
 372                        unlock_page(io_ctl->pages[i]);
 373                        put_page(io_ctl->pages[i]);
 374                }
 375        }
 376}
 377
 378static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 379                                int uptodate)
 380{
 381        struct page *page;
 382        gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 383        int i;
 384
 385        for (i = 0; i < io_ctl->num_pages; i++) {
 386                page = find_or_create_page(inode->i_mapping, i, mask);
 387                if (!page) {
 388                        io_ctl_drop_pages(io_ctl);
 389                        return -ENOMEM;
 390                }
 391                io_ctl->pages[i] = page;
 392                if (uptodate && !PageUptodate(page)) {
 393                        btrfs_readpage(NULL, page);
 394                        lock_page(page);
 395                        if (!PageUptodate(page)) {
 396                                btrfs_err(BTRFS_I(inode)->root->fs_info,
 397                                           "error reading free space cache");
 398                                io_ctl_drop_pages(io_ctl);
 399                                return -EIO;
 400                        }
 401                }
 402        }
 403
 404        for (i = 0; i < io_ctl->num_pages; i++) {
 405                clear_page_dirty_for_io(io_ctl->pages[i]);
 406                set_page_extent_mapped(io_ctl->pages[i]);
 407        }
 408
 409        return 0;
 410}
 411
 412static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 413{
 414        __le64 *val;
 415
 416        io_ctl_map_page(io_ctl, 1);
 417
 418        /*
 419         * Skip the csum areas.  If we don't check crcs then we just have a
 420         * 64bit chunk at the front of the first page.
 421         */
 422        if (io_ctl->check_crcs) {
 423                io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 424                io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 425        } else {
 426                io_ctl->cur += sizeof(u64);
 427                io_ctl->size -= sizeof(u64) * 2;
 428        }
 429
 430        val = io_ctl->cur;
 431        *val = cpu_to_le64(generation);
 432        io_ctl->cur += sizeof(u64);
 433}
 434
 435static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 436{
 437        __le64 *gen;
 438
 439        /*
 440         * Skip the crc area.  If we don't check crcs then we just have a 64bit
 441         * chunk at the front of the first page.
 442         */
 443        if (io_ctl->check_crcs) {
 444                io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 445                io_ctl->size -= sizeof(u64) +
 446                        (sizeof(u32) * io_ctl->num_pages);
 447        } else {
 448                io_ctl->cur += sizeof(u64);
 449                io_ctl->size -= sizeof(u64) * 2;
 450        }
 451
 452        gen = io_ctl->cur;
 453        if (le64_to_cpu(*gen) != generation) {
 454                btrfs_err_rl(io_ctl->fs_info,
 455                        "space cache generation (%llu) does not match inode (%llu)",
 456                                *gen, generation);
 457                io_ctl_unmap_page(io_ctl);
 458                return -EIO;
 459        }
 460        io_ctl->cur += sizeof(u64);
 461        return 0;
 462}
 463
 464static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
 465{
 466        u32 *tmp;
 467        u32 crc = ~(u32)0;
 468        unsigned offset = 0;
 469
 470        if (!io_ctl->check_crcs) {
 471                io_ctl_unmap_page(io_ctl);
 472                return;
 473        }
 474
 475        if (index == 0)
 476                offset = sizeof(u32) * io_ctl->num_pages;
 477
 478        crc = btrfs_csum_data(io_ctl->orig + offset, crc,
 479                              PAGE_SIZE - offset);
 480        btrfs_csum_final(crc, (u8 *)&crc);
 481        io_ctl_unmap_page(io_ctl);
 482        tmp = page_address(io_ctl->pages[0]);
 483        tmp += index;
 484        *tmp = crc;
 485}
 486
 487static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
 488{
 489        u32 *tmp, val;
 490        u32 crc = ~(u32)0;
 491        unsigned offset = 0;
 492
 493        if (!io_ctl->check_crcs) {
 494                io_ctl_map_page(io_ctl, 0);
 495                return 0;
 496        }
 497
 498        if (index == 0)
 499                offset = sizeof(u32) * io_ctl->num_pages;
 500
 501        tmp = page_address(io_ctl->pages[0]);
 502        tmp += index;
 503        val = *tmp;
 504
 505        io_ctl_map_page(io_ctl, 0);
 506        crc = btrfs_csum_data(io_ctl->orig + offset, crc,
 507                              PAGE_SIZE - offset);
 508        btrfs_csum_final(crc, (u8 *)&crc);
 509        if (val != crc) {
 510                btrfs_err_rl(io_ctl->fs_info,
 511                        "csum mismatch on free space cache");
 512                io_ctl_unmap_page(io_ctl);
 513                return -EIO;
 514        }
 515
 516        return 0;
 517}
 518
 519static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
 520                            void *bitmap)
 521{
 522        struct btrfs_free_space_entry *entry;
 523
 524        if (!io_ctl->cur)
 525                return -ENOSPC;
 526
 527        entry = io_ctl->cur;
 528        entry->offset = cpu_to_le64(offset);
 529        entry->bytes = cpu_to_le64(bytes);
 530        entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 531                BTRFS_FREE_SPACE_EXTENT;
 532        io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 533        io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 534
 535        if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 536                return 0;
 537
 538        io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 539
 540        /* No more pages to map */
 541        if (io_ctl->index >= io_ctl->num_pages)
 542                return 0;
 543
 544        /* map the next page */
 545        io_ctl_map_page(io_ctl, 1);
 546        return 0;
 547}
 548
 549static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
 550{
 551        if (!io_ctl->cur)
 552                return -ENOSPC;
 553
 554        /*
 555         * If we aren't at the start of the current page, unmap this one and
 556         * map the next one if there is any left.
 557         */
 558        if (io_ctl->cur != io_ctl->orig) {
 559                io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 560                if (io_ctl->index >= io_ctl->num_pages)
 561                        return -ENOSPC;
 562                io_ctl_map_page(io_ctl, 0);
 563        }
 564
 565        memcpy(io_ctl->cur, bitmap, PAGE_SIZE);
 566        io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 567        if (io_ctl->index < io_ctl->num_pages)
 568                io_ctl_map_page(io_ctl, 0);
 569        return 0;
 570}
 571
 572static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
 573{
 574        /*
 575         * If we're not on the boundary we know we've modified the page and we
 576         * need to crc the page.
 577         */
 578        if (io_ctl->cur != io_ctl->orig)
 579                io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 580        else
 581                io_ctl_unmap_page(io_ctl);
 582
 583        while (io_ctl->index < io_ctl->num_pages) {
 584                io_ctl_map_page(io_ctl, 1);
 585                io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 586        }
 587}
 588
 589static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
 590                            struct btrfs_free_space *entry, u8 *type)
 591{
 592        struct btrfs_free_space_entry *e;
 593        int ret;
 594
 595        if (!io_ctl->cur) {
 596                ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 597                if (ret)
 598                        return ret;
 599        }
 600
 601        e = io_ctl->cur;
 602        entry->offset = le64_to_cpu(e->offset);
 603        entry->bytes = le64_to_cpu(e->bytes);
 604        *type = e->type;
 605        io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 606        io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 607
 608        if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 609                return 0;
 610
 611        io_ctl_unmap_page(io_ctl);
 612
 613        return 0;
 614}
 615
 616static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
 617                              struct btrfs_free_space *entry)
 618{
 619        int ret;
 620
 621        ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 622        if (ret)
 623                return ret;
 624
 625        memcpy(entry->bitmap, io_ctl->cur, PAGE_SIZE);
 626        io_ctl_unmap_page(io_ctl);
 627
 628        return 0;
 629}
 630
 631/*
 632 * Since we attach pinned extents after the fact we can have contiguous sections
 633 * of free space that are split up in entries.  This poses a problem with the
 634 * tree logging stuff since it could have allocated across what appears to be 2
 635 * entries since we would have merged the entries when adding the pinned extents
 636 * back to the free space cache.  So run through the space cache that we just
 637 * loaded and merge contiguous entries.  This will make the log replay stuff not
 638 * blow up and it will make for nicer allocator behavior.
 639 */
 640static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
 641{
 642        struct btrfs_free_space *e, *prev = NULL;
 643        struct rb_node *n;
 644
 645again:
 646        spin_lock(&ctl->tree_lock);
 647        for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
 648                e = rb_entry(n, struct btrfs_free_space, offset_index);
 649                if (!prev)
 650                        goto next;
 651                if (e->bitmap || prev->bitmap)
 652                        goto next;
 653                if (prev->offset + prev->bytes == e->offset) {
 654                        unlink_free_space(ctl, prev);
 655                        unlink_free_space(ctl, e);
 656                        prev->bytes += e->bytes;
 657                        kmem_cache_free(btrfs_free_space_cachep, e);
 658                        link_free_space(ctl, prev);
 659                        prev = NULL;
 660                        spin_unlock(&ctl->tree_lock);
 661                        goto again;
 662                }
 663next:
 664                prev = e;
 665        }
 666        spin_unlock(&ctl->tree_lock);
 667}
 668
 669static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 670                                   struct btrfs_free_space_ctl *ctl,
 671                                   struct btrfs_path *path, u64 offset)
 672{
 673        struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 674        struct btrfs_free_space_header *header;
 675        struct extent_buffer *leaf;
 676        struct btrfs_io_ctl io_ctl;
 677        struct btrfs_key key;
 678        struct btrfs_free_space *e, *n;
 679        LIST_HEAD(bitmaps);
 680        u64 num_entries;
 681        u64 num_bitmaps;
 682        u64 generation;
 683        u8 type;
 684        int ret = 0;
 685
 686        /* Nothing in the space cache, goodbye */
 687        if (!i_size_read(inode))
 688                return 0;
 689
 690        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 691        key.offset = offset;
 692        key.type = 0;
 693
 694        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 695        if (ret < 0)
 696                return 0;
 697        else if (ret > 0) {
 698                btrfs_release_path(path);
 699                return 0;
 700        }
 701
 702        ret = -1;
 703
 704        leaf = path->nodes[0];
 705        header = btrfs_item_ptr(leaf, path->slots[0],
 706                                struct btrfs_free_space_header);
 707        num_entries = btrfs_free_space_entries(leaf, header);
 708        num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 709        generation = btrfs_free_space_generation(leaf, header);
 710        btrfs_release_path(path);
 711
 712        if (!BTRFS_I(inode)->generation) {
 713                btrfs_info(fs_info,
 714                           "The free space cache file (%llu) is invalid. skip it\n",
 715                           offset);
 716                return 0;
 717        }
 718
 719        if (BTRFS_I(inode)->generation != generation) {
 720                btrfs_err(fs_info,
 721                          "free space inode generation (%llu) did not match free space cache generation (%llu)",
 722                          BTRFS_I(inode)->generation, generation);
 723                return 0;
 724        }
 725
 726        if (!num_entries)
 727                return 0;
 728
 729        ret = io_ctl_init(&io_ctl, inode, 0);
 730        if (ret)
 731                return ret;
 732
 733        ret = readahead_cache(inode);
 734        if (ret)
 735                goto out;
 736
 737        ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
 738        if (ret)
 739                goto out;
 740
 741        ret = io_ctl_check_crc(&io_ctl, 0);
 742        if (ret)
 743                goto free_cache;
 744
 745        ret = io_ctl_check_generation(&io_ctl, generation);
 746        if (ret)
 747                goto free_cache;
 748
 749        while (num_entries) {
 750                e = kmem_cache_zalloc(btrfs_free_space_cachep,
 751                                      GFP_NOFS);
 752                if (!e)
 753                        goto free_cache;
 754
 755                ret = io_ctl_read_entry(&io_ctl, e, &type);
 756                if (ret) {
 757                        kmem_cache_free(btrfs_free_space_cachep, e);
 758                        goto free_cache;
 759                }
 760
 761                if (!e->bytes) {
 762                        kmem_cache_free(btrfs_free_space_cachep, e);
 763                        goto free_cache;
 764                }
 765
 766                if (type == BTRFS_FREE_SPACE_EXTENT) {
 767                        spin_lock(&ctl->tree_lock);
 768                        ret = link_free_space(ctl, e);
 769                        spin_unlock(&ctl->tree_lock);
 770                        if (ret) {
 771                                btrfs_err(fs_info,
 772                                        "Duplicate entries in free space cache, dumping");
 773                                kmem_cache_free(btrfs_free_space_cachep, e);
 774                                goto free_cache;
 775                        }
 776                } else {
 777                        ASSERT(num_bitmaps);
 778                        num_bitmaps--;
 779                        e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
 780                        if (!e->bitmap) {
 781                                kmem_cache_free(
 782                                        btrfs_free_space_cachep, e);
 783                                goto free_cache;
 784                        }
 785                        spin_lock(&ctl->tree_lock);
 786                        ret = link_free_space(ctl, e);
 787                        ctl->total_bitmaps++;
 788                        ctl->op->recalc_thresholds(ctl);
 789                        spin_unlock(&ctl->tree_lock);
 790                        if (ret) {
 791                                btrfs_err(fs_info,
 792                                        "Duplicate entries in free space cache, dumping");
 793                                kmem_cache_free(btrfs_free_space_cachep, e);
 794                                goto free_cache;
 795                        }
 796                        list_add_tail(&e->list, &bitmaps);
 797                }
 798
 799                num_entries--;
 800        }
 801
 802        io_ctl_unmap_page(&io_ctl);
 803
 804        /*
 805         * We add the bitmaps at the end of the entries in order that
 806         * the bitmap entries are added to the cache.
 807         */
 808        list_for_each_entry_safe(e, n, &bitmaps, list) {
 809                list_del_init(&e->list);
 810                ret = io_ctl_read_bitmap(&io_ctl, e);
 811                if (ret)
 812                        goto free_cache;
 813        }
 814
 815        io_ctl_drop_pages(&io_ctl);
 816        merge_space_tree(ctl);
 817        ret = 1;
 818out:
 819        io_ctl_free(&io_ctl);
 820        return ret;
 821free_cache:
 822        io_ctl_drop_pages(&io_ctl);
 823        __btrfs_remove_free_space_cache(ctl);
 824        goto out;
 825}
 826
 827int load_free_space_cache(struct btrfs_fs_info *fs_info,
 828                          struct btrfs_block_group_cache *block_group)
 829{
 830        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 831        struct btrfs_root *root = fs_info->tree_root;
 832        struct inode *inode;
 833        struct btrfs_path *path;
 834        int ret = 0;
 835        bool matched;
 836        u64 used = btrfs_block_group_used(&block_group->item);
 837
 838        /*
 839         * If this block group has been marked to be cleared for one reason or
 840         * another then we can't trust the on disk cache, so just return.
 841         */
 842        spin_lock(&block_group->lock);
 843        if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 844                spin_unlock(&block_group->lock);
 845                return 0;
 846        }
 847        spin_unlock(&block_group->lock);
 848
 849        path = btrfs_alloc_path();
 850        if (!path)
 851                return 0;
 852        path->search_commit_root = 1;
 853        path->skip_locking = 1;
 854
 855        inode = lookup_free_space_inode(root, block_group, path);
 856        if (IS_ERR(inode)) {
 857                btrfs_free_path(path);
 858                return 0;
 859        }
 860
 861        /* We may have converted the inode and made the cache invalid. */
 862        spin_lock(&block_group->lock);
 863        if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 864                spin_unlock(&block_group->lock);
 865                btrfs_free_path(path);
 866                goto out;
 867        }
 868        spin_unlock(&block_group->lock);
 869
 870        ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
 871                                      path, block_group->key.objectid);
 872        btrfs_free_path(path);
 873        if (ret <= 0)
 874                goto out;
 875
 876        spin_lock(&ctl->tree_lock);
 877        matched = (ctl->free_space == (block_group->key.offset - used -
 878                                       block_group->bytes_super));
 879        spin_unlock(&ctl->tree_lock);
 880
 881        if (!matched) {
 882                __btrfs_remove_free_space_cache(ctl);
 883                btrfs_warn(fs_info,
 884                           "block group %llu has wrong amount of free space",
 885                           block_group->key.objectid);
 886                ret = -1;
 887        }
 888out:
 889        if (ret < 0) {
 890                /* This cache is bogus, make sure it gets cleared */
 891                spin_lock(&block_group->lock);
 892                block_group->disk_cache_state = BTRFS_DC_CLEAR;
 893                spin_unlock(&block_group->lock);
 894                ret = 0;
 895
 896                btrfs_warn(fs_info,
 897                           "failed to load free space cache for block group %llu, rebuilding it now",
 898                           block_group->key.objectid);
 899        }
 900
 901        iput(inode);
 902        return ret;
 903}
 904
 905static noinline_for_stack
 906int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
 907                              struct btrfs_free_space_ctl *ctl,
 908                              struct btrfs_block_group_cache *block_group,
 909                              int *entries, int *bitmaps,
 910                              struct list_head *bitmap_list)
 911{
 912        int ret;
 913        struct btrfs_free_cluster *cluster = NULL;
 914        struct btrfs_free_cluster *cluster_locked = NULL;
 915        struct rb_node *node = rb_first(&ctl->free_space_offset);
 916        struct btrfs_trim_range *trim_entry;
 917
 918        /* Get the cluster for this block_group if it exists */
 919        if (block_group && !list_empty(&block_group->cluster_list)) {
 920                cluster = list_entry(block_group->cluster_list.next,
 921                                     struct btrfs_free_cluster,
 922                                     block_group_list);
 923        }
 924
 925        if (!node && cluster) {
 926                cluster_locked = cluster;
 927                spin_lock(&cluster_locked->lock);
 928                node = rb_first(&cluster->root);
 929                cluster = NULL;
 930        }
 931
 932        /* Write out the extent entries */
 933        while (node) {
 934                struct btrfs_free_space *e;
 935
 936                e = rb_entry(node, struct btrfs_free_space, offset_index);
 937                *entries += 1;
 938
 939                ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
 940                                       e->bitmap);
 941                if (ret)
 942                        goto fail;
 943
 944                if (e->bitmap) {
 945                        list_add_tail(&e->list, bitmap_list);
 946                        *bitmaps += 1;
 947                }
 948                node = rb_next(node);
 949                if (!node && cluster) {
 950                        node = rb_first(&cluster->root);
 951                        cluster_locked = cluster;
 952                        spin_lock(&cluster_locked->lock);
 953                        cluster = NULL;
 954                }
 955        }
 956        if (cluster_locked) {
 957                spin_unlock(&cluster_locked->lock);
 958                cluster_locked = NULL;
 959        }
 960
 961        /*
 962         * Make sure we don't miss any range that was removed from our rbtree
 963         * because trimming is running. Otherwise after a umount+mount (or crash
 964         * after committing the transaction) we would leak free space and get
 965         * an inconsistent free space cache report from fsck.
 966         */
 967        list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
 968                ret = io_ctl_add_entry(io_ctl, trim_entry->start,
 969                                       trim_entry->bytes, NULL);
 970                if (ret)
 971                        goto fail;
 972                *entries += 1;
 973        }
 974
 975        return 0;
 976fail:
 977        if (cluster_locked)
 978                spin_unlock(&cluster_locked->lock);
 979        return -ENOSPC;
 980}
 981
 982static noinline_for_stack int
 983update_cache_item(struct btrfs_trans_handle *trans,
 984                  struct btrfs_root *root,
 985                  struct inode *inode,
 986                  struct btrfs_path *path, u64 offset,
 987                  int entries, int bitmaps)
 988{
 989        struct btrfs_key key;
 990        struct btrfs_free_space_header *header;
 991        struct extent_buffer *leaf;
 992        int ret;
 993
 994        key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 995        key.offset = offset;
 996        key.type = 0;
 997
 998        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 999        if (ret < 0) {
1000                clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1001                                 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1002                                 GFP_NOFS);
1003                goto fail;
1004        }
1005        leaf = path->nodes[0];
1006        if (ret > 0) {
1007                struct btrfs_key found_key;
1008                ASSERT(path->slots[0]);
1009                path->slots[0]--;
1010                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1011                if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1012                    found_key.offset != offset) {
1013                        clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1014                                         inode->i_size - 1,
1015                                         EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1016                                         NULL, GFP_NOFS);
1017                        btrfs_release_path(path);
1018                        goto fail;
1019                }
1020        }
1021
1022        BTRFS_I(inode)->generation = trans->transid;
1023        header = btrfs_item_ptr(leaf, path->slots[0],
1024                                struct btrfs_free_space_header);
1025        btrfs_set_free_space_entries(leaf, header, entries);
1026        btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1027        btrfs_set_free_space_generation(leaf, header, trans->transid);
1028        btrfs_mark_buffer_dirty(leaf);
1029        btrfs_release_path(path);
1030
1031        return 0;
1032
1033fail:
1034        return -1;
1035}
1036
1037static noinline_for_stack int
1038write_pinned_extent_entries(struct btrfs_fs_info *fs_info,
1039                            struct btrfs_block_group_cache *block_group,
1040                            struct btrfs_io_ctl *io_ctl,
1041                            int *entries)
1042{
1043        u64 start, extent_start, extent_end, len;
1044        struct extent_io_tree *unpin = NULL;
1045        int ret;
1046
1047        if (!block_group)
1048                return 0;
1049
1050        /*
1051         * We want to add any pinned extents to our free space cache
1052         * so we don't leak the space
1053         *
1054         * We shouldn't have switched the pinned extents yet so this is the
1055         * right one
1056         */
1057        unpin = fs_info->pinned_extents;
1058
1059        start = block_group->key.objectid;
1060
1061        while (start < block_group->key.objectid + block_group->key.offset) {
1062                ret = find_first_extent_bit(unpin, start,
1063                                            &extent_start, &extent_end,
1064                                            EXTENT_DIRTY, NULL);
1065                if (ret)
1066                        return 0;
1067
1068                /* This pinned extent is out of our range */
1069                if (extent_start >= block_group->key.objectid +
1070                    block_group->key.offset)
1071                        return 0;
1072
1073                extent_start = max(extent_start, start);
1074                extent_end = min(block_group->key.objectid +
1075                                 block_group->key.offset, extent_end + 1);
1076                len = extent_end - extent_start;
1077
1078                *entries += 1;
1079                ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1080                if (ret)
1081                        return -ENOSPC;
1082
1083                start = extent_end;
1084        }
1085
1086        return 0;
1087}
1088
1089static noinline_for_stack int
1090write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1091{
1092        struct btrfs_free_space *entry, *next;
1093        int ret;
1094
1095        /* Write out the bitmaps */
1096        list_for_each_entry_safe(entry, next, bitmap_list, list) {
1097                ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1098                if (ret)
1099                        return -ENOSPC;
1100                list_del_init(&entry->list);
1101        }
1102
1103        return 0;
1104}
1105
1106static int flush_dirty_cache(struct inode *inode)
1107{
1108        int ret;
1109
1110        ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1111        if (ret)
1112                clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1113                                 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1114                                 GFP_NOFS);
1115
1116        return ret;
1117}
1118
1119static void noinline_for_stack
1120cleanup_bitmap_list(struct list_head *bitmap_list)
1121{
1122        struct btrfs_free_space *entry, *next;
1123
1124        list_for_each_entry_safe(entry, next, bitmap_list, list)
1125                list_del_init(&entry->list);
1126}
1127
1128static void noinline_for_stack
1129cleanup_write_cache_enospc(struct inode *inode,
1130                           struct btrfs_io_ctl *io_ctl,
1131                           struct extent_state **cached_state,
1132                           struct list_head *bitmap_list)
1133{
1134        io_ctl_drop_pages(io_ctl);
1135        unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1136                             i_size_read(inode) - 1, cached_state,
1137                             GFP_NOFS);
1138}
1139
1140static int __btrfs_wait_cache_io(struct btrfs_root *root,
1141                                 struct btrfs_trans_handle *trans,
1142                                 struct btrfs_block_group_cache *block_group,
1143                                 struct btrfs_io_ctl *io_ctl,
1144                                 struct btrfs_path *path, u64 offset)
1145{
1146        int ret;
1147        struct inode *inode = io_ctl->inode;
1148        struct btrfs_fs_info *fs_info;
1149
1150        if (!inode)
1151                return 0;
1152
1153        fs_info = btrfs_sb(inode->i_sb);
1154
1155        /* Flush the dirty pages in the cache file. */
1156        ret = flush_dirty_cache(inode);
1157        if (ret)
1158                goto out;
1159
1160        /* Update the cache item to tell everyone this cache file is valid. */
1161        ret = update_cache_item(trans, root, inode, path, offset,
1162                                io_ctl->entries, io_ctl->bitmaps);
1163out:
1164        io_ctl_free(io_ctl);
1165        if (ret) {
1166                invalidate_inode_pages2(inode->i_mapping);
1167                BTRFS_I(inode)->generation = 0;
1168                if (block_group) {
1169#ifdef DEBUG
1170                        btrfs_err(fs_info,
1171                                  "failed to write free space cache for block group %llu",
1172                                  block_group->key.objectid);
1173#endif
1174                }
1175        }
1176        btrfs_update_inode(trans, root, inode);
1177
1178        if (block_group) {
1179                /* the dirty list is protected by the dirty_bgs_lock */
1180                spin_lock(&trans->transaction->dirty_bgs_lock);
1181
1182                /* the disk_cache_state is protected by the block group lock */
1183                spin_lock(&block_group->lock);
1184
1185                /*
1186                 * only mark this as written if we didn't get put back on
1187                 * the dirty list while waiting for IO.   Otherwise our
1188                 * cache state won't be right, and we won't get written again
1189                 */
1190                if (!ret && list_empty(&block_group->dirty_list))
1191                        block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1192                else if (ret)
1193                        block_group->disk_cache_state = BTRFS_DC_ERROR;
1194
1195                spin_unlock(&block_group->lock);
1196                spin_unlock(&trans->transaction->dirty_bgs_lock);
1197                io_ctl->inode = NULL;
1198                iput(inode);
1199        }
1200
1201        return ret;
1202
1203}
1204
1205static int btrfs_wait_cache_io_root(struct btrfs_root *root,
1206                                    struct btrfs_trans_handle *trans,
1207                                    struct btrfs_io_ctl *io_ctl,
1208                                    struct btrfs_path *path)
1209{
1210        return __btrfs_wait_cache_io(root, trans, NULL, io_ctl, path, 0);
1211}
1212
1213int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1214                        struct btrfs_block_group_cache *block_group,
1215                        struct btrfs_path *path)
1216{
1217        return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1218                                     block_group, &block_group->io_ctl,
1219                                     path, block_group->key.objectid);
1220}
1221
1222/**
1223 * __btrfs_write_out_cache - write out cached info to an inode
1224 * @root - the root the inode belongs to
1225 * @ctl - the free space cache we are going to write out
1226 * @block_group - the block_group for this cache if it belongs to a block_group
1227 * @trans - the trans handle
1228 * @path - the path to use
1229 * @offset - the offset for the key we'll insert
1230 *
1231 * This function writes out a free space cache struct to disk for quick recovery
1232 * on mount.  This will return 0 if it was successful in writing the cache out,
1233 * or an errno if it was not.
1234 */
1235static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1236                                   struct btrfs_free_space_ctl *ctl,
1237                                   struct btrfs_block_group_cache *block_group,
1238                                   struct btrfs_io_ctl *io_ctl,
1239                                   struct btrfs_trans_handle *trans,
1240                                   struct btrfs_path *path, u64 offset)
1241{
1242        struct btrfs_fs_info *fs_info = root->fs_info;
1243        struct extent_state *cached_state = NULL;
1244        LIST_HEAD(bitmap_list);
1245        int entries = 0;
1246        int bitmaps = 0;
1247        int ret;
1248        int must_iput = 0;
1249
1250        if (!i_size_read(inode))
1251                return -EIO;
1252
1253        WARN_ON(io_ctl->pages);
1254        ret = io_ctl_init(io_ctl, inode, 1);
1255        if (ret)
1256                return ret;
1257
1258        if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1259                down_write(&block_group->data_rwsem);
1260                spin_lock(&block_group->lock);
1261                if (block_group->delalloc_bytes) {
1262                        block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1263                        spin_unlock(&block_group->lock);
1264                        up_write(&block_group->data_rwsem);
1265                        BTRFS_I(inode)->generation = 0;
1266                        ret = 0;
1267                        must_iput = 1;
1268                        goto out;
1269                }
1270                spin_unlock(&block_group->lock);
1271        }
1272
1273        /* Lock all pages first so we can lock the extent safely. */
1274        ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1275        if (ret)
1276                goto out;
1277
1278        lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1279                         &cached_state);
1280
1281        io_ctl_set_generation(io_ctl, trans->transid);
1282
1283        mutex_lock(&ctl->cache_writeout_mutex);
1284        /* Write out the extent entries in the free space cache */
1285        spin_lock(&ctl->tree_lock);
1286        ret = write_cache_extent_entries(io_ctl, ctl,
1287                                         block_group, &entries, &bitmaps,
1288                                         &bitmap_list);
1289        if (ret)
1290                goto out_nospc_locked;
1291
1292        /*
1293         * Some spaces that are freed in the current transaction are pinned,
1294         * they will be added into free space cache after the transaction is
1295         * committed, we shouldn't lose them.
1296         *
1297         * If this changes while we are working we'll get added back to
1298         * the dirty list and redo it.  No locking needed
1299         */
1300        ret = write_pinned_extent_entries(fs_info, block_group,
1301                                          io_ctl, &entries);
1302        if (ret)
1303                goto out_nospc_locked;
1304
1305        /*
1306         * At last, we write out all the bitmaps and keep cache_writeout_mutex
1307         * locked while doing it because a concurrent trim can be manipulating
1308         * or freeing the bitmap.
1309         */
1310        ret = write_bitmap_entries(io_ctl, &bitmap_list);
1311        spin_unlock(&ctl->tree_lock);
1312        mutex_unlock(&ctl->cache_writeout_mutex);
1313        if (ret)
1314                goto out_nospc;
1315
1316        /* Zero out the rest of the pages just to make sure */
1317        io_ctl_zero_remaining_pages(io_ctl);
1318
1319        /* Everything is written out, now we dirty the pages in the file. */
1320        ret = btrfs_dirty_pages(inode, io_ctl->pages, io_ctl->num_pages, 0,
1321                                i_size_read(inode), &cached_state);
1322        if (ret)
1323                goto out_nospc;
1324
1325        if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1326                up_write(&block_group->data_rwsem);
1327        /*
1328         * Release the pages and unlock the extent, we will flush
1329         * them out later
1330         */
1331        io_ctl_drop_pages(io_ctl);
1332
1333        unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1334                             i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1335
1336        /*
1337         * at this point the pages are under IO and we're happy,
1338         * The caller is responsible for waiting on them and updating the
1339         * the cache and the inode
1340         */
1341        io_ctl->entries = entries;
1342        io_ctl->bitmaps = bitmaps;
1343
1344        ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1345        if (ret)
1346                goto out;
1347
1348        return 0;
1349
1350out:
1351        io_ctl->inode = NULL;
1352        io_ctl_free(io_ctl);
1353        if (ret) {
1354                invalidate_inode_pages2(inode->i_mapping);
1355                BTRFS_I(inode)->generation = 0;
1356        }
1357        btrfs_update_inode(trans, root, inode);
1358        if (must_iput)
1359                iput(inode);
1360        return ret;
1361
1362out_nospc_locked:
1363        cleanup_bitmap_list(&bitmap_list);
1364        spin_unlock(&ctl->tree_lock);
1365        mutex_unlock(&ctl->cache_writeout_mutex);
1366
1367out_nospc:
1368        cleanup_write_cache_enospc(inode, io_ctl, &cached_state, &bitmap_list);
1369
1370        if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1371                up_write(&block_group->data_rwsem);
1372
1373        goto out;
1374}
1375
1376int btrfs_write_out_cache(struct btrfs_fs_info *fs_info,
1377                          struct btrfs_trans_handle *trans,
1378                          struct btrfs_block_group_cache *block_group,
1379                          struct btrfs_path *path)
1380{
1381        struct btrfs_root *root = fs_info->tree_root;
1382        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1383        struct inode *inode;
1384        int ret = 0;
1385
1386        spin_lock(&block_group->lock);
1387        if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1388                spin_unlock(&block_group->lock);
1389                return 0;
1390        }
1391        spin_unlock(&block_group->lock);
1392
1393        inode = lookup_free_space_inode(root, block_group, path);
1394        if (IS_ERR(inode))
1395                return 0;
1396
1397        ret = __btrfs_write_out_cache(root, inode, ctl, block_group,
1398                                      &block_group->io_ctl, trans,
1399                                      path, block_group->key.objectid);
1400        if (ret) {
1401#ifdef DEBUG
1402                btrfs_err(fs_info,
1403                          "failed to write free space cache for block group %llu",
1404                          block_group->key.objectid);
1405#endif
1406                spin_lock(&block_group->lock);
1407                block_group->disk_cache_state = BTRFS_DC_ERROR;
1408                spin_unlock(&block_group->lock);
1409
1410                block_group->io_ctl.inode = NULL;
1411                iput(inode);
1412        }
1413
1414        /*
1415         * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1416         * to wait for IO and put the inode
1417         */
1418
1419        return ret;
1420}
1421
1422static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1423                                          u64 offset)
1424{
1425        ASSERT(offset >= bitmap_start);
1426        offset -= bitmap_start;
1427        return (unsigned long)(div_u64(offset, unit));
1428}
1429
1430static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1431{
1432        return (unsigned long)(div_u64(bytes, unit));
1433}
1434
1435static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1436                                   u64 offset)
1437{
1438        u64 bitmap_start;
1439        u64 bytes_per_bitmap;
1440
1441        bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1442        bitmap_start = offset - ctl->start;
1443        bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1444        bitmap_start *= bytes_per_bitmap;
1445        bitmap_start += ctl->start;
1446
1447        return bitmap_start;
1448}
1449
1450static int tree_insert_offset(struct rb_root *root, u64 offset,
1451                              struct rb_node *node, int bitmap)
1452{
1453        struct rb_node **p = &root->rb_node;
1454        struct rb_node *parent = NULL;
1455        struct btrfs_free_space *info;
1456
1457        while (*p) {
1458                parent = *p;
1459                info = rb_entry(parent, struct btrfs_free_space, offset_index);
1460
1461                if (offset < info->offset) {
1462                        p = &(*p)->rb_left;
1463                } else if (offset > info->offset) {
1464                        p = &(*p)->rb_right;
1465                } else {
1466                        /*
1467                         * we could have a bitmap entry and an extent entry
1468                         * share the same offset.  If this is the case, we want
1469                         * the extent entry to always be found first if we do a
1470                         * linear search through the tree, since we want to have
1471                         * the quickest allocation time, and allocating from an
1472                         * extent is faster than allocating from a bitmap.  So
1473                         * if we're inserting a bitmap and we find an entry at
1474                         * this offset, we want to go right, or after this entry
1475                         * logically.  If we are inserting an extent and we've
1476                         * found a bitmap, we want to go left, or before
1477                         * logically.
1478                         */
1479                        if (bitmap) {
1480                                if (info->bitmap) {
1481                                        WARN_ON_ONCE(1);
1482                                        return -EEXIST;
1483                                }
1484                                p = &(*p)->rb_right;
1485                        } else {
1486                                if (!info->bitmap) {
1487                                        WARN_ON_ONCE(1);
1488                                        return -EEXIST;
1489                                }
1490                                p = &(*p)->rb_left;
1491                        }
1492                }
1493        }
1494
1495        rb_link_node(node, parent, p);
1496        rb_insert_color(node, root);
1497
1498        return 0;
1499}
1500
1501/*
1502 * searches the tree for the given offset.
1503 *
1504 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1505 * want a section that has at least bytes size and comes at or after the given
1506 * offset.
1507 */
1508static struct btrfs_free_space *
1509tree_search_offset(struct btrfs_free_space_ctl *ctl,
1510                   u64 offset, int bitmap_only, int fuzzy)
1511{
1512        struct rb_node *n = ctl->free_space_offset.rb_node;
1513        struct btrfs_free_space *entry, *prev = NULL;
1514
1515        /* find entry that is closest to the 'offset' */
1516        while (1) {
1517                if (!n) {
1518                        entry = NULL;
1519                        break;
1520                }
1521
1522                entry = rb_entry(n, struct btrfs_free_space, offset_index);
1523                prev = entry;
1524
1525                if (offset < entry->offset)
1526                        n = n->rb_left;
1527                else if (offset > entry->offset)
1528                        n = n->rb_right;
1529                else
1530                        break;
1531        }
1532
1533        if (bitmap_only) {
1534                if (!entry)
1535                        return NULL;
1536                if (entry->bitmap)
1537                        return entry;
1538
1539                /*
1540                 * bitmap entry and extent entry may share same offset,
1541                 * in that case, bitmap entry comes after extent entry.
1542                 */
1543                n = rb_next(n);
1544                if (!n)
1545                        return NULL;
1546                entry = rb_entry(n, struct btrfs_free_space, offset_index);
1547                if (entry->offset != offset)
1548                        return NULL;
1549
1550                WARN_ON(!entry->bitmap);
1551                return entry;
1552        } else if (entry) {
1553                if (entry->bitmap) {
1554                        /*
1555                         * if previous extent entry covers the offset,
1556                         * we should return it instead of the bitmap entry
1557                         */
1558                        n = rb_prev(&entry->offset_index);
1559                        if (n) {
1560                                prev = rb_entry(n, struct btrfs_free_space,
1561                                                offset_index);
1562                                if (!prev->bitmap &&
1563                                    prev->offset + prev->bytes > offset)
1564                                        entry = prev;
1565                        }
1566                }
1567                return entry;
1568        }
1569
1570        if (!prev)
1571                return NULL;
1572
1573        /* find last entry before the 'offset' */
1574        entry = prev;
1575        if (entry->offset > offset) {
1576                n = rb_prev(&entry->offset_index);
1577                if (n) {
1578                        entry = rb_entry(n, struct btrfs_free_space,
1579                                        offset_index);
1580                        ASSERT(entry->offset <= offset);
1581                } else {
1582                        if (fuzzy)
1583                                return entry;
1584                        else
1585                                return NULL;
1586                }
1587        }
1588
1589        if (entry->bitmap) {
1590                n = rb_prev(&entry->offset_index);
1591                if (n) {
1592                        prev = rb_entry(n, struct btrfs_free_space,
1593                                        offset_index);
1594                        if (!prev->bitmap &&
1595                            prev->offset + prev->bytes > offset)
1596                                return prev;
1597                }
1598                if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1599                        return entry;
1600        } else if (entry->offset + entry->bytes > offset)
1601                return entry;
1602
1603        if (!fuzzy)
1604                return NULL;
1605
1606        while (1) {
1607                if (entry->bitmap) {
1608                        if (entry->offset + BITS_PER_BITMAP *
1609                            ctl->unit > offset)
1610                                break;
1611                } else {
1612                        if (entry->offset + entry->bytes > offset)
1613                                break;
1614                }
1615
1616                n = rb_next(&entry->offset_index);
1617                if (!n)
1618                        return NULL;
1619                entry = rb_entry(n, struct btrfs_free_space, offset_index);
1620        }
1621        return entry;
1622}
1623
1624static inline void
1625__unlink_free_space(struct btrfs_free_space_ctl *ctl,
1626                    struct btrfs_free_space *info)
1627{
1628        rb_erase(&info->offset_index, &ctl->free_space_offset);
1629        ctl->free_extents--;
1630}
1631
1632static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1633                              struct btrfs_free_space *info)
1634{
1635        __unlink_free_space(ctl, info);
1636        ctl->free_space -= info->bytes;
1637}
1638
1639static int link_free_space(struct btrfs_free_space_ctl *ctl,
1640                           struct btrfs_free_space *info)
1641{
1642        int ret = 0;
1643
1644        ASSERT(info->bytes || info->bitmap);
1645        ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1646                                 &info->offset_index, (info->bitmap != NULL));
1647        if (ret)
1648                return ret;
1649
1650        ctl->free_space += info->bytes;
1651        ctl->free_extents++;
1652        return ret;
1653}
1654
1655static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1656{
1657        struct btrfs_block_group_cache *block_group = ctl->private;
1658        u64 max_bytes;
1659        u64 bitmap_bytes;
1660        u64 extent_bytes;
1661        u64 size = block_group->key.offset;
1662        u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1663        u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1664
1665        max_bitmaps = max_t(u64, max_bitmaps, 1);
1666
1667        ASSERT(ctl->total_bitmaps <= max_bitmaps);
1668
1669        /*
1670         * The goal is to keep the total amount of memory used per 1gb of space
1671         * at or below 32k, so we need to adjust how much memory we allow to be
1672         * used by extent based free space tracking
1673         */
1674        if (size < SZ_1G)
1675                max_bytes = MAX_CACHE_BYTES_PER_GIG;
1676        else
1677                max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1678
1679        /*
1680         * we want to account for 1 more bitmap than what we have so we can make
1681         * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1682         * we add more bitmaps.
1683         */
1684        bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1685
1686        if (bitmap_bytes >= max_bytes) {
1687                ctl->extents_thresh = 0;
1688                return;
1689        }
1690
1691        /*
1692         * we want the extent entry threshold to always be at most 1/2 the max
1693         * bytes we can have, or whatever is less than that.
1694         */
1695        extent_bytes = max_bytes - bitmap_bytes;
1696        extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1697
1698        ctl->extents_thresh =
1699                div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1700}
1701
1702static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1703                                       struct btrfs_free_space *info,
1704                                       u64 offset, u64 bytes)
1705{
1706        unsigned long start, count;
1707
1708        start = offset_to_bit(info->offset, ctl->unit, offset);
1709        count = bytes_to_bits(bytes, ctl->unit);
1710        ASSERT(start + count <= BITS_PER_BITMAP);
1711
1712        bitmap_clear(info->bitmap, start, count);
1713
1714        info->bytes -= bytes;
1715}
1716
1717static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1718                              struct btrfs_free_space *info, u64 offset,
1719                              u64 bytes)
1720{
1721        __bitmap_clear_bits(ctl, info, offset, bytes);
1722        ctl->free_space -= bytes;
1723}
1724
1725static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1726                            struct btrfs_free_space *info, u64 offset,
1727                            u64 bytes)
1728{
1729        unsigned long start, count;
1730
1731        start = offset_to_bit(info->offset, ctl->unit, offset);
1732        count = bytes_to_bits(bytes, ctl->unit);
1733        ASSERT(start + count <= BITS_PER_BITMAP);
1734
1735        bitmap_set(info->bitmap, start, count);
1736
1737        info->bytes += bytes;
1738        ctl->free_space += bytes;
1739}
1740
1741/*
1742 * If we can not find suitable extent, we will use bytes to record
1743 * the size of the max extent.
1744 */
1745static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1746                         struct btrfs_free_space *bitmap_info, u64 *offset,
1747                         u64 *bytes, bool for_alloc)
1748{
1749        unsigned long found_bits = 0;
1750        unsigned long max_bits = 0;
1751        unsigned long bits, i;
1752        unsigned long next_zero;
1753        unsigned long extent_bits;
1754
1755        /*
1756         * Skip searching the bitmap if we don't have a contiguous section that
1757         * is large enough for this allocation.
1758         */
1759        if (for_alloc &&
1760            bitmap_info->max_extent_size &&
1761            bitmap_info->max_extent_size < *bytes) {
1762                *bytes = bitmap_info->max_extent_size;
1763                return -1;
1764        }
1765
1766        i = offset_to_bit(bitmap_info->offset, ctl->unit,
1767                          max_t(u64, *offset, bitmap_info->offset));
1768        bits = bytes_to_bits(*bytes, ctl->unit);
1769
1770        for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1771                if (for_alloc && bits == 1) {
1772                        found_bits = 1;
1773                        break;
1774                }
1775                next_zero = find_next_zero_bit(bitmap_info->bitmap,
1776                                               BITS_PER_BITMAP, i);
1777                extent_bits = next_zero - i;
1778                if (extent_bits >= bits) {
1779                        found_bits = extent_bits;
1780                        break;
1781                } else if (extent_bits > max_bits) {
1782                        max_bits = extent_bits;
1783                }
1784                i = next_zero;
1785        }
1786
1787        if (found_bits) {
1788                *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1789                *bytes = (u64)(found_bits) * ctl->unit;
1790                return 0;
1791        }
1792
1793        *bytes = (u64)(max_bits) * ctl->unit;
1794        bitmap_info->max_extent_size = *bytes;
1795        return -1;
1796}
1797
1798/* Cache the size of the max extent in bytes */
1799static struct btrfs_free_space *
1800find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1801                unsigned long align, u64 *max_extent_size)
1802{
1803        struct btrfs_free_space *entry;
1804        struct rb_node *node;
1805        u64 tmp;
1806        u64 align_off;
1807        int ret;
1808
1809        if (!ctl->free_space_offset.rb_node)
1810                goto out;
1811
1812        entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1813        if (!entry)
1814                goto out;
1815
1816        for (node = &entry->offset_index; node; node = rb_next(node)) {
1817                entry = rb_entry(node, struct btrfs_free_space, offset_index);
1818                if (entry->bytes < *bytes) {
1819                        if (entry->bytes > *max_extent_size)
1820                                *max_extent_size = entry->bytes;
1821                        continue;
1822                }
1823
1824                /* make sure the space returned is big enough
1825                 * to match our requested alignment
1826                 */
1827                if (*bytes >= align) {
1828                        tmp = entry->offset - ctl->start + align - 1;
1829                        tmp = div64_u64(tmp, align);
1830                        tmp = tmp * align + ctl->start;
1831                        align_off = tmp - entry->offset;
1832                } else {
1833                        align_off = 0;
1834                        tmp = entry->offset;
1835                }
1836
1837                if (entry->bytes < *bytes + align_off) {
1838                        if (entry->bytes > *max_extent_size)
1839                                *max_extent_size = entry->bytes;
1840                        continue;
1841                }
1842
1843                if (entry->bitmap) {
1844                        u64 size = *bytes;
1845
1846                        ret = search_bitmap(ctl, entry, &tmp, &size, true);
1847                        if (!ret) {
1848                                *offset = tmp;
1849                                *bytes = size;
1850                                return entry;
1851                        } else if (size > *max_extent_size) {
1852                                *max_extent_size = size;
1853                        }
1854                        continue;
1855                }
1856
1857                *offset = tmp;
1858                *bytes = entry->bytes - align_off;
1859                return entry;
1860        }
1861out:
1862        return NULL;
1863}
1864
1865static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1866                           struct btrfs_free_space *info, u64 offset)
1867{
1868        info->offset = offset_to_bitmap(ctl, offset);
1869        info->bytes = 0;
1870        INIT_LIST_HEAD(&info->list);
1871        link_free_space(ctl, info);
1872        ctl->total_bitmaps++;
1873
1874        ctl->op->recalc_thresholds(ctl);
1875}
1876
1877static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1878                        struct btrfs_free_space *bitmap_info)
1879{
1880        unlink_free_space(ctl, bitmap_info);
1881        kfree(bitmap_info->bitmap);
1882        kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1883        ctl->total_bitmaps--;
1884        ctl->op->recalc_thresholds(ctl);
1885}
1886
1887static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1888                              struct btrfs_free_space *bitmap_info,
1889                              u64 *offset, u64 *bytes)
1890{
1891        u64 end;
1892        u64 search_start, search_bytes;
1893        int ret;
1894
1895again:
1896        end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1897
1898        /*
1899         * We need to search for bits in this bitmap.  We could only cover some
1900         * of the extent in this bitmap thanks to how we add space, so we need
1901         * to search for as much as it as we can and clear that amount, and then
1902         * go searching for the next bit.
1903         */
1904        search_start = *offset;
1905        search_bytes = ctl->unit;
1906        search_bytes = min(search_bytes, end - search_start + 1);
1907        ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1908                            false);
1909        if (ret < 0 || search_start != *offset)
1910                return -EINVAL;
1911
1912        /* We may have found more bits than what we need */
1913        search_bytes = min(search_bytes, *bytes);
1914
1915        /* Cannot clear past the end of the bitmap */
1916        search_bytes = min(search_bytes, end - search_start + 1);
1917
1918        bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1919        *offset += search_bytes;
1920        *bytes -= search_bytes;
1921
1922        if (*bytes) {
1923                struct rb_node *next = rb_next(&bitmap_info->offset_index);
1924                if (!bitmap_info->bytes)
1925                        free_bitmap(ctl, bitmap_info);
1926
1927                /*
1928                 * no entry after this bitmap, but we still have bytes to
1929                 * remove, so something has gone wrong.
1930                 */
1931                if (!next)
1932                        return -EINVAL;
1933
1934                bitmap_info = rb_entry(next, struct btrfs_free_space,
1935                                       offset_index);
1936
1937                /*
1938                 * if the next entry isn't a bitmap we need to return to let the
1939                 * extent stuff do its work.
1940                 */
1941                if (!bitmap_info->bitmap)
1942                        return -EAGAIN;
1943
1944                /*
1945                 * Ok the next item is a bitmap, but it may not actually hold
1946                 * the information for the rest of this free space stuff, so
1947                 * look for it, and if we don't find it return so we can try
1948                 * everything over again.
1949                 */
1950                search_start = *offset;
1951                search_bytes = ctl->unit;
1952                ret = search_bitmap(ctl, bitmap_info, &search_start,
1953                                    &search_bytes, false);
1954                if (ret < 0 || search_start != *offset)
1955                        return -EAGAIN;
1956
1957                goto again;
1958        } else if (!bitmap_info->bytes)
1959                free_bitmap(ctl, bitmap_info);
1960
1961        return 0;
1962}
1963
1964static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1965                               struct btrfs_free_space *info, u64 offset,
1966                               u64 bytes)
1967{
1968        u64 bytes_to_set = 0;
1969        u64 end;
1970
1971        end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1972
1973        bytes_to_set = min(end - offset, bytes);
1974
1975        bitmap_set_bits(ctl, info, offset, bytes_to_set);
1976
1977        /*
1978         * We set some bytes, we have no idea what the max extent size is
1979         * anymore.
1980         */
1981        info->max_extent_size = 0;
1982
1983        return bytes_to_set;
1984
1985}
1986
1987static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1988                      struct btrfs_free_space *info)
1989{
1990        struct btrfs_block_group_cache *block_group = ctl->private;
1991        struct btrfs_fs_info *fs_info = block_group->fs_info;
1992        bool forced = false;
1993
1994#ifdef CONFIG_BTRFS_DEBUG
1995        if (btrfs_should_fragment_free_space(block_group))
1996                forced = true;
1997#endif
1998
1999        /*
2000         * If we are below the extents threshold then we can add this as an
2001         * extent, and don't have to deal with the bitmap
2002         */
2003        if (!forced && ctl->free_extents < ctl->extents_thresh) {
2004                /*
2005                 * If this block group has some small extents we don't want to
2006                 * use up all of our free slots in the cache with them, we want
2007                 * to reserve them to larger extents, however if we have plenty
2008                 * of cache left then go ahead an dadd them, no sense in adding
2009                 * the overhead of a bitmap if we don't have to.
2010                 */
2011                if (info->bytes <= fs_info->sectorsize * 4) {
2012                        if (ctl->free_extents * 2 <= ctl->extents_thresh)
2013                                return false;
2014                } else {
2015                        return false;
2016                }
2017        }
2018
2019        /*
2020         * The original block groups from mkfs can be really small, like 8
2021         * megabytes, so don't bother with a bitmap for those entries.  However
2022         * some block groups can be smaller than what a bitmap would cover but
2023         * are still large enough that they could overflow the 32k memory limit,
2024         * so allow those block groups to still be allowed to have a bitmap
2025         * entry.
2026         */
2027        if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2028                return false;
2029
2030        return true;
2031}
2032
2033static const struct btrfs_free_space_op free_space_op = {
2034        .recalc_thresholds      = recalculate_thresholds,
2035        .use_bitmap             = use_bitmap,
2036};
2037
2038static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2039                              struct btrfs_free_space *info)
2040{
2041        struct btrfs_free_space *bitmap_info;
2042        struct btrfs_block_group_cache *block_group = NULL;
2043        int added = 0;
2044        u64 bytes, offset, bytes_added;
2045        int ret;
2046
2047        bytes = info->bytes;
2048        offset = info->offset;
2049
2050        if (!ctl->op->use_bitmap(ctl, info))
2051                return 0;
2052
2053        if (ctl->op == &free_space_op)
2054                block_group = ctl->private;
2055again:
2056        /*
2057         * Since we link bitmaps right into the cluster we need to see if we
2058         * have a cluster here, and if so and it has our bitmap we need to add
2059         * the free space to that bitmap.
2060         */
2061        if (block_group && !list_empty(&block_group->cluster_list)) {
2062                struct btrfs_free_cluster *cluster;
2063                struct rb_node *node;
2064                struct btrfs_free_space *entry;
2065
2066                cluster = list_entry(block_group->cluster_list.next,
2067                                     struct btrfs_free_cluster,
2068                                     block_group_list);
2069                spin_lock(&cluster->lock);
2070                node = rb_first(&cluster->root);
2071                if (!node) {
2072                        spin_unlock(&cluster->lock);
2073                        goto no_cluster_bitmap;
2074                }
2075
2076                entry = rb_entry(node, struct btrfs_free_space, offset_index);
2077                if (!entry->bitmap) {
2078                        spin_unlock(&cluster->lock);
2079                        goto no_cluster_bitmap;
2080                }
2081
2082                if (entry->offset == offset_to_bitmap(ctl, offset)) {
2083                        bytes_added = add_bytes_to_bitmap(ctl, entry,
2084                                                          offset, bytes);
2085                        bytes -= bytes_added;
2086                        offset += bytes_added;
2087                }
2088                spin_unlock(&cluster->lock);
2089                if (!bytes) {
2090                        ret = 1;
2091                        goto out;
2092                }
2093        }
2094
2095no_cluster_bitmap:
2096        bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2097                                         1, 0);
2098        if (!bitmap_info) {
2099                ASSERT(added == 0);
2100                goto new_bitmap;
2101        }
2102
2103        bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2104        bytes -= bytes_added;
2105        offset += bytes_added;
2106        added = 0;
2107
2108        if (!bytes) {
2109                ret = 1;
2110                goto out;
2111        } else
2112                goto again;
2113
2114new_bitmap:
2115        if (info && info->bitmap) {
2116                add_new_bitmap(ctl, info, offset);
2117                added = 1;
2118                info = NULL;
2119                goto again;
2120        } else {
2121                spin_unlock(&ctl->tree_lock);
2122
2123                /* no pre-allocated info, allocate a new one */
2124                if (!info) {
2125                        info = kmem_cache_zalloc(btrfs_free_space_cachep,
2126                                                 GFP_NOFS);
2127                        if (!info) {
2128                                spin_lock(&ctl->tree_lock);
2129                                ret = -ENOMEM;
2130                                goto out;
2131                        }
2132                }
2133
2134                /* allocate the bitmap */
2135                info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
2136                spin_lock(&ctl->tree_lock);
2137                if (!info->bitmap) {
2138                        ret = -ENOMEM;
2139                        goto out;
2140                }
2141                goto again;
2142        }
2143
2144out:
2145        if (info) {
2146                if (info->bitmap)
2147                        kfree(info->bitmap);
2148                kmem_cache_free(btrfs_free_space_cachep, info);
2149        }
2150
2151        return ret;
2152}
2153
2154static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2155                          struct btrfs_free_space *info, bool update_stat)
2156{
2157        struct btrfs_free_space *left_info;
2158        struct btrfs_free_space *right_info;
2159        bool merged = false;
2160        u64 offset = info->offset;
2161        u64 bytes = info->bytes;
2162
2163        /*
2164         * first we want to see if there is free space adjacent to the range we
2165         * are adding, if there is remove that struct and add a new one to
2166         * cover the entire range
2167         */
2168        right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2169        if (right_info && rb_prev(&right_info->offset_index))
2170                left_info = rb_entry(rb_prev(&right_info->offset_index),
2171                                     struct btrfs_free_space, offset_index);
2172        else
2173                left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2174
2175        if (right_info && !right_info->bitmap) {
2176                if (update_stat)
2177                        unlink_free_space(ctl, right_info);
2178                else
2179                        __unlink_free_space(ctl, right_info);
2180                info->bytes += right_info->bytes;
2181                kmem_cache_free(btrfs_free_space_cachep, right_info);
2182                merged = true;
2183        }
2184
2185        if (left_info && !left_info->bitmap &&
2186            left_info->offset + left_info->bytes == offset) {
2187                if (update_stat)
2188                        unlink_free_space(ctl, left_info);
2189                else
2190                        __unlink_free_space(ctl, left_info);
2191                info->offset = left_info->offset;
2192                info->bytes += left_info->bytes;
2193                kmem_cache_free(btrfs_free_space_cachep, left_info);
2194                merged = true;
2195        }
2196
2197        return merged;
2198}
2199
2200static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2201                                     struct btrfs_free_space *info,
2202                                     bool update_stat)
2203{
2204        struct btrfs_free_space *bitmap;
2205        unsigned long i;
2206        unsigned long j;
2207        const u64 end = info->offset + info->bytes;
2208        const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2209        u64 bytes;
2210
2211        bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2212        if (!bitmap)
2213                return false;
2214
2215        i = offset_to_bit(bitmap->offset, ctl->unit, end);
2216        j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2217        if (j == i)
2218                return false;
2219        bytes = (j - i) * ctl->unit;
2220        info->bytes += bytes;
2221
2222        if (update_stat)
2223                bitmap_clear_bits(ctl, bitmap, end, bytes);
2224        else
2225                __bitmap_clear_bits(ctl, bitmap, end, bytes);
2226
2227        if (!bitmap->bytes)
2228                free_bitmap(ctl, bitmap);
2229
2230        return true;
2231}
2232
2233static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2234                                       struct btrfs_free_space *info,
2235                                       bool update_stat)
2236{
2237        struct btrfs_free_space *bitmap;
2238        u64 bitmap_offset;
2239        unsigned long i;
2240        unsigned long j;
2241        unsigned long prev_j;
2242        u64 bytes;
2243
2244        bitmap_offset = offset_to_bitmap(ctl, info->offset);
2245        /* If we're on a boundary, try the previous logical bitmap. */
2246        if (bitmap_offset == info->offset) {
2247                if (info->offset == 0)
2248                        return false;
2249                bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2250        }
2251
2252        bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2253        if (!bitmap)
2254                return false;
2255
2256        i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2257        j = 0;
2258        prev_j = (unsigned long)-1;
2259        for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2260                if (j > i)
2261                        break;
2262                prev_j = j;
2263        }
2264        if (prev_j == i)
2265                return false;
2266
2267        if (prev_j == (unsigned long)-1)
2268                bytes = (i + 1) * ctl->unit;
2269        else
2270                bytes = (i - prev_j) * ctl->unit;
2271
2272        info->offset -= bytes;
2273        info->bytes += bytes;
2274
2275        if (update_stat)
2276                bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2277        else
2278                __bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2279
2280        if (!bitmap->bytes)
2281                free_bitmap(ctl, bitmap);
2282
2283        return true;
2284}
2285
2286/*
2287 * We prefer always to allocate from extent entries, both for clustered and
2288 * non-clustered allocation requests. So when attempting to add a new extent
2289 * entry, try to see if there's adjacent free space in bitmap entries, and if
2290 * there is, migrate that space from the bitmaps to the extent.
2291 * Like this we get better chances of satisfying space allocation requests
2292 * because we attempt to satisfy them based on a single cache entry, and never
2293 * on 2 or more entries - even if the entries represent a contiguous free space
2294 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2295 * ends).
2296 */
2297static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2298                              struct btrfs_free_space *info,
2299                              bool update_stat)
2300{
2301        /*
2302         * Only work with disconnected entries, as we can change their offset,
2303         * and must be extent entries.
2304         */
2305        ASSERT(!info->bitmap);
2306        ASSERT(RB_EMPTY_NODE(&info->offset_index));
2307
2308        if (ctl->total_bitmaps > 0) {
2309                bool stole_end;
2310                bool stole_front = false;
2311
2312                stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2313                if (ctl->total_bitmaps > 0)
2314                        stole_front = steal_from_bitmap_to_front(ctl, info,
2315                                                                 update_stat);
2316
2317                if (stole_end || stole_front)
2318                        try_merge_free_space(ctl, info, update_stat);
2319        }
2320}
2321
2322int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2323                           struct btrfs_free_space_ctl *ctl,
2324                           u64 offset, u64 bytes)
2325{
2326        struct btrfs_free_space *info;
2327        int ret = 0;
2328
2329        info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2330        if (!info)
2331                return -ENOMEM;
2332
2333        info->offset = offset;
2334        info->bytes = bytes;
2335        RB_CLEAR_NODE(&info->offset_index);
2336
2337        spin_lock(&ctl->tree_lock);
2338
2339        if (try_merge_free_space(ctl, info, true))
2340                goto link;
2341
2342        /*
2343         * There was no extent directly to the left or right of this new
2344         * extent then we know we're going to have to allocate a new extent, so
2345         * before we do that see if we need to drop this into a bitmap
2346         */
2347        ret = insert_into_bitmap(ctl, info);
2348        if (ret < 0) {
2349                goto out;
2350        } else if (ret) {
2351                ret = 0;
2352                goto out;
2353        }
2354link:
2355        /*
2356         * Only steal free space from adjacent bitmaps if we're sure we're not
2357         * going to add the new free space to existing bitmap entries - because
2358         * that would mean unnecessary work that would be reverted. Therefore
2359         * attempt to steal space from bitmaps if we're adding an extent entry.
2360         */
2361        steal_from_bitmap(ctl, info, true);
2362
2363        ret = link_free_space(ctl, info);
2364        if (ret)
2365                kmem_cache_free(btrfs_free_space_cachep, info);
2366out:
2367        spin_unlock(&ctl->tree_lock);
2368
2369        if (ret) {
2370                btrfs_crit(fs_info, "unable to add free space :%d", ret);
2371                ASSERT(ret != -EEXIST);
2372        }
2373
2374        return ret;
2375}
2376
2377int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2378                            u64 offset, u64 bytes)
2379{
2380        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2381        struct btrfs_free_space *info;
2382        int ret;
2383        bool re_search = false;
2384
2385        spin_lock(&ctl->tree_lock);
2386
2387again:
2388        ret = 0;
2389        if (!bytes)
2390                goto out_lock;
2391
2392        info = tree_search_offset(ctl, offset, 0, 0);
2393        if (!info) {
2394                /*
2395                 * oops didn't find an extent that matched the space we wanted
2396                 * to remove, look for a bitmap instead
2397                 */
2398                info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2399                                          1, 0);
2400                if (!info) {
2401                        /*
2402                         * If we found a partial bit of our free space in a
2403                         * bitmap but then couldn't find the other part this may
2404                         * be a problem, so WARN about it.
2405                         */
2406                        WARN_ON(re_search);
2407                        goto out_lock;
2408                }
2409        }
2410
2411        re_search = false;
2412        if (!info->bitmap) {
2413                unlink_free_space(ctl, info);
2414                if (offset == info->offset) {
2415                        u64 to_free = min(bytes, info->bytes);
2416
2417                        info->bytes -= to_free;
2418                        info->offset += to_free;
2419                        if (info->bytes) {
2420                                ret = link_free_space(ctl, info);
2421                                WARN_ON(ret);
2422                        } else {
2423                                kmem_cache_free(btrfs_free_space_cachep, info);
2424                        }
2425
2426                        offset += to_free;
2427                        bytes -= to_free;
2428                        goto again;
2429                } else {
2430                        u64 old_end = info->bytes + info->offset;
2431
2432                        info->bytes = offset - info->offset;
2433                        ret = link_free_space(ctl, info);
2434                        WARN_ON(ret);
2435                        if (ret)
2436                                goto out_lock;
2437
2438                        /* Not enough bytes in this entry to satisfy us */
2439                        if (old_end < offset + bytes) {
2440                                bytes -= old_end - offset;
2441                                offset = old_end;
2442                                goto again;
2443                        } else if (old_end == offset + bytes) {
2444                                /* all done */
2445                                goto out_lock;
2446                        }
2447                        spin_unlock(&ctl->tree_lock);
2448
2449                        ret = btrfs_add_free_space(block_group, offset + bytes,
2450                                                   old_end - (offset + bytes));
2451                        WARN_ON(ret);
2452                        goto out;
2453                }
2454        }
2455
2456        ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2457        if (ret == -EAGAIN) {
2458                re_search = true;
2459                goto again;
2460        }
2461out_lock:
2462        spin_unlock(&ctl->tree_lock);
2463out:
2464        return ret;
2465}
2466
2467void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2468                           u64 bytes)
2469{
2470        struct btrfs_fs_info *fs_info = block_group->fs_info;
2471        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2472        struct btrfs_free_space *info;
2473        struct rb_node *n;
2474        int count = 0;
2475
2476        for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2477                info = rb_entry(n, struct btrfs_free_space, offset_index);
2478                if (info->bytes >= bytes && !block_group->ro)
2479                        count++;
2480                btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2481                           info->offset, info->bytes,
2482                       (info->bitmap) ? "yes" : "no");
2483        }
2484        btrfs_info(fs_info, "block group has cluster?: %s",
2485               list_empty(&block_group->cluster_list) ? "no" : "yes");
2486        btrfs_info(fs_info,
2487                   "%d blocks of free space at or bigger than bytes is", count);
2488}
2489
2490void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2491{
2492        struct btrfs_fs_info *fs_info = block_group->fs_info;
2493        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2494
2495        spin_lock_init(&ctl->tree_lock);
2496        ctl->unit = fs_info->sectorsize;
2497        ctl->start = block_group->key.objectid;
2498        ctl->private = block_group;
2499        ctl->op = &free_space_op;
2500        INIT_LIST_HEAD(&ctl->trimming_ranges);
2501        mutex_init(&ctl->cache_writeout_mutex);
2502
2503        /*
2504         * we only want to have 32k of ram per block group for keeping
2505         * track of free space, and if we pass 1/2 of that we want to
2506         * start converting things over to using bitmaps
2507         */
2508        ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2509}
2510
2511/*
2512 * for a given cluster, put all of its extents back into the free
2513 * space cache.  If the block group passed doesn't match the block group
2514 * pointed to by the cluster, someone else raced in and freed the
2515 * cluster already.  In that case, we just return without changing anything
2516 */
2517static int
2518__btrfs_return_cluster_to_free_space(
2519                             struct btrfs_block_group_cache *block_group,
2520                             struct btrfs_free_cluster *cluster)
2521{
2522        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2523        struct btrfs_free_space *entry;
2524        struct rb_node *node;
2525
2526        spin_lock(&cluster->lock);
2527        if (cluster->block_group != block_group)
2528                goto out;
2529
2530        cluster->block_group = NULL;
2531        cluster->window_start = 0;
2532        list_del_init(&cluster->block_group_list);
2533
2534        node = rb_first(&cluster->root);
2535        while (node) {
2536                bool bitmap;
2537
2538                entry = rb_entry(node, struct btrfs_free_space, offset_index);
2539                node = rb_next(&entry->offset_index);
2540                rb_erase(&entry->offset_index, &cluster->root);
2541                RB_CLEAR_NODE(&entry->offset_index);
2542
2543                bitmap = (entry->bitmap != NULL);
2544                if (!bitmap) {
2545                        try_merge_free_space(ctl, entry, false);
2546                        steal_from_bitmap(ctl, entry, false);
2547                }
2548                tree_insert_offset(&ctl->free_space_offset,
2549                                   entry->offset, &entry->offset_index, bitmap);
2550        }
2551        cluster->root = RB_ROOT;
2552
2553out:
2554        spin_unlock(&cluster->lock);
2555        btrfs_put_block_group(block_group);
2556        return 0;
2557}
2558
2559static void __btrfs_remove_free_space_cache_locked(
2560                                struct btrfs_free_space_ctl *ctl)
2561{
2562        struct btrfs_free_space *info;
2563        struct rb_node *node;
2564
2565        while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2566                info = rb_entry(node, struct btrfs_free_space, offset_index);
2567                if (!info->bitmap) {
2568                        unlink_free_space(ctl, info);
2569                        kmem_cache_free(btrfs_free_space_cachep, info);
2570                } else {
2571                        free_bitmap(ctl, info);
2572                }
2573
2574                cond_resched_lock(&ctl->tree_lock);
2575        }
2576}
2577
2578void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2579{
2580        spin_lock(&ctl->tree_lock);
2581        __btrfs_remove_free_space_cache_locked(ctl);
2582        spin_unlock(&ctl->tree_lock);
2583}
2584
2585void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2586{
2587        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2588        struct btrfs_free_cluster *cluster;
2589        struct list_head *head;
2590
2591        spin_lock(&ctl->tree_lock);
2592        while ((head = block_group->cluster_list.next) !=
2593               &block_group->cluster_list) {
2594                cluster = list_entry(head, struct btrfs_free_cluster,
2595                                     block_group_list);
2596
2597                WARN_ON(cluster->block_group != block_group);
2598                __btrfs_return_cluster_to_free_space(block_group, cluster);
2599
2600                cond_resched_lock(&ctl->tree_lock);
2601        }
2602        __btrfs_remove_free_space_cache_locked(ctl);
2603        spin_unlock(&ctl->tree_lock);
2604
2605}
2606
2607u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2608                               u64 offset, u64 bytes, u64 empty_size,
2609                               u64 *max_extent_size)
2610{
2611        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2612        struct btrfs_free_space *entry = NULL;
2613        u64 bytes_search = bytes + empty_size;
2614        u64 ret = 0;
2615        u64 align_gap = 0;
2616        u64 align_gap_len = 0;
2617
2618        spin_lock(&ctl->tree_lock);
2619        entry = find_free_space(ctl, &offset, &bytes_search,
2620                                block_group->full_stripe_len, max_extent_size);
2621        if (!entry)
2622                goto out;
2623
2624        ret = offset;
2625        if (entry->bitmap) {
2626                bitmap_clear_bits(ctl, entry, offset, bytes);
2627                if (!entry->bytes)
2628                        free_bitmap(ctl, entry);
2629        } else {
2630                unlink_free_space(ctl, entry);
2631                align_gap_len = offset - entry->offset;
2632                align_gap = entry->offset;
2633
2634                entry->offset = offset + bytes;
2635                WARN_ON(entry->bytes < bytes + align_gap_len);
2636
2637                entry->bytes -= bytes + align_gap_len;
2638                if (!entry->bytes)
2639                        kmem_cache_free(btrfs_free_space_cachep, entry);
2640                else
2641                        link_free_space(ctl, entry);
2642        }
2643out:
2644        spin_unlock(&ctl->tree_lock);
2645
2646        if (align_gap_len)
2647                __btrfs_add_free_space(block_group->fs_info, ctl,
2648                                       align_gap, align_gap_len);
2649        return ret;
2650}
2651
2652/*
2653 * given a cluster, put all of its extents back into the free space
2654 * cache.  If a block group is passed, this function will only free
2655 * a cluster that belongs to the passed block group.
2656 *
2657 * Otherwise, it'll get a reference on the block group pointed to by the
2658 * cluster and remove the cluster from it.
2659 */
2660int btrfs_return_cluster_to_free_space(
2661                               struct btrfs_block_group_cache *block_group,
2662                               struct btrfs_free_cluster *cluster)
2663{
2664        struct btrfs_free_space_ctl *ctl;
2665        int ret;
2666
2667        /* first, get a safe pointer to the block group */
2668        spin_lock(&cluster->lock);
2669        if (!block_group) {
2670                block_group = cluster->block_group;
2671                if (!block_group) {
2672                        spin_unlock(&cluster->lock);
2673                        return 0;
2674                }
2675        } else if (cluster->block_group != block_group) {
2676                /* someone else has already freed it don't redo their work */
2677                spin_unlock(&cluster->lock);
2678                return 0;
2679        }
2680        atomic_inc(&block_group->count);
2681        spin_unlock(&cluster->lock);
2682
2683        ctl = block_group->free_space_ctl;
2684
2685        /* now return any extents the cluster had on it */
2686        spin_lock(&ctl->tree_lock);
2687        ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2688        spin_unlock(&ctl->tree_lock);
2689
2690        /* finally drop our ref */
2691        btrfs_put_block_group(block_group);
2692        return ret;
2693}
2694
2695static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2696                                   struct btrfs_free_cluster *cluster,
2697                                   struct btrfs_free_space *entry,
2698                                   u64 bytes, u64 min_start,
2699                                   u64 *max_extent_size)
2700{
2701        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2702        int err;
2703        u64 search_start = cluster->window_start;
2704        u64 search_bytes = bytes;
2705        u64 ret = 0;
2706
2707        search_start = min_start;
2708        search_bytes = bytes;
2709
2710        err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2711        if (err) {
2712                if (search_bytes > *max_extent_size)
2713                        *max_extent_size = search_bytes;
2714                return 0;
2715        }
2716
2717        ret = search_start;
2718        __bitmap_clear_bits(ctl, entry, ret, bytes);
2719
2720        return ret;
2721}
2722
2723/*
2724 * given a cluster, try to allocate 'bytes' from it, returns 0
2725 * if it couldn't find anything suitably large, or a logical disk offset
2726 * if things worked out
2727 */
2728u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2729                             struct btrfs_free_cluster *cluster, u64 bytes,
2730                             u64 min_start, u64 *max_extent_size)
2731{
2732        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2733        struct btrfs_free_space *entry = NULL;
2734        struct rb_node *node;
2735        u64 ret = 0;
2736
2737        spin_lock(&cluster->lock);
2738        if (bytes > cluster->max_size)
2739                goto out;
2740
2741        if (cluster->block_group != block_group)
2742                goto out;
2743
2744        node = rb_first(&cluster->root);
2745        if (!node)
2746                goto out;
2747
2748        entry = rb_entry(node, struct btrfs_free_space, offset_index);
2749        while (1) {
2750                if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2751                        *max_extent_size = entry->bytes;
2752
2753                if (entry->bytes < bytes ||
2754                    (!entry->bitmap && entry->offset < min_start)) {
2755                        node = rb_next(&entry->offset_index);
2756                        if (!node)
2757                                break;
2758                        entry = rb_entry(node, struct btrfs_free_space,
2759                                         offset_index);
2760                        continue;
2761                }
2762
2763                if (entry->bitmap) {
2764                        ret = btrfs_alloc_from_bitmap(block_group,
2765                                                      cluster, entry, bytes,
2766                                                      cluster->window_start,
2767                                                      max_extent_size);
2768                        if (ret == 0) {
2769                                node = rb_next(&entry->offset_index);
2770                                if (!node)
2771                                        break;
2772                                entry = rb_entry(node, struct btrfs_free_space,
2773                                                 offset_index);
2774                                continue;
2775                        }
2776                        cluster->window_start += bytes;
2777                } else {
2778                        ret = entry->offset;
2779
2780                        entry->offset += bytes;
2781                        entry->bytes -= bytes;
2782                }
2783
2784                if (entry->bytes == 0)
2785                        rb_erase(&entry->offset_index, &cluster->root);
2786                break;
2787        }
2788out:
2789        spin_unlock(&cluster->lock);
2790
2791        if (!ret)
2792                return 0;
2793
2794        spin_lock(&ctl->tree_lock);
2795
2796        ctl->free_space -= bytes;
2797        if (entry->bytes == 0) {
2798                ctl->free_extents--;
2799                if (entry->bitmap) {
2800                        kfree(entry->bitmap);
2801                        ctl->total_bitmaps--;
2802                        ctl->op->recalc_thresholds(ctl);
2803                }
2804                kmem_cache_free(btrfs_free_space_cachep, entry);
2805        }
2806
2807        spin_unlock(&ctl->tree_lock);
2808
2809        return ret;
2810}
2811
2812static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2813                                struct btrfs_free_space *entry,
2814                                struct btrfs_free_cluster *cluster,
2815                                u64 offset, u64 bytes,
2816                                u64 cont1_bytes, u64 min_bytes)
2817{
2818        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2819        unsigned long next_zero;
2820        unsigned long i;
2821        unsigned long want_bits;
2822        unsigned long min_bits;
2823        unsigned long found_bits;
2824        unsigned long max_bits = 0;
2825        unsigned long start = 0;
2826        unsigned long total_found = 0;
2827        int ret;
2828
2829        i = offset_to_bit(entry->offset, ctl->unit,
2830                          max_t(u64, offset, entry->offset));
2831        want_bits = bytes_to_bits(bytes, ctl->unit);
2832        min_bits = bytes_to_bits(min_bytes, ctl->unit);
2833
2834        /*
2835         * Don't bother looking for a cluster in this bitmap if it's heavily
2836         * fragmented.
2837         */
2838        if (entry->max_extent_size &&
2839            entry->max_extent_size < cont1_bytes)
2840                return -ENOSPC;
2841again:
2842        found_bits = 0;
2843        for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2844                next_zero = find_next_zero_bit(entry->bitmap,
2845                                               BITS_PER_BITMAP, i);
2846                if (next_zero - i >= min_bits) {
2847                        found_bits = next_zero - i;
2848                        if (found_bits > max_bits)
2849                                max_bits = found_bits;
2850                        break;
2851                }
2852                if (next_zero - i > max_bits)
2853                        max_bits = next_zero - i;
2854                i = next_zero;
2855        }
2856
2857        if (!found_bits) {
2858                entry->max_extent_size = (u64)max_bits * ctl->unit;
2859                return -ENOSPC;
2860        }
2861
2862        if (!total_found) {
2863                start = i;
2864                cluster->max_size = 0;
2865        }
2866
2867        total_found += found_bits;
2868
2869        if (cluster->max_size < found_bits * ctl->unit)
2870                cluster->max_size = found_bits * ctl->unit;
2871
2872        if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2873                i = next_zero + 1;
2874                goto again;
2875        }
2876
2877        cluster->window_start = start * ctl->unit + entry->offset;
2878        rb_erase(&entry->offset_index, &ctl->free_space_offset);
2879        ret = tree_insert_offset(&cluster->root, entry->offset,
2880                                 &entry->offset_index, 1);
2881        ASSERT(!ret); /* -EEXIST; Logic error */
2882
2883        trace_btrfs_setup_cluster(block_group, cluster,
2884                                  total_found * ctl->unit, 1);
2885        return 0;
2886}
2887
2888/*
2889 * This searches the block group for just extents to fill the cluster with.
2890 * Try to find a cluster with at least bytes total bytes, at least one
2891 * extent of cont1_bytes, and other clusters of at least min_bytes.
2892 */
2893static noinline int
2894setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2895                        struct btrfs_free_cluster *cluster,
2896                        struct list_head *bitmaps, u64 offset, u64 bytes,
2897                        u64 cont1_bytes, u64 min_bytes)
2898{
2899        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2900        struct btrfs_free_space *first = NULL;
2901        struct btrfs_free_space *entry = NULL;
2902        struct btrfs_free_space *last;
2903        struct rb_node *node;
2904        u64 window_free;
2905        u64 max_extent;
2906        u64 total_size = 0;
2907
2908        entry = tree_search_offset(ctl, offset, 0, 1);
2909        if (!entry)
2910                return -ENOSPC;
2911
2912        /*
2913         * We don't want bitmaps, so just move along until we find a normal
2914         * extent entry.
2915         */
2916        while (entry->bitmap || entry->bytes < min_bytes) {
2917                if (entry->bitmap && list_empty(&entry->list))
2918                        list_add_tail(&entry->list, bitmaps);
2919                node = rb_next(&entry->offset_index);
2920                if (!node)
2921                        return -ENOSPC;
2922                entry = rb_entry(node, struct btrfs_free_space, offset_index);
2923        }
2924
2925        window_free = entry->bytes;
2926        max_extent = entry->bytes;
2927        first = entry;
2928        last = entry;
2929
2930        for (node = rb_next(&entry->offset_index); node;
2931             node = rb_next(&entry->offset_index)) {
2932                entry = rb_entry(node, struct btrfs_free_space, offset_index);
2933
2934                if (entry->bitmap) {
2935                        if (list_empty(&entry->list))
2936                                list_add_tail(&entry->list, bitmaps);
2937                        continue;
2938                }
2939
2940                if (entry->bytes < min_bytes)
2941                        continue;
2942
2943                last = entry;
2944                window_free += entry->bytes;
2945                if (entry->bytes > max_extent)
2946                        max_extent = entry->bytes;
2947        }
2948
2949        if (window_free < bytes || max_extent < cont1_bytes)
2950                return -ENOSPC;
2951
2952        cluster->window_start = first->offset;
2953
2954        node = &first->offset_index;
2955
2956        /*
2957         * now we've found our entries, pull them out of the free space
2958         * cache and put them into the cluster rbtree
2959         */
2960        do {
2961                int ret;
2962
2963                entry = rb_entry(node, struct btrfs_free_space, offset_index);
2964                node = rb_next(&entry->offset_index);
2965                if (entry->bitmap || entry->bytes < min_bytes)
2966                        continue;
2967
2968                rb_erase(&entry->offset_index, &ctl->free_space_offset);
2969                ret = tree_insert_offset(&cluster->root, entry->offset,
2970                                         &entry->offset_index, 0);
2971                total_size += entry->bytes;
2972                ASSERT(!ret); /* -EEXIST; Logic error */
2973        } while (node && entry != last);
2974
2975        cluster->max_size = max_extent;
2976        trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2977        return 0;
2978}
2979
2980/*
2981 * This specifically looks for bitmaps that may work in the cluster, we assume
2982 * that we have already failed to find extents that will work.
2983 */
2984static noinline int
2985setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2986                     struct btrfs_free_cluster *cluster,
2987                     struct list_head *bitmaps, u64 offset, u64 bytes,
2988                     u64 cont1_bytes, u64 min_bytes)
2989{
2990        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2991        struct btrfs_free_space *entry = NULL;
2992        int ret = -ENOSPC;
2993        u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2994
2995        if (ctl->total_bitmaps == 0)
2996                return -ENOSPC;
2997
2998        /*
2999         * The bitmap that covers offset won't be in the list unless offset
3000         * is just its start offset.
3001         */
3002        if (!list_empty(bitmaps))
3003                entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3004
3005        if (!entry || entry->offset != bitmap_offset) {
3006                entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3007                if (entry && list_empty(&entry->list))
3008                        list_add(&entry->list, bitmaps);
3009        }
3010
3011        list_for_each_entry(entry, bitmaps, list) {
3012                if (entry->bytes < bytes)
3013                        continue;
3014                ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3015                                           bytes, cont1_bytes, min_bytes);
3016                if (!ret)
3017                        return 0;
3018        }
3019
3020        /*
3021         * The bitmaps list has all the bitmaps that record free space
3022         * starting after offset, so no more search is required.
3023         */
3024        return -ENOSPC;
3025}
3026
3027/*
3028 * here we try to find a cluster of blocks in a block group.  The goal
3029 * is to find at least bytes+empty_size.
3030 * We might not find them all in one contiguous area.
3031 *
3032 * returns zero and sets up cluster if things worked out, otherwise
3033 * it returns -enospc
3034 */
3035int btrfs_find_space_cluster(struct btrfs_fs_info *fs_info,
3036                             struct btrfs_block_group_cache *block_group,
3037                             struct btrfs_free_cluster *cluster,
3038                             u64 offset, u64 bytes, u64 empty_size)
3039{
3040        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3041        struct btrfs_free_space *entry, *tmp;
3042        LIST_HEAD(bitmaps);
3043        u64 min_bytes;
3044        u64 cont1_bytes;
3045        int ret;
3046
3047        /*
3048         * Choose the minimum extent size we'll require for this
3049         * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3050         * For metadata, allow allocates with smaller extents.  For
3051         * data, keep it dense.
3052         */
3053        if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3054                cont1_bytes = min_bytes = bytes + empty_size;
3055        } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3056                cont1_bytes = bytes;
3057                min_bytes = fs_info->sectorsize;
3058        } else {
3059                cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3060                min_bytes = fs_info->sectorsize;
3061        }
3062
3063        spin_lock(&ctl->tree_lock);
3064
3065        /*
3066         * If we know we don't have enough space to make a cluster don't even
3067         * bother doing all the work to try and find one.
3068         */
3069        if (ctl->free_space < bytes) {
3070                spin_unlock(&ctl->tree_lock);
3071                return -ENOSPC;
3072        }
3073
3074        spin_lock(&cluster->lock);
3075
3076        /* someone already found a cluster, hooray */
3077        if (cluster->block_group) {
3078                ret = 0;
3079                goto out;
3080        }
3081
3082        trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3083                                 min_bytes);
3084
3085        ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3086                                      bytes + empty_size,
3087                                      cont1_bytes, min_bytes);
3088        if (ret)
3089                ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3090                                           offset, bytes + empty_size,
3091                                           cont1_bytes, min_bytes);
3092
3093        /* Clear our temporary list */
3094        list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3095                list_del_init(&entry->list);
3096
3097        if (!ret) {
3098                atomic_inc(&block_group->count);
3099                list_add_tail(&cluster->block_group_list,
3100                              &block_group->cluster_list);
3101                cluster->block_group = block_group;
3102        } else {
3103                trace_btrfs_failed_cluster_setup(block_group);
3104        }
3105out:
3106        spin_unlock(&cluster->lock);
3107        spin_unlock(&ctl->tree_lock);
3108
3109        return ret;
3110}
3111
3112/*
3113 * simple code to zero out a cluster
3114 */
3115void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3116{
3117        spin_lock_init(&cluster->lock);
3118        spin_lock_init(&cluster->refill_lock);
3119        cluster->root = RB_ROOT;
3120        cluster->max_size = 0;
3121        cluster->fragmented = false;
3122        INIT_LIST_HEAD(&cluster->block_group_list);
3123        cluster->block_group = NULL;
3124}
3125
3126static int do_trimming(struct btrfs_block_group_cache *block_group,
3127                       u64 *total_trimmed, u64 start, u64 bytes,
3128                       u64 reserved_start, u64 reserved_bytes,
3129                       struct btrfs_trim_range *trim_entry)
3130{
3131        struct btrfs_space_info *space_info = block_group->space_info;
3132        struct btrfs_fs_info *fs_info = block_group->fs_info;
3133        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3134        int ret;
3135        int update = 0;
3136        u64 trimmed = 0;
3137
3138        spin_lock(&space_info->lock);
3139        spin_lock(&block_group->lock);
3140        if (!block_group->ro) {
3141                block_group->reserved += reserved_bytes;
3142                space_info->bytes_reserved += reserved_bytes;
3143                update = 1;
3144        }
3145        spin_unlock(&block_group->lock);
3146        spin_unlock(&space_info->lock);
3147
3148        ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3149        if (!ret)
3150                *total_trimmed += trimmed;
3151
3152        mutex_lock(&ctl->cache_writeout_mutex);
3153        btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3154        list_del(&trim_entry->list);
3155        mutex_unlock(&ctl->cache_writeout_mutex);
3156
3157        if (update) {
3158                spin_lock(&space_info->lock);
3159                spin_lock(&block_group->lock);
3160                if (block_group->ro)
3161                        space_info->bytes_readonly += reserved_bytes;
3162                block_group->reserved -= reserved_bytes;
3163                space_info->bytes_reserved -= reserved_bytes;
3164                spin_unlock(&space_info->lock);
3165                spin_unlock(&block_group->lock);
3166        }
3167
3168        return ret;
3169}
3170
3171static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3172                          u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3173{
3174        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3175        struct btrfs_free_space *entry;
3176        struct rb_node *node;
3177        int ret = 0;
3178        u64 extent_start;
3179        u64 extent_bytes;
3180        u64 bytes;
3181
3182        while (start < end) {
3183                struct btrfs_trim_range trim_entry;
3184
3185                mutex_lock(&ctl->cache_writeout_mutex);
3186                spin_lock(&ctl->tree_lock);
3187
3188                if (ctl->free_space < minlen) {
3189                        spin_unlock(&ctl->tree_lock);
3190                        mutex_unlock(&ctl->cache_writeout_mutex);
3191                        break;
3192                }
3193
3194                entry = tree_search_offset(ctl, start, 0, 1);
3195                if (!entry) {
3196                        spin_unlock(&ctl->tree_lock);
3197                        mutex_unlock(&ctl->cache_writeout_mutex);
3198                        break;
3199                }
3200
3201                /* skip bitmaps */
3202                while (entry->bitmap) {
3203                        node = rb_next(&entry->offset_index);
3204                        if (!node) {
3205                                spin_unlock(&ctl->tree_lock);
3206                                mutex_unlock(&ctl->cache_writeout_mutex);
3207                                goto out;
3208                        }
3209                        entry = rb_entry(node, struct btrfs_free_space,
3210                                         offset_index);
3211                }
3212
3213                if (entry->offset >= end) {
3214                        spin_unlock(&ctl->tree_lock);
3215                        mutex_unlock(&ctl->cache_writeout_mutex);
3216                        break;
3217                }
3218
3219                extent_start = entry->offset;
3220                extent_bytes = entry->bytes;
3221                start = max(start, extent_start);
3222                bytes = min(extent_start + extent_bytes, end) - start;
3223                if (bytes < minlen) {
3224                        spin_unlock(&ctl->tree_lock);
3225                        mutex_unlock(&ctl->cache_writeout_mutex);
3226                        goto next;
3227                }
3228
3229                unlink_free_space(ctl, entry);
3230                kmem_cache_free(btrfs_free_space_cachep, entry);
3231
3232                spin_unlock(&ctl->tree_lock);
3233                trim_entry.start = extent_start;
3234                trim_entry.bytes = extent_bytes;
3235                list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3236                mutex_unlock(&ctl->cache_writeout_mutex);
3237
3238                ret = do_trimming(block_group, total_trimmed, start, bytes,
3239                                  extent_start, extent_bytes, &trim_entry);
3240                if (ret)
3241                        break;
3242next:
3243                start += bytes;
3244
3245                if (fatal_signal_pending(current)) {
3246                        ret = -ERESTARTSYS;
3247                        break;
3248                }
3249
3250                cond_resched();
3251        }
3252out:
3253        return ret;
3254}
3255
3256static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3257                        u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3258{
3259        struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3260        struct btrfs_free_space *entry;
3261        int ret = 0;
3262        int ret2;
3263        u64 bytes;
3264        u64 offset = offset_to_bitmap(ctl, start);
3265
3266        while (offset < end) {
3267                bool next_bitmap = false;
3268                struct btrfs_trim_range trim_entry;
3269
3270                mutex_lock(&ctl->cache_writeout_mutex);
3271                spin_lock(&ctl->tree_lock);
3272
3273                if (ctl->free_space < minlen) {
3274                        spin_unlock(&ctl->tree_lock);
3275                        mutex_unlock(&ctl->cache_writeout_mutex);
3276                        break;
3277                }
3278
3279                entry = tree_search_offset(ctl, offset, 1, 0);
3280                if (!entry) {
3281                        spin_unlock(&ctl->tree_lock);
3282                        mutex_unlock(&ctl->cache_writeout_mutex);
3283                        next_bitmap = true;
3284                        goto next;
3285                }
3286
3287                bytes = minlen;
3288                ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3289                if (ret2 || start >= end) {
3290                        spin_unlock(&ctl->tree_lock);
3291                        mutex_unlock(&ctl->cache_writeout_mutex);
3292                        next_bitmap = true;
3293                        goto next;
3294                }
3295
3296                bytes = min(bytes, end - start);
3297                if (bytes < minlen) {
3298                        spin_unlock(&ctl->tree_lock);
3299                        mutex_unlock(&ctl->cache_writeout_mutex);
3300                        goto next;
3301                }
3302
3303                bitmap_clear_bits(ctl, entry, start, bytes);
3304                if (entry->bytes == 0)
3305                        free_bitmap(ctl, entry);
3306
3307                spin_unlock(&ctl->tree_lock);
3308                trim_entry.start = start;
3309                trim_entry.bytes = bytes;
3310                list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3311                mutex_unlock(&ctl->cache_writeout_mutex);
3312
3313                ret = do_trimming(block_group, total_trimmed, start, bytes,
3314                                  start, bytes, &trim_entry);
3315                if (ret)
3316                        break;
3317next:
3318                if (next_bitmap) {
3319                        offset += BITS_PER_BITMAP * ctl->unit;
3320                } else {
3321                        start += bytes;
3322                        if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3323                                offset += BITS_PER_BITMAP * ctl->unit;
3324                }
3325
3326                if (fatal_signal_pending(current)) {
3327                        ret = -ERESTARTSYS;
3328                        break;
3329                }
3330
3331                cond_resched();
3332        }
3333
3334        return ret;
3335}
3336
3337void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3338{
3339        atomic_inc(&cache->trimming);
3340}
3341
3342void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3343{
3344        struct btrfs_fs_info *fs_info = block_group->fs_info;
3345        struct extent_map_tree *em_tree;
3346        struct extent_map *em;
3347        bool cleanup;
3348
3349        spin_lock(&block_group->lock);
3350        cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3351                   block_group->removed);
3352        spin_unlock(&block_group->lock);
3353
3354        if (cleanup) {
3355                mutex_lock(&fs_info->chunk_mutex);
3356                em_tree = &fs_info->mapping_tree.map_tree;
3357                write_lock(&em_tree->lock);
3358                em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3359                                           1);
3360                BUG_ON(!em); /* logic error, can't happen */
3361                /*
3362                 * remove_extent_mapping() will delete us from the pinned_chunks
3363                 * list, which is protected by the chunk mutex.
3364                 */
3365                remove_extent_mapping(em_tree, em);
3366                write_unlock(&em_tree->lock);
3367                mutex_unlock(&fs_info->chunk_mutex);
3368
3369                /* once for us and once for the tree */
3370                free_extent_map(em);
3371                free_extent_map(em);
3372
3373                /*
3374                 * We've left one free space entry and other tasks trimming
3375                 * this block group have left 1 entry each one. Free them.
3376                 */
3377                __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3378        }
3379}
3380
3381int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3382                           u64 *trimmed, u64 start, u64 end, u64 minlen)
3383{
3384        int ret;
3385
3386        *trimmed = 0;
3387
3388        spin_lock(&block_group->lock);
3389        if (block_group->removed) {
3390                spin_unlock(&block_group->lock);
3391                return 0;
3392        }
3393        btrfs_get_block_group_trimming(block_group);
3394        spin_unlock(&block_group->lock);
3395
3396        ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3397        if (ret)
3398                goto out;
3399
3400        ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3401out:
3402        btrfs_put_block_group_trimming(block_group);
3403        return ret;
3404}
3405
3406/*
3407 * Find the left-most item in the cache tree, and then return the
3408 * smallest inode number in the item.
3409 *
3410 * Note: the returned inode number may not be the smallest one in
3411 * the tree, if the left-most item is a bitmap.
3412 */
3413u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3414{
3415        struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3416        struct btrfs_free_space *entry = NULL;
3417        u64 ino = 0;
3418
3419        spin_lock(&ctl->tree_lock);
3420
3421        if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3422                goto out;
3423
3424        entry = rb_entry(rb_first(&ctl->free_space_offset),
3425                         struct btrfs_free_space, offset_index);
3426
3427        if (!entry->bitmap) {
3428                ino = entry->offset;
3429
3430                unlink_free_space(ctl, entry);
3431                entry->offset++;
3432                entry->bytes--;
3433                if (!entry->bytes)
3434                        kmem_cache_free(btrfs_free_space_cachep, entry);
3435                else
3436                        link_free_space(ctl, entry);
3437        } else {
3438                u64 offset = 0;
3439                u64 count = 1;
3440                int ret;
3441
3442                ret = search_bitmap(ctl, entry, &offset, &count, true);
3443                /* Logic error; Should be empty if it can't find anything */
3444                ASSERT(!ret);
3445
3446                ino = offset;
3447                bitmap_clear_bits(ctl, entry, offset, 1);
3448                if (entry->bytes == 0)
3449                        free_bitmap(ctl, entry);
3450        }
3451out:
3452        spin_unlock(&ctl->tree_lock);
3453
3454        return ino;
3455}
3456
3457struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3458                                    struct btrfs_path *path)
3459{
3460        struct inode *inode = NULL;
3461
3462        spin_lock(&root->ino_cache_lock);
3463        if (root->ino_cache_inode)
3464                inode = igrab(root->ino_cache_inode);
3465        spin_unlock(&root->ino_cache_lock);
3466        if (inode)
3467                return inode;
3468
3469        inode = __lookup_free_space_inode(root, path, 0);
3470        if (IS_ERR(inode))
3471                return inode;
3472
3473        spin_lock(&root->ino_cache_lock);
3474        if (!btrfs_fs_closing(root->fs_info))
3475                root->ino_cache_inode = igrab(inode);
3476        spin_unlock(&root->ino_cache_lock);
3477
3478        return inode;
3479}
3480
3481int create_free_ino_inode(struct btrfs_root *root,
3482                          struct btrfs_trans_handle *trans,
3483                          struct btrfs_path *path)
3484{
3485        return __create_free_space_inode(root, trans, path,
3486                                         BTRFS_FREE_INO_OBJECTID, 0);
3487}
3488
3489int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3490{
3491        struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3492        struct btrfs_path *path;
3493        struct inode *inode;
3494        int ret = 0;
3495        u64 root_gen = btrfs_root_generation(&root->root_item);
3496
3497        if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3498                return 0;
3499
3500        /*
3501         * If we're unmounting then just return, since this does a search on the
3502         * normal root and not the commit root and we could deadlock.
3503         */
3504        if (btrfs_fs_closing(fs_info))
3505                return 0;
3506
3507        path = btrfs_alloc_path();
3508        if (!path)
3509                return 0;
3510
3511        inode = lookup_free_ino_inode(root, path);
3512        if (IS_ERR(inode))
3513                goto out;
3514
3515        if (root_gen != BTRFS_I(inode)->generation)
3516                goto out_put;
3517
3518        ret = __load_free_space_cache(root, inode, ctl, path, 0);
3519
3520        if (ret < 0)
3521                btrfs_err(fs_info,
3522                        "failed to load free ino cache for root %llu",
3523                        root->root_key.objectid);
3524out_put:
3525        iput(inode);
3526out:
3527        btrfs_free_path(path);
3528        return ret;
3529}
3530
3531int btrfs_write_out_ino_cache(struct btrfs_root *root,
3532                              struct btrfs_trans_handle *trans,
3533                              struct btrfs_path *path,
3534                              struct inode *inode)
3535{
3536        struct btrfs_fs_info *fs_info = root->fs_info;
3537        struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3538        int ret;
3539        struct btrfs_io_ctl io_ctl;
3540        bool release_metadata = true;
3541
3542        if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
3543                return 0;
3544
3545        memset(&io_ctl, 0, sizeof(io_ctl));
3546        ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl,
3547                                      trans, path, 0);
3548        if (!ret) {
3549                /*
3550                 * At this point writepages() didn't error out, so our metadata
3551                 * reservation is released when the writeback finishes, at
3552                 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3553                 * with or without an error.
3554                 */
3555                release_metadata = false;
3556                ret = btrfs_wait_cache_io_root(root, trans, &io_ctl, path);
3557        }
3558
3559        if (ret) {
3560                if (release_metadata)
3561                        btrfs_delalloc_release_metadata(inode, inode->i_size);
3562#ifdef DEBUG
3563                btrfs_err(fs_info,
3564                          "failed to write free ino cache for root %llu",
3565                          root->root_key.objectid);
3566#endif
3567        }
3568
3569        return ret;
3570}
3571
3572#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3573/*
3574 * Use this if you need to make a bitmap or extent entry specifically, it
3575 * doesn't do any of the merging that add_free_space does, this acts a lot like
3576 * how the free space cache loading stuff works, so you can get really weird
3577 * configurations.
3578 */
3579int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3580                              u64 offset, u64 bytes, bool bitmap)
3581{
3582        struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3583        struct btrfs_free_space *info = NULL, *bitmap_info;
3584        void *map = NULL;
3585        u64 bytes_added;
3586        int ret;
3587
3588again:
3589        if (!info) {
3590                info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3591                if (!info)
3592                        return -ENOMEM;
3593        }
3594
3595        if (!bitmap) {
3596                spin_lock(&ctl->tree_lock);
3597                info->offset = offset;
3598                info->bytes = bytes;
3599                info->max_extent_size = 0;
3600                ret = link_free_space(ctl, info);
3601                spin_unlock(&ctl->tree_lock);
3602                if (ret)
3603                        kmem_cache_free(btrfs_free_space_cachep, info);
3604                return ret;
3605        }
3606
3607        if (!map) {
3608                map = kzalloc(PAGE_SIZE, GFP_NOFS);
3609                if (!map) {
3610                        kmem_cache_free(btrfs_free_space_cachep, info);
3611                        return -ENOMEM;
3612                }
3613        }
3614
3615        spin_lock(&ctl->tree_lock);
3616        bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3617                                         1, 0);
3618        if (!bitmap_info) {
3619                info->bitmap = map;
3620                map = NULL;
3621                add_new_bitmap(ctl, info, offset);
3622                bitmap_info = info;
3623                info = NULL;
3624        }
3625
3626        bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3627
3628        bytes -= bytes_added;
3629        offset += bytes_added;
3630        spin_unlock(&ctl->tree_lock);
3631
3632        if (bytes)
3633                goto again;
3634
3635        if (info)
3636                kmem_cache_free(btrfs_free_space_cachep, info);
3637        if (map)
3638                kfree(map);
3639        return 0;
3640}
3641
3642/*
3643 * Checks to see if the given range is in the free space cache.  This is really
3644 * just used to check the absence of space, so if there is free space in the
3645 * range at all we will return 1.
3646 */
3647int test_check_exists(struct btrfs_block_group_cache *cache,
3648                      u64 offset, u64 bytes)
3649{
3650        struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3651        struct btrfs_free_space *info;
3652        int ret = 0;
3653
3654        spin_lock(&ctl->tree_lock);
3655        info = tree_search_offset(ctl, offset, 0, 0);
3656        if (!info) {
3657                info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3658                                          1, 0);
3659                if (!info)
3660                        goto out;
3661        }
3662
3663have_info:
3664        if (info->bitmap) {
3665                u64 bit_off, bit_bytes;
3666                struct rb_node *n;
3667                struct btrfs_free_space *tmp;
3668
3669                bit_off = offset;
3670                bit_bytes = ctl->unit;
3671                ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3672                if (!ret) {
3673                        if (bit_off == offset) {
3674                                ret = 1;
3675                                goto out;
3676                        } else if (bit_off > offset &&
3677                                   offset + bytes > bit_off) {
3678                                ret = 1;
3679                                goto out;
3680                        }
3681                }
3682
3683                n = rb_prev(&info->offset_index);
3684                while (n) {
3685                        tmp = rb_entry(n, struct btrfs_free_space,
3686                                       offset_index);
3687                        if (tmp->offset + tmp->bytes < offset)
3688                                break;
3689                        if (offset + bytes < tmp->offset) {
3690                                n = rb_prev(&tmp->offset_index);
3691                                continue;
3692                        }
3693                        info = tmp;
3694                        goto have_info;
3695                }
3696
3697                n = rb_next(&info->offset_index);
3698                while (n) {
3699                        tmp = rb_entry(n, struct btrfs_free_space,
3700                                       offset_index);
3701                        if (offset + bytes < tmp->offset)
3702                                break;
3703                        if (tmp->offset + tmp->bytes < offset) {
3704                                n = rb_next(&tmp->offset_index);
3705                                continue;
3706                        }
3707                        info = tmp;
3708                        goto have_info;
3709                }
3710
3711                ret = 0;
3712                goto out;
3713        }
3714
3715        if (info->offset == offset) {
3716                ret = 1;
3717                goto out;
3718        }
3719
3720        if (offset > info->offset && offset < info->offset + info->bytes)
3721                ret = 1;
3722out:
3723        spin_unlock(&ctl->tree_lock);
3724        return ret;
3725}
3726#endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3727