linux/fs/btrfs/reada.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/pagemap.h>
  21#include <linux/writeback.h>
  22#include <linux/blkdev.h>
  23#include <linux/rbtree.h>
  24#include <linux/slab.h>
  25#include <linux/workqueue.h>
  26#include "ctree.h"
  27#include "volumes.h"
  28#include "disk-io.h"
  29#include "transaction.h"
  30#include "dev-replace.h"
  31
  32#undef DEBUG
  33
  34/*
  35 * This is the implementation for the generic read ahead framework.
  36 *
  37 * To trigger a readahead, btrfs_reada_add must be called. It will start
  38 * a read ahead for the given range [start, end) on tree root. The returned
  39 * handle can either be used to wait on the readahead to finish
  40 * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
  41 *
  42 * The read ahead works as follows:
  43 * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
  44 * reada_start_machine will then search for extents to prefetch and trigger
  45 * some reads. When a read finishes for a node, all contained node/leaf
  46 * pointers that lie in the given range will also be enqueued. The reads will
  47 * be triggered in sequential order, thus giving a big win over a naive
  48 * enumeration. It will also make use of multi-device layouts. Each disk
  49 * will have its on read pointer and all disks will by utilized in parallel.
  50 * Also will no two disks read both sides of a mirror simultaneously, as this
  51 * would waste seeking capacity. Instead both disks will read different parts
  52 * of the filesystem.
  53 * Any number of readaheads can be started in parallel. The read order will be
  54 * determined globally, i.e. 2 parallel readaheads will normally finish faster
  55 * than the 2 started one after another.
  56 */
  57
  58#define MAX_IN_FLIGHT 6
  59
  60struct reada_extctl {
  61        struct list_head        list;
  62        struct reada_control    *rc;
  63        u64                     generation;
  64};
  65
  66struct reada_extent {
  67        u64                     logical;
  68        struct btrfs_key        top;
  69        int                     err;
  70        struct list_head        extctl;
  71        int                     refcnt;
  72        spinlock_t              lock;
  73        struct reada_zone       *zones[BTRFS_MAX_MIRRORS];
  74        int                     nzones;
  75        int                     scheduled;
  76};
  77
  78struct reada_zone {
  79        u64                     start;
  80        u64                     end;
  81        u64                     elems;
  82        struct list_head        list;
  83        spinlock_t              lock;
  84        int                     locked;
  85        struct btrfs_device     *device;
  86        struct btrfs_device     *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
  87                                                           * self */
  88        int                     ndevs;
  89        struct kref             refcnt;
  90};
  91
  92struct reada_machine_work {
  93        struct btrfs_work       work;
  94        struct btrfs_fs_info    *fs_info;
  95};
  96
  97static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
  98static void reada_control_release(struct kref *kref);
  99static void reada_zone_release(struct kref *kref);
 100static void reada_start_machine(struct btrfs_fs_info *fs_info);
 101static void __reada_start_machine(struct btrfs_fs_info *fs_info);
 102
 103static int reada_add_block(struct reada_control *rc, u64 logical,
 104                           struct btrfs_key *top, u64 generation);
 105
 106/* recurses */
 107/* in case of err, eb might be NULL */
 108static void __readahead_hook(struct btrfs_fs_info *fs_info,
 109                             struct reada_extent *re, struct extent_buffer *eb,
 110                             int err)
 111{
 112        int nritems;
 113        int i;
 114        u64 bytenr;
 115        u64 generation;
 116        struct list_head list;
 117
 118        spin_lock(&re->lock);
 119        /*
 120         * just take the full list from the extent. afterwards we
 121         * don't need the lock anymore
 122         */
 123        list_replace_init(&re->extctl, &list);
 124        re->scheduled = 0;
 125        spin_unlock(&re->lock);
 126
 127        /*
 128         * this is the error case, the extent buffer has not been
 129         * read correctly. We won't access anything from it and
 130         * just cleanup our data structures. Effectively this will
 131         * cut the branch below this node from read ahead.
 132         */
 133        if (err)
 134                goto cleanup;
 135
 136        /*
 137         * FIXME: currently we just set nritems to 0 if this is a leaf,
 138         * effectively ignoring the content. In a next step we could
 139         * trigger more readahead depending from the content, e.g.
 140         * fetch the checksums for the extents in the leaf.
 141         */
 142        if (!btrfs_header_level(eb))
 143                goto cleanup;
 144
 145        nritems = btrfs_header_nritems(eb);
 146        generation = btrfs_header_generation(eb);
 147        for (i = 0; i < nritems; i++) {
 148                struct reada_extctl *rec;
 149                u64 n_gen;
 150                struct btrfs_key key;
 151                struct btrfs_key next_key;
 152
 153                btrfs_node_key_to_cpu(eb, &key, i);
 154                if (i + 1 < nritems)
 155                        btrfs_node_key_to_cpu(eb, &next_key, i + 1);
 156                else
 157                        next_key = re->top;
 158                bytenr = btrfs_node_blockptr(eb, i);
 159                n_gen = btrfs_node_ptr_generation(eb, i);
 160
 161                list_for_each_entry(rec, &list, list) {
 162                        struct reada_control *rc = rec->rc;
 163
 164                        /*
 165                         * if the generation doesn't match, just ignore this
 166                         * extctl. This will probably cut off a branch from
 167                         * prefetch. Alternatively one could start a new (sub-)
 168                         * prefetch for this branch, starting again from root.
 169                         * FIXME: move the generation check out of this loop
 170                         */
 171#ifdef DEBUG
 172                        if (rec->generation != generation) {
 173                                btrfs_debug(fs_info,
 174                                            "generation mismatch for (%llu,%d,%llu) %llu != %llu",
 175                                            key.objectid, key.type, key.offset,
 176                                            rec->generation, generation);
 177                        }
 178#endif
 179                        if (rec->generation == generation &&
 180                            btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
 181                            btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
 182                                reada_add_block(rc, bytenr, &next_key, n_gen);
 183                }
 184        }
 185
 186cleanup:
 187        /*
 188         * free extctl records
 189         */
 190        while (!list_empty(&list)) {
 191                struct reada_control *rc;
 192                struct reada_extctl *rec;
 193
 194                rec = list_first_entry(&list, struct reada_extctl, list);
 195                list_del(&rec->list);
 196                rc = rec->rc;
 197                kfree(rec);
 198
 199                kref_get(&rc->refcnt);
 200                if (atomic_dec_and_test(&rc->elems)) {
 201                        kref_put(&rc->refcnt, reada_control_release);
 202                        wake_up(&rc->wait);
 203                }
 204                kref_put(&rc->refcnt, reada_control_release);
 205
 206                reada_extent_put(fs_info, re);  /* one ref for each entry */
 207        }
 208
 209        return;
 210}
 211
 212int btree_readahead_hook(struct btrfs_fs_info *fs_info,
 213                         struct extent_buffer *eb, int err)
 214{
 215        int ret = 0;
 216        struct reada_extent *re;
 217
 218        /* find extent */
 219        spin_lock(&fs_info->reada_lock);
 220        re = radix_tree_lookup(&fs_info->reada_tree,
 221                               eb->start >> PAGE_SHIFT);
 222        if (re)
 223                re->refcnt++;
 224        spin_unlock(&fs_info->reada_lock);
 225        if (!re) {
 226                ret = -1;
 227                goto start_machine;
 228        }
 229
 230        __readahead_hook(fs_info, re, eb, err);
 231        reada_extent_put(fs_info, re);  /* our ref */
 232
 233start_machine:
 234        reada_start_machine(fs_info);
 235        return ret;
 236}
 237
 238static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
 239                                          struct btrfs_device *dev, u64 logical,
 240                                          struct btrfs_bio *bbio)
 241{
 242        int ret;
 243        struct reada_zone *zone;
 244        struct btrfs_block_group_cache *cache = NULL;
 245        u64 start;
 246        u64 end;
 247        int i;
 248
 249        zone = NULL;
 250        spin_lock(&fs_info->reada_lock);
 251        ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
 252                                     logical >> PAGE_SHIFT, 1);
 253        if (ret == 1 && logical >= zone->start && logical <= zone->end) {
 254                kref_get(&zone->refcnt);
 255                spin_unlock(&fs_info->reada_lock);
 256                return zone;
 257        }
 258
 259        spin_unlock(&fs_info->reada_lock);
 260
 261        cache = btrfs_lookup_block_group(fs_info, logical);
 262        if (!cache)
 263                return NULL;
 264
 265        start = cache->key.objectid;
 266        end = start + cache->key.offset - 1;
 267        btrfs_put_block_group(cache);
 268
 269        zone = kzalloc(sizeof(*zone), GFP_KERNEL);
 270        if (!zone)
 271                return NULL;
 272
 273        zone->start = start;
 274        zone->end = end;
 275        INIT_LIST_HEAD(&zone->list);
 276        spin_lock_init(&zone->lock);
 277        zone->locked = 0;
 278        kref_init(&zone->refcnt);
 279        zone->elems = 0;
 280        zone->device = dev; /* our device always sits at index 0 */
 281        for (i = 0; i < bbio->num_stripes; ++i) {
 282                /* bounds have already been checked */
 283                zone->devs[i] = bbio->stripes[i].dev;
 284        }
 285        zone->ndevs = bbio->num_stripes;
 286
 287        spin_lock(&fs_info->reada_lock);
 288        ret = radix_tree_insert(&dev->reada_zones,
 289                                (unsigned long)(zone->end >> PAGE_SHIFT),
 290                                zone);
 291
 292        if (ret == -EEXIST) {
 293                kfree(zone);
 294                ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
 295                                             logical >> PAGE_SHIFT, 1);
 296                if (ret == 1 && logical >= zone->start && logical <= zone->end)
 297                        kref_get(&zone->refcnt);
 298                else
 299                        zone = NULL;
 300        }
 301        spin_unlock(&fs_info->reada_lock);
 302
 303        return zone;
 304}
 305
 306static struct reada_extent *reada_find_extent(struct btrfs_fs_info *fs_info,
 307                                              u64 logical,
 308                                              struct btrfs_key *top)
 309{
 310        int ret;
 311        struct reada_extent *re = NULL;
 312        struct reada_extent *re_exist = NULL;
 313        struct btrfs_bio *bbio = NULL;
 314        struct btrfs_device *dev;
 315        struct btrfs_device *prev_dev;
 316        u32 blocksize;
 317        u64 length;
 318        int real_stripes;
 319        int nzones = 0;
 320        unsigned long index = logical >> PAGE_SHIFT;
 321        int dev_replace_is_ongoing;
 322        int have_zone = 0;
 323
 324        spin_lock(&fs_info->reada_lock);
 325        re = radix_tree_lookup(&fs_info->reada_tree, index);
 326        if (re)
 327                re->refcnt++;
 328        spin_unlock(&fs_info->reada_lock);
 329
 330        if (re)
 331                return re;
 332
 333        re = kzalloc(sizeof(*re), GFP_KERNEL);
 334        if (!re)
 335                return NULL;
 336
 337        blocksize = fs_info->nodesize;
 338        re->logical = logical;
 339        re->top = *top;
 340        INIT_LIST_HEAD(&re->extctl);
 341        spin_lock_init(&re->lock);
 342        re->refcnt = 1;
 343
 344        /*
 345         * map block
 346         */
 347        length = blocksize;
 348        ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
 349                        &length, &bbio, 0);
 350        if (ret || !bbio || length < blocksize)
 351                goto error;
 352
 353        if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
 354                btrfs_err(fs_info,
 355                           "readahead: more than %d copies not supported",
 356                           BTRFS_MAX_MIRRORS);
 357                goto error;
 358        }
 359
 360        real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
 361        for (nzones = 0; nzones < real_stripes; ++nzones) {
 362                struct reada_zone *zone;
 363
 364                dev = bbio->stripes[nzones].dev;
 365
 366                /* cannot read ahead on missing device. */
 367                 if (!dev->bdev)
 368                        continue;
 369
 370                zone = reada_find_zone(fs_info, dev, logical, bbio);
 371                if (!zone)
 372                        continue;
 373
 374                re->zones[re->nzones++] = zone;
 375                spin_lock(&zone->lock);
 376                if (!zone->elems)
 377                        kref_get(&zone->refcnt);
 378                ++zone->elems;
 379                spin_unlock(&zone->lock);
 380                spin_lock(&fs_info->reada_lock);
 381                kref_put(&zone->refcnt, reada_zone_release);
 382                spin_unlock(&fs_info->reada_lock);
 383        }
 384        if (re->nzones == 0) {
 385                /* not a single zone found, error and out */
 386                goto error;
 387        }
 388
 389        /* insert extent in reada_tree + all per-device trees, all or nothing */
 390        btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
 391        spin_lock(&fs_info->reada_lock);
 392        ret = radix_tree_insert(&fs_info->reada_tree, index, re);
 393        if (ret == -EEXIST) {
 394                re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
 395                re_exist->refcnt++;
 396                spin_unlock(&fs_info->reada_lock);
 397                btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
 398                goto error;
 399        }
 400        if (ret) {
 401                spin_unlock(&fs_info->reada_lock);
 402                btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
 403                goto error;
 404        }
 405        prev_dev = NULL;
 406        dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
 407                        &fs_info->dev_replace);
 408        for (nzones = 0; nzones < re->nzones; ++nzones) {
 409                dev = re->zones[nzones]->device;
 410
 411                if (dev == prev_dev) {
 412                        /*
 413                         * in case of DUP, just add the first zone. As both
 414                         * are on the same device, there's nothing to gain
 415                         * from adding both.
 416                         * Also, it wouldn't work, as the tree is per device
 417                         * and adding would fail with EEXIST
 418                         */
 419                        continue;
 420                }
 421                if (!dev->bdev)
 422                        continue;
 423
 424                if (dev_replace_is_ongoing &&
 425                    dev == fs_info->dev_replace.tgtdev) {
 426                        /*
 427                         * as this device is selected for reading only as
 428                         * a last resort, skip it for read ahead.
 429                         */
 430                        continue;
 431                }
 432                prev_dev = dev;
 433                ret = radix_tree_insert(&dev->reada_extents, index, re);
 434                if (ret) {
 435                        while (--nzones >= 0) {
 436                                dev = re->zones[nzones]->device;
 437                                BUG_ON(dev == NULL);
 438                                /* ignore whether the entry was inserted */
 439                                radix_tree_delete(&dev->reada_extents, index);
 440                        }
 441                        radix_tree_delete(&fs_info->reada_tree, index);
 442                        spin_unlock(&fs_info->reada_lock);
 443                        btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
 444                        goto error;
 445                }
 446                have_zone = 1;
 447        }
 448        spin_unlock(&fs_info->reada_lock);
 449        btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
 450
 451        if (!have_zone)
 452                goto error;
 453
 454        btrfs_put_bbio(bbio);
 455        return re;
 456
 457error:
 458        for (nzones = 0; nzones < re->nzones; ++nzones) {
 459                struct reada_zone *zone;
 460
 461                zone = re->zones[nzones];
 462                kref_get(&zone->refcnt);
 463                spin_lock(&zone->lock);
 464                --zone->elems;
 465                if (zone->elems == 0) {
 466                        /*
 467                         * no fs_info->reada_lock needed, as this can't be
 468                         * the last ref
 469                         */
 470                        kref_put(&zone->refcnt, reada_zone_release);
 471                }
 472                spin_unlock(&zone->lock);
 473
 474                spin_lock(&fs_info->reada_lock);
 475                kref_put(&zone->refcnt, reada_zone_release);
 476                spin_unlock(&fs_info->reada_lock);
 477        }
 478        btrfs_put_bbio(bbio);
 479        kfree(re);
 480        return re_exist;
 481}
 482
 483static void reada_extent_put(struct btrfs_fs_info *fs_info,
 484                             struct reada_extent *re)
 485{
 486        int i;
 487        unsigned long index = re->logical >> PAGE_SHIFT;
 488
 489        spin_lock(&fs_info->reada_lock);
 490        if (--re->refcnt) {
 491                spin_unlock(&fs_info->reada_lock);
 492                return;
 493        }
 494
 495        radix_tree_delete(&fs_info->reada_tree, index);
 496        for (i = 0; i < re->nzones; ++i) {
 497                struct reada_zone *zone = re->zones[i];
 498
 499                radix_tree_delete(&zone->device->reada_extents, index);
 500        }
 501
 502        spin_unlock(&fs_info->reada_lock);
 503
 504        for (i = 0; i < re->nzones; ++i) {
 505                struct reada_zone *zone = re->zones[i];
 506
 507                kref_get(&zone->refcnt);
 508                spin_lock(&zone->lock);
 509                --zone->elems;
 510                if (zone->elems == 0) {
 511                        /* no fs_info->reada_lock needed, as this can't be
 512                         * the last ref */
 513                        kref_put(&zone->refcnt, reada_zone_release);
 514                }
 515                spin_unlock(&zone->lock);
 516
 517                spin_lock(&fs_info->reada_lock);
 518                kref_put(&zone->refcnt, reada_zone_release);
 519                spin_unlock(&fs_info->reada_lock);
 520        }
 521
 522        kfree(re);
 523}
 524
 525static void reada_zone_release(struct kref *kref)
 526{
 527        struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
 528
 529        radix_tree_delete(&zone->device->reada_zones,
 530                          zone->end >> PAGE_SHIFT);
 531
 532        kfree(zone);
 533}
 534
 535static void reada_control_release(struct kref *kref)
 536{
 537        struct reada_control *rc = container_of(kref, struct reada_control,
 538                                                refcnt);
 539
 540        kfree(rc);
 541}
 542
 543static int reada_add_block(struct reada_control *rc, u64 logical,
 544                           struct btrfs_key *top, u64 generation)
 545{
 546        struct btrfs_fs_info *fs_info = rc->fs_info;
 547        struct reada_extent *re;
 548        struct reada_extctl *rec;
 549
 550        /* takes one ref */
 551        re = reada_find_extent(fs_info, logical, top);
 552        if (!re)
 553                return -1;
 554
 555        rec = kzalloc(sizeof(*rec), GFP_KERNEL);
 556        if (!rec) {
 557                reada_extent_put(fs_info, re);
 558                return -ENOMEM;
 559        }
 560
 561        rec->rc = rc;
 562        rec->generation = generation;
 563        atomic_inc(&rc->elems);
 564
 565        spin_lock(&re->lock);
 566        list_add_tail(&rec->list, &re->extctl);
 567        spin_unlock(&re->lock);
 568
 569        /* leave the ref on the extent */
 570
 571        return 0;
 572}
 573
 574/*
 575 * called with fs_info->reada_lock held
 576 */
 577static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
 578{
 579        int i;
 580        unsigned long index = zone->end >> PAGE_SHIFT;
 581
 582        for (i = 0; i < zone->ndevs; ++i) {
 583                struct reada_zone *peer;
 584                peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
 585                if (peer && peer->device != zone->device)
 586                        peer->locked = lock;
 587        }
 588}
 589
 590/*
 591 * called with fs_info->reada_lock held
 592 */
 593static int reada_pick_zone(struct btrfs_device *dev)
 594{
 595        struct reada_zone *top_zone = NULL;
 596        struct reada_zone *top_locked_zone = NULL;
 597        u64 top_elems = 0;
 598        u64 top_locked_elems = 0;
 599        unsigned long index = 0;
 600        int ret;
 601
 602        if (dev->reada_curr_zone) {
 603                reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
 604                kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
 605                dev->reada_curr_zone = NULL;
 606        }
 607        /* pick the zone with the most elements */
 608        while (1) {
 609                struct reada_zone *zone;
 610
 611                ret = radix_tree_gang_lookup(&dev->reada_zones,
 612                                             (void **)&zone, index, 1);
 613                if (ret == 0)
 614                        break;
 615                index = (zone->end >> PAGE_SHIFT) + 1;
 616                if (zone->locked) {
 617                        if (zone->elems > top_locked_elems) {
 618                                top_locked_elems = zone->elems;
 619                                top_locked_zone = zone;
 620                        }
 621                } else {
 622                        if (zone->elems > top_elems) {
 623                                top_elems = zone->elems;
 624                                top_zone = zone;
 625                        }
 626                }
 627        }
 628        if (top_zone)
 629                dev->reada_curr_zone = top_zone;
 630        else if (top_locked_zone)
 631                dev->reada_curr_zone = top_locked_zone;
 632        else
 633                return 0;
 634
 635        dev->reada_next = dev->reada_curr_zone->start;
 636        kref_get(&dev->reada_curr_zone->refcnt);
 637        reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
 638
 639        return 1;
 640}
 641
 642static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
 643                                   struct btrfs_device *dev)
 644{
 645        struct reada_extent *re = NULL;
 646        int mirror_num = 0;
 647        struct extent_buffer *eb = NULL;
 648        u64 logical;
 649        int ret;
 650        int i;
 651
 652        spin_lock(&fs_info->reada_lock);
 653        if (dev->reada_curr_zone == NULL) {
 654                ret = reada_pick_zone(dev);
 655                if (!ret) {
 656                        spin_unlock(&fs_info->reada_lock);
 657                        return 0;
 658                }
 659        }
 660        /*
 661         * FIXME currently we issue the reads one extent at a time. If we have
 662         * a contiguous block of extents, we could also coagulate them or use
 663         * plugging to speed things up
 664         */
 665        ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
 666                                     dev->reada_next >> PAGE_SHIFT, 1);
 667        if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
 668                ret = reada_pick_zone(dev);
 669                if (!ret) {
 670                        spin_unlock(&fs_info->reada_lock);
 671                        return 0;
 672                }
 673                re = NULL;
 674                ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
 675                                        dev->reada_next >> PAGE_SHIFT, 1);
 676        }
 677        if (ret == 0) {
 678                spin_unlock(&fs_info->reada_lock);
 679                return 0;
 680        }
 681        dev->reada_next = re->logical + fs_info->nodesize;
 682        re->refcnt++;
 683
 684        spin_unlock(&fs_info->reada_lock);
 685
 686        spin_lock(&re->lock);
 687        if (re->scheduled || list_empty(&re->extctl)) {
 688                spin_unlock(&re->lock);
 689                reada_extent_put(fs_info, re);
 690                return 0;
 691        }
 692        re->scheduled = 1;
 693        spin_unlock(&re->lock);
 694
 695        /*
 696         * find mirror num
 697         */
 698        for (i = 0; i < re->nzones; ++i) {
 699                if (re->zones[i]->device == dev) {
 700                        mirror_num = i + 1;
 701                        break;
 702                }
 703        }
 704        logical = re->logical;
 705
 706        atomic_inc(&dev->reada_in_flight);
 707        ret = reada_tree_block_flagged(fs_info, logical, mirror_num, &eb);
 708        if (ret)
 709                __readahead_hook(fs_info, re, NULL, ret);
 710        else if (eb)
 711                __readahead_hook(fs_info, re, eb, ret);
 712
 713        if (eb)
 714                free_extent_buffer(eb);
 715
 716        atomic_dec(&dev->reada_in_flight);
 717        reada_extent_put(fs_info, re);
 718
 719        return 1;
 720
 721}
 722
 723static void reada_start_machine_worker(struct btrfs_work *work)
 724{
 725        struct reada_machine_work *rmw;
 726        struct btrfs_fs_info *fs_info;
 727        int old_ioprio;
 728
 729        rmw = container_of(work, struct reada_machine_work, work);
 730        fs_info = rmw->fs_info;
 731
 732        kfree(rmw);
 733
 734        old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
 735                                       task_nice_ioprio(current));
 736        set_task_ioprio(current, BTRFS_IOPRIO_READA);
 737        __reada_start_machine(fs_info);
 738        set_task_ioprio(current, old_ioprio);
 739
 740        atomic_dec(&fs_info->reada_works_cnt);
 741}
 742
 743static void __reada_start_machine(struct btrfs_fs_info *fs_info)
 744{
 745        struct btrfs_device *device;
 746        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 747        u64 enqueued;
 748        u64 total = 0;
 749        int i;
 750
 751        do {
 752                enqueued = 0;
 753                mutex_lock(&fs_devices->device_list_mutex);
 754                list_for_each_entry(device, &fs_devices->devices, dev_list) {
 755                        if (atomic_read(&device->reada_in_flight) <
 756                            MAX_IN_FLIGHT)
 757                                enqueued += reada_start_machine_dev(fs_info,
 758                                                                    device);
 759                }
 760                mutex_unlock(&fs_devices->device_list_mutex);
 761                total += enqueued;
 762        } while (enqueued && total < 10000);
 763
 764        if (enqueued == 0)
 765                return;
 766
 767        /*
 768         * If everything is already in the cache, this is effectively single
 769         * threaded. To a) not hold the caller for too long and b) to utilize
 770         * more cores, we broke the loop above after 10000 iterations and now
 771         * enqueue to workers to finish it. This will distribute the load to
 772         * the cores.
 773         */
 774        for (i = 0; i < 2; ++i) {
 775                reada_start_machine(fs_info);
 776                if (atomic_read(&fs_info->reada_works_cnt) >
 777                    BTRFS_MAX_MIRRORS * 2)
 778                        break;
 779        }
 780}
 781
 782static void reada_start_machine(struct btrfs_fs_info *fs_info)
 783{
 784        struct reada_machine_work *rmw;
 785
 786        rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
 787        if (!rmw) {
 788                /* FIXME we cannot handle this properly right now */
 789                BUG();
 790        }
 791        btrfs_init_work(&rmw->work, btrfs_readahead_helper,
 792                        reada_start_machine_worker, NULL, NULL);
 793        rmw->fs_info = fs_info;
 794
 795        btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
 796        atomic_inc(&fs_info->reada_works_cnt);
 797}
 798
 799#ifdef DEBUG
 800static void dump_devs(struct btrfs_fs_info *fs_info, int all)
 801{
 802        struct btrfs_device *device;
 803        struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 804        unsigned long index;
 805        int ret;
 806        int i;
 807        int j;
 808        int cnt;
 809
 810        spin_lock(&fs_info->reada_lock);
 811        list_for_each_entry(device, &fs_devices->devices, dev_list) {
 812                btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
 813                        atomic_read(&device->reada_in_flight));
 814                index = 0;
 815                while (1) {
 816                        struct reada_zone *zone;
 817                        ret = radix_tree_gang_lookup(&device->reada_zones,
 818                                                     (void **)&zone, index, 1);
 819                        if (ret == 0)
 820                                break;
 821                        pr_debug("  zone %llu-%llu elems %llu locked %d devs",
 822                                    zone->start, zone->end, zone->elems,
 823                                    zone->locked);
 824                        for (j = 0; j < zone->ndevs; ++j) {
 825                                pr_cont(" %lld",
 826                                        zone->devs[j]->devid);
 827                        }
 828                        if (device->reada_curr_zone == zone)
 829                                pr_cont(" curr off %llu",
 830                                        device->reada_next - zone->start);
 831                        pr_cont("\n");
 832                        index = (zone->end >> PAGE_SHIFT) + 1;
 833                }
 834                cnt = 0;
 835                index = 0;
 836                while (all) {
 837                        struct reada_extent *re = NULL;
 838
 839                        ret = radix_tree_gang_lookup(&device->reada_extents,
 840                                                     (void **)&re, index, 1);
 841                        if (ret == 0)
 842                                break;
 843                        pr_debug("  re: logical %llu size %u empty %d scheduled %d",
 844                                re->logical, fs_info->nodesize,
 845                                list_empty(&re->extctl), re->scheduled);
 846
 847                        for (i = 0; i < re->nzones; ++i) {
 848                                pr_cont(" zone %llu-%llu devs",
 849                                        re->zones[i]->start,
 850                                        re->zones[i]->end);
 851                                for (j = 0; j < re->zones[i]->ndevs; ++j) {
 852                                        pr_cont(" %lld",
 853                                                re->zones[i]->devs[j]->devid);
 854                                }
 855                        }
 856                        pr_cont("\n");
 857                        index = (re->logical >> PAGE_SHIFT) + 1;
 858                        if (++cnt > 15)
 859                                break;
 860                }
 861        }
 862
 863        index = 0;
 864        cnt = 0;
 865        while (all) {
 866                struct reada_extent *re = NULL;
 867
 868                ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
 869                                             index, 1);
 870                if (ret == 0)
 871                        break;
 872                if (!re->scheduled) {
 873                        index = (re->logical >> PAGE_SHIFT) + 1;
 874                        continue;
 875                }
 876                pr_debug("re: logical %llu size %u list empty %d scheduled %d",
 877                        re->logical, fs_info->nodesize,
 878                        list_empty(&re->extctl), re->scheduled);
 879                for (i = 0; i < re->nzones; ++i) {
 880                        pr_cont(" zone %llu-%llu devs",
 881                                re->zones[i]->start,
 882                                re->zones[i]->end);
 883                        for (j = 0; j < re->zones[i]->ndevs; ++j) {
 884                                pr_cont(" %lld",
 885                                       re->zones[i]->devs[j]->devid);
 886                        }
 887                }
 888                pr_cont("\n");
 889                index = (re->logical >> PAGE_SHIFT) + 1;
 890        }
 891        spin_unlock(&fs_info->reada_lock);
 892}
 893#endif
 894
 895/*
 896 * interface
 897 */
 898struct reada_control *btrfs_reada_add(struct btrfs_root *root,
 899                        struct btrfs_key *key_start, struct btrfs_key *key_end)
 900{
 901        struct reada_control *rc;
 902        u64 start;
 903        u64 generation;
 904        int ret;
 905        struct extent_buffer *node;
 906        static struct btrfs_key max_key = {
 907                .objectid = (u64)-1,
 908                .type = (u8)-1,
 909                .offset = (u64)-1
 910        };
 911
 912        rc = kzalloc(sizeof(*rc), GFP_KERNEL);
 913        if (!rc)
 914                return ERR_PTR(-ENOMEM);
 915
 916        rc->fs_info = root->fs_info;
 917        rc->key_start = *key_start;
 918        rc->key_end = *key_end;
 919        atomic_set(&rc->elems, 0);
 920        init_waitqueue_head(&rc->wait);
 921        kref_init(&rc->refcnt);
 922        kref_get(&rc->refcnt); /* one ref for having elements */
 923
 924        node = btrfs_root_node(root);
 925        start = node->start;
 926        generation = btrfs_header_generation(node);
 927        free_extent_buffer(node);
 928
 929        ret = reada_add_block(rc, start, &max_key, generation);
 930        if (ret) {
 931                kfree(rc);
 932                return ERR_PTR(ret);
 933        }
 934
 935        reada_start_machine(root->fs_info);
 936
 937        return rc;
 938}
 939
 940#ifdef DEBUG
 941int btrfs_reada_wait(void *handle)
 942{
 943        struct reada_control *rc = handle;
 944        struct btrfs_fs_info *fs_info = rc->fs_info;
 945
 946        while (atomic_read(&rc->elems)) {
 947                if (!atomic_read(&fs_info->reada_works_cnt))
 948                        reada_start_machine(fs_info);
 949                wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
 950                                   5 * HZ);
 951                dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
 952        }
 953
 954        dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
 955
 956        kref_put(&rc->refcnt, reada_control_release);
 957
 958        return 0;
 959}
 960#else
 961int btrfs_reada_wait(void *handle)
 962{
 963        struct reada_control *rc = handle;
 964        struct btrfs_fs_info *fs_info = rc->fs_info;
 965
 966        while (atomic_read(&rc->elems)) {
 967                if (!atomic_read(&fs_info->reada_works_cnt))
 968                        reada_start_machine(fs_info);
 969                wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
 970                                   (HZ + 9) / 10);
 971        }
 972
 973        kref_put(&rc->refcnt, reada_control_release);
 974
 975        return 0;
 976}
 977#endif
 978
 979void btrfs_reada_detach(void *handle)
 980{
 981        struct reada_control *rc = handle;
 982
 983        kref_put(&rc->refcnt, reada_control_release);
 984}
 985