linux/fs/ext4/inode.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext4/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  16 *      (jj@sunsite.ms.mff.cuni.cz)
  17 *
  18 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  19 */
  20
  21#include <linux/fs.h>
  22#include <linux/time.h>
  23#include <linux/highuid.h>
  24#include <linux/pagemap.h>
  25#include <linux/dax.h>
  26#include <linux/quotaops.h>
  27#include <linux/string.h>
  28#include <linux/buffer_head.h>
  29#include <linux/writeback.h>
  30#include <linux/pagevec.h>
  31#include <linux/mpage.h>
  32#include <linux/namei.h>
  33#include <linux/uio.h>
  34#include <linux/bio.h>
  35#include <linux/workqueue.h>
  36#include <linux/kernel.h>
  37#include <linux/printk.h>
  38#include <linux/slab.h>
  39#include <linux/bitops.h>
  40#include <linux/iomap.h>
  41
  42#include "ext4_jbd2.h"
  43#include "xattr.h"
  44#include "acl.h"
  45#include "truncate.h"
  46
  47#include <trace/events/ext4.h>
  48
  49#define MPAGE_DA_EXTENT_TAIL 0x01
  50
  51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  52                              struct ext4_inode_info *ei)
  53{
  54        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  55        __u32 csum;
  56        __u16 dummy_csum = 0;
  57        int offset = offsetof(struct ext4_inode, i_checksum_lo);
  58        unsigned int csum_size = sizeof(dummy_csum);
  59
  60        csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  61        csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  62        offset += csum_size;
  63        csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  64                           EXT4_GOOD_OLD_INODE_SIZE - offset);
  65
  66        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  67                offset = offsetof(struct ext4_inode, i_checksum_hi);
  68                csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  69                                   EXT4_GOOD_OLD_INODE_SIZE,
  70                                   offset - EXT4_GOOD_OLD_INODE_SIZE);
  71                if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  72                        csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  73                                           csum_size);
  74                        offset += csum_size;
  75                }
  76                csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  77                                   EXT4_INODE_SIZE(inode->i_sb) - offset);
  78        }
  79
  80        return csum;
  81}
  82
  83static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  84                                  struct ext4_inode_info *ei)
  85{
  86        __u32 provided, calculated;
  87
  88        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  89            cpu_to_le32(EXT4_OS_LINUX) ||
  90            !ext4_has_metadata_csum(inode->i_sb))
  91                return 1;
  92
  93        provided = le16_to_cpu(raw->i_checksum_lo);
  94        calculated = ext4_inode_csum(inode, raw, ei);
  95        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  96            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  97                provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  98        else
  99                calculated &= 0xFFFF;
 100
 101        return provided == calculated;
 102}
 103
 104static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 105                                struct ext4_inode_info *ei)
 106{
 107        __u32 csum;
 108
 109        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 110            cpu_to_le32(EXT4_OS_LINUX) ||
 111            !ext4_has_metadata_csum(inode->i_sb))
 112                return;
 113
 114        csum = ext4_inode_csum(inode, raw, ei);
 115        raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 116        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 117            EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 118                raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 119}
 120
 121static inline int ext4_begin_ordered_truncate(struct inode *inode,
 122                                              loff_t new_size)
 123{
 124        trace_ext4_begin_ordered_truncate(inode, new_size);
 125        /*
 126         * If jinode is zero, then we never opened the file for
 127         * writing, so there's no need to call
 128         * jbd2_journal_begin_ordered_truncate() since there's no
 129         * outstanding writes we need to flush.
 130         */
 131        if (!EXT4_I(inode)->jinode)
 132                return 0;
 133        return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 134                                                   EXT4_I(inode)->jinode,
 135                                                   new_size);
 136}
 137
 138static void ext4_invalidatepage(struct page *page, unsigned int offset,
 139                                unsigned int length);
 140static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 141static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 142static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 143                                  int pextents);
 144
 145/*
 146 * Test whether an inode is a fast symlink.
 147 */
 148int ext4_inode_is_fast_symlink(struct inode *inode)
 149{
 150        int ea_blocks = EXT4_I(inode)->i_file_acl ?
 151                EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 152
 153        if (ext4_has_inline_data(inode))
 154                return 0;
 155
 156        return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 157}
 158
 159/*
 160 * Restart the transaction associated with *handle.  This does a commit,
 161 * so before we call here everything must be consistently dirtied against
 162 * this transaction.
 163 */
 164int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 165                                 int nblocks)
 166{
 167        int ret;
 168
 169        /*
 170         * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 171         * moment, get_block can be called only for blocks inside i_size since
 172         * page cache has been already dropped and writes are blocked by
 173         * i_mutex. So we can safely drop the i_data_sem here.
 174         */
 175        BUG_ON(EXT4_JOURNAL(inode) == NULL);
 176        jbd_debug(2, "restarting handle %p\n", handle);
 177        up_write(&EXT4_I(inode)->i_data_sem);
 178        ret = ext4_journal_restart(handle, nblocks);
 179        down_write(&EXT4_I(inode)->i_data_sem);
 180        ext4_discard_preallocations(inode);
 181
 182        return ret;
 183}
 184
 185/*
 186 * Called at the last iput() if i_nlink is zero.
 187 */
 188void ext4_evict_inode(struct inode *inode)
 189{
 190        handle_t *handle;
 191        int err;
 192
 193        trace_ext4_evict_inode(inode);
 194
 195        if (inode->i_nlink) {
 196                /*
 197                 * When journalling data dirty buffers are tracked only in the
 198                 * journal. So although mm thinks everything is clean and
 199                 * ready for reaping the inode might still have some pages to
 200                 * write in the running transaction or waiting to be
 201                 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 202                 * (via truncate_inode_pages()) to discard these buffers can
 203                 * cause data loss. Also even if we did not discard these
 204                 * buffers, we would have no way to find them after the inode
 205                 * is reaped and thus user could see stale data if he tries to
 206                 * read them before the transaction is checkpointed. So be
 207                 * careful and force everything to disk here... We use
 208                 * ei->i_datasync_tid to store the newest transaction
 209                 * containing inode's data.
 210                 *
 211                 * Note that directories do not have this problem because they
 212                 * don't use page cache.
 213                 */
 214                if (inode->i_ino != EXT4_JOURNAL_INO &&
 215                    ext4_should_journal_data(inode) &&
 216                    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
 217                        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 218                        tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 219
 220                        jbd2_complete_transaction(journal, commit_tid);
 221                        filemap_write_and_wait(&inode->i_data);
 222                }
 223                truncate_inode_pages_final(&inode->i_data);
 224
 225                goto no_delete;
 226        }
 227
 228        if (is_bad_inode(inode))
 229                goto no_delete;
 230        dquot_initialize(inode);
 231
 232        if (ext4_should_order_data(inode))
 233                ext4_begin_ordered_truncate(inode, 0);
 234        truncate_inode_pages_final(&inode->i_data);
 235
 236        /*
 237         * Protect us against freezing - iput() caller didn't have to have any
 238         * protection against it
 239         */
 240        sb_start_intwrite(inode->i_sb);
 241        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 242                                    ext4_blocks_for_truncate(inode)+3);
 243        if (IS_ERR(handle)) {
 244                ext4_std_error(inode->i_sb, PTR_ERR(handle));
 245                /*
 246                 * If we're going to skip the normal cleanup, we still need to
 247                 * make sure that the in-core orphan linked list is properly
 248                 * cleaned up.
 249                 */
 250                ext4_orphan_del(NULL, inode);
 251                sb_end_intwrite(inode->i_sb);
 252                goto no_delete;
 253        }
 254
 255        if (IS_SYNC(inode))
 256                ext4_handle_sync(handle);
 257        inode->i_size = 0;
 258        err = ext4_mark_inode_dirty(handle, inode);
 259        if (err) {
 260                ext4_warning(inode->i_sb,
 261                             "couldn't mark inode dirty (err %d)", err);
 262                goto stop_handle;
 263        }
 264        if (inode->i_blocks) {
 265                err = ext4_truncate(inode);
 266                if (err) {
 267                        ext4_error(inode->i_sb,
 268                                   "couldn't truncate inode %lu (err %d)",
 269                                   inode->i_ino, err);
 270                        goto stop_handle;
 271                }
 272        }
 273
 274        /*
 275         * ext4_ext_truncate() doesn't reserve any slop when it
 276         * restarts journal transactions; therefore there may not be
 277         * enough credits left in the handle to remove the inode from
 278         * the orphan list and set the dtime field.
 279         */
 280        if (!ext4_handle_has_enough_credits(handle, 3)) {
 281                err = ext4_journal_extend(handle, 3);
 282                if (err > 0)
 283                        err = ext4_journal_restart(handle, 3);
 284                if (err != 0) {
 285                        ext4_warning(inode->i_sb,
 286                                     "couldn't extend journal (err %d)", err);
 287                stop_handle:
 288                        ext4_journal_stop(handle);
 289                        ext4_orphan_del(NULL, inode);
 290                        sb_end_intwrite(inode->i_sb);
 291                        goto no_delete;
 292                }
 293        }
 294
 295        /*
 296         * Kill off the orphan record which ext4_truncate created.
 297         * AKPM: I think this can be inside the above `if'.
 298         * Note that ext4_orphan_del() has to be able to cope with the
 299         * deletion of a non-existent orphan - this is because we don't
 300         * know if ext4_truncate() actually created an orphan record.
 301         * (Well, we could do this if we need to, but heck - it works)
 302         */
 303        ext4_orphan_del(handle, inode);
 304        EXT4_I(inode)->i_dtime  = get_seconds();
 305
 306        /*
 307         * One subtle ordering requirement: if anything has gone wrong
 308         * (transaction abort, IO errors, whatever), then we can still
 309         * do these next steps (the fs will already have been marked as
 310         * having errors), but we can't free the inode if the mark_dirty
 311         * fails.
 312         */
 313        if (ext4_mark_inode_dirty(handle, inode))
 314                /* If that failed, just do the required in-core inode clear. */
 315                ext4_clear_inode(inode);
 316        else
 317                ext4_free_inode(handle, inode);
 318        ext4_journal_stop(handle);
 319        sb_end_intwrite(inode->i_sb);
 320        return;
 321no_delete:
 322        ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
 323}
 324
 325#ifdef CONFIG_QUOTA
 326qsize_t *ext4_get_reserved_space(struct inode *inode)
 327{
 328        return &EXT4_I(inode)->i_reserved_quota;
 329}
 330#endif
 331
 332/*
 333 * Called with i_data_sem down, which is important since we can call
 334 * ext4_discard_preallocations() from here.
 335 */
 336void ext4_da_update_reserve_space(struct inode *inode,
 337                                        int used, int quota_claim)
 338{
 339        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 340        struct ext4_inode_info *ei = EXT4_I(inode);
 341
 342        spin_lock(&ei->i_block_reservation_lock);
 343        trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 344        if (unlikely(used > ei->i_reserved_data_blocks)) {
 345                ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 346                         "with only %d reserved data blocks",
 347                         __func__, inode->i_ino, used,
 348                         ei->i_reserved_data_blocks);
 349                WARN_ON(1);
 350                used = ei->i_reserved_data_blocks;
 351        }
 352
 353        /* Update per-inode reservations */
 354        ei->i_reserved_data_blocks -= used;
 355        percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 356
 357        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 358
 359        /* Update quota subsystem for data blocks */
 360        if (quota_claim)
 361                dquot_claim_block(inode, EXT4_C2B(sbi, used));
 362        else {
 363                /*
 364                 * We did fallocate with an offset that is already delayed
 365                 * allocated. So on delayed allocated writeback we should
 366                 * not re-claim the quota for fallocated blocks.
 367                 */
 368                dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 369        }
 370
 371        /*
 372         * If we have done all the pending block allocations and if
 373         * there aren't any writers on the inode, we can discard the
 374         * inode's preallocations.
 375         */
 376        if ((ei->i_reserved_data_blocks == 0) &&
 377            (atomic_read(&inode->i_writecount) == 0))
 378                ext4_discard_preallocations(inode);
 379}
 380
 381static int __check_block_validity(struct inode *inode, const char *func,
 382                                unsigned int line,
 383                                struct ext4_map_blocks *map)
 384{
 385        if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 386                                   map->m_len)) {
 387                ext4_error_inode(inode, func, line, map->m_pblk,
 388                                 "lblock %lu mapped to illegal pblock "
 389                                 "(length %d)", (unsigned long) map->m_lblk,
 390                                 map->m_len);
 391                return -EFSCORRUPTED;
 392        }
 393        return 0;
 394}
 395
 396int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 397                       ext4_lblk_t len)
 398{
 399        int ret;
 400
 401        if (ext4_encrypted_inode(inode))
 402                return fscrypt_zeroout_range(inode, lblk, pblk, len);
 403
 404        ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 405        if (ret > 0)
 406                ret = 0;
 407
 408        return ret;
 409}
 410
 411#define check_block_validity(inode, map)        \
 412        __check_block_validity((inode), __func__, __LINE__, (map))
 413
 414#ifdef ES_AGGRESSIVE_TEST
 415static void ext4_map_blocks_es_recheck(handle_t *handle,
 416                                       struct inode *inode,
 417                                       struct ext4_map_blocks *es_map,
 418                                       struct ext4_map_blocks *map,
 419                                       int flags)
 420{
 421        int retval;
 422
 423        map->m_flags = 0;
 424        /*
 425         * There is a race window that the result is not the same.
 426         * e.g. xfstests #223 when dioread_nolock enables.  The reason
 427         * is that we lookup a block mapping in extent status tree with
 428         * out taking i_data_sem.  So at the time the unwritten extent
 429         * could be converted.
 430         */
 431        down_read(&EXT4_I(inode)->i_data_sem);
 432        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 433                retval = ext4_ext_map_blocks(handle, inode, map, flags &
 434                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 435        } else {
 436                retval = ext4_ind_map_blocks(handle, inode, map, flags &
 437                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 438        }
 439        up_read((&EXT4_I(inode)->i_data_sem));
 440
 441        /*
 442         * We don't check m_len because extent will be collpased in status
 443         * tree.  So the m_len might not equal.
 444         */
 445        if (es_map->m_lblk != map->m_lblk ||
 446            es_map->m_flags != map->m_flags ||
 447            es_map->m_pblk != map->m_pblk) {
 448                printk("ES cache assertion failed for inode: %lu "
 449                       "es_cached ex [%d/%d/%llu/%x] != "
 450                       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 451                       inode->i_ino, es_map->m_lblk, es_map->m_len,
 452                       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 453                       map->m_len, map->m_pblk, map->m_flags,
 454                       retval, flags);
 455        }
 456}
 457#endif /* ES_AGGRESSIVE_TEST */
 458
 459/*
 460 * The ext4_map_blocks() function tries to look up the requested blocks,
 461 * and returns if the blocks are already mapped.
 462 *
 463 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 464 * and store the allocated blocks in the result buffer head and mark it
 465 * mapped.
 466 *
 467 * If file type is extents based, it will call ext4_ext_map_blocks(),
 468 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 469 * based files
 470 *
 471 * On success, it returns the number of blocks being mapped or allocated.  if
 472 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 473 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 474 *
 475 * It returns 0 if plain look up failed (blocks have not been allocated), in
 476 * that case, @map is returned as unmapped but we still do fill map->m_len to
 477 * indicate the length of a hole starting at map->m_lblk.
 478 *
 479 * It returns the error in case of allocation failure.
 480 */
 481int ext4_map_blocks(handle_t *handle, struct inode *inode,
 482                    struct ext4_map_blocks *map, int flags)
 483{
 484        struct extent_status es;
 485        int retval;
 486        int ret = 0;
 487#ifdef ES_AGGRESSIVE_TEST
 488        struct ext4_map_blocks orig_map;
 489
 490        memcpy(&orig_map, map, sizeof(*map));
 491#endif
 492
 493        map->m_flags = 0;
 494        ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 495                  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 496                  (unsigned long) map->m_lblk);
 497
 498        /*
 499         * ext4_map_blocks returns an int, and m_len is an unsigned int
 500         */
 501        if (unlikely(map->m_len > INT_MAX))
 502                map->m_len = INT_MAX;
 503
 504        /* We can handle the block number less than EXT_MAX_BLOCKS */
 505        if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 506                return -EFSCORRUPTED;
 507
 508        /* Lookup extent status tree firstly */
 509        if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 510                if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 511                        map->m_pblk = ext4_es_pblock(&es) +
 512                                        map->m_lblk - es.es_lblk;
 513                        map->m_flags |= ext4_es_is_written(&es) ?
 514                                        EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 515                        retval = es.es_len - (map->m_lblk - es.es_lblk);
 516                        if (retval > map->m_len)
 517                                retval = map->m_len;
 518                        map->m_len = retval;
 519                } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 520                        map->m_pblk = 0;
 521                        retval = es.es_len - (map->m_lblk - es.es_lblk);
 522                        if (retval > map->m_len)
 523                                retval = map->m_len;
 524                        map->m_len = retval;
 525                        retval = 0;
 526                } else {
 527                        BUG_ON(1);
 528                }
 529#ifdef ES_AGGRESSIVE_TEST
 530                ext4_map_blocks_es_recheck(handle, inode, map,
 531                                           &orig_map, flags);
 532#endif
 533                goto found;
 534        }
 535
 536        /*
 537         * Try to see if we can get the block without requesting a new
 538         * file system block.
 539         */
 540        down_read(&EXT4_I(inode)->i_data_sem);
 541        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 542                retval = ext4_ext_map_blocks(handle, inode, map, flags &
 543                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 544        } else {
 545                retval = ext4_ind_map_blocks(handle, inode, map, flags &
 546                                             EXT4_GET_BLOCKS_KEEP_SIZE);
 547        }
 548        if (retval > 0) {
 549                unsigned int status;
 550
 551                if (unlikely(retval != map->m_len)) {
 552                        ext4_warning(inode->i_sb,
 553                                     "ES len assertion failed for inode "
 554                                     "%lu: retval %d != map->m_len %d",
 555                                     inode->i_ino, retval, map->m_len);
 556                        WARN_ON(1);
 557                }
 558
 559                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 560                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 561                if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 562                    !(status & EXTENT_STATUS_WRITTEN) &&
 563                    ext4_find_delalloc_range(inode, map->m_lblk,
 564                                             map->m_lblk + map->m_len - 1))
 565                        status |= EXTENT_STATUS_DELAYED;
 566                ret = ext4_es_insert_extent(inode, map->m_lblk,
 567                                            map->m_len, map->m_pblk, status);
 568                if (ret < 0)
 569                        retval = ret;
 570        }
 571        up_read((&EXT4_I(inode)->i_data_sem));
 572
 573found:
 574        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 575                ret = check_block_validity(inode, map);
 576                if (ret != 0)
 577                        return ret;
 578        }
 579
 580        /* If it is only a block(s) look up */
 581        if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 582                return retval;
 583
 584        /*
 585         * Returns if the blocks have already allocated
 586         *
 587         * Note that if blocks have been preallocated
 588         * ext4_ext_get_block() returns the create = 0
 589         * with buffer head unmapped.
 590         */
 591        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 592                /*
 593                 * If we need to convert extent to unwritten
 594                 * we continue and do the actual work in
 595                 * ext4_ext_map_blocks()
 596                 */
 597                if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 598                        return retval;
 599
 600        /*
 601         * Here we clear m_flags because after allocating an new extent,
 602         * it will be set again.
 603         */
 604        map->m_flags &= ~EXT4_MAP_FLAGS;
 605
 606        /*
 607         * New blocks allocate and/or writing to unwritten extent
 608         * will possibly result in updating i_data, so we take
 609         * the write lock of i_data_sem, and call get_block()
 610         * with create == 1 flag.
 611         */
 612        down_write(&EXT4_I(inode)->i_data_sem);
 613
 614        /*
 615         * We need to check for EXT4 here because migrate
 616         * could have changed the inode type in between
 617         */
 618        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 619                retval = ext4_ext_map_blocks(handle, inode, map, flags);
 620        } else {
 621                retval = ext4_ind_map_blocks(handle, inode, map, flags);
 622
 623                if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 624                        /*
 625                         * We allocated new blocks which will result in
 626                         * i_data's format changing.  Force the migrate
 627                         * to fail by clearing migrate flags
 628                         */
 629                        ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 630                }
 631
 632                /*
 633                 * Update reserved blocks/metadata blocks after successful
 634                 * block allocation which had been deferred till now. We don't
 635                 * support fallocate for non extent files. So we can update
 636                 * reserve space here.
 637                 */
 638                if ((retval > 0) &&
 639                        (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 640                        ext4_da_update_reserve_space(inode, retval, 1);
 641        }
 642
 643        if (retval > 0) {
 644                unsigned int status;
 645
 646                if (unlikely(retval != map->m_len)) {
 647                        ext4_warning(inode->i_sb,
 648                                     "ES len assertion failed for inode "
 649                                     "%lu: retval %d != map->m_len %d",
 650                                     inode->i_ino, retval, map->m_len);
 651                        WARN_ON(1);
 652                }
 653
 654                /*
 655                 * We have to zeroout blocks before inserting them into extent
 656                 * status tree. Otherwise someone could look them up there and
 657                 * use them before they are really zeroed. We also have to
 658                 * unmap metadata before zeroing as otherwise writeback can
 659                 * overwrite zeros with stale data from block device.
 660                 */
 661                if (flags & EXT4_GET_BLOCKS_ZERO &&
 662                    map->m_flags & EXT4_MAP_MAPPED &&
 663                    map->m_flags & EXT4_MAP_NEW) {
 664                        clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
 665                                           map->m_len);
 666                        ret = ext4_issue_zeroout(inode, map->m_lblk,
 667                                                 map->m_pblk, map->m_len);
 668                        if (ret) {
 669                                retval = ret;
 670                                goto out_sem;
 671                        }
 672                }
 673
 674                /*
 675                 * If the extent has been zeroed out, we don't need to update
 676                 * extent status tree.
 677                 */
 678                if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 679                    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 680                        if (ext4_es_is_written(&es))
 681                                goto out_sem;
 682                }
 683                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 684                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 685                if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 686                    !(status & EXTENT_STATUS_WRITTEN) &&
 687                    ext4_find_delalloc_range(inode, map->m_lblk,
 688                                             map->m_lblk + map->m_len - 1))
 689                        status |= EXTENT_STATUS_DELAYED;
 690                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 691                                            map->m_pblk, status);
 692                if (ret < 0) {
 693                        retval = ret;
 694                        goto out_sem;
 695                }
 696        }
 697
 698out_sem:
 699        up_write((&EXT4_I(inode)->i_data_sem));
 700        if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 701                ret = check_block_validity(inode, map);
 702                if (ret != 0)
 703                        return ret;
 704
 705                /*
 706                 * Inodes with freshly allocated blocks where contents will be
 707                 * visible after transaction commit must be on transaction's
 708                 * ordered data list.
 709                 */
 710                if (map->m_flags & EXT4_MAP_NEW &&
 711                    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 712                    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 713                    !IS_NOQUOTA(inode) &&
 714                    ext4_should_order_data(inode)) {
 715                        if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 716                                ret = ext4_jbd2_inode_add_wait(handle, inode);
 717                        else
 718                                ret = ext4_jbd2_inode_add_write(handle, inode);
 719                        if (ret)
 720                                return ret;
 721                }
 722        }
 723        return retval;
 724}
 725
 726/*
 727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 728 * we have to be careful as someone else may be manipulating b_state as well.
 729 */
 730static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 731{
 732        unsigned long old_state;
 733        unsigned long new_state;
 734
 735        flags &= EXT4_MAP_FLAGS;
 736
 737        /* Dummy buffer_head? Set non-atomically. */
 738        if (!bh->b_page) {
 739                bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 740                return;
 741        }
 742        /*
 743         * Someone else may be modifying b_state. Be careful! This is ugly but
 744         * once we get rid of using bh as a container for mapping information
 745         * to pass to / from get_block functions, this can go away.
 746         */
 747        do {
 748                old_state = READ_ONCE(bh->b_state);
 749                new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 750        } while (unlikely(
 751                 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 752}
 753
 754static int _ext4_get_block(struct inode *inode, sector_t iblock,
 755                           struct buffer_head *bh, int flags)
 756{
 757        struct ext4_map_blocks map;
 758        int ret = 0;
 759
 760        if (ext4_has_inline_data(inode))
 761                return -ERANGE;
 762
 763        map.m_lblk = iblock;
 764        map.m_len = bh->b_size >> inode->i_blkbits;
 765
 766        ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 767                              flags);
 768        if (ret > 0) {
 769                map_bh(bh, inode->i_sb, map.m_pblk);
 770                ext4_update_bh_state(bh, map.m_flags);
 771                bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 772                ret = 0;
 773        } else if (ret == 0) {
 774                /* hole case, need to fill in bh->b_size */
 775                bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 776        }
 777        return ret;
 778}
 779
 780int ext4_get_block(struct inode *inode, sector_t iblock,
 781                   struct buffer_head *bh, int create)
 782{
 783        return _ext4_get_block(inode, iblock, bh,
 784                               create ? EXT4_GET_BLOCKS_CREATE : 0);
 785}
 786
 787/*
 788 * Get block function used when preparing for buffered write if we require
 789 * creating an unwritten extent if blocks haven't been allocated.  The extent
 790 * will be converted to written after the IO is complete.
 791 */
 792int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 793                             struct buffer_head *bh_result, int create)
 794{
 795        ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 796                   inode->i_ino, create);
 797        return _ext4_get_block(inode, iblock, bh_result,
 798                               EXT4_GET_BLOCKS_IO_CREATE_EXT);
 799}
 800
 801/* Maximum number of blocks we map for direct IO at once. */
 802#define DIO_MAX_BLOCKS 4096
 803
 804/*
 805 * Get blocks function for the cases that need to start a transaction -
 806 * generally difference cases of direct IO and DAX IO. It also handles retries
 807 * in case of ENOSPC.
 808 */
 809static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
 810                                struct buffer_head *bh_result, int flags)
 811{
 812        int dio_credits;
 813        handle_t *handle;
 814        int retries = 0;
 815        int ret;
 816
 817        /* Trim mapping request to maximum we can map at once for DIO */
 818        if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
 819                bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
 820        dio_credits = ext4_chunk_trans_blocks(inode,
 821                                      bh_result->b_size >> inode->i_blkbits);
 822retry:
 823        handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
 824        if (IS_ERR(handle))
 825                return PTR_ERR(handle);
 826
 827        ret = _ext4_get_block(inode, iblock, bh_result, flags);
 828        ext4_journal_stop(handle);
 829
 830        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 831                goto retry;
 832        return ret;
 833}
 834
 835/* Get block function for DIO reads and writes to inodes without extents */
 836int ext4_dio_get_block(struct inode *inode, sector_t iblock,
 837                       struct buffer_head *bh, int create)
 838{
 839        /* We don't expect handle for direct IO */
 840        WARN_ON_ONCE(ext4_journal_current_handle());
 841
 842        if (!create)
 843                return _ext4_get_block(inode, iblock, bh, 0);
 844        return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
 845}
 846
 847/*
 848 * Get block function for AIO DIO writes when we create unwritten extent if
 849 * blocks are not allocated yet. The extent will be converted to written
 850 * after IO is complete.
 851 */
 852static int ext4_dio_get_block_unwritten_async(struct inode *inode,
 853                sector_t iblock, struct buffer_head *bh_result, int create)
 854{
 855        int ret;
 856
 857        /* We don't expect handle for direct IO */
 858        WARN_ON_ONCE(ext4_journal_current_handle());
 859
 860        ret = ext4_get_block_trans(inode, iblock, bh_result,
 861                                   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 862
 863        /*
 864         * When doing DIO using unwritten extents, we need io_end to convert
 865         * unwritten extents to written on IO completion. We allocate io_end
 866         * once we spot unwritten extent and store it in b_private. Generic
 867         * DIO code keeps b_private set and furthermore passes the value to
 868         * our completion callback in 'private' argument.
 869         */
 870        if (!ret && buffer_unwritten(bh_result)) {
 871                if (!bh_result->b_private) {
 872                        ext4_io_end_t *io_end;
 873
 874                        io_end = ext4_init_io_end(inode, GFP_KERNEL);
 875                        if (!io_end)
 876                                return -ENOMEM;
 877                        bh_result->b_private = io_end;
 878                        ext4_set_io_unwritten_flag(inode, io_end);
 879                }
 880                set_buffer_defer_completion(bh_result);
 881        }
 882
 883        return ret;
 884}
 885
 886/*
 887 * Get block function for non-AIO DIO writes when we create unwritten extent if
 888 * blocks are not allocated yet. The extent will be converted to written
 889 * after IO is complete from ext4_ext_direct_IO() function.
 890 */
 891static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
 892                sector_t iblock, struct buffer_head *bh_result, int create)
 893{
 894        int ret;
 895
 896        /* We don't expect handle for direct IO */
 897        WARN_ON_ONCE(ext4_journal_current_handle());
 898
 899        ret = ext4_get_block_trans(inode, iblock, bh_result,
 900                                   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 901
 902        /*
 903         * Mark inode as having pending DIO writes to unwritten extents.
 904         * ext4_ext_direct_IO() checks this flag and converts extents to
 905         * written.
 906         */
 907        if (!ret && buffer_unwritten(bh_result))
 908                ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
 909
 910        return ret;
 911}
 912
 913static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
 914                   struct buffer_head *bh_result, int create)
 915{
 916        int ret;
 917
 918        ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
 919                   inode->i_ino, create);
 920        /* We don't expect handle for direct IO */
 921        WARN_ON_ONCE(ext4_journal_current_handle());
 922
 923        ret = _ext4_get_block(inode, iblock, bh_result, 0);
 924        /*
 925         * Blocks should have been preallocated! ext4_file_write_iter() checks
 926         * that.
 927         */
 928        WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
 929
 930        return ret;
 931}
 932
 933
 934/*
 935 * `handle' can be NULL if create is zero
 936 */
 937struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 938                                ext4_lblk_t block, int map_flags)
 939{
 940        struct ext4_map_blocks map;
 941        struct buffer_head *bh;
 942        int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 943        int err;
 944
 945        J_ASSERT(handle != NULL || create == 0);
 946
 947        map.m_lblk = block;
 948        map.m_len = 1;
 949        err = ext4_map_blocks(handle, inode, &map, map_flags);
 950
 951        if (err == 0)
 952                return create ? ERR_PTR(-ENOSPC) : NULL;
 953        if (err < 0)
 954                return ERR_PTR(err);
 955
 956        bh = sb_getblk(inode->i_sb, map.m_pblk);
 957        if (unlikely(!bh))
 958                return ERR_PTR(-ENOMEM);
 959        if (map.m_flags & EXT4_MAP_NEW) {
 960                J_ASSERT(create != 0);
 961                J_ASSERT(handle != NULL);
 962
 963                /*
 964                 * Now that we do not always journal data, we should
 965                 * keep in mind whether this should always journal the
 966                 * new buffer as metadata.  For now, regular file
 967                 * writes use ext4_get_block instead, so it's not a
 968                 * problem.
 969                 */
 970                lock_buffer(bh);
 971                BUFFER_TRACE(bh, "call get_create_access");
 972                err = ext4_journal_get_create_access(handle, bh);
 973                if (unlikely(err)) {
 974                        unlock_buffer(bh);
 975                        goto errout;
 976                }
 977                if (!buffer_uptodate(bh)) {
 978                        memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 979                        set_buffer_uptodate(bh);
 980                }
 981                unlock_buffer(bh);
 982                BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 983                err = ext4_handle_dirty_metadata(handle, inode, bh);
 984                if (unlikely(err))
 985                        goto errout;
 986        } else
 987                BUFFER_TRACE(bh, "not a new buffer");
 988        return bh;
 989errout:
 990        brelse(bh);
 991        return ERR_PTR(err);
 992}
 993
 994struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 995                               ext4_lblk_t block, int map_flags)
 996{
 997        struct buffer_head *bh;
 998
 999        bh = ext4_getblk(handle, inode, block, map_flags);
1000        if (IS_ERR(bh))
1001                return bh;
1002        if (!bh || buffer_uptodate(bh))
1003                return bh;
1004        ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1005        wait_on_buffer(bh);
1006        if (buffer_uptodate(bh))
1007                return bh;
1008        put_bh(bh);
1009        return ERR_PTR(-EIO);
1010}
1011
1012int ext4_walk_page_buffers(handle_t *handle,
1013                           struct buffer_head *head,
1014                           unsigned from,
1015                           unsigned to,
1016                           int *partial,
1017                           int (*fn)(handle_t *handle,
1018                                     struct buffer_head *bh))
1019{
1020        struct buffer_head *bh;
1021        unsigned block_start, block_end;
1022        unsigned blocksize = head->b_size;
1023        int err, ret = 0;
1024        struct buffer_head *next;
1025
1026        for (bh = head, block_start = 0;
1027             ret == 0 && (bh != head || !block_start);
1028             block_start = block_end, bh = next) {
1029                next = bh->b_this_page;
1030                block_end = block_start + blocksize;
1031                if (block_end <= from || block_start >= to) {
1032                        if (partial && !buffer_uptodate(bh))
1033                                *partial = 1;
1034                        continue;
1035                }
1036                err = (*fn)(handle, bh);
1037                if (!ret)
1038                        ret = err;
1039        }
1040        return ret;
1041}
1042
1043/*
1044 * To preserve ordering, it is essential that the hole instantiation and
1045 * the data write be encapsulated in a single transaction.  We cannot
1046 * close off a transaction and start a new one between the ext4_get_block()
1047 * and the commit_write().  So doing the jbd2_journal_start at the start of
1048 * prepare_write() is the right place.
1049 *
1050 * Also, this function can nest inside ext4_writepage().  In that case, we
1051 * *know* that ext4_writepage() has generated enough buffer credits to do the
1052 * whole page.  So we won't block on the journal in that case, which is good,
1053 * because the caller may be PF_MEMALLOC.
1054 *
1055 * By accident, ext4 can be reentered when a transaction is open via
1056 * quota file writes.  If we were to commit the transaction while thus
1057 * reentered, there can be a deadlock - we would be holding a quota
1058 * lock, and the commit would never complete if another thread had a
1059 * transaction open and was blocking on the quota lock - a ranking
1060 * violation.
1061 *
1062 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1063 * will _not_ run commit under these circumstances because handle->h_ref
1064 * is elevated.  We'll still have enough credits for the tiny quotafile
1065 * write.
1066 */
1067int do_journal_get_write_access(handle_t *handle,
1068                                struct buffer_head *bh)
1069{
1070        int dirty = buffer_dirty(bh);
1071        int ret;
1072
1073        if (!buffer_mapped(bh) || buffer_freed(bh))
1074                return 0;
1075        /*
1076         * __block_write_begin() could have dirtied some buffers. Clean
1077         * the dirty bit as jbd2_journal_get_write_access() could complain
1078         * otherwise about fs integrity issues. Setting of the dirty bit
1079         * by __block_write_begin() isn't a real problem here as we clear
1080         * the bit before releasing a page lock and thus writeback cannot
1081         * ever write the buffer.
1082         */
1083        if (dirty)
1084                clear_buffer_dirty(bh);
1085        BUFFER_TRACE(bh, "get write access");
1086        ret = ext4_journal_get_write_access(handle, bh);
1087        if (!ret && dirty)
1088                ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089        return ret;
1090}
1091
1092#ifdef CONFIG_EXT4_FS_ENCRYPTION
1093static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1094                                  get_block_t *get_block)
1095{
1096        unsigned from = pos & (PAGE_SIZE - 1);
1097        unsigned to = from + len;
1098        struct inode *inode = page->mapping->host;
1099        unsigned block_start, block_end;
1100        sector_t block;
1101        int err = 0;
1102        unsigned blocksize = inode->i_sb->s_blocksize;
1103        unsigned bbits;
1104        struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1105        bool decrypt = false;
1106
1107        BUG_ON(!PageLocked(page));
1108        BUG_ON(from > PAGE_SIZE);
1109        BUG_ON(to > PAGE_SIZE);
1110        BUG_ON(from > to);
1111
1112        if (!page_has_buffers(page))
1113                create_empty_buffers(page, blocksize, 0);
1114        head = page_buffers(page);
1115        bbits = ilog2(blocksize);
1116        block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1117
1118        for (bh = head, block_start = 0; bh != head || !block_start;
1119            block++, block_start = block_end, bh = bh->b_this_page) {
1120                block_end = block_start + blocksize;
1121                if (block_end <= from || block_start >= to) {
1122                        if (PageUptodate(page)) {
1123                                if (!buffer_uptodate(bh))
1124                                        set_buffer_uptodate(bh);
1125                        }
1126                        continue;
1127                }
1128                if (buffer_new(bh))
1129                        clear_buffer_new(bh);
1130                if (!buffer_mapped(bh)) {
1131                        WARN_ON(bh->b_size != blocksize);
1132                        err = get_block(inode, block, bh, 1);
1133                        if (err)
1134                                break;
1135                        if (buffer_new(bh)) {
1136                                clean_bdev_bh_alias(bh);
1137                                if (PageUptodate(page)) {
1138                                        clear_buffer_new(bh);
1139                                        set_buffer_uptodate(bh);
1140                                        mark_buffer_dirty(bh);
1141                                        continue;
1142                                }
1143                                if (block_end > to || block_start < from)
1144                                        zero_user_segments(page, to, block_end,
1145                                                           block_start, from);
1146                                continue;
1147                        }
1148                }
1149                if (PageUptodate(page)) {
1150                        if (!buffer_uptodate(bh))
1151                                set_buffer_uptodate(bh);
1152                        continue;
1153                }
1154                if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1155                    !buffer_unwritten(bh) &&
1156                    (block_start < from || block_end > to)) {
1157                        ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1158                        *wait_bh++ = bh;
1159                        decrypt = ext4_encrypted_inode(inode) &&
1160                                S_ISREG(inode->i_mode);
1161                }
1162        }
1163        /*
1164         * If we issued read requests, let them complete.
1165         */
1166        while (wait_bh > wait) {
1167                wait_on_buffer(*--wait_bh);
1168                if (!buffer_uptodate(*wait_bh))
1169                        err = -EIO;
1170        }
1171        if (unlikely(err))
1172                page_zero_new_buffers(page, from, to);
1173        else if (decrypt)
1174                err = fscrypt_decrypt_page(page->mapping->host, page,
1175                                PAGE_SIZE, 0, page->index);
1176        return err;
1177}
1178#endif
1179
1180static int ext4_write_begin(struct file *file, struct address_space *mapping,
1181                            loff_t pos, unsigned len, unsigned flags,
1182                            struct page **pagep, void **fsdata)
1183{
1184        struct inode *inode = mapping->host;
1185        int ret, needed_blocks;
1186        handle_t *handle;
1187        int retries = 0;
1188        struct page *page;
1189        pgoff_t index;
1190        unsigned from, to;
1191
1192        trace_ext4_write_begin(inode, pos, len, flags);
1193        /*
1194         * Reserve one block more for addition to orphan list in case
1195         * we allocate blocks but write fails for some reason
1196         */
1197        needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1198        index = pos >> PAGE_SHIFT;
1199        from = pos & (PAGE_SIZE - 1);
1200        to = from + len;
1201
1202        if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1203                ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1204                                                    flags, pagep);
1205                if (ret < 0)
1206                        return ret;
1207                if (ret == 1)
1208                        return 0;
1209        }
1210
1211        /*
1212         * grab_cache_page_write_begin() can take a long time if the
1213         * system is thrashing due to memory pressure, or if the page
1214         * is being written back.  So grab it first before we start
1215         * the transaction handle.  This also allows us to allocate
1216         * the page (if needed) without using GFP_NOFS.
1217         */
1218retry_grab:
1219        page = grab_cache_page_write_begin(mapping, index, flags);
1220        if (!page)
1221                return -ENOMEM;
1222        unlock_page(page);
1223
1224retry_journal:
1225        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1226        if (IS_ERR(handle)) {
1227                put_page(page);
1228                return PTR_ERR(handle);
1229        }
1230
1231        lock_page(page);
1232        if (page->mapping != mapping) {
1233                /* The page got truncated from under us */
1234                unlock_page(page);
1235                put_page(page);
1236                ext4_journal_stop(handle);
1237                goto retry_grab;
1238        }
1239        /* In case writeback began while the page was unlocked */
1240        wait_for_stable_page(page);
1241
1242#ifdef CONFIG_EXT4_FS_ENCRYPTION
1243        if (ext4_should_dioread_nolock(inode))
1244                ret = ext4_block_write_begin(page, pos, len,
1245                                             ext4_get_block_unwritten);
1246        else
1247                ret = ext4_block_write_begin(page, pos, len,
1248                                             ext4_get_block);
1249#else
1250        if (ext4_should_dioread_nolock(inode))
1251                ret = __block_write_begin(page, pos, len,
1252                                          ext4_get_block_unwritten);
1253        else
1254                ret = __block_write_begin(page, pos, len, ext4_get_block);
1255#endif
1256        if (!ret && ext4_should_journal_data(inode)) {
1257                ret = ext4_walk_page_buffers(handle, page_buffers(page),
1258                                             from, to, NULL,
1259                                             do_journal_get_write_access);
1260        }
1261
1262        if (ret) {
1263                unlock_page(page);
1264                /*
1265                 * __block_write_begin may have instantiated a few blocks
1266                 * outside i_size.  Trim these off again. Don't need
1267                 * i_size_read because we hold i_mutex.
1268                 *
1269                 * Add inode to orphan list in case we crash before
1270                 * truncate finishes
1271                 */
1272                if (pos + len > inode->i_size && ext4_can_truncate(inode))
1273                        ext4_orphan_add(handle, inode);
1274
1275                ext4_journal_stop(handle);
1276                if (pos + len > inode->i_size) {
1277                        ext4_truncate_failed_write(inode);
1278                        /*
1279                         * If truncate failed early the inode might
1280                         * still be on the orphan list; we need to
1281                         * make sure the inode is removed from the
1282                         * orphan list in that case.
1283                         */
1284                        if (inode->i_nlink)
1285                                ext4_orphan_del(NULL, inode);
1286                }
1287
1288                if (ret == -ENOSPC &&
1289                    ext4_should_retry_alloc(inode->i_sb, &retries))
1290                        goto retry_journal;
1291                put_page(page);
1292                return ret;
1293        }
1294        *pagep = page;
1295        return ret;
1296}
1297
1298/* For write_end() in data=journal mode */
1299static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1300{
1301        int ret;
1302        if (!buffer_mapped(bh) || buffer_freed(bh))
1303                return 0;
1304        set_buffer_uptodate(bh);
1305        ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1306        clear_buffer_meta(bh);
1307        clear_buffer_prio(bh);
1308        return ret;
1309}
1310
1311/*
1312 * We need to pick up the new inode size which generic_commit_write gave us
1313 * `file' can be NULL - eg, when called from page_symlink().
1314 *
1315 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1316 * buffers are managed internally.
1317 */
1318static int ext4_write_end(struct file *file,
1319                          struct address_space *mapping,
1320                          loff_t pos, unsigned len, unsigned copied,
1321                          struct page *page, void *fsdata)
1322{
1323        handle_t *handle = ext4_journal_current_handle();
1324        struct inode *inode = mapping->host;
1325        loff_t old_size = inode->i_size;
1326        int ret = 0, ret2;
1327        int i_size_changed = 0;
1328
1329        trace_ext4_write_end(inode, pos, len, copied);
1330        if (ext4_has_inline_data(inode)) {
1331                ret = ext4_write_inline_data_end(inode, pos, len,
1332                                                 copied, page);
1333                if (ret < 0)
1334                        goto errout;
1335                copied = ret;
1336        } else
1337                copied = block_write_end(file, mapping, pos,
1338                                         len, copied, page, fsdata);
1339        /*
1340         * it's important to update i_size while still holding page lock:
1341         * page writeout could otherwise come in and zero beyond i_size.
1342         */
1343        i_size_changed = ext4_update_inode_size(inode, pos + copied);
1344        unlock_page(page);
1345        put_page(page);
1346
1347        if (old_size < pos)
1348                pagecache_isize_extended(inode, old_size, pos);
1349        /*
1350         * Don't mark the inode dirty under page lock. First, it unnecessarily
1351         * makes the holding time of page lock longer. Second, it forces lock
1352         * ordering of page lock and transaction start for journaling
1353         * filesystems.
1354         */
1355        if (i_size_changed)
1356                ext4_mark_inode_dirty(handle, inode);
1357
1358        if (pos + len > inode->i_size && ext4_can_truncate(inode))
1359                /* if we have allocated more blocks and copied
1360                 * less. We will have blocks allocated outside
1361                 * inode->i_size. So truncate them
1362                 */
1363                ext4_orphan_add(handle, inode);
1364errout:
1365        ret2 = ext4_journal_stop(handle);
1366        if (!ret)
1367                ret = ret2;
1368
1369        if (pos + len > inode->i_size) {
1370                ext4_truncate_failed_write(inode);
1371                /*
1372                 * If truncate failed early the inode might still be
1373                 * on the orphan list; we need to make sure the inode
1374                 * is removed from the orphan list in that case.
1375                 */
1376                if (inode->i_nlink)
1377                        ext4_orphan_del(NULL, inode);
1378        }
1379
1380        return ret ? ret : copied;
1381}
1382
1383/*
1384 * This is a private version of page_zero_new_buffers() which doesn't
1385 * set the buffer to be dirty, since in data=journalled mode we need
1386 * to call ext4_handle_dirty_metadata() instead.
1387 */
1388static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1389{
1390        unsigned int block_start = 0, block_end;
1391        struct buffer_head *head, *bh;
1392
1393        bh = head = page_buffers(page);
1394        do {
1395                block_end = block_start + bh->b_size;
1396                if (buffer_new(bh)) {
1397                        if (block_end > from && block_start < to) {
1398                                if (!PageUptodate(page)) {
1399                                        unsigned start, size;
1400
1401                                        start = max(from, block_start);
1402                                        size = min(to, block_end) - start;
1403
1404                                        zero_user(page, start, size);
1405                                        set_buffer_uptodate(bh);
1406                                }
1407                                clear_buffer_new(bh);
1408                        }
1409                }
1410                block_start = block_end;
1411                bh = bh->b_this_page;
1412        } while (bh != head);
1413}
1414
1415static int ext4_journalled_write_end(struct file *file,
1416                                     struct address_space *mapping,
1417                                     loff_t pos, unsigned len, unsigned copied,
1418                                     struct page *page, void *fsdata)
1419{
1420        handle_t *handle = ext4_journal_current_handle();
1421        struct inode *inode = mapping->host;
1422        loff_t old_size = inode->i_size;
1423        int ret = 0, ret2;
1424        int partial = 0;
1425        unsigned from, to;
1426        int size_changed = 0;
1427
1428        trace_ext4_journalled_write_end(inode, pos, len, copied);
1429        from = pos & (PAGE_SIZE - 1);
1430        to = from + len;
1431
1432        BUG_ON(!ext4_handle_valid(handle));
1433
1434        if (ext4_has_inline_data(inode))
1435                copied = ext4_write_inline_data_end(inode, pos, len,
1436                                                    copied, page);
1437        else {
1438                if (copied < len) {
1439                        if (!PageUptodate(page))
1440                                copied = 0;
1441                        zero_new_buffers(page, from+copied, to);
1442                }
1443
1444                ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1445                                             to, &partial, write_end_fn);
1446                if (!partial)
1447                        SetPageUptodate(page);
1448        }
1449        size_changed = ext4_update_inode_size(inode, pos + copied);
1450        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1451        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1452        unlock_page(page);
1453        put_page(page);
1454
1455        if (old_size < pos)
1456                pagecache_isize_extended(inode, old_size, pos);
1457
1458        if (size_changed) {
1459                ret2 = ext4_mark_inode_dirty(handle, inode);
1460                if (!ret)
1461                        ret = ret2;
1462        }
1463
1464        if (pos + len > inode->i_size && ext4_can_truncate(inode))
1465                /* if we have allocated more blocks and copied
1466                 * less. We will have blocks allocated outside
1467                 * inode->i_size. So truncate them
1468                 */
1469                ext4_orphan_add(handle, inode);
1470
1471        ret2 = ext4_journal_stop(handle);
1472        if (!ret)
1473                ret = ret2;
1474        if (pos + len > inode->i_size) {
1475                ext4_truncate_failed_write(inode);
1476                /*
1477                 * If truncate failed early the inode might still be
1478                 * on the orphan list; we need to make sure the inode
1479                 * is removed from the orphan list in that case.
1480                 */
1481                if (inode->i_nlink)
1482                        ext4_orphan_del(NULL, inode);
1483        }
1484
1485        return ret ? ret : copied;
1486}
1487
1488/*
1489 * Reserve space for a single cluster
1490 */
1491static int ext4_da_reserve_space(struct inode *inode)
1492{
1493        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1494        struct ext4_inode_info *ei = EXT4_I(inode);
1495        int ret;
1496
1497        /*
1498         * We will charge metadata quota at writeout time; this saves
1499         * us from metadata over-estimation, though we may go over by
1500         * a small amount in the end.  Here we just reserve for data.
1501         */
1502        ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1503        if (ret)
1504                return ret;
1505
1506        spin_lock(&ei->i_block_reservation_lock);
1507        if (ext4_claim_free_clusters(sbi, 1, 0)) {
1508                spin_unlock(&ei->i_block_reservation_lock);
1509                dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1510                return -ENOSPC;
1511        }
1512        ei->i_reserved_data_blocks++;
1513        trace_ext4_da_reserve_space(inode);
1514        spin_unlock(&ei->i_block_reservation_lock);
1515
1516        return 0;       /* success */
1517}
1518
1519static void ext4_da_release_space(struct inode *inode, int to_free)
1520{
1521        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1522        struct ext4_inode_info *ei = EXT4_I(inode);
1523
1524        if (!to_free)
1525                return;         /* Nothing to release, exit */
1526
1527        spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1528
1529        trace_ext4_da_release_space(inode, to_free);
1530        if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1531                /*
1532                 * if there aren't enough reserved blocks, then the
1533                 * counter is messed up somewhere.  Since this
1534                 * function is called from invalidate page, it's
1535                 * harmless to return without any action.
1536                 */
1537                ext4_warning(inode->i_sb, "ext4_da_release_space: "
1538                         "ino %lu, to_free %d with only %d reserved "
1539                         "data blocks", inode->i_ino, to_free,
1540                         ei->i_reserved_data_blocks);
1541                WARN_ON(1);
1542                to_free = ei->i_reserved_data_blocks;
1543        }
1544        ei->i_reserved_data_blocks -= to_free;
1545
1546        /* update fs dirty data blocks counter */
1547        percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1548
1549        spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1550
1551        dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1552}
1553
1554static void ext4_da_page_release_reservation(struct page *page,
1555                                             unsigned int offset,
1556                                             unsigned int length)
1557{
1558        int to_release = 0, contiguous_blks = 0;
1559        struct buffer_head *head, *bh;
1560        unsigned int curr_off = 0;
1561        struct inode *inode = page->mapping->host;
1562        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1563        unsigned int stop = offset + length;
1564        int num_clusters;
1565        ext4_fsblk_t lblk;
1566
1567        BUG_ON(stop > PAGE_SIZE || stop < length);
1568
1569        head = page_buffers(page);
1570        bh = head;
1571        do {
1572                unsigned int next_off = curr_off + bh->b_size;
1573
1574                if (next_off > stop)
1575                        break;
1576
1577                if ((offset <= curr_off) && (buffer_delay(bh))) {
1578                        to_release++;
1579                        contiguous_blks++;
1580                        clear_buffer_delay(bh);
1581                } else if (contiguous_blks) {
1582                        lblk = page->index <<
1583                               (PAGE_SHIFT - inode->i_blkbits);
1584                        lblk += (curr_off >> inode->i_blkbits) -
1585                                contiguous_blks;
1586                        ext4_es_remove_extent(inode, lblk, contiguous_blks);
1587                        contiguous_blks = 0;
1588                }
1589                curr_off = next_off;
1590        } while ((bh = bh->b_this_page) != head);
1591
1592        if (contiguous_blks) {
1593                lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1594                lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1595                ext4_es_remove_extent(inode, lblk, contiguous_blks);
1596        }
1597
1598        /* If we have released all the blocks belonging to a cluster, then we
1599         * need to release the reserved space for that cluster. */
1600        num_clusters = EXT4_NUM_B2C(sbi, to_release);
1601        while (num_clusters > 0) {
1602                lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1603                        ((num_clusters - 1) << sbi->s_cluster_bits);
1604                if (sbi->s_cluster_ratio == 1 ||
1605                    !ext4_find_delalloc_cluster(inode, lblk))
1606                        ext4_da_release_space(inode, 1);
1607
1608                num_clusters--;
1609        }
1610}
1611
1612/*
1613 * Delayed allocation stuff
1614 */
1615
1616struct mpage_da_data {
1617        struct inode *inode;
1618        struct writeback_control *wbc;
1619
1620        pgoff_t first_page;     /* The first page to write */
1621        pgoff_t next_page;      /* Current page to examine */
1622        pgoff_t last_page;      /* Last page to examine */
1623        /*
1624         * Extent to map - this can be after first_page because that can be
1625         * fully mapped. We somewhat abuse m_flags to store whether the extent
1626         * is delalloc or unwritten.
1627         */
1628        struct ext4_map_blocks map;
1629        struct ext4_io_submit io_submit;        /* IO submission data */
1630};
1631
1632static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1633                                       bool invalidate)
1634{
1635        int nr_pages, i;
1636        pgoff_t index, end;
1637        struct pagevec pvec;
1638        struct inode *inode = mpd->inode;
1639        struct address_space *mapping = inode->i_mapping;
1640
1641        /* This is necessary when next_page == 0. */
1642        if (mpd->first_page >= mpd->next_page)
1643                return;
1644
1645        index = mpd->first_page;
1646        end   = mpd->next_page - 1;
1647        if (invalidate) {
1648                ext4_lblk_t start, last;
1649                start = index << (PAGE_SHIFT - inode->i_blkbits);
1650                last = end << (PAGE_SHIFT - inode->i_blkbits);
1651                ext4_es_remove_extent(inode, start, last - start + 1);
1652        }
1653
1654        pagevec_init(&pvec, 0);
1655        while (index <= end) {
1656                nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1657                if (nr_pages == 0)
1658                        break;
1659                for (i = 0; i < nr_pages; i++) {
1660                        struct page *page = pvec.pages[i];
1661                        if (page->index > end)
1662                                break;
1663                        BUG_ON(!PageLocked(page));
1664                        BUG_ON(PageWriteback(page));
1665                        if (invalidate) {
1666                                if (page_mapped(page))
1667                                        clear_page_dirty_for_io(page);
1668                                block_invalidatepage(page, 0, PAGE_SIZE);
1669                                ClearPageUptodate(page);
1670                        }
1671                        unlock_page(page);
1672                }
1673                index = pvec.pages[nr_pages - 1]->index + 1;
1674                pagevec_release(&pvec);
1675        }
1676}
1677
1678static void ext4_print_free_blocks(struct inode *inode)
1679{
1680        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1681        struct super_block *sb = inode->i_sb;
1682        struct ext4_inode_info *ei = EXT4_I(inode);
1683
1684        ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1685               EXT4_C2B(EXT4_SB(inode->i_sb),
1686                        ext4_count_free_clusters(sb)));
1687        ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1688        ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1689               (long long) EXT4_C2B(EXT4_SB(sb),
1690                percpu_counter_sum(&sbi->s_freeclusters_counter)));
1691        ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1692               (long long) EXT4_C2B(EXT4_SB(sb),
1693                percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1694        ext4_msg(sb, KERN_CRIT, "Block reservation details");
1695        ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1696                 ei->i_reserved_data_blocks);
1697        return;
1698}
1699
1700static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1701{
1702        return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1703}
1704
1705/*
1706 * This function is grabs code from the very beginning of
1707 * ext4_map_blocks, but assumes that the caller is from delayed write
1708 * time. This function looks up the requested blocks and sets the
1709 * buffer delay bit under the protection of i_data_sem.
1710 */
1711static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1712                              struct ext4_map_blocks *map,
1713                              struct buffer_head *bh)
1714{
1715        struct extent_status es;
1716        int retval;
1717        sector_t invalid_block = ~((sector_t) 0xffff);
1718#ifdef ES_AGGRESSIVE_TEST
1719        struct ext4_map_blocks orig_map;
1720
1721        memcpy(&orig_map, map, sizeof(*map));
1722#endif
1723
1724        if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1725                invalid_block = ~0;
1726
1727        map->m_flags = 0;
1728        ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1729                  "logical block %lu\n", inode->i_ino, map->m_len,
1730                  (unsigned long) map->m_lblk);
1731
1732        /* Lookup extent status tree firstly */
1733        if (ext4_es_lookup_extent(inode, iblock, &es)) {
1734                if (ext4_es_is_hole(&es)) {
1735                        retval = 0;
1736                        down_read(&EXT4_I(inode)->i_data_sem);
1737                        goto add_delayed;
1738                }
1739
1740                /*
1741                 * Delayed extent could be allocated by fallocate.
1742                 * So we need to check it.
1743                 */
1744                if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1745                        map_bh(bh, inode->i_sb, invalid_block);
1746                        set_buffer_new(bh);
1747                        set_buffer_delay(bh);
1748                        return 0;
1749                }
1750
1751                map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1752                retval = es.es_len - (iblock - es.es_lblk);
1753                if (retval > map->m_len)
1754                        retval = map->m_len;
1755                map->m_len = retval;
1756                if (ext4_es_is_written(&es))
1757                        map->m_flags |= EXT4_MAP_MAPPED;
1758                else if (ext4_es_is_unwritten(&es))
1759                        map->m_flags |= EXT4_MAP_UNWRITTEN;
1760                else
1761                        BUG_ON(1);
1762
1763#ifdef ES_AGGRESSIVE_TEST
1764                ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1765#endif
1766                return retval;
1767        }
1768
1769        /*
1770         * Try to see if we can get the block without requesting a new
1771         * file system block.
1772         */
1773        down_read(&EXT4_I(inode)->i_data_sem);
1774        if (ext4_has_inline_data(inode))
1775                retval = 0;
1776        else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1777                retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1778        else
1779                retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1780
1781add_delayed:
1782        if (retval == 0) {
1783                int ret;
1784                /*
1785                 * XXX: __block_prepare_write() unmaps passed block,
1786                 * is it OK?
1787                 */
1788                /*
1789                 * If the block was allocated from previously allocated cluster,
1790                 * then we don't need to reserve it again. However we still need
1791                 * to reserve metadata for every block we're going to write.
1792                 */
1793                if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1794                    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1795                        ret = ext4_da_reserve_space(inode);
1796                        if (ret) {
1797                                /* not enough space to reserve */
1798                                retval = ret;
1799                                goto out_unlock;
1800                        }
1801                }
1802
1803                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1804                                            ~0, EXTENT_STATUS_DELAYED);
1805                if (ret) {
1806                        retval = ret;
1807                        goto out_unlock;
1808                }
1809
1810                map_bh(bh, inode->i_sb, invalid_block);
1811                set_buffer_new(bh);
1812                set_buffer_delay(bh);
1813        } else if (retval > 0) {
1814                int ret;
1815                unsigned int status;
1816
1817                if (unlikely(retval != map->m_len)) {
1818                        ext4_warning(inode->i_sb,
1819                                     "ES len assertion failed for inode "
1820                                     "%lu: retval %d != map->m_len %d",
1821                                     inode->i_ino, retval, map->m_len);
1822                        WARN_ON(1);
1823                }
1824
1825                status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1826                                EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1827                ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1828                                            map->m_pblk, status);
1829                if (ret != 0)
1830                        retval = ret;
1831        }
1832
1833out_unlock:
1834        up_read((&EXT4_I(inode)->i_data_sem));
1835
1836        return retval;
1837}
1838
1839/*
1840 * This is a special get_block_t callback which is used by
1841 * ext4_da_write_begin().  It will either return mapped block or
1842 * reserve space for a single block.
1843 *
1844 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1845 * We also have b_blocknr = -1 and b_bdev initialized properly
1846 *
1847 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1848 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1849 * initialized properly.
1850 */
1851int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1852                           struct buffer_head *bh, int create)
1853{
1854        struct ext4_map_blocks map;
1855        int ret = 0;
1856
1857        BUG_ON(create == 0);
1858        BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1859
1860        map.m_lblk = iblock;
1861        map.m_len = 1;
1862
1863        /*
1864         * first, we need to know whether the block is allocated already
1865         * preallocated blocks are unmapped but should treated
1866         * the same as allocated blocks.
1867         */
1868        ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1869        if (ret <= 0)
1870                return ret;
1871
1872        map_bh(bh, inode->i_sb, map.m_pblk);
1873        ext4_update_bh_state(bh, map.m_flags);
1874
1875        if (buffer_unwritten(bh)) {
1876                /* A delayed write to unwritten bh should be marked
1877                 * new and mapped.  Mapped ensures that we don't do
1878                 * get_block multiple times when we write to the same
1879                 * offset and new ensures that we do proper zero out
1880                 * for partial write.
1881                 */
1882                set_buffer_new(bh);
1883                set_buffer_mapped(bh);
1884        }
1885        return 0;
1886}
1887
1888static int bget_one(handle_t *handle, struct buffer_head *bh)
1889{
1890        get_bh(bh);
1891        return 0;
1892}
1893
1894static int bput_one(handle_t *handle, struct buffer_head *bh)
1895{
1896        put_bh(bh);
1897        return 0;
1898}
1899
1900static int __ext4_journalled_writepage(struct page *page,
1901                                       unsigned int len)
1902{
1903        struct address_space *mapping = page->mapping;
1904        struct inode *inode = mapping->host;
1905        struct buffer_head *page_bufs = NULL;
1906        handle_t *handle = NULL;
1907        int ret = 0, err = 0;
1908        int inline_data = ext4_has_inline_data(inode);
1909        struct buffer_head *inode_bh = NULL;
1910
1911        ClearPageChecked(page);
1912
1913        if (inline_data) {
1914                BUG_ON(page->index != 0);
1915                BUG_ON(len > ext4_get_max_inline_size(inode));
1916                inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1917                if (inode_bh == NULL)
1918                        goto out;
1919        } else {
1920                page_bufs = page_buffers(page);
1921                if (!page_bufs) {
1922                        BUG();
1923                        goto out;
1924                }
1925                ext4_walk_page_buffers(handle, page_bufs, 0, len,
1926                                       NULL, bget_one);
1927        }
1928        /*
1929         * We need to release the page lock before we start the
1930         * journal, so grab a reference so the page won't disappear
1931         * out from under us.
1932         */
1933        get_page(page);
1934        unlock_page(page);
1935
1936        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1937                                    ext4_writepage_trans_blocks(inode));
1938        if (IS_ERR(handle)) {
1939                ret = PTR_ERR(handle);
1940                put_page(page);
1941                goto out_no_pagelock;
1942        }
1943        BUG_ON(!ext4_handle_valid(handle));
1944
1945        lock_page(page);
1946        put_page(page);
1947        if (page->mapping != mapping) {
1948                /* The page got truncated from under us */
1949                ext4_journal_stop(handle);
1950                ret = 0;
1951                goto out;
1952        }
1953
1954        if (inline_data) {
1955                BUFFER_TRACE(inode_bh, "get write access");
1956                ret = ext4_journal_get_write_access(handle, inode_bh);
1957
1958                err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1959
1960        } else {
1961                ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1962                                             do_journal_get_write_access);
1963
1964                err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1965                                             write_end_fn);
1966        }
1967        if (ret == 0)
1968                ret = err;
1969        EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1970        err = ext4_journal_stop(handle);
1971        if (!ret)
1972                ret = err;
1973
1974        if (!ext4_has_inline_data(inode))
1975                ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1976                                       NULL, bput_one);
1977        ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1978out:
1979        unlock_page(page);
1980out_no_pagelock:
1981        brelse(inode_bh);
1982        return ret;
1983}
1984
1985/*
1986 * Note that we don't need to start a transaction unless we're journaling data
1987 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1988 * need to file the inode to the transaction's list in ordered mode because if
1989 * we are writing back data added by write(), the inode is already there and if
1990 * we are writing back data modified via mmap(), no one guarantees in which
1991 * transaction the data will hit the disk. In case we are journaling data, we
1992 * cannot start transaction directly because transaction start ranks above page
1993 * lock so we have to do some magic.
1994 *
1995 * This function can get called via...
1996 *   - ext4_writepages after taking page lock (have journal handle)
1997 *   - journal_submit_inode_data_buffers (no journal handle)
1998 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1999 *   - grab_page_cache when doing write_begin (have journal handle)
2000 *
2001 * We don't do any block allocation in this function. If we have page with
2002 * multiple blocks we need to write those buffer_heads that are mapped. This
2003 * is important for mmaped based write. So if we do with blocksize 1K
2004 * truncate(f, 1024);
2005 * a = mmap(f, 0, 4096);
2006 * a[0] = 'a';
2007 * truncate(f, 4096);
2008 * we have in the page first buffer_head mapped via page_mkwrite call back
2009 * but other buffer_heads would be unmapped but dirty (dirty done via the
2010 * do_wp_page). So writepage should write the first block. If we modify
2011 * the mmap area beyond 1024 we will again get a page_fault and the
2012 * page_mkwrite callback will do the block allocation and mark the
2013 * buffer_heads mapped.
2014 *
2015 * We redirty the page if we have any buffer_heads that is either delay or
2016 * unwritten in the page.
2017 *
2018 * We can get recursively called as show below.
2019 *
2020 *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2021 *              ext4_writepage()
2022 *
2023 * But since we don't do any block allocation we should not deadlock.
2024 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2025 */
2026static int ext4_writepage(struct page *page,
2027                          struct writeback_control *wbc)
2028{
2029        int ret = 0;
2030        loff_t size;
2031        unsigned int len;
2032        struct buffer_head *page_bufs = NULL;
2033        struct inode *inode = page->mapping->host;
2034        struct ext4_io_submit io_submit;
2035        bool keep_towrite = false;
2036
2037        trace_ext4_writepage(page);
2038        size = i_size_read(inode);
2039        if (page->index == size >> PAGE_SHIFT)
2040                len = size & ~PAGE_MASK;
2041        else
2042                len = PAGE_SIZE;
2043
2044        page_bufs = page_buffers(page);
2045        /*
2046         * We cannot do block allocation or other extent handling in this
2047         * function. If there are buffers needing that, we have to redirty
2048         * the page. But we may reach here when we do a journal commit via
2049         * journal_submit_inode_data_buffers() and in that case we must write
2050         * allocated buffers to achieve data=ordered mode guarantees.
2051         *
2052         * Also, if there is only one buffer per page (the fs block
2053         * size == the page size), if one buffer needs block
2054         * allocation or needs to modify the extent tree to clear the
2055         * unwritten flag, we know that the page can't be written at
2056         * all, so we might as well refuse the write immediately.
2057         * Unfortunately if the block size != page size, we can't as
2058         * easily detect this case using ext4_walk_page_buffers(), but
2059         * for the extremely common case, this is an optimization that
2060         * skips a useless round trip through ext4_bio_write_page().
2061         */
2062        if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2063                                   ext4_bh_delay_or_unwritten)) {
2064                redirty_page_for_writepage(wbc, page);
2065                if ((current->flags & PF_MEMALLOC) ||
2066                    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2067                        /*
2068                         * For memory cleaning there's no point in writing only
2069                         * some buffers. So just bail out. Warn if we came here
2070                         * from direct reclaim.
2071                         */
2072                        WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2073                                                        == PF_MEMALLOC);
2074                        unlock_page(page);
2075                        return 0;
2076                }
2077                keep_towrite = true;
2078        }
2079
2080        if (PageChecked(page) && ext4_should_journal_data(inode))
2081                /*
2082                 * It's mmapped pagecache.  Add buffers and journal it.  There
2083                 * doesn't seem much point in redirtying the page here.
2084                 */
2085                return __ext4_journalled_writepage(page, len);
2086
2087        ext4_io_submit_init(&io_submit, wbc);
2088        io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2089        if (!io_submit.io_end) {
2090                redirty_page_for_writepage(wbc, page);
2091                unlock_page(page);
2092                return -ENOMEM;
2093        }
2094        ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2095        ext4_io_submit(&io_submit);
2096        /* Drop io_end reference we got from init */
2097        ext4_put_io_end_defer(io_submit.io_end);
2098        return ret;
2099}
2100
2101static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2102{
2103        int len;
2104        loff_t size = i_size_read(mpd->inode);
2105        int err;
2106
2107        BUG_ON(page->index != mpd->first_page);
2108        if (page->index == size >> PAGE_SHIFT)
2109                len = size & ~PAGE_MASK;
2110        else
2111                len = PAGE_SIZE;
2112        clear_page_dirty_for_io(page);
2113        err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2114        if (!err)
2115                mpd->wbc->nr_to_write--;
2116        mpd->first_page++;
2117
2118        return err;
2119}
2120
2121#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2122
2123/*
2124 * mballoc gives us at most this number of blocks...
2125 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2126 * The rest of mballoc seems to handle chunks up to full group size.
2127 */
2128#define MAX_WRITEPAGES_EXTENT_LEN 2048
2129
2130/*
2131 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2132 *
2133 * @mpd - extent of blocks
2134 * @lblk - logical number of the block in the file
2135 * @bh - buffer head we want to add to the extent
2136 *
2137 * The function is used to collect contig. blocks in the same state. If the
2138 * buffer doesn't require mapping for writeback and we haven't started the
2139 * extent of buffers to map yet, the function returns 'true' immediately - the
2140 * caller can write the buffer right away. Otherwise the function returns true
2141 * if the block has been added to the extent, false if the block couldn't be
2142 * added.
2143 */
2144static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2145                                   struct buffer_head *bh)
2146{
2147        struct ext4_map_blocks *map = &mpd->map;
2148
2149        /* Buffer that doesn't need mapping for writeback? */
2150        if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2151            (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2152                /* So far no extent to map => we write the buffer right away */
2153                if (map->m_len == 0)
2154                        return true;
2155                return false;
2156        }
2157
2158        /* First block in the extent? */
2159        if (map->m_len == 0) {
2160                map->m_lblk = lblk;
2161                map->m_len = 1;
2162                map->m_flags = bh->b_state & BH_FLAGS;
2163                return true;
2164        }
2165
2166        /* Don't go larger than mballoc is willing to allocate */
2167        if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2168                return false;
2169
2170        /* Can we merge the block to our big extent? */
2171        if (lblk == map->m_lblk + map->m_len &&
2172            (bh->b_state & BH_FLAGS) == map->m_flags) {
2173                map->m_len++;
2174                return true;
2175        }
2176        return false;
2177}
2178
2179/*
2180 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2181 *
2182 * @mpd - extent of blocks for mapping
2183 * @head - the first buffer in the page
2184 * @bh - buffer we should start processing from
2185 * @lblk - logical number of the block in the file corresponding to @bh
2186 *
2187 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2188 * the page for IO if all buffers in this page were mapped and there's no
2189 * accumulated extent of buffers to map or add buffers in the page to the
2190 * extent of buffers to map. The function returns 1 if the caller can continue
2191 * by processing the next page, 0 if it should stop adding buffers to the
2192 * extent to map because we cannot extend it anymore. It can also return value
2193 * < 0 in case of error during IO submission.
2194 */
2195static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2196                                   struct buffer_head *head,
2197                                   struct buffer_head *bh,
2198                                   ext4_lblk_t lblk)
2199{
2200        struct inode *inode = mpd->inode;
2201        int err;
2202        ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2203                                                        >> inode->i_blkbits;
2204
2205        do {
2206                BUG_ON(buffer_locked(bh));
2207
2208                if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2209                        /* Found extent to map? */
2210                        if (mpd->map.m_len)
2211                                return 0;
2212                        /* Everything mapped so far and we hit EOF */
2213                        break;
2214                }
2215        } while (lblk++, (bh = bh->b_this_page) != head);
2216        /* So far everything mapped? Submit the page for IO. */
2217        if (mpd->map.m_len == 0) {
2218                err = mpage_submit_page(mpd, head->b_page);
2219                if (err < 0)
2220                        return err;
2221        }
2222        return lblk < blocks;
2223}
2224
2225/*
2226 * mpage_map_buffers - update buffers corresponding to changed extent and
2227 *                     submit fully mapped pages for IO
2228 *
2229 * @mpd - description of extent to map, on return next extent to map
2230 *
2231 * Scan buffers corresponding to changed extent (we expect corresponding pages
2232 * to be already locked) and update buffer state according to new extent state.
2233 * We map delalloc buffers to their physical location, clear unwritten bits,
2234 * and mark buffers as uninit when we perform writes to unwritten extents
2235 * and do extent conversion after IO is finished. If the last page is not fully
2236 * mapped, we update @map to the next extent in the last page that needs
2237 * mapping. Otherwise we submit the page for IO.
2238 */
2239static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2240{
2241        struct pagevec pvec;
2242        int nr_pages, i;
2243        struct inode *inode = mpd->inode;
2244        struct buffer_head *head, *bh;
2245        int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2246        pgoff_t start, end;
2247        ext4_lblk_t lblk;
2248        sector_t pblock;
2249        int err;
2250
2251        start = mpd->map.m_lblk >> bpp_bits;
2252        end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2253        lblk = start << bpp_bits;
2254        pblock = mpd->map.m_pblk;
2255
2256        pagevec_init(&pvec, 0);
2257        while (start <= end) {
2258                nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2259                                          PAGEVEC_SIZE);
2260                if (nr_pages == 0)
2261                        break;
2262                for (i = 0; i < nr_pages; i++) {
2263                        struct page *page = pvec.pages[i];
2264
2265                        if (page->index > end)
2266                                break;
2267                        /* Up to 'end' pages must be contiguous */
2268                        BUG_ON(page->index != start);
2269                        bh = head = page_buffers(page);
2270                        do {
2271                                if (lblk < mpd->map.m_lblk)
2272                                        continue;
2273                                if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2274                                        /*
2275                                         * Buffer after end of mapped extent.
2276                                         * Find next buffer in the page to map.
2277                                         */
2278                                        mpd->map.m_len = 0;
2279                                        mpd->map.m_flags = 0;
2280                                        /*
2281                                         * FIXME: If dioread_nolock supports
2282                                         * blocksize < pagesize, we need to make
2283                                         * sure we add size mapped so far to
2284                                         * io_end->size as the following call
2285                                         * can submit the page for IO.
2286                                         */
2287                                        err = mpage_process_page_bufs(mpd, head,
2288                                                                      bh, lblk);
2289                                        pagevec_release(&pvec);
2290                                        if (err > 0)
2291                                                err = 0;
2292                                        return err;
2293                                }
2294                                if (buffer_delay(bh)) {
2295                                        clear_buffer_delay(bh);
2296                                        bh->b_blocknr = pblock++;
2297                                }
2298                                clear_buffer_unwritten(bh);
2299                        } while (lblk++, (bh = bh->b_this_page) != head);
2300
2301                        /*
2302                         * FIXME: This is going to break if dioread_nolock
2303                         * supports blocksize < pagesize as we will try to
2304                         * convert potentially unmapped parts of inode.
2305                         */
2306                        mpd->io_submit.io_end->size += PAGE_SIZE;
2307                        /* Page fully mapped - let IO run! */
2308                        err = mpage_submit_page(mpd, page);
2309                        if (err < 0) {
2310                                pagevec_release(&pvec);
2311                                return err;
2312                        }
2313                        start++;
2314                }
2315                pagevec_release(&pvec);
2316        }
2317        /* Extent fully mapped and matches with page boundary. We are done. */
2318        mpd->map.m_len = 0;
2319        mpd->map.m_flags = 0;
2320        return 0;
2321}
2322
2323static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2324{
2325        struct inode *inode = mpd->inode;
2326        struct ext4_map_blocks *map = &mpd->map;
2327        int get_blocks_flags;
2328        int err, dioread_nolock;
2329
2330        trace_ext4_da_write_pages_extent(inode, map);
2331        /*
2332         * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2333         * to convert an unwritten extent to be initialized (in the case
2334         * where we have written into one or more preallocated blocks).  It is
2335         * possible that we're going to need more metadata blocks than
2336         * previously reserved. However we must not fail because we're in
2337         * writeback and there is nothing we can do about it so it might result
2338         * in data loss.  So use reserved blocks to allocate metadata if
2339         * possible.
2340         *
2341         * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2342         * the blocks in question are delalloc blocks.  This indicates
2343         * that the blocks and quotas has already been checked when
2344         * the data was copied into the page cache.
2345         */
2346        get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2347                           EXT4_GET_BLOCKS_METADATA_NOFAIL |
2348                           EXT4_GET_BLOCKS_IO_SUBMIT;
2349        dioread_nolock = ext4_should_dioread_nolock(inode);
2350        if (dioread_nolock)
2351                get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2352        if (map->m_flags & (1 << BH_Delay))
2353                get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2354
2355        err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2356        if (err < 0)
2357                return err;
2358        if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2359                if (!mpd->io_submit.io_end->handle &&
2360                    ext4_handle_valid(handle)) {
2361                        mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2362                        handle->h_rsv_handle = NULL;
2363                }
2364                ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2365        }
2366
2367        BUG_ON(map->m_len == 0);
2368        if (map->m_flags & EXT4_MAP_NEW) {
2369                clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2370                                   map->m_len);
2371        }
2372        return 0;
2373}
2374
2375/*
2376 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2377 *                               mpd->len and submit pages underlying it for IO
2378 *
2379 * @handle - handle for journal operations
2380 * @mpd - extent to map
2381 * @give_up_on_write - we set this to true iff there is a fatal error and there
2382 *                     is no hope of writing the data. The caller should discard
2383 *                     dirty pages to avoid infinite loops.
2384 *
2385 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2386 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2387 * them to initialized or split the described range from larger unwritten
2388 * extent. Note that we need not map all the described range since allocation
2389 * can return less blocks or the range is covered by more unwritten extents. We
2390 * cannot map more because we are limited by reserved transaction credits. On
2391 * the other hand we always make sure that the last touched page is fully
2392 * mapped so that it can be written out (and thus forward progress is
2393 * guaranteed). After mapping we submit all mapped pages for IO.
2394 */
2395static int mpage_map_and_submit_extent(handle_t *handle,
2396                                       struct mpage_da_data *mpd,
2397                                       bool *give_up_on_write)
2398{
2399        struct inode *inode = mpd->inode;
2400        struct ext4_map_blocks *map = &mpd->map;
2401        int err;
2402        loff_t disksize;
2403        int progress = 0;
2404
2405        mpd->io_submit.io_end->offset =
2406                                ((loff_t)map->m_lblk) << inode->i_blkbits;
2407        do {
2408                err = mpage_map_one_extent(handle, mpd);
2409                if (err < 0) {
2410                        struct super_block *sb = inode->i_sb;
2411
2412                        if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2413                                goto invalidate_dirty_pages;
2414                        /*
2415                         * Let the uper layers retry transient errors.
2416                         * In the case of ENOSPC, if ext4_count_free_blocks()
2417                         * is non-zero, a commit should free up blocks.
2418                         */
2419                        if ((err == -ENOMEM) ||
2420                            (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2421                                if (progress)
2422                                        goto update_disksize;
2423                                return err;
2424                        }
2425                        ext4_msg(sb, KERN_CRIT,
2426                                 "Delayed block allocation failed for "
2427                                 "inode %lu at logical offset %llu with"
2428                                 " max blocks %u with error %d",
2429                                 inode->i_ino,
2430                                 (unsigned long long)map->m_lblk,
2431                                 (unsigned)map->m_len, -err);
2432                        ext4_msg(sb, KERN_CRIT,
2433                                 "This should not happen!! Data will "
2434                                 "be lost\n");
2435                        if (err == -ENOSPC)
2436                                ext4_print_free_blocks(inode);
2437                invalidate_dirty_pages:
2438                        *give_up_on_write = true;
2439                        return err;
2440                }
2441                progress = 1;
2442                /*
2443                 * Update buffer state, submit mapped pages, and get us new
2444                 * extent to map
2445                 */
2446                err = mpage_map_and_submit_buffers(mpd);
2447                if (err < 0)
2448                        goto update_disksize;
2449        } while (map->m_len);
2450
2451update_disksize:
2452        /*
2453         * Update on-disk size after IO is submitted.  Races with
2454         * truncate are avoided by checking i_size under i_data_sem.
2455         */
2456        disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2457        if (disksize > EXT4_I(inode)->i_disksize) {
2458                int err2;
2459                loff_t i_size;
2460
2461                down_write(&EXT4_I(inode)->i_data_sem);
2462                i_size = i_size_read(inode);
2463                if (disksize > i_size)
2464                        disksize = i_size;
2465                if (disksize > EXT4_I(inode)->i_disksize)
2466                        EXT4_I(inode)->i_disksize = disksize;
2467                err2 = ext4_mark_inode_dirty(handle, inode);
2468                up_write(&EXT4_I(inode)->i_data_sem);
2469                if (err2)
2470                        ext4_error(inode->i_sb,
2471                                   "Failed to mark inode %lu dirty",
2472                                   inode->i_ino);
2473                if (!err)
2474                        err = err2;
2475        }
2476        return err;
2477}
2478
2479/*
2480 * Calculate the total number of credits to reserve for one writepages
2481 * iteration. This is called from ext4_writepages(). We map an extent of
2482 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2483 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2484 * bpp - 1 blocks in bpp different extents.
2485 */
2486static int ext4_da_writepages_trans_blocks(struct inode *inode)
2487{
2488        int bpp = ext4_journal_blocks_per_page(inode);
2489
2490        return ext4_meta_trans_blocks(inode,
2491                                MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2492}
2493
2494/*
2495 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2496 *                               and underlying extent to map
2497 *
2498 * @mpd - where to look for pages
2499 *
2500 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2501 * IO immediately. When we find a page which isn't mapped we start accumulating
2502 * extent of buffers underlying these pages that needs mapping (formed by
2503 * either delayed or unwritten buffers). We also lock the pages containing
2504 * these buffers. The extent found is returned in @mpd structure (starting at
2505 * mpd->lblk with length mpd->len blocks).
2506 *
2507 * Note that this function can attach bios to one io_end structure which are
2508 * neither logically nor physically contiguous. Although it may seem as an
2509 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2510 * case as we need to track IO to all buffers underlying a page in one io_end.
2511 */
2512static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2513{
2514        struct address_space *mapping = mpd->inode->i_mapping;
2515        struct pagevec pvec;
2516        unsigned int nr_pages;
2517        long left = mpd->wbc->nr_to_write;
2518        pgoff_t index = mpd->first_page;
2519        pgoff_t end = mpd->last_page;
2520        int tag;
2521        int i, err = 0;
2522        int blkbits = mpd->inode->i_blkbits;
2523        ext4_lblk_t lblk;
2524        struct buffer_head *head;
2525
2526        if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2527                tag = PAGECACHE_TAG_TOWRITE;
2528        else
2529                tag = PAGECACHE_TAG_DIRTY;
2530
2531        pagevec_init(&pvec, 0);
2532        mpd->map.m_len = 0;
2533        mpd->next_page = index;
2534        while (index <= end) {
2535                nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2536                              min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2537                if (nr_pages == 0)
2538                        goto out;
2539
2540                for (i = 0; i < nr_pages; i++) {
2541                        struct page *page = pvec.pages[i];
2542
2543                        /*
2544                         * At this point, the page may be truncated or
2545                         * invalidated (changing page->mapping to NULL), or
2546                         * even swizzled back from swapper_space to tmpfs file
2547                         * mapping. However, page->index will not change
2548                         * because we have a reference on the page.
2549                         */
2550                        if (page->index > end)
2551                                goto out;
2552
2553                        /*
2554                         * Accumulated enough dirty pages? This doesn't apply
2555                         * to WB_SYNC_ALL mode. For integrity sync we have to
2556                         * keep going because someone may be concurrently
2557                         * dirtying pages, and we might have synced a lot of
2558                         * newly appeared dirty pages, but have not synced all
2559                         * of the old dirty pages.
2560                         */
2561                        if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2562                                goto out;
2563
2564                        /* If we can't merge this page, we are done. */
2565                        if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2566                                goto out;
2567
2568                        lock_page(page);
2569                        /*
2570                         * If the page is no longer dirty, or its mapping no
2571                         * longer corresponds to inode we are writing (which
2572                         * means it has been truncated or invalidated), or the
2573                         * page is already under writeback and we are not doing
2574                         * a data integrity writeback, skip the page
2575                         */
2576                        if (!PageDirty(page) ||
2577                            (PageWriteback(page) &&
2578                             (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2579                            unlikely(page->mapping != mapping)) {
2580                                unlock_page(page);
2581                                continue;
2582                        }
2583
2584                        wait_on_page_writeback(page);
2585                        BUG_ON(PageWriteback(page));
2586
2587                        if (mpd->map.m_len == 0)
2588                                mpd->first_page = page->index;
2589                        mpd->next_page = page->index + 1;
2590                        /* Add all dirty buffers to mpd */
2591                        lblk = ((ext4_lblk_t)page->index) <<
2592                                (PAGE_SHIFT - blkbits);
2593                        head = page_buffers(page);
2594                        err = mpage_process_page_bufs(mpd, head, head, lblk);
2595                        if (err <= 0)
2596                                goto out;
2597                        err = 0;
2598                        left--;
2599                }
2600                pagevec_release(&pvec);
2601                cond_resched();
2602        }
2603        return 0;
2604out:
2605        pagevec_release(&pvec);
2606        return err;
2607}
2608
2609static int __writepage(struct page *page, struct writeback_control *wbc,
2610                       void *data)
2611{
2612        struct address_space *mapping = data;
2613        int ret = ext4_writepage(page, wbc);
2614        mapping_set_error(mapping, ret);
2615        return ret;
2616}
2617
2618static int ext4_writepages(struct address_space *mapping,
2619                           struct writeback_control *wbc)
2620{
2621        pgoff_t writeback_index = 0;
2622        long nr_to_write = wbc->nr_to_write;
2623        int range_whole = 0;
2624        int cycled = 1;
2625        handle_t *handle = NULL;
2626        struct mpage_da_data mpd;
2627        struct inode *inode = mapping->host;
2628        int needed_blocks, rsv_blocks = 0, ret = 0;
2629        struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2630        bool done;
2631        struct blk_plug plug;
2632        bool give_up_on_write = false;
2633
2634        percpu_down_read(&sbi->s_journal_flag_rwsem);
2635        trace_ext4_writepages(inode, wbc);
2636
2637        if (dax_mapping(mapping)) {
2638                ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2639                                                  wbc);
2640                goto out_writepages;
2641        }
2642
2643        /*
2644         * No pages to write? This is mainly a kludge to avoid starting
2645         * a transaction for special inodes like journal inode on last iput()
2646         * because that could violate lock ordering on umount
2647         */
2648        if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2649                goto out_writepages;
2650
2651        if (ext4_should_journal_data(inode)) {
2652                struct blk_plug plug;
2653
2654                blk_start_plug(&plug);
2655                ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2656                blk_finish_plug(&plug);
2657                goto out_writepages;
2658        }
2659
2660        /*
2661         * If the filesystem has aborted, it is read-only, so return
2662         * right away instead of dumping stack traces later on that
2663         * will obscure the real source of the problem.  We test
2664         * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2665         * the latter could be true if the filesystem is mounted
2666         * read-only, and in that case, ext4_writepages should
2667         * *never* be called, so if that ever happens, we would want
2668         * the stack trace.
2669         */
2670        if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2671                ret = -EROFS;
2672                goto out_writepages;
2673        }
2674
2675        if (ext4_should_dioread_nolock(inode)) {
2676                /*
2677                 * We may need to convert up to one extent per block in
2678                 * the page and we may dirty the inode.
2679                 */
2680                rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2681        }
2682
2683        /*
2684         * If we have inline data and arrive here, it means that
2685         * we will soon create the block for the 1st page, so
2686         * we'd better clear the inline data here.
2687         */
2688        if (ext4_has_inline_data(inode)) {
2689                /* Just inode will be modified... */
2690                handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2691                if (IS_ERR(handle)) {
2692                        ret = PTR_ERR(handle);
2693                        goto out_writepages;
2694                }
2695                BUG_ON(ext4_test_inode_state(inode,
2696                                EXT4_STATE_MAY_INLINE_DATA));
2697                ext4_destroy_inline_data(handle, inode);
2698                ext4_journal_stop(handle);
2699        }
2700
2701        if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2702                range_whole = 1;
2703
2704        if (wbc->range_cyclic) {
2705                writeback_index = mapping->writeback_index;
2706                if (writeback_index)
2707                        cycled = 0;
2708                mpd.first_page = writeback_index;
2709                mpd.last_page = -1;
2710        } else {
2711                mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2712                mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2713        }
2714
2715        mpd.inode = inode;
2716        mpd.wbc = wbc;
2717        ext4_io_submit_init(&mpd.io_submit, wbc);
2718retry:
2719        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2720                tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2721        done = false;
2722        blk_start_plug(&plug);
2723        while (!done && mpd.first_page <= mpd.last_page) {
2724                /* For each extent of pages we use new io_end */
2725                mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2726                if (!mpd.io_submit.io_end) {
2727                        ret = -ENOMEM;
2728                        break;
2729                }
2730
2731                /*
2732                 * We have two constraints: We find one extent to map and we
2733                 * must always write out whole page (makes a difference when
2734                 * blocksize < pagesize) so that we don't block on IO when we
2735                 * try to write out the rest of the page. Journalled mode is
2736                 * not supported by delalloc.
2737                 */
2738                BUG_ON(ext4_should_journal_data(inode));
2739                needed_blocks = ext4_da_writepages_trans_blocks(inode);
2740
2741                /* start a new transaction */
2742                handle = ext4_journal_start_with_reserve(inode,
2743                                EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2744                if (IS_ERR(handle)) {
2745                        ret = PTR_ERR(handle);
2746                        ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2747                               "%ld pages, ino %lu; err %d", __func__,
2748                                wbc->nr_to_write, inode->i_ino, ret);
2749                        /* Release allocated io_end */
2750                        ext4_put_io_end(mpd.io_submit.io_end);
2751                        break;
2752                }
2753
2754                trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2755                ret = mpage_prepare_extent_to_map(&mpd);
2756                if (!ret) {
2757                        if (mpd.map.m_len)
2758                                ret = mpage_map_and_submit_extent(handle, &mpd,
2759                                        &give_up_on_write);
2760                        else {
2761                                /*
2762                                 * We scanned the whole range (or exhausted
2763                                 * nr_to_write), submitted what was mapped and
2764                                 * didn't find anything needing mapping. We are
2765                                 * done.
2766                                 */
2767                                done = true;
2768                        }
2769                }
2770                /*
2771                 * Caution: If the handle is synchronous,
2772                 * ext4_journal_stop() can wait for transaction commit
2773                 * to finish which may depend on writeback of pages to
2774                 * complete or on page lock to be released.  In that
2775                 * case, we have to wait until after after we have
2776                 * submitted all the IO, released page locks we hold,
2777                 * and dropped io_end reference (for extent conversion
2778                 * to be able to complete) before stopping the handle.
2779                 */
2780                if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2781                        ext4_journal_stop(handle);
2782                        handle = NULL;
2783                }
2784                /* Submit prepared bio */
2785                ext4_io_submit(&mpd.io_submit);
2786                /* Unlock pages we didn't use */
2787                mpage_release_unused_pages(&mpd, give_up_on_write);
2788                /*
2789                 * Drop our io_end reference we got from init. We have
2790                 * to be careful and use deferred io_end finishing if
2791                 * we are still holding the transaction as we can
2792                 * release the last reference to io_end which may end
2793                 * up doing unwritten extent conversion.
2794                 */
2795                if (handle) {
2796                        ext4_put_io_end_defer(mpd.io_submit.io_end);
2797                        ext4_journal_stop(handle);
2798                } else
2799                        ext4_put_io_end(mpd.io_submit.io_end);
2800
2801                if (ret == -ENOSPC && sbi->s_journal) {
2802                        /*
2803                         * Commit the transaction which would
2804                         * free blocks released in the transaction
2805                         * and try again
2806                         */
2807                        jbd2_journal_force_commit_nested(sbi->s_journal);
2808                        ret = 0;
2809                        continue;
2810                }
2811                /* Fatal error - ENOMEM, EIO... */
2812                if (ret)
2813                        break;
2814        }
2815        blk_finish_plug(&plug);
2816        if (!ret && !cycled && wbc->nr_to_write > 0) {
2817                cycled = 1;
2818                mpd.last_page = writeback_index - 1;
2819                mpd.first_page = 0;
2820                goto retry;
2821        }
2822
2823        /* Update index */
2824        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2825                /*
2826                 * Set the writeback_index so that range_cyclic
2827                 * mode will write it back later
2828                 */
2829                mapping->writeback_index = mpd.first_page;
2830
2831out_writepages:
2832        trace_ext4_writepages_result(inode, wbc, ret,
2833                                     nr_to_write - wbc->nr_to_write);
2834        percpu_up_read(&sbi->s_journal_flag_rwsem);
2835        return ret;
2836}
2837
2838static int ext4_nonda_switch(struct super_block *sb)
2839{
2840        s64 free_clusters, dirty_clusters;
2841        struct ext4_sb_info *sbi = EXT4_SB(sb);
2842
2843        /*
2844         * switch to non delalloc mode if we are running low
2845         * on free block. The free block accounting via percpu
2846         * counters can get slightly wrong with percpu_counter_batch getting
2847         * accumulated on each CPU without updating global counters
2848         * Delalloc need an accurate free block accounting. So switch
2849         * to non delalloc when we are near to error range.
2850         */
2851        free_clusters =
2852                percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2853        dirty_clusters =
2854                percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2855        /*
2856         * Start pushing delalloc when 1/2 of free blocks are dirty.
2857         */
2858        if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2859                try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2860
2861        if (2 * free_clusters < 3 * dirty_clusters ||
2862            free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2863                /*
2864                 * free block count is less than 150% of dirty blocks
2865                 * or free blocks is less than watermark
2866                 */
2867                return 1;
2868        }
2869        return 0;
2870}
2871
2872/* We always reserve for an inode update; the superblock could be there too */
2873static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2874{
2875        if (likely(ext4_has_feature_large_file(inode->i_sb)))
2876                return 1;
2877
2878        if (pos + len <= 0x7fffffffULL)
2879                return 1;
2880
2881        /* We might need to update the superblock to set LARGE_FILE */
2882        return 2;
2883}
2884
2885static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2886                               loff_t pos, unsigned len, unsigned flags,
2887                               struct page **pagep, void **fsdata)
2888{
2889        int ret, retries = 0;
2890        struct page *page;
2891        pgoff_t index;
2892        struct inode *inode = mapping->host;
2893        handle_t *handle;
2894
2895        index = pos >> PAGE_SHIFT;
2896
2897        if (ext4_nonda_switch(inode->i_sb) ||
2898            S_ISLNK(inode->i_mode)) {
2899                *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2900                return ext4_write_begin(file, mapping, pos,
2901                                        len, flags, pagep, fsdata);
2902        }
2903        *fsdata = (void *)0;
2904        trace_ext4_da_write_begin(inode, pos, len, flags);
2905
2906        if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2907                ret = ext4_da_write_inline_data_begin(mapping, inode,
2908                                                      pos, len, flags,
2909                                                      pagep, fsdata);
2910                if (ret < 0)
2911                        return ret;
2912                if (ret == 1)
2913                        return 0;
2914        }
2915
2916        /*
2917         * grab_cache_page_write_begin() can take a long time if the
2918         * system is thrashing due to memory pressure, or if the page
2919         * is being written back.  So grab it first before we start
2920         * the transaction handle.  This also allows us to allocate
2921         * the page (if needed) without using GFP_NOFS.
2922         */
2923retry_grab:
2924        page = grab_cache_page_write_begin(mapping, index, flags);
2925        if (!page)
2926                return -ENOMEM;
2927        unlock_page(page);
2928
2929        /*
2930         * With delayed allocation, we don't log the i_disksize update
2931         * if there is delayed block allocation. But we still need
2932         * to journalling the i_disksize update if writes to the end
2933         * of file which has an already mapped buffer.
2934         */
2935retry_journal:
2936        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2937                                ext4_da_write_credits(inode, pos, len));
2938        if (IS_ERR(handle)) {
2939                put_page(page);
2940                return PTR_ERR(handle);
2941        }
2942
2943        lock_page(page);
2944        if (page->mapping != mapping) {
2945                /* The page got truncated from under us */
2946                unlock_page(page);
2947                put_page(page);
2948                ext4_journal_stop(handle);
2949                goto retry_grab;
2950        }
2951        /* In case writeback began while the page was unlocked */
2952        wait_for_stable_page(page);
2953
2954#ifdef CONFIG_EXT4_FS_ENCRYPTION
2955        ret = ext4_block_write_begin(page, pos, len,
2956                                     ext4_da_get_block_prep);
2957#else
2958        ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2959#endif
2960        if (ret < 0) {
2961                unlock_page(page);
2962                ext4_journal_stop(handle);
2963                /*
2964                 * block_write_begin may have instantiated a few blocks
2965                 * outside i_size.  Trim these off again. Don't need
2966                 * i_size_read because we hold i_mutex.
2967                 */
2968                if (pos + len > inode->i_size)
2969                        ext4_truncate_failed_write(inode);
2970
2971                if (ret == -ENOSPC &&
2972                    ext4_should_retry_alloc(inode->i_sb, &retries))
2973                        goto retry_journal;
2974
2975                put_page(page);
2976                return ret;
2977        }
2978
2979        *pagep = page;
2980        return ret;
2981}
2982
2983/*
2984 * Check if we should update i_disksize
2985 * when write to the end of file but not require block allocation
2986 */
2987static int ext4_da_should_update_i_disksize(struct page *page,
2988                                            unsigned long offset)
2989{
2990        struct buffer_head *bh;
2991        struct inode *inode = page->mapping->host;
2992        unsigned int idx;
2993        int i;
2994
2995        bh = page_buffers(page);
2996        idx = offset >> inode->i_blkbits;
2997
2998        for (i = 0; i < idx; i++)
2999                bh = bh->b_this_page;
3000
3001        if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3002                return 0;
3003        return 1;
3004}
3005
3006static int ext4_da_write_end(struct file *file,
3007                             struct address_space *mapping,
3008                             loff_t pos, unsigned len, unsigned copied,
3009                             struct page *page, void *fsdata)
3010{
3011        struct inode *inode = mapping->host;
3012        int ret = 0, ret2;
3013        handle_t *handle = ext4_journal_current_handle();
3014        loff_t new_i_size;
3015        unsigned long start, end;
3016        int write_mode = (int)(unsigned long)fsdata;
3017
3018        if (write_mode == FALL_BACK_TO_NONDELALLOC)
3019                return ext4_write_end(file, mapping, pos,
3020                                      len, copied, page, fsdata);
3021
3022        trace_ext4_da_write_end(inode, pos, len, copied);
3023        start = pos & (PAGE_SIZE - 1);
3024        end = start + copied - 1;
3025
3026        /*
3027         * generic_write_end() will run mark_inode_dirty() if i_size
3028         * changes.  So let's piggyback the i_disksize mark_inode_dirty
3029         * into that.
3030         */
3031        new_i_size = pos + copied;
3032        if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3033                if (ext4_has_inline_data(inode) ||
3034                    ext4_da_should_update_i_disksize(page, end)) {
3035                        ext4_update_i_disksize(inode, new_i_size);
3036                        /* We need to mark inode dirty even if
3037                         * new_i_size is less that inode->i_size
3038                         * bu greater than i_disksize.(hint delalloc)
3039                         */
3040                        ext4_mark_inode_dirty(handle, inode);
3041                }
3042        }
3043
3044        if (write_mode != CONVERT_INLINE_DATA &&
3045            ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3046            ext4_has_inline_data(inode))
3047                ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3048                                                     page);
3049        else
3050                ret2 = generic_write_end(file, mapping, pos, len, copied,
3051                                                        page, fsdata);
3052
3053        copied = ret2;
3054        if (ret2 < 0)
3055                ret = ret2;
3056        ret2 = ext4_journal_stop(handle);
3057        if (!ret)
3058                ret = ret2;
3059
3060        return ret ? ret : copied;
3061}
3062
3063static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3064                                   unsigned int length)
3065{
3066        /*
3067         * Drop reserved blocks
3068         */
3069        BUG_ON(!PageLocked(page));
3070        if (!page_has_buffers(page))
3071                goto out;
3072
3073        ext4_da_page_release_reservation(page, offset, length);
3074
3075out:
3076        ext4_invalidatepage(page, offset, length);
3077
3078        return;
3079}
3080
3081/*
3082 * Force all delayed allocation blocks to be allocated for a given inode.
3083 */
3084int ext4_alloc_da_blocks(struct inode *inode)
3085{
3086        trace_ext4_alloc_da_blocks(inode);
3087
3088        if (!EXT4_I(inode)->i_reserved_data_blocks)
3089                return 0;
3090
3091        /*
3092         * We do something simple for now.  The filemap_flush() will
3093         * also start triggering a write of the data blocks, which is
3094         * not strictly speaking necessary (and for users of
3095         * laptop_mode, not even desirable).  However, to do otherwise
3096         * would require replicating code paths in:
3097         *
3098         * ext4_writepages() ->
3099         *    write_cache_pages() ---> (via passed in callback function)
3100         *        __mpage_da_writepage() -->
3101         *           mpage_add_bh_to_extent()
3102         *           mpage_da_map_blocks()
3103         *
3104         * The problem is that write_cache_pages(), located in
3105         * mm/page-writeback.c, marks pages clean in preparation for
3106         * doing I/O, which is not desirable if we're not planning on
3107         * doing I/O at all.
3108         *
3109         * We could call write_cache_pages(), and then redirty all of
3110         * the pages by calling redirty_page_for_writepage() but that
3111         * would be ugly in the extreme.  So instead we would need to
3112         * replicate parts of the code in the above functions,
3113         * simplifying them because we wouldn't actually intend to
3114         * write out the pages, but rather only collect contiguous
3115         * logical block extents, call the multi-block allocator, and
3116         * then update the buffer heads with the block allocations.
3117         *
3118         * For now, though, we'll cheat by calling filemap_flush(),
3119         * which will map the blocks, and start the I/O, but not
3120         * actually wait for the I/O to complete.
3121         */
3122        return filemap_flush(inode->i_mapping);
3123}
3124
3125/*
3126 * bmap() is special.  It gets used by applications such as lilo and by
3127 * the swapper to find the on-disk block of a specific piece of data.
3128 *
3129 * Naturally, this is dangerous if the block concerned is still in the
3130 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3131 * filesystem and enables swap, then they may get a nasty shock when the
3132 * data getting swapped to that swapfile suddenly gets overwritten by
3133 * the original zero's written out previously to the journal and
3134 * awaiting writeback in the kernel's buffer cache.
3135 *
3136 * So, if we see any bmap calls here on a modified, data-journaled file,
3137 * take extra steps to flush any blocks which might be in the cache.
3138 */
3139static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3140{
3141        struct inode *inode = mapping->host;
3142        journal_t *journal;
3143        int err;
3144
3145        /*
3146         * We can get here for an inline file via the FIBMAP ioctl
3147         */
3148        if (ext4_has_inline_data(inode))
3149                return 0;
3150
3151        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3152                        test_opt(inode->i_sb, DELALLOC)) {
3153                /*
3154                 * With delalloc we want to sync the file
3155                 * so that we can make sure we allocate
3156                 * blocks for file
3157                 */
3158                filemap_write_and_wait(mapping);
3159        }
3160
3161        if (EXT4_JOURNAL(inode) &&
3162            ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3163                /*
3164                 * This is a REALLY heavyweight approach, but the use of
3165                 * bmap on dirty files is expected to be extremely rare:
3166                 * only if we run lilo or swapon on a freshly made file
3167                 * do we expect this to happen.
3168                 *
3169                 * (bmap requires CAP_SYS_RAWIO so this does not
3170                 * represent an unprivileged user DOS attack --- we'd be
3171                 * in trouble if mortal users could trigger this path at
3172                 * will.)
3173                 *
3174                 * NB. EXT4_STATE_JDATA is not set on files other than
3175                 * regular files.  If somebody wants to bmap a directory
3176                 * or symlink and gets confused because the buffer
3177                 * hasn't yet been flushed to disk, they deserve
3178                 * everything they get.
3179                 */
3180
3181                ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3182                journal = EXT4_JOURNAL(inode);
3183                jbd2_journal_lock_updates(journal);
3184                err = jbd2_journal_flush(journal);
3185                jbd2_journal_unlock_updates(journal);
3186
3187                if (err)
3188                        return 0;
3189        }
3190
3191        return generic_block_bmap(mapping, block, ext4_get_block);
3192}
3193
3194static int ext4_readpage(struct file *file, struct page *page)
3195{
3196        int ret = -EAGAIN;
3197        struct inode *inode = page->mapping->host;
3198
3199        trace_ext4_readpage(page);
3200
3201        if (ext4_has_inline_data(inode))
3202                ret = ext4_readpage_inline(inode, page);
3203
3204        if (ret == -EAGAIN)
3205                return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3206
3207        return ret;
3208}
3209
3210static int
3211ext4_readpages(struct file *file, struct address_space *mapping,
3212                struct list_head *pages, unsigned nr_pages)
3213{
3214        struct inode *inode = mapping->host;
3215
3216        /* If the file has inline data, no need to do readpages. */
3217        if (ext4_has_inline_data(inode))
3218                return 0;
3219
3220        return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3221}
3222
3223static void ext4_invalidatepage(struct page *page, unsigned int offset,
3224                                unsigned int length)
3225{
3226        trace_ext4_invalidatepage(page, offset, length);
3227
3228        /* No journalling happens on data buffers when this function is used */
3229        WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3230
3231        block_invalidatepage(page, offset, length);
3232}
3233
3234static int __ext4_journalled_invalidatepage(struct page *page,
3235                                            unsigned int offset,
3236                                            unsigned int length)
3237{
3238        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3239
3240        trace_ext4_journalled_invalidatepage(page, offset, length);
3241
3242        /*
3243         * If it's a full truncate we just forget about the pending dirtying
3244         */
3245        if (offset == 0 && length == PAGE_SIZE)
3246                ClearPageChecked(page);
3247
3248        return jbd2_journal_invalidatepage(journal, page, offset, length);
3249}
3250
3251/* Wrapper for aops... */
3252static void ext4_journalled_invalidatepage(struct page *page,
3253                                           unsigned int offset,
3254                                           unsigned int length)
3255{
3256        WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3257}
3258
3259static int ext4_releasepage(struct page *page, gfp_t wait)
3260{
3261        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3262
3263        trace_ext4_releasepage(page);
3264
3265        /* Page has dirty journalled data -> cannot release */
3266        if (PageChecked(page))
3267                return 0;
3268        if (journal)
3269                return jbd2_journal_try_to_free_buffers(journal, page, wait);
3270        else
3271                return try_to_free_buffers(page);
3272}
3273
3274#ifdef CONFIG_FS_DAX
3275static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3276                            unsigned flags, struct iomap *iomap)
3277{
3278        unsigned int blkbits = inode->i_blkbits;
3279        unsigned long first_block = offset >> blkbits;
3280        unsigned long last_block = (offset + length - 1) >> blkbits;
3281        struct ext4_map_blocks map;
3282        int ret;
3283
3284        if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3285                return -ERANGE;
3286
3287        map.m_lblk = first_block;
3288        map.m_len = last_block - first_block + 1;
3289
3290        if (!(flags & IOMAP_WRITE)) {
3291                ret = ext4_map_blocks(NULL, inode, &map, 0);
3292        } else {
3293                int dio_credits;
3294                handle_t *handle;
3295                int retries = 0;
3296
3297                /* Trim mapping request to maximum we can map at once for DIO */
3298                if (map.m_len > DIO_MAX_BLOCKS)
3299                        map.m_len = DIO_MAX_BLOCKS;
3300                dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3301retry:
3302                /*
3303                 * Either we allocate blocks and then we don't get unwritten
3304                 * extent so we have reserved enough credits, or the blocks
3305                 * are already allocated and unwritten and in that case
3306                 * extent conversion fits in the credits as well.
3307                 */
3308                handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3309                                            dio_credits);
3310                if (IS_ERR(handle))
3311                        return PTR_ERR(handle);
3312
3313                ret = ext4_map_blocks(handle, inode, &map,
3314                                      EXT4_GET_BLOCKS_CREATE_ZERO);
3315                if (ret < 0) {
3316                        ext4_journal_stop(handle);
3317                        if (ret == -ENOSPC &&
3318                            ext4_should_retry_alloc(inode->i_sb, &retries))
3319                                goto retry;
3320                        return ret;
3321                }
3322
3323                /*
3324                 * If we added blocks beyond i_size, we need to make sure they
3325                 * will get truncated if we crash before updating i_size in
3326                 * ext4_iomap_end(). For faults we don't need to do that (and
3327                 * even cannot because for orphan list operations inode_lock is
3328                 * required) - if we happen to instantiate block beyond i_size,
3329                 * it is because we race with truncate which has already added
3330                 * the inode to the orphan list.
3331                 */
3332                if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3333                    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3334                        int err;
3335
3336                        err = ext4_orphan_add(handle, inode);
3337                        if (err < 0) {
3338                                ext4_journal_stop(handle);
3339                                return err;
3340                        }
3341                }
3342                ext4_journal_stop(handle);
3343        }
3344
3345        iomap->flags = 0;
3346        iomap->bdev = inode->i_sb->s_bdev;
3347        iomap->offset = first_block << blkbits;
3348
3349        if (ret == 0) {
3350                iomap->type = IOMAP_HOLE;
3351                iomap->blkno = IOMAP_NULL_BLOCK;
3352                iomap->length = (u64)map.m_len << blkbits;
3353        } else {
3354                if (map.m_flags & EXT4_MAP_MAPPED) {
3355                        iomap->type = IOMAP_MAPPED;
3356                } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3357                        iomap->type = IOMAP_UNWRITTEN;
3358                } else {
3359                        WARN_ON_ONCE(1);
3360                        return -EIO;
3361                }
3362                iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3363                iomap->length = (u64)map.m_len << blkbits;
3364        }
3365
3366        if (map.m_flags & EXT4_MAP_NEW)
3367                iomap->flags |= IOMAP_F_NEW;
3368        return 0;
3369}
3370
3371static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3372                          ssize_t written, unsigned flags, struct iomap *iomap)
3373{
3374        int ret = 0;
3375        handle_t *handle;
3376        int blkbits = inode->i_blkbits;
3377        bool truncate = false;
3378
3379        if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3380                return 0;
3381
3382        handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3383        if (IS_ERR(handle)) {
3384                ret = PTR_ERR(handle);
3385                goto orphan_del;
3386        }
3387        if (ext4_update_inode_size(inode, offset + written))
3388                ext4_mark_inode_dirty(handle, inode);
3389        /*
3390         * We may need to truncate allocated but not written blocks beyond EOF.
3391         */
3392        if (iomap->offset + iomap->length > 
3393            ALIGN(inode->i_size, 1 << blkbits)) {
3394                ext4_lblk_t written_blk, end_blk;
3395
3396                written_blk = (offset + written) >> blkbits;
3397                end_blk = (offset + length) >> blkbits;
3398                if (written_blk < end_blk && ext4_can_truncate(inode))
3399                        truncate = true;
3400        }
3401        /*
3402         * Remove inode from orphan list if we were extending a inode and
3403         * everything went fine.
3404         */
3405        if (!truncate && inode->i_nlink &&
3406            !list_empty(&EXT4_I(inode)->i_orphan))
3407                ext4_orphan_del(handle, inode);
3408        ext4_journal_stop(handle);
3409        if (truncate) {
3410                ext4_truncate_failed_write(inode);
3411orphan_del:
3412                /*
3413                 * If truncate failed early the inode might still be on the
3414                 * orphan list; we need to make sure the inode is removed from
3415                 * the orphan list in that case.
3416                 */
3417                if (inode->i_nlink)
3418                        ext4_orphan_del(NULL, inode);
3419        }
3420        return ret;
3421}
3422
3423struct iomap_ops ext4_iomap_ops = {
3424        .iomap_begin            = ext4_iomap_begin,
3425        .iomap_end              = ext4_iomap_end,
3426};
3427
3428#endif
3429
3430static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3431                            ssize_t size, void *private)
3432{
3433        ext4_io_end_t *io_end = private;
3434
3435        /* if not async direct IO just return */
3436        if (!io_end)
3437                return 0;
3438
3439        ext_debug("ext4_end_io_dio(): io_end 0x%p "
3440                  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3441                  io_end, io_end->inode->i_ino, iocb, offset, size);
3442
3443        /*
3444         * Error during AIO DIO. We cannot convert unwritten extents as the
3445         * data was not written. Just clear the unwritten flag and drop io_end.
3446         */
3447        if (size <= 0) {
3448                ext4_clear_io_unwritten_flag(io_end);
3449                size = 0;
3450        }
3451        io_end->offset = offset;
3452        io_end->size = size;
3453        ext4_put_io_end(io_end);
3454
3455        return 0;
3456}
3457
3458/*
3459 * Handling of direct IO writes.
3460 *
3461 * For ext4 extent files, ext4 will do direct-io write even to holes,
3462 * preallocated extents, and those write extend the file, no need to
3463 * fall back to buffered IO.
3464 *
3465 * For holes, we fallocate those blocks, mark them as unwritten
3466 * If those blocks were preallocated, we mark sure they are split, but
3467 * still keep the range to write as unwritten.
3468 *
3469 * The unwritten extents will be converted to written when DIO is completed.
3470 * For async direct IO, since the IO may still pending when return, we
3471 * set up an end_io call back function, which will do the conversion
3472 * when async direct IO completed.
3473 *
3474 * If the O_DIRECT write will extend the file then add this inode to the
3475 * orphan list.  So recovery will truncate it back to the original size
3476 * if the machine crashes during the write.
3477 *
3478 */
3479static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3480{
3481        struct file *file = iocb->ki_filp;
3482        struct inode *inode = file->f_mapping->host;
3483        struct ext4_inode_info *ei = EXT4_I(inode);
3484        ssize_t ret;
3485        loff_t offset = iocb->ki_pos;
3486        size_t count = iov_iter_count(iter);
3487        int overwrite = 0;
3488        get_block_t *get_block_func = NULL;
3489        int dio_flags = 0;
3490        loff_t final_size = offset + count;
3491        int orphan = 0;
3492        handle_t *handle;
3493
3494        if (final_size > inode->i_size) {
3495                /* Credits for sb + inode write */
3496                handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3497                if (IS_ERR(handle)) {
3498                        ret = PTR_ERR(handle);
3499                        goto out;
3500                }
3501                ret = ext4_orphan_add(handle, inode);
3502                if (ret) {
3503                        ext4_journal_stop(handle);
3504                        goto out;
3505                }
3506                orphan = 1;
3507                ei->i_disksize = inode->i_size;
3508                ext4_journal_stop(handle);
3509        }
3510
3511        BUG_ON(iocb->private == NULL);
3512
3513        /*
3514         * Make all waiters for direct IO properly wait also for extent
3515         * conversion. This also disallows race between truncate() and
3516         * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3517         */
3518        inode_dio_begin(inode);
3519
3520        /* If we do a overwrite dio, i_mutex locking can be released */
3521        overwrite = *((int *)iocb->private);
3522
3523        if (overwrite)
3524                inode_unlock(inode);
3525
3526        /*
3527         * For extent mapped files we could direct write to holes and fallocate.
3528         *
3529         * Allocated blocks to fill the hole are marked as unwritten to prevent
3530         * parallel buffered read to expose the stale data before DIO complete
3531         * the data IO.
3532         *
3533         * As to previously fallocated extents, ext4 get_block will just simply
3534         * mark the buffer mapped but still keep the extents unwritten.
3535         *
3536         * For non AIO case, we will convert those unwritten extents to written
3537         * after return back from blockdev_direct_IO. That way we save us from
3538         * allocating io_end structure and also the overhead of offloading
3539         * the extent convertion to a workqueue.
3540         *
3541         * For async DIO, the conversion needs to be deferred when the
3542         * IO is completed. The ext4 end_io callback function will be
3543         * called to take care of the conversion work.  Here for async
3544         * case, we allocate an io_end structure to hook to the iocb.
3545         */
3546        iocb->private = NULL;
3547        if (overwrite)
3548                get_block_func = ext4_dio_get_block_overwrite;
3549        else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3550                   round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3551                get_block_func = ext4_dio_get_block;
3552                dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3553        } else if (is_sync_kiocb(iocb)) {
3554                get_block_func = ext4_dio_get_block_unwritten_sync;
3555                dio_flags = DIO_LOCKING;
3556        } else {
3557                get_block_func = ext4_dio_get_block_unwritten_async;
3558                dio_flags = DIO_LOCKING;
3559        }
3560#ifdef CONFIG_EXT4_FS_ENCRYPTION
3561        BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3562#endif
3563        ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3564                                   get_block_func, ext4_end_io_dio, NULL,
3565                                   dio_flags);
3566
3567        if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3568                                                EXT4_STATE_DIO_UNWRITTEN)) {
3569                int err;
3570                /*
3571                 * for non AIO case, since the IO is already
3572                 * completed, we could do the conversion right here
3573                 */
3574                err = ext4_convert_unwritten_extents(NULL, inode,
3575                                                     offset, ret);
3576                if (err < 0)
3577                        ret = err;
3578                ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3579        }
3580
3581        inode_dio_end(inode);
3582        /* take i_mutex locking again if we do a ovewrite dio */
3583        if (overwrite)
3584                inode_lock(inode);
3585
3586        if (ret < 0 && final_size > inode->i_size)
3587                ext4_truncate_failed_write(inode);
3588
3589        /* Handle extending of i_size after direct IO write */
3590        if (orphan) {
3591                int err;
3592
3593                /* Credits for sb + inode write */
3594                handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3595                if (IS_ERR(handle)) {
3596                        /* This is really bad luck. We've written the data
3597                         * but cannot extend i_size. Bail out and pretend
3598                         * the write failed... */
3599                        ret = PTR_ERR(handle);
3600                        if (inode->i_nlink)
3601                                ext4_orphan_del(NULL, inode);
3602
3603                        goto out;
3604                }
3605                if (inode->i_nlink)
3606                        ext4_orphan_del(handle, inode);
3607                if (ret > 0) {
3608                        loff_t end = offset + ret;
3609                        if (end > inode->i_size) {
3610                                ei->i_disksize = end;
3611                                i_size_write(inode, end);
3612                                /*
3613                                 * We're going to return a positive `ret'
3614                                 * here due to non-zero-length I/O, so there's
3615                                 * no way of reporting error returns from
3616                                 * ext4_mark_inode_dirty() to userspace.  So
3617                                 * ignore it.
3618                                 */
3619                                ext4_mark_inode_dirty(handle, inode);
3620                        }
3621                }
3622                err = ext4_journal_stop(handle);
3623                if (ret == 0)
3624                        ret = err;
3625        }
3626out:
3627        return ret;
3628}
3629
3630static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3631{
3632        struct address_space *mapping = iocb->ki_filp->f_mapping;
3633        struct inode *inode = mapping->host;
3634        size_t count = iov_iter_count(iter);
3635        ssize_t ret;
3636
3637        /*
3638         * Shared inode_lock is enough for us - it protects against concurrent
3639         * writes & truncates and since we take care of writing back page cache,
3640         * we are protected against page writeback as well.
3641         */
3642        inode_lock_shared(inode);
3643        ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3644                                           iocb->ki_pos + count);
3645        if (ret)
3646                goto out_unlock;
3647        ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3648                                   iter, ext4_dio_get_block, NULL, NULL, 0);
3649out_unlock:
3650        inode_unlock_shared(inode);
3651        return ret;
3652}
3653
3654static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3655{
3656        struct file *file = iocb->ki_filp;
3657        struct inode *inode = file->f_mapping->host;
3658        size_t count = iov_iter_count(iter);
3659        loff_t offset = iocb->ki_pos;
3660        ssize_t ret;
3661
3662#ifdef CONFIG_EXT4_FS_ENCRYPTION
3663        if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3664                return 0;
3665#endif
3666
3667        /*
3668         * If we are doing data journalling we don't support O_DIRECT
3669         */
3670        if (ext4_should_journal_data(inode))
3671                return 0;
3672
3673        /* Let buffer I/O handle the inline data case. */
3674        if (ext4_has_inline_data(inode))
3675                return 0;
3676
3677        /* DAX uses iomap path now */
3678        if (WARN_ON_ONCE(IS_DAX(inode)))
3679                return 0;
3680
3681        trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3682        if (iov_iter_rw(iter) == READ)
3683                ret = ext4_direct_IO_read(iocb, iter);
3684        else
3685                ret = ext4_direct_IO_write(iocb, iter);
3686        trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3687        return ret;
3688}
3689
3690/*
3691 * Pages can be marked dirty completely asynchronously from ext4's journalling
3692 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3693 * much here because ->set_page_dirty is called under VFS locks.  The page is
3694 * not necessarily locked.
3695 *
3696 * We cannot just dirty the page and leave attached buffers clean, because the
3697 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3698 * or jbddirty because all the journalling code will explode.
3699 *
3700 * So what we do is to mark the page "pending dirty" and next time writepage
3701 * is called, propagate that into the buffers appropriately.
3702 */
3703static int ext4_journalled_set_page_dirty(struct page *page)
3704{
3705        SetPageChecked(page);
3706        return __set_page_dirty_nobuffers(page);
3707}
3708
3709static int ext4_set_page_dirty(struct page *page)
3710{
3711        WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3712        WARN_ON_ONCE(!page_has_buffers(page));
3713        return __set_page_dirty_buffers(page);
3714}
3715
3716static const struct address_space_operations ext4_aops = {
3717        .readpage               = ext4_readpage,
3718        .readpages              = ext4_readpages,
3719        .writepage              = ext4_writepage,
3720        .writepages             = ext4_writepages,
3721        .write_begin            = ext4_write_begin,
3722        .write_end              = ext4_write_end,
3723        .set_page_dirty         = ext4_set_page_dirty,
3724        .bmap                   = ext4_bmap,
3725        .invalidatepage         = ext4_invalidatepage,
3726        .releasepage            = ext4_releasepage,
3727        .direct_IO              = ext4_direct_IO,
3728        .migratepage            = buffer_migrate_page,
3729        .is_partially_uptodate  = block_is_partially_uptodate,
3730        .error_remove_page      = generic_error_remove_page,
3731};
3732
3733static const struct address_space_operations ext4_journalled_aops = {
3734        .readpage               = ext4_readpage,
3735        .readpages              = ext4_readpages,
3736        .writepage              = ext4_writepage,
3737        .writepages             = ext4_writepages,
3738        .write_begin            = ext4_write_begin,
3739        .write_end              = ext4_journalled_write_end,
3740        .set_page_dirty         = ext4_journalled_set_page_dirty,
3741        .bmap                   = ext4_bmap,
3742        .invalidatepage         = ext4_journalled_invalidatepage,
3743        .releasepage            = ext4_releasepage,
3744        .direct_IO              = ext4_direct_IO,
3745        .is_partially_uptodate  = block_is_partially_uptodate,
3746        .error_remove_page      = generic_error_remove_page,
3747};
3748
3749static const struct address_space_operations ext4_da_aops = {
3750        .readpage               = ext4_readpage,
3751        .readpages              = ext4_readpages,
3752        .writepage              = ext4_writepage,
3753        .writepages             = ext4_writepages,
3754        .write_begin            = ext4_da_write_begin,
3755        .write_end              = ext4_da_write_end,
3756        .set_page_dirty         = ext4_set_page_dirty,
3757        .bmap                   = ext4_bmap,
3758        .invalidatepage         = ext4_da_invalidatepage,
3759        .releasepage            = ext4_releasepage,
3760        .direct_IO              = ext4_direct_IO,
3761        .migratepage            = buffer_migrate_page,
3762        .is_partially_uptodate  = block_is_partially_uptodate,
3763        .error_remove_page      = generic_error_remove_page,
3764};
3765
3766void ext4_set_aops(struct inode *inode)
3767{
3768        switch (ext4_inode_journal_mode(inode)) {
3769        case EXT4_INODE_ORDERED_DATA_MODE:
3770        case EXT4_INODE_WRITEBACK_DATA_MODE:
3771                break;
3772        case EXT4_INODE_JOURNAL_DATA_MODE:
3773                inode->i_mapping->a_ops = &ext4_journalled_aops;
3774                return;
3775        default:
3776                BUG();
3777        }
3778        if (test_opt(inode->i_sb, DELALLOC))
3779                inode->i_mapping->a_ops = &ext4_da_aops;
3780        else
3781                inode->i_mapping->a_ops = &ext4_aops;
3782}
3783
3784static int __ext4_block_zero_page_range(handle_t *handle,
3785                struct address_space *mapping, loff_t from, loff_t length)
3786{
3787        ext4_fsblk_t index = from >> PAGE_SHIFT;
3788        unsigned offset = from & (PAGE_SIZE-1);
3789        unsigned blocksize, pos;
3790        ext4_lblk_t iblock;
3791        struct inode *inode = mapping->host;
3792        struct buffer_head *bh;
3793        struct page *page;
3794        int err = 0;
3795
3796        page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3797                                   mapping_gfp_constraint(mapping, ~__GFP_FS));
3798        if (!page)
3799                return -ENOMEM;
3800
3801        blocksize = inode->i_sb->s_blocksize;
3802
3803        iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3804
3805        if (!page_has_buffers(page))
3806                create_empty_buffers(page, blocksize, 0);
3807
3808        /* Find the buffer that contains "offset" */
3809        bh = page_buffers(page);
3810        pos = blocksize;
3811        while (offset >= pos) {
3812                bh = bh->b_this_page;
3813                iblock++;
3814                pos += blocksize;
3815        }
3816        if (buffer_freed(bh)) {
3817                BUFFER_TRACE(bh, "freed: skip");
3818                goto unlock;
3819        }
3820        if (!buffer_mapped(bh)) {
3821                BUFFER_TRACE(bh, "unmapped");
3822                ext4_get_block(inode, iblock, bh, 0);
3823                /* unmapped? It's a hole - nothing to do */
3824                if (!buffer_mapped(bh)) {
3825                        BUFFER_TRACE(bh, "still unmapped");
3826                        goto unlock;
3827                }
3828        }
3829
3830        /* Ok, it's mapped. Make sure it's up-to-date */
3831        if (PageUptodate(page))
3832                set_buffer_uptodate(bh);
3833
3834        if (!buffer_uptodate(bh)) {
3835                err = -EIO;
3836                ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3837                wait_on_buffer(bh);
3838                /* Uhhuh. Read error. Complain and punt. */
3839                if (!buffer_uptodate(bh))
3840                        goto unlock;
3841                if (S_ISREG(inode->i_mode) &&
3842                    ext4_encrypted_inode(inode)) {
3843                        /* We expect the key to be set. */
3844                        BUG_ON(!fscrypt_has_encryption_key(inode));
3845                        BUG_ON(blocksize != PAGE_SIZE);
3846                        WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3847                                                page, PAGE_SIZE, 0, page->index));
3848                }
3849        }
3850        if (ext4_should_journal_data(inode)) {
3851                BUFFER_TRACE(bh, "get write access");
3852                err = ext4_journal_get_write_access(handle, bh);
3853                if (err)
3854                        goto unlock;
3855        }
3856        zero_user(page, offset, length);
3857        BUFFER_TRACE(bh, "zeroed end of block");
3858
3859        if (ext4_should_journal_data(inode)) {
3860                err = ext4_handle_dirty_metadata(handle, inode, bh);
3861        } else {
3862                err = 0;
3863                mark_buffer_dirty(bh);
3864                if (ext4_should_order_data(inode))
3865                        err = ext4_jbd2_inode_add_write(handle, inode);
3866        }
3867
3868unlock:
3869        unlock_page(page);
3870        put_page(page);
3871        return err;
3872}
3873
3874/*
3875 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3876 * starting from file offset 'from'.  The range to be zero'd must
3877 * be contained with in one block.  If the specified range exceeds
3878 * the end of the block it will be shortened to end of the block
3879 * that cooresponds to 'from'
3880 */
3881static int ext4_block_zero_page_range(handle_t *handle,
3882                struct address_space *mapping, loff_t from, loff_t length)
3883{
3884        struct inode *inode = mapping->host;
3885        unsigned offset = from & (PAGE_SIZE-1);
3886        unsigned blocksize = inode->i_sb->s_blocksize;
3887        unsigned max = blocksize - (offset & (blocksize - 1));
3888
3889        /*
3890         * correct length if it does not fall between
3891         * 'from' and the end of the block
3892         */
3893        if (length > max || length < 0)
3894                length = max;
3895
3896        if (IS_DAX(inode)) {
3897                return iomap_zero_range(inode, from, length, NULL,
3898                                        &ext4_iomap_ops);
3899        }
3900        return __ext4_block_zero_page_range(handle, mapping, from, length);
3901}
3902
3903/*
3904 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3905 * up to the end of the block which corresponds to `from'.
3906 * This required during truncate. We need to physically zero the tail end
3907 * of that block so it doesn't yield old data if the file is later grown.
3908 */
3909static int ext4_block_truncate_page(handle_t *handle,
3910                struct address_space *mapping, loff_t from)
3911{
3912        unsigned offset = from & (PAGE_SIZE-1);
3913        unsigned length;
3914        unsigned blocksize;
3915        struct inode *inode = mapping->host;
3916
3917        blocksize = inode->i_sb->s_blocksize;
3918        length = blocksize - (offset & (blocksize - 1));
3919
3920        return ext4_block_zero_page_range(handle, mapping, from, length);
3921}
3922
3923int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3924                             loff_t lstart, loff_t length)
3925{
3926        struct super_block *sb = inode->i_sb;
3927        struct address_space *mapping = inode->i_mapping;
3928        unsigned partial_start, partial_end;
3929        ext4_fsblk_t start, end;
3930        loff_t byte_end = (lstart + length - 1);
3931        int err = 0;
3932
3933        partial_start = lstart & (sb->s_blocksize - 1);
3934        partial_end = byte_end & (sb->s_blocksize - 1);
3935
3936        start = lstart >> sb->s_blocksize_bits;
3937        end = byte_end >> sb->s_blocksize_bits;
3938
3939        /* Handle partial zero within the single block */
3940        if (start == end &&
3941            (partial_start || (partial_end != sb->s_blocksize - 1))) {
3942                err = ext4_block_zero_page_range(handle, mapping,
3943                                                 lstart, length);
3944                return err;
3945        }
3946        /* Handle partial zero out on the start of the range */
3947        if (partial_start) {
3948                err = ext4_block_zero_page_range(handle, mapping,
3949                                                 lstart, sb->s_blocksize);
3950                if (err)
3951                        return err;
3952        }
3953        /* Handle partial zero out on the end of the range */
3954        if (partial_end != sb->s_blocksize - 1)
3955                err = ext4_block_zero_page_range(handle, mapping,
3956                                                 byte_end - partial_end,
3957                                                 partial_end + 1);
3958        return err;
3959}
3960
3961int ext4_can_truncate(struct inode *inode)
3962{
3963        if (S_ISREG(inode->i_mode))
3964                return 1;
3965        if (S_ISDIR(inode->i_mode))
3966                return 1;
3967        if (S_ISLNK(inode->i_mode))
3968                return !ext4_inode_is_fast_symlink(inode);
3969        return 0;
3970}
3971
3972/*
3973 * We have to make sure i_disksize gets properly updated before we truncate
3974 * page cache due to hole punching or zero range. Otherwise i_disksize update
3975 * can get lost as it may have been postponed to submission of writeback but
3976 * that will never happen after we truncate page cache.
3977 */
3978int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3979                                      loff_t len)
3980{
3981        handle_t *handle;
3982        loff_t size = i_size_read(inode);
3983
3984        WARN_ON(!inode_is_locked(inode));
3985        if (offset > size || offset + len < size)
3986                return 0;
3987
3988        if (EXT4_I(inode)->i_disksize >= size)
3989                return 0;
3990
3991        handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3992        if (IS_ERR(handle))
3993                return PTR_ERR(handle);
3994        ext4_update_i_disksize(inode, size);
3995        ext4_mark_inode_dirty(handle, inode);
3996        ext4_journal_stop(handle);
3997
3998        return 0;
3999}
4000
4001/*
4002 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4003 * associated with the given offset and length
4004 *
4005 * @inode:  File inode
4006 * @offset: The offset where the hole will begin
4007 * @len:    The length of the hole
4008 *
4009 * Returns: 0 on success or negative on failure
4010 */
4011
4012int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4013{
4014        struct super_block *sb = inode->i_sb;
4015        ext4_lblk_t first_block, stop_block;
4016        struct address_space *mapping = inode->i_mapping;
4017        loff_t first_block_offset, last_block_offset;
4018        handle_t *handle;
4019        unsigned int credits;
4020        int ret = 0;
4021
4022        if (!S_ISREG(inode->i_mode))
4023                return -EOPNOTSUPP;
4024
4025        trace_ext4_punch_hole(inode, offset, length, 0);
4026
4027        /*
4028         * Write out all dirty pages to avoid race conditions
4029         * Then release them.
4030         */
4031        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4032                ret = filemap_write_and_wait_range(mapping, offset,
4033                                                   offset + length - 1);
4034                if (ret)
4035                        return ret;
4036        }
4037
4038        inode_lock(inode);
4039
4040        /* No need to punch hole beyond i_size */
4041        if (offset >= inode->i_size)
4042                goto out_mutex;
4043
4044        /*
4045         * If the hole extends beyond i_size, set the hole
4046         * to end after the page that contains i_size
4047         */
4048        if (offset + length > inode->i_size) {
4049                length = inode->i_size +
4050                   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4051                   offset;
4052        }
4053
4054        if (offset & (sb->s_blocksize - 1) ||
4055            (offset + length) & (sb->s_blocksize - 1)) {
4056                /*
4057                 * Attach jinode to inode for jbd2 if we do any zeroing of
4058                 * partial block
4059                 */
4060                ret = ext4_inode_attach_jinode(inode);
4061                if (ret < 0)
4062                        goto out_mutex;
4063
4064        }
4065
4066        /* Wait all existing dio workers, newcomers will block on i_mutex */
4067        ext4_inode_block_unlocked_dio(inode);
4068        inode_dio_wait(inode);
4069
4070        /*
4071         * Prevent page faults from reinstantiating pages we have released from
4072         * page cache.
4073         */
4074        down_write(&EXT4_I(inode)->i_mmap_sem);
4075        first_block_offset = round_up(offset, sb->s_blocksize);
4076        last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4077
4078        /* Now release the pages and zero block aligned part of pages*/
4079        if (last_block_offset > first_block_offset) {
4080                ret = ext4_update_disksize_before_punch(inode, offset, length);
4081                if (ret)
4082                        goto out_dio;
4083                truncate_pagecache_range(inode, first_block_offset,
4084                                         last_block_offset);
4085        }
4086
4087        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4088                credits = ext4_writepage_trans_blocks(inode);
4089        else
4090                credits = ext4_blocks_for_truncate(inode);
4091        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4092        if (IS_ERR(handle)) {
4093                ret = PTR_ERR(handle);
4094                ext4_std_error(sb, ret);
4095                goto out_dio;
4096        }
4097
4098        ret = ext4_zero_partial_blocks(handle, inode, offset,
4099                                       length);
4100        if (ret)
4101                goto out_stop;
4102
4103        first_block = (offset + sb->s_blocksize - 1) >>
4104                EXT4_BLOCK_SIZE_BITS(sb);
4105        stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4106
4107        /* If there are no blocks to remove, return now */
4108        if (first_block >= stop_block)
4109                goto out_stop;
4110
4111        down_write(&EXT4_I(inode)->i_data_sem);
4112        ext4_discard_preallocations(inode);
4113
4114        ret = ext4_es_remove_extent(inode, first_block,
4115                                    stop_block - first_block);
4116        if (ret) {
4117                up_write(&EXT4_I(inode)->i_data_sem);
4118                goto out_stop;
4119        }
4120
4121        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4122                ret = ext4_ext_remove_space(inode, first_block,
4123                                            stop_block - 1);
4124        else
4125                ret = ext4_ind_remove_space(handle, inode, first_block,
4126                                            stop_block);
4127
4128        up_write(&EXT4_I(inode)->i_data_sem);
4129        if (IS_SYNC(inode))
4130                ext4_handle_sync(handle);
4131
4132        inode->i_mtime = inode->i_ctime = current_time(inode);
4133        ext4_mark_inode_dirty(handle, inode);
4134out_stop:
4135        ext4_journal_stop(handle);
4136out_dio:
4137        up_write(&EXT4_I(inode)->i_mmap_sem);
4138        ext4_inode_resume_unlocked_dio(inode);
4139out_mutex:
4140        inode_unlock(inode);
4141        return ret;
4142}
4143
4144int ext4_inode_attach_jinode(struct inode *inode)
4145{
4146        struct ext4_inode_info *ei = EXT4_I(inode);
4147        struct jbd2_inode *jinode;
4148
4149        if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4150                return 0;
4151
4152        jinode = jbd2_alloc_inode(GFP_KERNEL);
4153        spin_lock(&inode->i_lock);
4154        if (!ei->jinode) {
4155                if (!jinode) {
4156                        spin_unlock(&inode->i_lock);
4157                        return -ENOMEM;
4158                }
4159                ei->jinode = jinode;
4160                jbd2_journal_init_jbd_inode(ei->jinode, inode);
4161                jinode = NULL;
4162        }
4163        spin_unlock(&inode->i_lock);
4164        if (unlikely(jinode != NULL))
4165                jbd2_free_inode(jinode);
4166        return 0;
4167}
4168
4169/*
4170 * ext4_truncate()
4171 *
4172 * We block out ext4_get_block() block instantiations across the entire
4173 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4174 * simultaneously on behalf of the same inode.
4175 *
4176 * As we work through the truncate and commit bits of it to the journal there
4177 * is one core, guiding principle: the file's tree must always be consistent on
4178 * disk.  We must be able to restart the truncate after a crash.
4179 *
4180 * The file's tree may be transiently inconsistent in memory (although it
4181 * probably isn't), but whenever we close off and commit a journal transaction,
4182 * the contents of (the filesystem + the journal) must be consistent and
4183 * restartable.  It's pretty simple, really: bottom up, right to left (although
4184 * left-to-right works OK too).
4185 *
4186 * Note that at recovery time, journal replay occurs *before* the restart of
4187 * truncate against the orphan inode list.
4188 *
4189 * The committed inode has the new, desired i_size (which is the same as
4190 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4191 * that this inode's truncate did not complete and it will again call
4192 * ext4_truncate() to have another go.  So there will be instantiated blocks
4193 * to the right of the truncation point in a crashed ext4 filesystem.  But
4194 * that's fine - as long as they are linked from the inode, the post-crash
4195 * ext4_truncate() run will find them and release them.
4196 */
4197int ext4_truncate(struct inode *inode)
4198{
4199        struct ext4_inode_info *ei = EXT4_I(inode);
4200        unsigned int credits;
4201        int err = 0;
4202        handle_t *handle;
4203        struct address_space *mapping = inode->i_mapping;
4204
4205        /*
4206         * There is a possibility that we're either freeing the inode
4207         * or it's a completely new inode. In those cases we might not
4208         * have i_mutex locked because it's not necessary.
4209         */
4210        if (!(inode->i_state & (I_NEW|I_FREEING)))
4211                WARN_ON(!inode_is_locked(inode));
4212        trace_ext4_truncate_enter(inode);
4213
4214        if (!ext4_can_truncate(inode))
4215                return 0;
4216
4217        ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4218
4219        if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4220                ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4221
4222        if (ext4_has_inline_data(inode)) {
4223                int has_inline = 1;
4224
4225                ext4_inline_data_truncate(inode, &has_inline);
4226                if (has_inline)
4227                        return 0;
4228        }
4229
4230        /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4231        if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4232                if (ext4_inode_attach_jinode(inode) < 0)
4233                        return 0;
4234        }
4235
4236        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4237                credits = ext4_writepage_trans_blocks(inode);
4238        else
4239                credits = ext4_blocks_for_truncate(inode);
4240
4241        handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4242        if (IS_ERR(handle))
4243                return PTR_ERR(handle);
4244
4245        if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4246                ext4_block_truncate_page(handle, mapping, inode->i_size);
4247
4248        /*
4249         * We add the inode to the orphan list, so that if this
4250         * truncate spans multiple transactions, and we crash, we will
4251         * resume the truncate when the filesystem recovers.  It also
4252         * marks the inode dirty, to catch the new size.
4253         *
4254         * Implication: the file must always be in a sane, consistent
4255         * truncatable state while each transaction commits.
4256         */
4257        err = ext4_orphan_add(handle, inode);
4258        if (err)
4259                goto out_stop;
4260
4261        down_write(&EXT4_I(inode)->i_data_sem);
4262
4263        ext4_discard_preallocations(inode);
4264
4265        if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4266                err = ext4_ext_truncate(handle, inode);
4267        else
4268                ext4_ind_truncate(handle, inode);
4269
4270        up_write(&ei->i_data_sem);
4271        if (err)
4272                goto out_stop;
4273
4274        if (IS_SYNC(inode))
4275                ext4_handle_sync(handle);
4276
4277out_stop:
4278        /*
4279         * If this was a simple ftruncate() and the file will remain alive,
4280         * then we need to clear up the orphan record which we created above.
4281         * However, if this was a real unlink then we were called by
4282         * ext4_evict_inode(), and we allow that function to clean up the
4283         * orphan info for us.
4284         */
4285        if (inode->i_nlink)
4286                ext4_orphan_del(handle, inode);
4287
4288        inode->i_mtime = inode->i_ctime = current_time(inode);
4289        ext4_mark_inode_dirty(handle, inode);
4290        ext4_journal_stop(handle);
4291
4292        trace_ext4_truncate_exit(inode);
4293        return err;
4294}
4295
4296/*
4297 * ext4_get_inode_loc returns with an extra refcount against the inode's
4298 * underlying buffer_head on success. If 'in_mem' is true, we have all
4299 * data in memory that is needed to recreate the on-disk version of this
4300 * inode.
4301 */
4302static int __ext4_get_inode_loc(struct inode *inode,
4303                                struct ext4_iloc *iloc, int in_mem)
4304{
4305        struct ext4_group_desc  *gdp;
4306        struct buffer_head      *bh;
4307        struct super_block      *sb = inode->i_sb;
4308        ext4_fsblk_t            block;
4309        int                     inodes_per_block, inode_offset;
4310
4311        iloc->bh = NULL;
4312        if (!ext4_valid_inum(sb, inode->i_ino))
4313                return -EFSCORRUPTED;
4314
4315        iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4316        gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4317        if (!gdp)
4318                return -EIO;
4319
4320        /*
4321         * Figure out the offset within the block group inode table
4322         */
4323        inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4324        inode_offset = ((inode->i_ino - 1) %
4325                        EXT4_INODES_PER_GROUP(sb));
4326        block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4327        iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4328
4329        bh = sb_getblk(sb, block);
4330        if (unlikely(!bh))
4331                return -ENOMEM;
4332        if (!buffer_uptodate(bh)) {
4333                lock_buffer(bh);
4334
4335                /*
4336                 * If the buffer has the write error flag, we have failed
4337                 * to write out another inode in the same block.  In this
4338                 * case, we don't have to read the block because we may
4339                 * read the old inode data successfully.
4340                 */
4341                if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4342                        set_buffer_uptodate(bh);
4343
4344                if (buffer_uptodate(bh)) {
4345                        /* someone brought it uptodate while we waited */
4346                        unlock_buffer(bh);
4347                        goto has_buffer;
4348                }
4349
4350                /*
4351                 * If we have all information of the inode in memory and this
4352                 * is the only valid inode in the block, we need not read the
4353                 * block.
4354                 */
4355                if (in_mem) {
4356                        struct buffer_head *bitmap_bh;
4357                        int i, start;
4358
4359                        start = inode_offset & ~(inodes_per_block - 1);
4360
4361                        /* Is the inode bitmap in cache? */
4362                        bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4363                        if (unlikely(!bitmap_bh))
4364                                goto make_io;
4365
4366                        /*
4367                         * If the inode bitmap isn't in cache then the
4368                         * optimisation may end up performing two reads instead
4369                         * of one, so skip it.
4370                         */
4371                        if (!buffer_uptodate(bitmap_bh)) {
4372                                brelse(bitmap_bh);
4373                                goto make_io;
4374                        }
4375                        for (i = start; i < start + inodes_per_block; i++) {
4376                                if (i == inode_offset)
4377                                        continue;
4378                                if (ext4_test_bit(i, bitmap_bh->b_data))
4379                                        break;
4380                        }
4381                        brelse(bitmap_bh);
4382                        if (i == start + inodes_per_block) {
4383                                /* all other inodes are free, so skip I/O */
4384                                memset(bh->b_data, 0, bh->b_size);
4385                                set_buffer_uptodate(bh);
4386                                unlock_buffer(bh);
4387                                goto has_buffer;
4388                        }
4389                }
4390
4391make_io:
4392                /*
4393                 * If we need to do any I/O, try to pre-readahead extra
4394                 * blocks from the inode table.
4395                 */
4396                if (EXT4_SB(sb)->s_inode_readahead_blks) {
4397                        ext4_fsblk_t b, end, table;
4398                        unsigned num;
4399                        __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4400
4401                        table = ext4_inode_table(sb, gdp);
4402                        /* s_inode_readahead_blks is always a power of 2 */
4403                        b = block & ~((ext4_fsblk_t) ra_blks - 1);
4404                        if (table > b)
4405                                b = table;
4406                        end = b + ra_blks;
4407                        num = EXT4_INODES_PER_GROUP(sb);
4408                        if (ext4_has_group_desc_csum(sb))
4409                                num -= ext4_itable_unused_count(sb, gdp);
4410                        table += num / inodes_per_block;
4411                        if (end > table)
4412                                end = table;
4413                        while (b <= end)
4414                                sb_breadahead(sb, b++);
4415                }
4416
4417                /*
4418                 * There are other valid inodes in the buffer, this inode
4419                 * has in-inode xattrs, or we don't have this inode in memory.
4420                 * Read the block from disk.
4421                 */
4422                trace_ext4_load_inode(inode);
4423                get_bh(bh);
4424                bh->b_end_io = end_buffer_read_sync;
4425                submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4426                wait_on_buffer(bh);
4427                if (!buffer_uptodate(bh)) {
4428                        EXT4_ERROR_INODE_BLOCK(inode, block,
4429                                               "unable to read itable block");
4430                        brelse(bh);
4431                        return -EIO;
4432                }
4433        }
4434has_buffer:
4435        iloc->bh = bh;
4436        return 0;
4437}
4438
4439int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4440{
4441        /* We have all inode data except xattrs in memory here. */
4442        return __ext4_get_inode_loc(inode, iloc,
4443                !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4444}
4445
4446void ext4_set_inode_flags(struct inode *inode)
4447{
4448        unsigned int flags = EXT4_I(inode)->i_flags;
4449        unsigned int new_fl = 0;
4450
4451        if (flags & EXT4_SYNC_FL)
4452                new_fl |= S_SYNC;
4453        if (flags & EXT4_APPEND_FL)
4454                new_fl |= S_APPEND;
4455        if (flags & EXT4_IMMUTABLE_FL)
4456                new_fl |= S_IMMUTABLE;
4457        if (flags & EXT4_NOATIME_FL)
4458                new_fl |= S_NOATIME;
4459        if (flags & EXT4_DIRSYNC_FL)
4460                new_fl |= S_DIRSYNC;
4461        if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4462            !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4463            !ext4_encrypted_inode(inode))
4464                new_fl |= S_DAX;
4465        inode_set_flags(inode, new_fl,
4466                        S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4467}
4468
4469/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4470void ext4_get_inode_flags(struct ext4_inode_info *ei)
4471{
4472        unsigned int vfs_fl;
4473        unsigned long old_fl, new_fl;
4474
4475        do {
4476                vfs_fl = ei->vfs_inode.i_flags;
4477                old_fl = ei->i_flags;
4478                new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4479                                EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4480                                EXT4_DIRSYNC_FL);
4481                if (vfs_fl & S_SYNC)
4482                        new_fl |= EXT4_SYNC_FL;
4483                if (vfs_fl & S_APPEND)
4484                        new_fl |= EXT4_APPEND_FL;
4485                if (vfs_fl & S_IMMUTABLE)
4486                        new_fl |= EXT4_IMMUTABLE_FL;
4487                if (vfs_fl & S_NOATIME)
4488                        new_fl |= EXT4_NOATIME_FL;
4489                if (vfs_fl & S_DIRSYNC)
4490                        new_fl |= EXT4_DIRSYNC_FL;
4491        } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4492}
4493
4494static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4495                                  struct ext4_inode_info *ei)
4496{
4497        blkcnt_t i_blocks ;
4498        struct inode *inode = &(ei->vfs_inode);
4499        struct super_block *sb = inode->i_sb;
4500
4501        if (ext4_has_feature_huge_file(sb)) {
4502                /* we are using combined 48 bit field */
4503                i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4504                                        le32_to_cpu(raw_inode->i_blocks_lo);
4505                if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4506                        /* i_blocks represent file system block size */
4507                        return i_blocks  << (inode->i_blkbits - 9);
4508                } else {
4509                        return i_blocks;
4510                }
4511        } else {
4512                return le32_to_cpu(raw_inode->i_blocks_lo);
4513        }
4514}
4515
4516static inline void ext4_iget_extra_inode(struct inode *inode,
4517                                         struct ext4_inode *raw_inode,
4518                                         struct ext4_inode_info *ei)
4519{
4520        __le32 *magic = (void *)raw_inode +
4521                        EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4522        if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4523            EXT4_INODE_SIZE(inode->i_sb) &&
4524            *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4525                ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4526                ext4_find_inline_data_nolock(inode);
4527        } else
4528                EXT4_I(inode)->i_inline_off = 0;
4529}
4530
4531int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4532{
4533        if (!ext4_has_feature_project(inode->i_sb))
4534                return -EOPNOTSUPP;
4535        *projid = EXT4_I(inode)->i_projid;
4536        return 0;
4537}
4538
4539struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4540{
4541        struct ext4_iloc iloc;
4542        struct ext4_inode *raw_inode;
4543        struct ext4_inode_info *ei;
4544        struct inode *inode;
4545        journal_t *journal = EXT4_SB(sb)->s_journal;
4546        long ret;
4547        loff_t size;
4548        int block;
4549        uid_t i_uid;
4550        gid_t i_gid;
4551        projid_t i_projid;
4552
4553        inode = iget_locked(sb, ino);
4554        if (!inode)
4555                return ERR_PTR(-ENOMEM);
4556        if (!(inode->i_state & I_NEW))
4557                return inode;
4558
4559        ei = EXT4_I(inode);
4560        iloc.bh = NULL;
4561
4562        ret = __ext4_get_inode_loc(inode, &iloc, 0);
4563        if (ret < 0)
4564                goto bad_inode;
4565        raw_inode = ext4_raw_inode(&iloc);
4566
4567        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4568                ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4569                if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4570                        EXT4_INODE_SIZE(inode->i_sb) ||
4571                    (ei->i_extra_isize & 3)) {
4572                        EXT4_ERROR_INODE(inode,
4573                                         "bad extra_isize %u (inode size %u)",
4574                                         ei->i_extra_isize,
4575                                         EXT4_INODE_SIZE(inode->i_sb));
4576                        ret = -EFSCORRUPTED;
4577                        goto bad_inode;
4578                }
4579        } else
4580                ei->i_extra_isize = 0;
4581
4582        /* Precompute checksum seed for inode metadata */
4583        if (ext4_has_metadata_csum(sb)) {
4584                struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4585                __u32 csum;
4586                __le32 inum = cpu_to_le32(inode->i_ino);
4587                __le32 gen = raw_inode->i_generation;
4588                csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4589                                   sizeof(inum));
4590                ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4591                                              sizeof(gen));
4592        }
4593
4594        if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4595                EXT4_ERROR_INODE(inode, "checksum invalid");
4596                ret = -EFSBADCRC;
4597                goto bad_inode;
4598        }
4599
4600        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4601        i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4602        i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4603        if (ext4_has_feature_project(sb) &&
4604            EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4605            EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4606                i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4607        else
4608                i_projid = EXT4_DEF_PROJID;
4609
4610        if (!(test_opt(inode->i_sb, NO_UID32))) {
4611                i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4612                i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4613        }
4614        i_uid_write(inode, i_uid);
4615        i_gid_write(inode, i_gid);
4616        ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4617        set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4618
4619        ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4620        ei->i_inline_off = 0;
4621        ei->i_dir_start_lookup = 0;
4622        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4623        /* We now have enough fields to check if the inode was active or not.
4624         * This is needed because nfsd might try to access dead inodes
4625         * the test is that same one that e2fsck uses
4626         * NeilBrown 1999oct15
4627         */
4628        if (inode->i_nlink == 0) {
4629                if ((inode->i_mode == 0 ||
4630                     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4631                    ino != EXT4_BOOT_LOADER_INO) {
4632                        /* this inode is deleted */
4633                        ret = -ESTALE;
4634                        goto bad_inode;
4635                }
4636                /* The only unlinked inodes we let through here have
4637                 * valid i_mode and are being read by the orphan
4638                 * recovery code: that's fine, we're about to complete
4639                 * the process of deleting those.
4640                 * OR it is the EXT4_BOOT_LOADER_INO which is
4641                 * not initialized on a new filesystem. */
4642        }
4643        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4644        inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4645        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4646        if (ext4_has_feature_64bit(sb))
4647                ei->i_file_acl |=
4648                        ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4649        inode->i_size = ext4_isize(raw_inode);
4650        if ((size = i_size_read(inode)) < 0) {
4651                EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4652                ret = -EFSCORRUPTED;
4653                goto bad_inode;
4654        }
4655        ei->i_disksize = inode->i_size;
4656#ifdef CONFIG_QUOTA
4657        ei->i_reserved_quota = 0;
4658#endif
4659        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4660        ei->i_block_group = iloc.block_group;
4661        ei->i_last_alloc_group = ~0;
4662        /*
4663         * NOTE! The in-memory inode i_data array is in little-endian order
4664         * even on big-endian machines: we do NOT byteswap the block numbers!
4665         */
4666        for (block = 0; block < EXT4_N_BLOCKS; block++)
4667                ei->i_data[block] = raw_inode->i_block[block];
4668        INIT_LIST_HEAD(&ei->i_orphan);
4669
4670        /*
4671         * Set transaction id's of transactions that have to be committed
4672         * to finish f[data]sync. We set them to currently running transaction
4673         * as we cannot be sure that the inode or some of its metadata isn't
4674         * part of the transaction - the inode could have been reclaimed and
4675         * now it is reread from disk.
4676         */
4677        if (journal) {
4678                transaction_t *transaction;
4679                tid_t tid;
4680
4681                read_lock(&journal->j_state_lock);
4682                if (journal->j_running_transaction)
4683                        transaction = journal->j_running_transaction;
4684                else
4685                        transaction = journal->j_committing_transaction;
4686                if (transaction)
4687                        tid = transaction->t_tid;
4688                else
4689                        tid = journal->j_commit_sequence;
4690                read_unlock(&journal->j_state_lock);
4691                ei->i_sync_tid = tid;
4692                ei->i_datasync_tid = tid;
4693        }
4694
4695        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4696                if (ei->i_extra_isize == 0) {
4697                        /* The extra space is currently unused. Use it. */
4698                        BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4699                        ei->i_extra_isize = sizeof(struct ext4_inode) -
4700                                            EXT4_GOOD_OLD_INODE_SIZE;
4701                } else {
4702                        ext4_iget_extra_inode(inode, raw_inode, ei);
4703                }
4704        }
4705
4706        EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4707        EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4708        EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4709        EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4710
4711        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4712                inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4713                if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4714                        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4715                                inode->i_version |=
4716                    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4717                }
4718        }
4719
4720        ret = 0;
4721        if (ei->i_file_acl &&
4722            !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4723                EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4724                                 ei->i_file_acl);
4725                ret = -EFSCORRUPTED;
4726                goto bad_inode;
4727        } else if (!ext4_has_inline_data(inode)) {
4728                if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4729                        if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4730                            (S_ISLNK(inode->i_mode) &&
4731                             !ext4_inode_is_fast_symlink(inode))))
4732                                /* Validate extent which is part of inode */
4733                                ret = ext4_ext_check_inode(inode);
4734                } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4735                           (S_ISLNK(inode->i_mode) &&
4736                            !ext4_inode_is_fast_symlink(inode))) {
4737                        /* Validate block references which are part of inode */
4738                        ret = ext4_ind_check_inode(inode);
4739                }
4740        }
4741        if (ret)
4742                goto bad_inode;
4743
4744        if (S_ISREG(inode->i_mode)) {
4745                inode->i_op = &ext4_file_inode_operations;
4746                inode->i_fop = &ext4_file_operations;
4747                ext4_set_aops(inode);
4748        } else if (S_ISDIR(inode->i_mode)) {
4749                inode->i_op = &ext4_dir_inode_operations;
4750                inode->i_fop = &ext4_dir_operations;
4751        } else if (S_ISLNK(inode->i_mode)) {
4752                if (ext4_encrypted_inode(inode)) {
4753                        inode->i_op = &ext4_encrypted_symlink_inode_operations;
4754                        ext4_set_aops(inode);
4755                } else if (ext4_inode_is_fast_symlink(inode)) {
4756                        inode->i_link = (char *)ei->i_data;
4757                        inode->i_op = &ext4_fast_symlink_inode_operations;
4758                        nd_terminate_link(ei->i_data, inode->i_size,
4759                                sizeof(ei->i_data) - 1);
4760                } else {
4761                        inode->i_op = &ext4_symlink_inode_operations;
4762                        ext4_set_aops(inode);
4763                }
4764                inode_nohighmem(inode);
4765        } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4766              S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4767                inode->i_op = &ext4_special_inode_operations;
4768                if (raw_inode->i_block[0])
4769                        init_special_inode(inode, inode->i_mode,
4770                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4771                else
4772                        init_special_inode(inode, inode->i_mode,
4773                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4774        } else if (ino == EXT4_BOOT_LOADER_INO) {
4775                make_bad_inode(inode);
4776        } else {
4777                ret = -EFSCORRUPTED;
4778                EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4779                goto bad_inode;
4780        }
4781        brelse(iloc.bh);
4782        ext4_set_inode_flags(inode);
4783        unlock_new_inode(inode);
4784        return inode;
4785
4786bad_inode:
4787        brelse(iloc.bh);
4788        iget_failed(inode);
4789        return ERR_PTR(ret);
4790}
4791
4792struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4793{
4794        if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4795                return ERR_PTR(-EFSCORRUPTED);
4796        return ext4_iget(sb, ino);
4797}
4798
4799static int ext4_inode_blocks_set(handle_t *handle,
4800                                struct ext4_inode *raw_inode,
4801                                struct ext4_inode_info *ei)
4802{
4803        struct inode *inode = &(ei->vfs_inode);
4804        u64 i_blocks = inode->i_blocks;
4805        struct super_block *sb = inode->i_sb;
4806
4807        if (i_blocks <= ~0U) {
4808                /*
4809                 * i_blocks can be represented in a 32 bit variable
4810                 * as multiple of 512 bytes
4811                 */
4812                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4813                raw_inode->i_blocks_high = 0;
4814                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4815                return 0;
4816        }
4817        if (!ext4_has_feature_huge_file(sb))
4818                return -EFBIG;
4819
4820        if (i_blocks <= 0xffffffffffffULL) {
4821                /*
4822                 * i_blocks can be represented in a 48 bit variable
4823                 * as multiple of 512 bytes
4824                 */
4825                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4826                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4827                ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4828        } else {
4829                ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4830                /* i_block is stored in file system block size */
4831                i_blocks = i_blocks >> (inode->i_blkbits - 9);
4832                raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4833                raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4834        }
4835        return 0;
4836}
4837
4838struct other_inode {
4839        unsigned long           orig_ino;
4840        struct ext4_inode       *raw_inode;
4841};
4842
4843static int other_inode_match(struct inode * inode, unsigned long ino,
4844                             void *data)
4845{
4846        struct other_inode *oi = (struct other_inode *) data;
4847
4848        if ((inode->i_ino != ino) ||
4849            (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4850                               I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4851            ((inode->i_state & I_DIRTY_TIME) == 0))
4852                return 0;
4853        spin_lock(&inode->i_lock);
4854        if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4855                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4856            (inode->i_state & I_DIRTY_TIME)) {
4857                struct ext4_inode_info  *ei = EXT4_I(inode);
4858
4859                inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4860                spin_unlock(&inode->i_lock);
4861
4862                spin_lock(&ei->i_raw_lock);
4863                EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4864                EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4865                EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4866                ext4_inode_csum_set(inode, oi->raw_inode, ei);
4867                spin_unlock(&ei->i_raw_lock);
4868                trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4869                return -1;
4870        }
4871        spin_unlock(&inode->i_lock);
4872        return -1;
4873}
4874
4875/*
4876 * Opportunistically update the other time fields for other inodes in
4877 * the same inode table block.
4878 */
4879static void ext4_update_other_inodes_time(struct super_block *sb,
4880                                          unsigned long orig_ino, char *buf)
4881{
4882        struct other_inode oi;
4883        unsigned long ino;
4884        int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4885        int inode_size = EXT4_INODE_SIZE(sb);
4886
4887        oi.orig_ino = orig_ino;
4888        /*
4889         * Calculate the first inode in the inode table block.  Inode
4890         * numbers are one-based.  That is, the first inode in a block
4891         * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4892         */
4893        ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4894        for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4895                if (ino == orig_ino)
4896                        continue;
4897                oi.raw_inode = (struct ext4_inode *) buf;
4898                (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4899        }
4900}
4901
4902/*
4903 * Post the struct inode info into an on-disk inode location in the
4904 * buffer-cache.  This gobbles the caller's reference to the
4905 * buffer_head in the inode location struct.
4906 *
4907 * The caller must have write access to iloc->bh.
4908 */
4909static int ext4_do_update_inode(handle_t *handle,
4910                                struct inode *inode,
4911                                struct ext4_iloc *iloc)
4912{
4913        struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4914        struct ext4_inode_info *ei = EXT4_I(inode);
4915        struct buffer_head *bh = iloc->bh;
4916        struct super_block *sb = inode->i_sb;
4917        int err = 0, rc, block;
4918        int need_datasync = 0, set_large_file = 0;
4919        uid_t i_uid;
4920        gid_t i_gid;
4921        projid_t i_projid;
4922
4923        spin_lock(&ei->i_raw_lock);
4924
4925        /* For fields not tracked in the in-memory inode,
4926         * initialise them to zero for new inodes. */
4927        if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4928                memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4929
4930        ext4_get_inode_flags(ei);
4931        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4932        i_uid = i_uid_read(inode);
4933        i_gid = i_gid_read(inode);
4934        i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4935        if (!(test_opt(inode->i_sb, NO_UID32))) {
4936                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4937                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4938/*
4939 * Fix up interoperability with old kernels. Otherwise, old inodes get
4940 * re-used with the upper 16 bits of the uid/gid intact
4941 */
4942                if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4943                        raw_inode->i_uid_high = 0;
4944                        raw_inode->i_gid_high = 0;
4945                } else {
4946                        raw_inode->i_uid_high =
4947                                cpu_to_le16(high_16_bits(i_uid));
4948                        raw_inode->i_gid_high =
4949                                cpu_to_le16(high_16_bits(i_gid));
4950                }
4951        } else {
4952                raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4953                raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4954                raw_inode->i_uid_high = 0;
4955                raw_inode->i_gid_high = 0;
4956        }
4957        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4958
4959        EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4960        EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4961        EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4962        EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4963
4964        err = ext4_inode_blocks_set(handle, raw_inode, ei);
4965        if (err) {
4966                spin_unlock(&ei->i_raw_lock);
4967                goto out_brelse;
4968        }
4969        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4970        raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4971        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4972                raw_inode->i_file_acl_high =
4973                        cpu_to_le16(ei->i_file_acl >> 32);
4974        raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4975        if (ei->i_disksize != ext4_isize(raw_inode)) {
4976                ext4_isize_set(raw_inode, ei->i_disksize);
4977                need_datasync = 1;
4978        }
4979        if (ei->i_disksize > 0x7fffffffULL) {
4980                if (!ext4_has_feature_large_file(sb) ||
4981                                EXT4_SB(sb)->s_es->s_rev_level ==
4982                    cpu_to_le32(EXT4_GOOD_OLD_REV))
4983                        set_large_file = 1;
4984        }
4985        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4986        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4987                if (old_valid_dev(inode->i_rdev)) {
4988                        raw_inode->i_block[0] =
4989                                cpu_to_le32(old_encode_dev(inode->i_rdev));
4990                        raw_inode->i_block[1] = 0;
4991                } else {
4992                        raw_inode->i_block[0] = 0;
4993                        raw_inode->i_block[1] =
4994                                cpu_to_le32(new_encode_dev(inode->i_rdev));
4995                        raw_inode->i_block[2] = 0;
4996                }
4997        } else if (!ext4_has_inline_data(inode)) {
4998                for (block = 0; block < EXT4_N_BLOCKS; block++)
4999                        raw_inode->i_block[block] = ei->i_data[block];
5000        }
5001
5002        if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5003                raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5004                if (ei->i_extra_isize) {
5005                        if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5006                                raw_inode->i_version_hi =
5007                                        cpu_to_le32(inode->i_version >> 32);
5008                        raw_inode->i_extra_isize =
5009                                cpu_to_le16(ei->i_extra_isize);
5010                }
5011        }
5012
5013        BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5014               i_projid != EXT4_DEF_PROJID);
5015
5016        if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5017            EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5018                raw_inode->i_projid = cpu_to_le32(i_projid);
5019
5020        ext4_inode_csum_set(inode, raw_inode, ei);
5021        spin_unlock(&ei->i_raw_lock);
5022        if (inode->i_sb->s_flags & MS_LAZYTIME)
5023                ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5024                                              bh->b_data);
5025
5026        BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5027        rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5028        if (!err)
5029                err = rc;
5030        ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5031        if (set_large_file) {
5032                BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5033                err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5034                if (err)
5035                        goto out_brelse;
5036                ext4_update_dynamic_rev(sb);
5037                ext4_set_feature_large_file(sb);
5038                ext4_handle_sync(handle);
5039                err = ext4_handle_dirty_super(handle, sb);
5040        }
5041        ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5042out_brelse:
5043        brelse(bh);
5044        ext4_std_error(inode->i_sb, err);
5045        return err;
5046}
5047
5048/*
5049 * ext4_write_inode()
5050 *
5051 * We are called from a few places:
5052 *
5053 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5054 *   Here, there will be no transaction running. We wait for any running
5055 *   transaction to commit.
5056 *
5057 * - Within flush work (sys_sync(), kupdate and such).
5058 *   We wait on commit, if told to.
5059 *
5060 * - Within iput_final() -> write_inode_now()
5061 *   We wait on commit, if told to.
5062 *
5063 * In all cases it is actually safe for us to return without doing anything,
5064 * because the inode has been copied into a raw inode buffer in
5065 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5066 * writeback.
5067 *
5068 * Note that we are absolutely dependent upon all inode dirtiers doing the
5069 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5070 * which we are interested.
5071 *
5072 * It would be a bug for them to not do this.  The code:
5073 *
5074 *      mark_inode_dirty(inode)
5075 *      stuff();
5076 *      inode->i_size = expr;
5077 *
5078 * is in error because write_inode() could occur while `stuff()' is running,
5079 * and the new i_size will be lost.  Plus the inode will no longer be on the
5080 * superblock's dirty inode list.
5081 */
5082int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5083{
5084        int err;
5085
5086        if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5087                return 0;
5088
5089        if (EXT4_SB(inode->i_sb)->s_journal) {
5090                if (ext4_journal_current_handle()) {
5091                        jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5092                        dump_stack();
5093                        return -EIO;
5094                }
5095
5096                /*
5097                 * No need to force transaction in WB_SYNC_NONE mode. Also
5098                 * ext4_sync_fs() will force the commit after everything is
5099                 * written.
5100                 */
5101                if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5102                        return 0;
5103
5104                err = ext4_force_commit(inode->i_sb);
5105        } else {
5106                struct ext4_iloc iloc;
5107
5108                err = __ext4_get_inode_loc(inode, &iloc, 0);
5109                if (err)
5110                        return err;
5111                /*
5112                 * sync(2) will flush the whole buffer cache. No need to do
5113                 * it here separately for each inode.
5114                 */
5115                if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5116                        sync_dirty_buffer(iloc.bh);
5117                if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5118                        EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5119                                         "IO error syncing inode");
5120                        err = -EIO;
5121                }
5122                brelse(iloc.bh);
5123        }
5124        return err;
5125}
5126
5127/*
5128 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5129 * buffers that are attached to a page stradding i_size and are undergoing
5130 * commit. In that case we have to wait for commit to finish and try again.
5131 */
5132static void ext4_wait_for_tail_page_commit(struct inode *inode)
5133{
5134        struct page *page;
5135        unsigned offset;
5136        journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5137        tid_t commit_tid = 0;
5138        int ret;
5139
5140        offset = inode->i_size & (PAGE_SIZE - 1);
5141        /*
5142         * All buffers in the last page remain valid? Then there's nothing to
5143         * do. We do the check mainly to optimize the common PAGE_SIZE ==
5144         * blocksize case
5145         */
5146        if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
5147                return;
5148        while (1) {
5149                page = find_lock_page(inode->i_mapping,
5150                                      inode->i_size >> PAGE_SHIFT);
5151                if (!page)
5152                        return;
5153                ret = __ext4_journalled_invalidatepage(page, offset,
5154                                                PAGE_SIZE - offset);
5155                unlock_page(page);
5156                put_page(page);
5157                if (ret != -EBUSY)
5158                        return;
5159                commit_tid = 0;
5160                read_lock(&journal->j_state_lock);
5161                if (journal->j_committing_transaction)
5162                        commit_tid = journal->j_committing_transaction->t_tid;
5163                read_unlock(&journal->j_state_lock);
5164                if (commit_tid)
5165                        jbd2_log_wait_commit(journal, commit_tid);
5166        }
5167}
5168
5169/*
5170 * ext4_setattr()
5171 *
5172 * Called from notify_change.
5173 *
5174 * We want to trap VFS attempts to truncate the file as soon as
5175 * possible.  In particular, we want to make sure that when the VFS
5176 * shrinks i_size, we put the inode on the orphan list and modify
5177 * i_disksize immediately, so that during the subsequent flushing of
5178 * dirty pages and freeing of disk blocks, we can guarantee that any
5179 * commit will leave the blocks being flushed in an unused state on
5180 * disk.  (On recovery, the inode will get truncated and the blocks will
5181 * be freed, so we have a strong guarantee that no future commit will
5182 * leave these blocks visible to the user.)
5183 *
5184 * Another thing we have to assure is that if we are in ordered mode
5185 * and inode is still attached to the committing transaction, we must
5186 * we start writeout of all the dirty pages which are being truncated.
5187 * This way we are sure that all the data written in the previous
5188 * transaction are already on disk (truncate waits for pages under
5189 * writeback).
5190 *
5191 * Called with inode->i_mutex down.
5192 */
5193int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5194{
5195        struct inode *inode = d_inode(dentry);
5196        int error, rc = 0;
5197        int orphan = 0;
5198        const unsigned int ia_valid = attr->ia_valid;
5199
5200        error = setattr_prepare(dentry, attr);
5201        if (error)
5202                return error;
5203
5204        if (is_quota_modification(inode, attr)) {
5205                error = dquot_initialize(inode);
5206                if (error)
5207                        return error;
5208        }
5209        if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5210            (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5211                handle_t *handle;
5212
5213                /* (user+group)*(old+new) structure, inode write (sb,
5214                 * inode block, ? - but truncate inode update has it) */
5215                handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5216                        (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5217                         EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5218                if (IS_ERR(handle)) {
5219                        error = PTR_ERR(handle);
5220                        goto err_out;
5221                }
5222                error = dquot_transfer(inode, attr);
5223                if (error) {
5224                        ext4_journal_stop(handle);
5225                        return error;
5226                }
5227                /* Update corresponding info in inode so that everything is in
5228                 * one transaction */
5229                if (attr->ia_valid & ATTR_UID)
5230                        inode->i_uid = attr->ia_uid;
5231                if (attr->ia_valid & ATTR_GID)
5232                        inode->i_gid = attr->ia_gid;
5233                error = ext4_mark_inode_dirty(handle, inode);
5234                ext4_journal_stop(handle);
5235        }
5236
5237        if (attr->ia_valid & ATTR_SIZE) {
5238                handle_t *handle;
5239                loff_t oldsize = inode->i_size;
5240                int shrink = (attr->ia_size <= inode->i_size);
5241
5242                if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5243                        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5244
5245                        if (attr->ia_size > sbi->s_bitmap_maxbytes)
5246                                return -EFBIG;
5247                }
5248                if (!S_ISREG(inode->i_mode))
5249                        return -EINVAL;
5250
5251                if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5252                        inode_inc_iversion(inode);
5253
5254                if (ext4_should_order_data(inode) &&
5255                    (attr->ia_size < inode->i_size)) {
5256                        error = ext4_begin_ordered_truncate(inode,
5257                                                            attr->ia_size);
5258                        if (error)
5259                                goto err_out;
5260                }
5261                if (attr->ia_size != inode->i_size) {
5262                        handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5263                        if (IS_ERR(handle)) {
5264                                error = PTR_ERR(handle);
5265                                goto err_out;
5266                        }
5267                        if (ext4_handle_valid(handle) && shrink) {
5268                                error = ext4_orphan_add(handle, inode);
5269                                orphan = 1;
5270                        }
5271                        /*
5272                         * Update c/mtime on truncate up, ext4_truncate() will
5273                         * update c/mtime in shrink case below
5274                         */
5275                        if (!shrink) {
5276                                inode->i_mtime = current_time(inode);
5277                                inode->i_ctime = inode->i_mtime;
5278                        }
5279                        down_write(&EXT4_I(inode)->i_data_sem);
5280                        EXT4_I(inode)->i_disksize = attr->ia_size;
5281                        rc = ext4_mark_inode_dirty(handle, inode);
5282                        if (!error)
5283                                error = rc;
5284                        /*
5285                         * We have to update i_size under i_data_sem together
5286                         * with i_disksize to avoid races with writeback code
5287                         * running ext4_wb_update_i_disksize().
5288                         */
5289                        if (!error)
5290                                i_size_write(inode, attr->ia_size);
5291                        up_write(&EXT4_I(inode)->i_data_sem);
5292                        ext4_journal_stop(handle);
5293                        if (error) {
5294                                if (orphan)
5295                                        ext4_orphan_del(NULL, inode);
5296                                goto err_out;
5297                        }
5298                }
5299                if (!shrink)
5300                        pagecache_isize_extended(inode, oldsize, inode->i_size);
5301
5302                /*
5303                 * Blocks are going to be removed from the inode. Wait
5304                 * for dio in flight.  Temporarily disable
5305                 * dioread_nolock to prevent livelock.
5306                 */
5307                if (orphan) {
5308                        if (!ext4_should_journal_data(inode)) {
5309                                ext4_inode_block_unlocked_dio(inode);
5310                                inode_dio_wait(inode);
5311                                ext4_inode_resume_unlocked_dio(inode);
5312                        } else
5313                                ext4_wait_for_tail_page_commit(inode);
5314                }
5315                down_write(&EXT4_I(inode)->i_mmap_sem);
5316                /*
5317                 * Truncate pagecache after we've waited for commit
5318                 * in data=journal mode to make pages freeable.
5319                 */
5320                truncate_pagecache(inode, inode->i_size);
5321                if (shrink) {
5322                        rc = ext4_truncate(inode);
5323                        if (rc)
5324                                error = rc;
5325                }
5326                up_write(&EXT4_I(inode)->i_mmap_sem);
5327        }
5328
5329        if (!error) {
5330                setattr_copy(inode, attr);
5331                mark_inode_dirty(inode);
5332        }
5333
5334        /*
5335         * If the call to ext4_truncate failed to get a transaction handle at
5336         * all, we need to clean up the in-core orphan list manually.
5337         */
5338        if (orphan && inode->i_nlink)
5339                ext4_orphan_del(NULL, inode);
5340
5341        if (!error && (ia_valid & ATTR_MODE))
5342                rc = posix_acl_chmod(inode, inode->i_mode);
5343
5344err_out:
5345        ext4_std_error(inode->i_sb, error);
5346        if (!error)
5347                error = rc;
5348        return error;
5349}
5350
5351int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5352                 struct kstat *stat)
5353{
5354        struct inode *inode;
5355        unsigned long long delalloc_blocks;
5356
5357        inode = d_inode(dentry);
5358        generic_fillattr(inode, stat);
5359
5360        /*
5361         * If there is inline data in the inode, the inode will normally not
5362         * have data blocks allocated (it may have an external xattr block).
5363         * Report at least one sector for such files, so tools like tar, rsync,
5364         * others doen't incorrectly think the file is completely sparse.
5365         */
5366        if (unlikely(ext4_has_inline_data(inode)))
5367                stat->blocks += (stat->size + 511) >> 9;
5368
5369        /*
5370         * We can't update i_blocks if the block allocation is delayed
5371         * otherwise in the case of system crash before the real block
5372         * allocation is done, we will have i_blocks inconsistent with
5373         * on-disk file blocks.
5374         * We always keep i_blocks updated together with real
5375         * allocation. But to not confuse with user, stat
5376         * will return the blocks that include the delayed allocation
5377         * blocks for this file.
5378         */
5379        delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5380                                   EXT4_I(inode)->i_reserved_data_blocks);
5381        stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5382        return 0;
5383}
5384
5385static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5386                                   int pextents)
5387{
5388        if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5389                return ext4_ind_trans_blocks(inode, lblocks);
5390        return ext4_ext_index_trans_blocks(inode, pextents);
5391}
5392
5393/*
5394 * Account for index blocks, block groups bitmaps and block group
5395 * descriptor blocks if modify datablocks and index blocks
5396 * worse case, the indexs blocks spread over different block groups
5397 *
5398 * If datablocks are discontiguous, they are possible to spread over
5399 * different block groups too. If they are contiguous, with flexbg,
5400 * they could still across block group boundary.
5401 *
5402 * Also account for superblock, inode, quota and xattr blocks
5403 */
5404static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5405                                  int pextents)
5406{
5407        ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5408        int gdpblocks;
5409        int idxblocks;
5410        int ret = 0;
5411
5412        /*
5413         * How many index blocks need to touch to map @lblocks logical blocks
5414         * to @pextents physical extents?
5415         */
5416        idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5417
5418        ret = idxblocks;
5419
5420        /*
5421         * Now let's see how many group bitmaps and group descriptors need
5422         * to account
5423         */
5424        groups = idxblocks + pextents;
5425        gdpblocks = groups;
5426        if (groups > ngroups)
5427                groups = ngroups;
5428        if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5429                gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5430
5431        /* bitmaps and block group descriptor blocks */
5432        ret += groups + gdpblocks;
5433
5434        /* Blocks for super block, inode, quota and xattr blocks */
5435        ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5436
5437        return ret;
5438}
5439
5440/*
5441 * Calculate the total number of credits to reserve to fit
5442 * the modification of a single pages into a single transaction,
5443 * which may include multiple chunks of block allocations.
5444 *
5445 * This could be called via ext4_write_begin()
5446 *
5447 * We need to consider the worse case, when
5448 * one new block per extent.
5449 */
5450int ext4_writepage_trans_blocks(struct inode *inode)
5451{
5452        int bpp = ext4_journal_blocks_per_page(inode);
5453        int ret;
5454
5455        ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5456
5457        /* Account for data blocks for journalled mode */
5458        if (ext4_should_journal_data(inode))
5459                ret += bpp;
5460        return ret;
5461}
5462
5463/*
5464 * Calculate the journal credits for a chunk of data modification.
5465 *
5466 * This is called from DIO, fallocate or whoever calling
5467 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5468 *
5469 * journal buffers for data blocks are not included here, as DIO
5470 * and fallocate do no need to journal data buffers.
5471 */
5472int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5473{
5474        return ext4_meta_trans_blocks(inode, nrblocks, 1);
5475}
5476
5477/*
5478 * The caller must have previously called ext4_reserve_inode_write().
5479 * Give this, we know that the caller already has write access to iloc->bh.
5480 */
5481int ext4_mark_iloc_dirty(handle_t *handle,
5482                         struct inode *inode, struct ext4_iloc *iloc)
5483{
5484        int err = 0;
5485
5486        if (IS_I_VERSION(inode))
5487                inode_inc_iversion(inode);
5488
5489        /* the do_update_inode consumes one bh->b_count */
5490        get_bh(iloc->bh);
5491
5492        /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5493        err = ext4_do_update_inode(handle, inode, iloc);
5494        put_bh(iloc->bh);
5495        return err;
5496}
5497
5498/*
5499 * On success, We end up with an outstanding reference count against
5500 * iloc->bh.  This _must_ be cleaned up later.
5501 */
5502
5503int
5504ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5505                         struct ext4_iloc *iloc)
5506{
5507        int err;
5508
5509        err = ext4_get_inode_loc(inode, iloc);
5510        if (!err) {
5511                BUFFER_TRACE(iloc->bh, "get_write_access");
5512                err = ext4_journal_get_write_access(handle, iloc->bh);
5513                if (err) {
5514                        brelse(iloc->bh);
5515                        iloc->bh = NULL;
5516                }
5517        }
5518        ext4_std_error(inode->i_sb, err);
5519        return err;
5520}
5521
5522/*
5523 * Expand an inode by new_extra_isize bytes.
5524 * Returns 0 on success or negative error number on failure.
5525 */
5526static int ext4_expand_extra_isize(struct inode *inode,
5527                                   unsigned int new_extra_isize,
5528                                   struct ext4_iloc iloc,
5529                                   handle_t *handle)
5530{
5531        struct ext4_inode *raw_inode;
5532        struct ext4_xattr_ibody_header *header;
5533
5534        if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5535                return 0;
5536
5537        raw_inode = ext4_raw_inode(&iloc);
5538
5539        header = IHDR(inode, raw_inode);
5540
5541        /* No extended attributes present */
5542        if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5543            header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5544                memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5545                        new_extra_isize);
5546                EXT4_I(inode)->i_extra_isize = new_extra_isize;
5547                return 0;
5548        }
5549
5550        /* try to expand with EAs present */
5551        return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5552                                          raw_inode, handle);
5553}
5554
5555/*
5556 * What we do here is to mark the in-core inode as clean with respect to inode
5557 * dirtiness (it may still be data-dirty).
5558 * This means that the in-core inode may be reaped by prune_icache
5559 * without having to perform any I/O.  This is a very good thing,
5560 * because *any* task may call prune_icache - even ones which
5561 * have a transaction open against a different journal.
5562 *
5563 * Is this cheating?  Not really.  Sure, we haven't written the
5564 * inode out, but prune_icache isn't a user-visible syncing function.
5565 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5566 * we start and wait on commits.
5567 */
5568int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5569{
5570        struct ext4_iloc iloc;
5571        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5572        static unsigned int mnt_count;
5573        int err, ret;
5574
5575        might_sleep();
5576        trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5577        err = ext4_reserve_inode_write(handle, inode, &iloc);
5578        if (err)
5579                return err;
5580        if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5581            !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5582                /*
5583                 * In nojournal mode, we can immediately attempt to expand
5584                 * the inode.  When journaled, we first need to obtain extra
5585                 * buffer credits since we may write into the EA block
5586                 * with this same handle. If journal_extend fails, then it will
5587                 * only result in a minor loss of functionality for that inode.
5588                 * If this is felt to be critical, then e2fsck should be run to
5589                 * force a large enough s_min_extra_isize.
5590                 */
5591                if (!ext4_handle_valid(handle) ||
5592                    jbd2_journal_extend(handle,
5593                             EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5594                        ret = ext4_expand_extra_isize(inode,
5595                                                      sbi->s_want_extra_isize,
5596                                                      iloc, handle);
5597                        if (ret) {
5598                                if (mnt_count !=
5599                                        le16_to_cpu(sbi->s_es->s_mnt_count)) {
5600                                        ext4_warning(inode->i_sb,
5601                                        "Unable to expand inode %lu. Delete"
5602                                        " some EAs or run e2fsck.",
5603                                        inode->i_ino);
5604                                        mnt_count =
5605                                          le16_to_cpu(sbi->s_es->s_mnt_count);
5606                                }
5607                        }
5608                }
5609        }
5610        return ext4_mark_iloc_dirty(handle, inode, &iloc);
5611}
5612
5613/*
5614 * ext4_dirty_inode() is called from __mark_inode_dirty()
5615 *
5616 * We're really interested in the case where a file is being extended.
5617 * i_size has been changed by generic_commit_write() and we thus need
5618 * to include the updated inode in the current transaction.
5619 *
5620 * Also, dquot_alloc_block() will always dirty the inode when blocks
5621 * are allocated to the file.
5622 *
5623 * If the inode is marked synchronous, we don't honour that here - doing
5624 * so would cause a commit on atime updates, which we don't bother doing.
5625 * We handle synchronous inodes at the highest possible level.
5626 *
5627 * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5628 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5629 * to copy into the on-disk inode structure are the timestamp files.
5630 */
5631void ext4_dirty_inode(struct inode *inode, int flags)
5632{
5633        handle_t *handle;
5634
5635        if (flags == I_DIRTY_TIME)
5636                return;
5637        handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5638        if (IS_ERR(handle))
5639                goto out;
5640
5641        ext4_mark_inode_dirty(handle, inode);
5642
5643        ext4_journal_stop(handle);
5644out:
5645        return;
5646}
5647
5648#if 0
5649/*
5650 * Bind an inode's backing buffer_head into this transaction, to prevent
5651 * it from being flushed to disk early.  Unlike
5652 * ext4_reserve_inode_write, this leaves behind no bh reference and
5653 * returns no iloc structure, so the caller needs to repeat the iloc
5654 * lookup to mark the inode dirty later.
5655 */
5656static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5657{
5658        struct ext4_iloc iloc;
5659
5660        int err = 0;
5661        if (handle) {
5662                err = ext4_get_inode_loc(inode, &iloc);
5663                if (!err) {
5664                        BUFFER_TRACE(iloc.bh, "get_write_access");
5665                        err = jbd2_journal_get_write_access(handle, iloc.bh);
5666                        if (!err)
5667                                err = ext4_handle_dirty_metadata(handle,
5668                                                                 NULL,
5669                                                                 iloc.bh);
5670                        brelse(iloc.bh);
5671                }
5672        }
5673        ext4_std_error(inode->i_sb, err);
5674        return err;
5675}
5676#endif
5677
5678int ext4_change_inode_journal_flag(struct inode *inode, int val)
5679{
5680        journal_t *journal;
5681        handle_t *handle;
5682        int err;
5683        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5684
5685        /*
5686         * We have to be very careful here: changing a data block's
5687         * journaling status dynamically is dangerous.  If we write a
5688         * data block to the journal, change the status and then delete
5689         * that block, we risk forgetting to revoke the old log record
5690         * from the journal and so a subsequent replay can corrupt data.
5691         * So, first we make sure that the journal is empty and that
5692         * nobody is changing anything.
5693         */
5694
5695        journal = EXT4_JOURNAL(inode);
5696        if (!journal)
5697                return 0;
5698        if (is_journal_aborted(journal))
5699                return -EROFS;
5700
5701        /* Wait for all existing dio workers */
5702        ext4_inode_block_unlocked_dio(inode);
5703        inode_dio_wait(inode);
5704
5705        /*
5706         * Before flushing the journal and switching inode's aops, we have
5707         * to flush all dirty data the inode has. There can be outstanding
5708         * delayed allocations, there can be unwritten extents created by
5709         * fallocate or buffered writes in dioread_nolock mode covered by
5710         * dirty data which can be converted only after flushing the dirty
5711         * data (and journalled aops don't know how to handle these cases).
5712         */
5713        if (val) {
5714                down_write(&EXT4_I(inode)->i_mmap_sem);
5715                err = filemap_write_and_wait(inode->i_mapping);
5716                if (err < 0) {
5717                        up_write(&EXT4_I(inode)->i_mmap_sem);
5718                        ext4_inode_resume_unlocked_dio(inode);
5719                        return err;
5720                }
5721        }
5722
5723        percpu_down_write(&sbi->s_journal_flag_rwsem);
5724        jbd2_journal_lock_updates(journal);
5725
5726        /*
5727         * OK, there are no updates running now, and all cached data is
5728         * synced to disk.  We are now in a completely consistent state
5729         * which doesn't have anything in the journal, and we know that
5730         * no filesystem updates are running, so it is safe to modify
5731         * the inode's in-core data-journaling state flag now.
5732         */
5733
5734        if (val)
5735                ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5736        else {
5737                err = jbd2_journal_flush(journal);
5738                if (err < 0) {
5739                        jbd2_journal_unlock_updates(journal);
5740                        percpu_up_write(&sbi->s_journal_flag_rwsem);
5741                        ext4_inode_resume_unlocked_dio(inode);
5742                        return err;
5743                }
5744                ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5745        }
5746        ext4_set_aops(inode);
5747        /*
5748         * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5749         * E.g. S_DAX may get cleared / set.
5750         */
5751        ext4_set_inode_flags(inode);
5752
5753        jbd2_journal_unlock_updates(journal);
5754        percpu_up_write(&sbi->s_journal_flag_rwsem);
5755
5756        if (val)
5757                up_write(&EXT4_I(inode)->i_mmap_sem);
5758        ext4_inode_resume_unlocked_dio(inode);
5759
5760        /* Finally we can mark the inode as dirty. */
5761
5762        handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5763        if (IS_ERR(handle))
5764                return PTR_ERR(handle);
5765
5766        err = ext4_mark_inode_dirty(handle, inode);
5767        ext4_handle_sync(handle);
5768        ext4_journal_stop(handle);
5769        ext4_std_error(inode->i_sb, err);
5770
5771        return err;
5772}
5773
5774static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5775{
5776        return !buffer_mapped(bh);
5777}
5778
5779int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5780{
5781        struct page *page = vmf->page;
5782        loff_t size;
5783        unsigned long len;
5784        int ret;
5785        struct file *file = vma->vm_file;
5786        struct inode *inode = file_inode(file);
5787        struct address_space *mapping = inode->i_mapping;
5788        handle_t *handle;
5789        get_block_t *get_block;
5790        int retries = 0;
5791
5792        sb_start_pagefault(inode->i_sb);
5793        file_update_time(vma->vm_file);
5794
5795        down_read(&EXT4_I(inode)->i_mmap_sem);
5796        /* Delalloc case is easy... */
5797        if (test_opt(inode->i_sb, DELALLOC) &&
5798            !ext4_should_journal_data(inode) &&
5799            !ext4_nonda_switch(inode->i_sb)) {
5800                do {
5801                        ret = block_page_mkwrite(vma, vmf,
5802                                                   ext4_da_get_block_prep);
5803                } while (ret == -ENOSPC &&
5804                       ext4_should_retry_alloc(inode->i_sb, &retries));
5805                goto out_ret;
5806        }
5807
5808        lock_page(page);
5809        size = i_size_read(inode);
5810        /* Page got truncated from under us? */
5811        if (page->mapping != mapping || page_offset(page) > size) {
5812                unlock_page(page);
5813                ret = VM_FAULT_NOPAGE;
5814                goto out;
5815        }
5816
5817        if (page->index == size >> PAGE_SHIFT)
5818                len = size & ~PAGE_MASK;
5819        else
5820                len = PAGE_SIZE;
5821        /*
5822         * Return if we have all the buffers mapped. This avoids the need to do
5823         * journal_start/journal_stop which can block and take a long time
5824         */
5825        if (page_has_buffers(page)) {
5826                if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5827                                            0, len, NULL,
5828                                            ext4_bh_unmapped)) {
5829                        /* Wait so that we don't change page under IO */
5830                        wait_for_stable_page(page);
5831                        ret = VM_FAULT_LOCKED;
5832                        goto out;
5833                }
5834        }
5835        unlock_page(page);
5836        /* OK, we need to fill the hole... */
5837        if (ext4_should_dioread_nolock(inode))
5838                get_block = ext4_get_block_unwritten;
5839        else
5840                get_block = ext4_get_block;
5841retry_alloc:
5842        handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5843                                    ext4_writepage_trans_blocks(inode));
5844        if (IS_ERR(handle)) {
5845                ret = VM_FAULT_SIGBUS;
5846                goto out;
5847        }
5848        ret = block_page_mkwrite(vma, vmf, get_block);
5849        if (!ret && ext4_should_journal_data(inode)) {
5850                if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5851                          PAGE_SIZE, NULL, do_journal_get_write_access)) {
5852                        unlock_page(page);
5853                        ret = VM_FAULT_SIGBUS;
5854                        ext4_journal_stop(handle);
5855                        goto out;
5856                }
5857                ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5858        }
5859        ext4_journal_stop(handle);
5860        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5861                goto retry_alloc;
5862out_ret:
5863        ret = block_page_mkwrite_return(ret);
5864out:
5865        up_read(&EXT4_I(inode)->i_mmap_sem);
5866        sb_end_pagefault(inode->i_sb);
5867        return ret;
5868}
5869
5870int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5871{
5872        struct inode *inode = file_inode(vma->vm_file);
5873        int err;
5874
5875        down_read(&EXT4_I(inode)->i_mmap_sem);
5876        err = filemap_fault(vma, vmf);
5877        up_read(&EXT4_I(inode)->i_mmap_sem);
5878
5879        return err;
5880}
5881
5882/*
5883 * Find the first extent at or after @lblk in an inode that is not a hole.
5884 * Search for @map_len blocks at most. The extent is returned in @result.
5885 *
5886 * The function returns 1 if we found an extent. The function returns 0 in
5887 * case there is no extent at or after @lblk and in that case also sets
5888 * @result->es_len to 0. In case of error, the error code is returned.
5889 */
5890int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5891                         unsigned int map_len, struct extent_status *result)
5892{
5893        struct ext4_map_blocks map;
5894        struct extent_status es = {};
5895        int ret;
5896
5897        map.m_lblk = lblk;
5898        map.m_len = map_len;
5899
5900        /*
5901         * For non-extent based files this loop may iterate several times since
5902         * we do not determine full hole size.
5903         */
5904        while (map.m_len > 0) {
5905                ret = ext4_map_blocks(NULL, inode, &map, 0);
5906                if (ret < 0)
5907                        return ret;
5908                /* There's extent covering m_lblk? Just return it. */
5909                if (ret > 0) {
5910                        int status;
5911
5912                        ext4_es_store_pblock(result, map.m_pblk);
5913                        result->es_lblk = map.m_lblk;
5914                        result->es_len = map.m_len;
5915                        if (map.m_flags & EXT4_MAP_UNWRITTEN)
5916                                status = EXTENT_STATUS_UNWRITTEN;
5917                        else
5918                                status = EXTENT_STATUS_WRITTEN;
5919                        ext4_es_store_status(result, status);
5920                        return 1;
5921                }
5922                ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5923                                                  map.m_lblk + map.m_len - 1,
5924                                                  &es);
5925                /* Is delalloc data before next block in extent tree? */
5926                if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5927                        ext4_lblk_t offset = 0;
5928
5929                        if (es.es_lblk < lblk)
5930                                offset = lblk - es.es_lblk;
5931                        result->es_lblk = es.es_lblk + offset;
5932                        ext4_es_store_pblock(result,
5933                                             ext4_es_pblock(&es) + offset);
5934                        result->es_len = es.es_len - offset;
5935                        ext4_es_store_status(result, ext4_es_status(&es));
5936
5937                        return 1;
5938                }
5939                /* There's a hole at m_lblk, advance us after it */
5940                map.m_lblk += map.m_len;
5941                map_len -= map.m_len;
5942                map.m_len = map_len;
5943                cond_resched();
5944        }
5945        result->es_len = 0;
5946        return 0;
5947}
5948