linux/fs/f2fs/data.c
<<
>>
Prefs
   1/*
   2 * fs/f2fs/data.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/buffer_head.h>
  14#include <linux/mpage.h>
  15#include <linux/writeback.h>
  16#include <linux/backing-dev.h>
  17#include <linux/pagevec.h>
  18#include <linux/blkdev.h>
  19#include <linux/bio.h>
  20#include <linux/prefetch.h>
  21#include <linux/uio.h>
  22#include <linux/mm.h>
  23#include <linux/memcontrol.h>
  24#include <linux/cleancache.h>
  25
  26#include "f2fs.h"
  27#include "node.h"
  28#include "segment.h"
  29#include "trace.h"
  30#include <trace/events/f2fs.h>
  31
  32static bool __is_cp_guaranteed(struct page *page)
  33{
  34        struct address_space *mapping = page->mapping;
  35        struct inode *inode;
  36        struct f2fs_sb_info *sbi;
  37
  38        if (!mapping)
  39                return false;
  40
  41        inode = mapping->host;
  42        sbi = F2FS_I_SB(inode);
  43
  44        if (inode->i_ino == F2FS_META_INO(sbi) ||
  45                        inode->i_ino ==  F2FS_NODE_INO(sbi) ||
  46                        S_ISDIR(inode->i_mode) ||
  47                        is_cold_data(page))
  48                return true;
  49        return false;
  50}
  51
  52static void f2fs_read_end_io(struct bio *bio)
  53{
  54        struct bio_vec *bvec;
  55        int i;
  56
  57#ifdef CONFIG_F2FS_FAULT_INJECTION
  58        if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO))
  59                bio->bi_error = -EIO;
  60#endif
  61
  62        if (f2fs_bio_encrypted(bio)) {
  63                if (bio->bi_error) {
  64                        fscrypt_release_ctx(bio->bi_private);
  65                } else {
  66                        fscrypt_decrypt_bio_pages(bio->bi_private, bio);
  67                        return;
  68                }
  69        }
  70
  71        bio_for_each_segment_all(bvec, bio, i) {
  72                struct page *page = bvec->bv_page;
  73
  74                if (!bio->bi_error) {
  75                        if (!PageUptodate(page))
  76                                SetPageUptodate(page);
  77                } else {
  78                        ClearPageUptodate(page);
  79                        SetPageError(page);
  80                }
  81                unlock_page(page);
  82        }
  83        bio_put(bio);
  84}
  85
  86static void f2fs_write_end_io(struct bio *bio)
  87{
  88        struct f2fs_sb_info *sbi = bio->bi_private;
  89        struct bio_vec *bvec;
  90        int i;
  91
  92        bio_for_each_segment_all(bvec, bio, i) {
  93                struct page *page = bvec->bv_page;
  94                enum count_type type = WB_DATA_TYPE(page);
  95
  96                fscrypt_pullback_bio_page(&page, true);
  97
  98                if (unlikely(bio->bi_error)) {
  99                        mapping_set_error(page->mapping, -EIO);
 100                        f2fs_stop_checkpoint(sbi, true);
 101                }
 102                dec_page_count(sbi, type);
 103                clear_cold_data(page);
 104                end_page_writeback(page);
 105        }
 106        if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
 107                                wq_has_sleeper(&sbi->cp_wait))
 108                wake_up(&sbi->cp_wait);
 109
 110        bio_put(bio);
 111}
 112
 113/*
 114 * Return true, if pre_bio's bdev is same as its target device.
 115 */
 116struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
 117                                block_t blk_addr, struct bio *bio)
 118{
 119        struct block_device *bdev = sbi->sb->s_bdev;
 120        int i;
 121
 122        for (i = 0; i < sbi->s_ndevs; i++) {
 123                if (FDEV(i).start_blk <= blk_addr &&
 124                                        FDEV(i).end_blk >= blk_addr) {
 125                        blk_addr -= FDEV(i).start_blk;
 126                        bdev = FDEV(i).bdev;
 127                        break;
 128                }
 129        }
 130        if (bio) {
 131                bio->bi_bdev = bdev;
 132                bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
 133        }
 134        return bdev;
 135}
 136
 137int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
 138{
 139        int i;
 140
 141        for (i = 0; i < sbi->s_ndevs; i++)
 142                if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
 143                        return i;
 144        return 0;
 145}
 146
 147static bool __same_bdev(struct f2fs_sb_info *sbi,
 148                                block_t blk_addr, struct bio *bio)
 149{
 150        return f2fs_target_device(sbi, blk_addr, NULL) == bio->bi_bdev;
 151}
 152
 153/*
 154 * Low-level block read/write IO operations.
 155 */
 156static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
 157                                int npages, bool is_read)
 158{
 159        struct bio *bio;
 160
 161        bio = f2fs_bio_alloc(npages);
 162
 163        f2fs_target_device(sbi, blk_addr, bio);
 164        bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
 165        bio->bi_private = is_read ? NULL : sbi;
 166
 167        return bio;
 168}
 169
 170static inline void __submit_bio(struct f2fs_sb_info *sbi,
 171                                struct bio *bio, enum page_type type)
 172{
 173        if (!is_read_io(bio_op(bio))) {
 174                if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
 175                        current->plug && (type == DATA || type == NODE))
 176                        blk_finish_plug(current->plug);
 177        }
 178        submit_bio(bio);
 179}
 180
 181static void __submit_merged_bio(struct f2fs_bio_info *io)
 182{
 183        struct f2fs_io_info *fio = &io->fio;
 184
 185        if (!io->bio)
 186                return;
 187
 188        if (is_read_io(fio->op))
 189                trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
 190        else
 191                trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
 192
 193        bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
 194
 195        __submit_bio(io->sbi, io->bio, fio->type);
 196        io->bio = NULL;
 197}
 198
 199static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
 200                                                struct page *page, nid_t ino)
 201{
 202        struct bio_vec *bvec;
 203        struct page *target;
 204        int i;
 205
 206        if (!io->bio)
 207                return false;
 208
 209        if (!inode && !page && !ino)
 210                return true;
 211
 212        bio_for_each_segment_all(bvec, io->bio, i) {
 213
 214                if (bvec->bv_page->mapping)
 215                        target = bvec->bv_page;
 216                else
 217                        target = fscrypt_control_page(bvec->bv_page);
 218
 219                if (inode && inode == target->mapping->host)
 220                        return true;
 221                if (page && page == target)
 222                        return true;
 223                if (ino && ino == ino_of_node(target))
 224                        return true;
 225        }
 226
 227        return false;
 228}
 229
 230static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
 231                                                struct page *page, nid_t ino,
 232                                                enum page_type type)
 233{
 234        enum page_type btype = PAGE_TYPE_OF_BIO(type);
 235        struct f2fs_bio_info *io = &sbi->write_io[btype];
 236        bool ret;
 237
 238        down_read(&io->io_rwsem);
 239        ret = __has_merged_page(io, inode, page, ino);
 240        up_read(&io->io_rwsem);
 241        return ret;
 242}
 243
 244static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
 245                                struct inode *inode, struct page *page,
 246                                nid_t ino, enum page_type type, int rw)
 247{
 248        enum page_type btype = PAGE_TYPE_OF_BIO(type);
 249        struct f2fs_bio_info *io;
 250
 251        io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
 252
 253        down_write(&io->io_rwsem);
 254
 255        if (!__has_merged_page(io, inode, page, ino))
 256                goto out;
 257
 258        /* change META to META_FLUSH in the checkpoint procedure */
 259        if (type >= META_FLUSH) {
 260                io->fio.type = META_FLUSH;
 261                io->fio.op = REQ_OP_WRITE;
 262                io->fio.op_flags = REQ_PREFLUSH | REQ_META | REQ_PRIO;
 263                if (!test_opt(sbi, NOBARRIER))
 264                        io->fio.op_flags |= REQ_FUA;
 265        }
 266        __submit_merged_bio(io);
 267out:
 268        up_write(&io->io_rwsem);
 269}
 270
 271void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
 272                                                                        int rw)
 273{
 274        __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
 275}
 276
 277void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
 278                                struct inode *inode, struct page *page,
 279                                nid_t ino, enum page_type type, int rw)
 280{
 281        if (has_merged_page(sbi, inode, page, ino, type))
 282                __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
 283}
 284
 285void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
 286{
 287        f2fs_submit_merged_bio(sbi, DATA, WRITE);
 288        f2fs_submit_merged_bio(sbi, NODE, WRITE);
 289        f2fs_submit_merged_bio(sbi, META, WRITE);
 290}
 291
 292/*
 293 * Fill the locked page with data located in the block address.
 294 * Return unlocked page.
 295 */
 296int f2fs_submit_page_bio(struct f2fs_io_info *fio)
 297{
 298        struct bio *bio;
 299        struct page *page = fio->encrypted_page ?
 300                        fio->encrypted_page : fio->page;
 301
 302        trace_f2fs_submit_page_bio(page, fio);
 303        f2fs_trace_ios(fio, 0);
 304
 305        /* Allocate a new bio */
 306        bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
 307
 308        if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 309                bio_put(bio);
 310                return -EFAULT;
 311        }
 312        bio_set_op_attrs(bio, fio->op, fio->op_flags);
 313
 314        __submit_bio(fio->sbi, bio, fio->type);
 315        return 0;
 316}
 317
 318void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
 319{
 320        struct f2fs_sb_info *sbi = fio->sbi;
 321        enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
 322        struct f2fs_bio_info *io;
 323        bool is_read = is_read_io(fio->op);
 324        struct page *bio_page;
 325
 326        io = is_read ? &sbi->read_io : &sbi->write_io[btype];
 327
 328        if (fio->old_blkaddr != NEW_ADDR)
 329                verify_block_addr(sbi, fio->old_blkaddr);
 330        verify_block_addr(sbi, fio->new_blkaddr);
 331
 332        bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
 333
 334        if (!is_read)
 335                inc_page_count(sbi, WB_DATA_TYPE(bio_page));
 336
 337        down_write(&io->io_rwsem);
 338
 339        if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
 340            (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
 341                        !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
 342                __submit_merged_bio(io);
 343alloc_new:
 344        if (io->bio == NULL) {
 345                io->bio = __bio_alloc(sbi, fio->new_blkaddr,
 346                                                BIO_MAX_PAGES, is_read);
 347                io->fio = *fio;
 348        }
 349
 350        if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
 351                                                        PAGE_SIZE) {
 352                __submit_merged_bio(io);
 353                goto alloc_new;
 354        }
 355
 356        io->last_block_in_bio = fio->new_blkaddr;
 357        f2fs_trace_ios(fio, 0);
 358
 359        up_write(&io->io_rwsem);
 360        trace_f2fs_submit_page_mbio(fio->page, fio);
 361}
 362
 363static void __set_data_blkaddr(struct dnode_of_data *dn)
 364{
 365        struct f2fs_node *rn = F2FS_NODE(dn->node_page);
 366        __le32 *addr_array;
 367
 368        /* Get physical address of data block */
 369        addr_array = blkaddr_in_node(rn);
 370        addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
 371}
 372
 373/*
 374 * Lock ordering for the change of data block address:
 375 * ->data_page
 376 *  ->node_page
 377 *    update block addresses in the node page
 378 */
 379void set_data_blkaddr(struct dnode_of_data *dn)
 380{
 381        f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
 382        __set_data_blkaddr(dn);
 383        if (set_page_dirty(dn->node_page))
 384                dn->node_changed = true;
 385}
 386
 387void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
 388{
 389        dn->data_blkaddr = blkaddr;
 390        set_data_blkaddr(dn);
 391        f2fs_update_extent_cache(dn);
 392}
 393
 394/* dn->ofs_in_node will be returned with up-to-date last block pointer */
 395int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
 396{
 397        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 398
 399        if (!count)
 400                return 0;
 401
 402        if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
 403                return -EPERM;
 404        if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
 405                return -ENOSPC;
 406
 407        trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
 408                                                dn->ofs_in_node, count);
 409
 410        f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
 411
 412        for (; count > 0; dn->ofs_in_node++) {
 413                block_t blkaddr =
 414                        datablock_addr(dn->node_page, dn->ofs_in_node);
 415                if (blkaddr == NULL_ADDR) {
 416                        dn->data_blkaddr = NEW_ADDR;
 417                        __set_data_blkaddr(dn);
 418                        count--;
 419                }
 420        }
 421
 422        if (set_page_dirty(dn->node_page))
 423                dn->node_changed = true;
 424        return 0;
 425}
 426
 427/* Should keep dn->ofs_in_node unchanged */
 428int reserve_new_block(struct dnode_of_data *dn)
 429{
 430        unsigned int ofs_in_node = dn->ofs_in_node;
 431        int ret;
 432
 433        ret = reserve_new_blocks(dn, 1);
 434        dn->ofs_in_node = ofs_in_node;
 435        return ret;
 436}
 437
 438int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
 439{
 440        bool need_put = dn->inode_page ? false : true;
 441        int err;
 442
 443        err = get_dnode_of_data(dn, index, ALLOC_NODE);
 444        if (err)
 445                return err;
 446
 447        if (dn->data_blkaddr == NULL_ADDR)
 448                err = reserve_new_block(dn);
 449        if (err || need_put)
 450                f2fs_put_dnode(dn);
 451        return err;
 452}
 453
 454int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
 455{
 456        struct extent_info ei;
 457        struct inode *inode = dn->inode;
 458
 459        if (f2fs_lookup_extent_cache(inode, index, &ei)) {
 460                dn->data_blkaddr = ei.blk + index - ei.fofs;
 461                return 0;
 462        }
 463
 464        return f2fs_reserve_block(dn, index);
 465}
 466
 467struct page *get_read_data_page(struct inode *inode, pgoff_t index,
 468                                                int op_flags, bool for_write)
 469{
 470        struct address_space *mapping = inode->i_mapping;
 471        struct dnode_of_data dn;
 472        struct page *page;
 473        struct extent_info ei;
 474        int err;
 475        struct f2fs_io_info fio = {
 476                .sbi = F2FS_I_SB(inode),
 477                .type = DATA,
 478                .op = REQ_OP_READ,
 479                .op_flags = op_flags,
 480                .encrypted_page = NULL,
 481        };
 482
 483        if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
 484                return read_mapping_page(mapping, index, NULL);
 485
 486        page = f2fs_grab_cache_page(mapping, index, for_write);
 487        if (!page)
 488                return ERR_PTR(-ENOMEM);
 489
 490        if (f2fs_lookup_extent_cache(inode, index, &ei)) {
 491                dn.data_blkaddr = ei.blk + index - ei.fofs;
 492                goto got_it;
 493        }
 494
 495        set_new_dnode(&dn, inode, NULL, NULL, 0);
 496        err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
 497        if (err)
 498                goto put_err;
 499        f2fs_put_dnode(&dn);
 500
 501        if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
 502                err = -ENOENT;
 503                goto put_err;
 504        }
 505got_it:
 506        if (PageUptodate(page)) {
 507                unlock_page(page);
 508                return page;
 509        }
 510
 511        /*
 512         * A new dentry page is allocated but not able to be written, since its
 513         * new inode page couldn't be allocated due to -ENOSPC.
 514         * In such the case, its blkaddr can be remained as NEW_ADDR.
 515         * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
 516         */
 517        if (dn.data_blkaddr == NEW_ADDR) {
 518                zero_user_segment(page, 0, PAGE_SIZE);
 519                if (!PageUptodate(page))
 520                        SetPageUptodate(page);
 521                unlock_page(page);
 522                return page;
 523        }
 524
 525        fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
 526        fio.page = page;
 527        err = f2fs_submit_page_bio(&fio);
 528        if (err)
 529                goto put_err;
 530        return page;
 531
 532put_err:
 533        f2fs_put_page(page, 1);
 534        return ERR_PTR(err);
 535}
 536
 537struct page *find_data_page(struct inode *inode, pgoff_t index)
 538{
 539        struct address_space *mapping = inode->i_mapping;
 540        struct page *page;
 541
 542        page = find_get_page(mapping, index);
 543        if (page && PageUptodate(page))
 544                return page;
 545        f2fs_put_page(page, 0);
 546
 547        page = get_read_data_page(inode, index, 0, false);
 548        if (IS_ERR(page))
 549                return page;
 550
 551        if (PageUptodate(page))
 552                return page;
 553
 554        wait_on_page_locked(page);
 555        if (unlikely(!PageUptodate(page))) {
 556                f2fs_put_page(page, 0);
 557                return ERR_PTR(-EIO);
 558        }
 559        return page;
 560}
 561
 562/*
 563 * If it tries to access a hole, return an error.
 564 * Because, the callers, functions in dir.c and GC, should be able to know
 565 * whether this page exists or not.
 566 */
 567struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
 568                                                        bool for_write)
 569{
 570        struct address_space *mapping = inode->i_mapping;
 571        struct page *page;
 572repeat:
 573        page = get_read_data_page(inode, index, 0, for_write);
 574        if (IS_ERR(page))
 575                return page;
 576
 577        /* wait for read completion */
 578        lock_page(page);
 579        if (unlikely(page->mapping != mapping)) {
 580                f2fs_put_page(page, 1);
 581                goto repeat;
 582        }
 583        if (unlikely(!PageUptodate(page))) {
 584                f2fs_put_page(page, 1);
 585                return ERR_PTR(-EIO);
 586        }
 587        return page;
 588}
 589
 590/*
 591 * Caller ensures that this data page is never allocated.
 592 * A new zero-filled data page is allocated in the page cache.
 593 *
 594 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
 595 * f2fs_unlock_op().
 596 * Note that, ipage is set only by make_empty_dir, and if any error occur,
 597 * ipage should be released by this function.
 598 */
 599struct page *get_new_data_page(struct inode *inode,
 600                struct page *ipage, pgoff_t index, bool new_i_size)
 601{
 602        struct address_space *mapping = inode->i_mapping;
 603        struct page *page;
 604        struct dnode_of_data dn;
 605        int err;
 606
 607        page = f2fs_grab_cache_page(mapping, index, true);
 608        if (!page) {
 609                /*
 610                 * before exiting, we should make sure ipage will be released
 611                 * if any error occur.
 612                 */
 613                f2fs_put_page(ipage, 1);
 614                return ERR_PTR(-ENOMEM);
 615        }
 616
 617        set_new_dnode(&dn, inode, ipage, NULL, 0);
 618        err = f2fs_reserve_block(&dn, index);
 619        if (err) {
 620                f2fs_put_page(page, 1);
 621                return ERR_PTR(err);
 622        }
 623        if (!ipage)
 624                f2fs_put_dnode(&dn);
 625
 626        if (PageUptodate(page))
 627                goto got_it;
 628
 629        if (dn.data_blkaddr == NEW_ADDR) {
 630                zero_user_segment(page, 0, PAGE_SIZE);
 631                if (!PageUptodate(page))
 632                        SetPageUptodate(page);
 633        } else {
 634                f2fs_put_page(page, 1);
 635
 636                /* if ipage exists, blkaddr should be NEW_ADDR */
 637                f2fs_bug_on(F2FS_I_SB(inode), ipage);
 638                page = get_lock_data_page(inode, index, true);
 639                if (IS_ERR(page))
 640                        return page;
 641        }
 642got_it:
 643        if (new_i_size && i_size_read(inode) <
 644                                ((loff_t)(index + 1) << PAGE_SHIFT))
 645                f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
 646        return page;
 647}
 648
 649static int __allocate_data_block(struct dnode_of_data *dn)
 650{
 651        struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 652        struct f2fs_summary sum;
 653        struct node_info ni;
 654        pgoff_t fofs;
 655        blkcnt_t count = 1;
 656
 657        if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
 658                return -EPERM;
 659
 660        dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
 661        if (dn->data_blkaddr == NEW_ADDR)
 662                goto alloc;
 663
 664        if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
 665                return -ENOSPC;
 666
 667alloc:
 668        get_node_info(sbi, dn->nid, &ni);
 669        set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
 670
 671        allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
 672                                                &sum, CURSEG_WARM_DATA);
 673        set_data_blkaddr(dn);
 674
 675        /* update i_size */
 676        fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
 677                                                        dn->ofs_in_node;
 678        if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
 679                f2fs_i_size_write(dn->inode,
 680                                ((loff_t)(fofs + 1) << PAGE_SHIFT));
 681        return 0;
 682}
 683
 684static inline bool __force_buffered_io(struct inode *inode, int rw)
 685{
 686        return ((f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) ||
 687                        (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
 688                        F2FS_I_SB(inode)->s_ndevs);
 689}
 690
 691int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
 692{
 693        struct inode *inode = file_inode(iocb->ki_filp);
 694        struct f2fs_map_blocks map;
 695        int err = 0;
 696
 697        map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
 698        map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
 699        if (map.m_len > map.m_lblk)
 700                map.m_len -= map.m_lblk;
 701        else
 702                map.m_len = 0;
 703
 704        map.m_next_pgofs = NULL;
 705
 706        if (iocb->ki_flags & IOCB_DIRECT) {
 707                err = f2fs_convert_inline_inode(inode);
 708                if (err)
 709                        return err;
 710                return f2fs_map_blocks(inode, &map, 1,
 711                        __force_buffered_io(inode, WRITE) ?
 712                                F2FS_GET_BLOCK_PRE_AIO :
 713                                F2FS_GET_BLOCK_PRE_DIO);
 714        }
 715        if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
 716                err = f2fs_convert_inline_inode(inode);
 717                if (err)
 718                        return err;
 719        }
 720        if (!f2fs_has_inline_data(inode))
 721                return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
 722        return err;
 723}
 724
 725/*
 726 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
 727 * f2fs_map_blocks structure.
 728 * If original data blocks are allocated, then give them to blockdev.
 729 * Otherwise,
 730 *     a. preallocate requested block addresses
 731 *     b. do not use extent cache for better performance
 732 *     c. give the block addresses to blockdev
 733 */
 734int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
 735                                                int create, int flag)
 736{
 737        unsigned int maxblocks = map->m_len;
 738        struct dnode_of_data dn;
 739        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 740        int mode = create ? ALLOC_NODE : LOOKUP_NODE;
 741        pgoff_t pgofs, end_offset, end;
 742        int err = 0, ofs = 1;
 743        unsigned int ofs_in_node, last_ofs_in_node;
 744        blkcnt_t prealloc;
 745        struct extent_info ei;
 746        block_t blkaddr;
 747
 748        if (!maxblocks)
 749                return 0;
 750
 751        map->m_len = 0;
 752        map->m_flags = 0;
 753
 754        /* it only supports block size == page size */
 755        pgofs = (pgoff_t)map->m_lblk;
 756        end = pgofs + maxblocks;
 757
 758        if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
 759                map->m_pblk = ei.blk + pgofs - ei.fofs;
 760                map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
 761                map->m_flags = F2FS_MAP_MAPPED;
 762                goto out;
 763        }
 764
 765next_dnode:
 766        if (create)
 767                f2fs_lock_op(sbi);
 768
 769        /* When reading holes, we need its node page */
 770        set_new_dnode(&dn, inode, NULL, NULL, 0);
 771        err = get_dnode_of_data(&dn, pgofs, mode);
 772        if (err) {
 773                if (flag == F2FS_GET_BLOCK_BMAP)
 774                        map->m_pblk = 0;
 775                if (err == -ENOENT) {
 776                        err = 0;
 777                        if (map->m_next_pgofs)
 778                                *map->m_next_pgofs =
 779                                        get_next_page_offset(&dn, pgofs);
 780                }
 781                goto unlock_out;
 782        }
 783
 784        prealloc = 0;
 785        last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
 786        end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
 787
 788next_block:
 789        blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
 790
 791        if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
 792                if (create) {
 793                        if (unlikely(f2fs_cp_error(sbi))) {
 794                                err = -EIO;
 795                                goto sync_out;
 796                        }
 797                        if (flag == F2FS_GET_BLOCK_PRE_AIO) {
 798                                if (blkaddr == NULL_ADDR) {
 799                                        prealloc++;
 800                                        last_ofs_in_node = dn.ofs_in_node;
 801                                }
 802                        } else {
 803                                err = __allocate_data_block(&dn);
 804                                if (!err)
 805                                        set_inode_flag(inode, FI_APPEND_WRITE);
 806                        }
 807                        if (err)
 808                                goto sync_out;
 809                        map->m_flags = F2FS_MAP_NEW;
 810                        blkaddr = dn.data_blkaddr;
 811                } else {
 812                        if (flag == F2FS_GET_BLOCK_BMAP) {
 813                                map->m_pblk = 0;
 814                                goto sync_out;
 815                        }
 816                        if (flag == F2FS_GET_BLOCK_FIEMAP &&
 817                                                blkaddr == NULL_ADDR) {
 818                                if (map->m_next_pgofs)
 819                                        *map->m_next_pgofs = pgofs + 1;
 820                        }
 821                        if (flag != F2FS_GET_BLOCK_FIEMAP ||
 822                                                blkaddr != NEW_ADDR)
 823                                goto sync_out;
 824                }
 825        }
 826
 827        if (flag == F2FS_GET_BLOCK_PRE_AIO)
 828                goto skip;
 829
 830        if (map->m_len == 0) {
 831                /* preallocated unwritten block should be mapped for fiemap. */
 832                if (blkaddr == NEW_ADDR)
 833                        map->m_flags |= F2FS_MAP_UNWRITTEN;
 834                map->m_flags |= F2FS_MAP_MAPPED;
 835
 836                map->m_pblk = blkaddr;
 837                map->m_len = 1;
 838        } else if ((map->m_pblk != NEW_ADDR &&
 839                        blkaddr == (map->m_pblk + ofs)) ||
 840                        (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
 841                        flag == F2FS_GET_BLOCK_PRE_DIO) {
 842                ofs++;
 843                map->m_len++;
 844        } else {
 845                goto sync_out;
 846        }
 847
 848skip:
 849        dn.ofs_in_node++;
 850        pgofs++;
 851
 852        /* preallocate blocks in batch for one dnode page */
 853        if (flag == F2FS_GET_BLOCK_PRE_AIO &&
 854                        (pgofs == end || dn.ofs_in_node == end_offset)) {
 855
 856                dn.ofs_in_node = ofs_in_node;
 857                err = reserve_new_blocks(&dn, prealloc);
 858                if (err)
 859                        goto sync_out;
 860
 861                map->m_len += dn.ofs_in_node - ofs_in_node;
 862                if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
 863                        err = -ENOSPC;
 864                        goto sync_out;
 865                }
 866                dn.ofs_in_node = end_offset;
 867        }
 868
 869        if (pgofs >= end)
 870                goto sync_out;
 871        else if (dn.ofs_in_node < end_offset)
 872                goto next_block;
 873
 874        f2fs_put_dnode(&dn);
 875
 876        if (create) {
 877                f2fs_unlock_op(sbi);
 878                f2fs_balance_fs(sbi, dn.node_changed);
 879        }
 880        goto next_dnode;
 881
 882sync_out:
 883        f2fs_put_dnode(&dn);
 884unlock_out:
 885        if (create) {
 886                f2fs_unlock_op(sbi);
 887                f2fs_balance_fs(sbi, dn.node_changed);
 888        }
 889out:
 890        trace_f2fs_map_blocks(inode, map, err);
 891        return err;
 892}
 893
 894static int __get_data_block(struct inode *inode, sector_t iblock,
 895                        struct buffer_head *bh, int create, int flag,
 896                        pgoff_t *next_pgofs)
 897{
 898        struct f2fs_map_blocks map;
 899        int err;
 900
 901        map.m_lblk = iblock;
 902        map.m_len = bh->b_size >> inode->i_blkbits;
 903        map.m_next_pgofs = next_pgofs;
 904
 905        err = f2fs_map_blocks(inode, &map, create, flag);
 906        if (!err) {
 907                map_bh(bh, inode->i_sb, map.m_pblk);
 908                bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
 909                bh->b_size = map.m_len << inode->i_blkbits;
 910        }
 911        return err;
 912}
 913
 914static int get_data_block(struct inode *inode, sector_t iblock,
 915                        struct buffer_head *bh_result, int create, int flag,
 916                        pgoff_t *next_pgofs)
 917{
 918        return __get_data_block(inode, iblock, bh_result, create,
 919                                                        flag, next_pgofs);
 920}
 921
 922static int get_data_block_dio(struct inode *inode, sector_t iblock,
 923                        struct buffer_head *bh_result, int create)
 924{
 925        return __get_data_block(inode, iblock, bh_result, create,
 926                                                F2FS_GET_BLOCK_DIO, NULL);
 927}
 928
 929static int get_data_block_bmap(struct inode *inode, sector_t iblock,
 930                        struct buffer_head *bh_result, int create)
 931{
 932        /* Block number less than F2FS MAX BLOCKS */
 933        if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
 934                return -EFBIG;
 935
 936        return __get_data_block(inode, iblock, bh_result, create,
 937                                                F2FS_GET_BLOCK_BMAP, NULL);
 938}
 939
 940static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
 941{
 942        return (offset >> inode->i_blkbits);
 943}
 944
 945static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
 946{
 947        return (blk << inode->i_blkbits);
 948}
 949
 950int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
 951                u64 start, u64 len)
 952{
 953        struct buffer_head map_bh;
 954        sector_t start_blk, last_blk;
 955        pgoff_t next_pgofs;
 956        u64 logical = 0, phys = 0, size = 0;
 957        u32 flags = 0;
 958        int ret = 0;
 959
 960        ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
 961        if (ret)
 962                return ret;
 963
 964        if (f2fs_has_inline_data(inode)) {
 965                ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
 966                if (ret != -EAGAIN)
 967                        return ret;
 968        }
 969
 970        inode_lock(inode);
 971
 972        if (logical_to_blk(inode, len) == 0)
 973                len = blk_to_logical(inode, 1);
 974
 975        start_blk = logical_to_blk(inode, start);
 976        last_blk = logical_to_blk(inode, start + len - 1);
 977
 978next:
 979        memset(&map_bh, 0, sizeof(struct buffer_head));
 980        map_bh.b_size = len;
 981
 982        ret = get_data_block(inode, start_blk, &map_bh, 0,
 983                                        F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
 984        if (ret)
 985                goto out;
 986
 987        /* HOLE */
 988        if (!buffer_mapped(&map_bh)) {
 989                start_blk = next_pgofs;
 990
 991                if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
 992                                        F2FS_I_SB(inode)->max_file_blocks))
 993                        goto prep_next;
 994
 995                flags |= FIEMAP_EXTENT_LAST;
 996        }
 997
 998        if (size) {
 999                if (f2fs_encrypted_inode(inode))
1000                        flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1001
1002                ret = fiemap_fill_next_extent(fieinfo, logical,
1003                                phys, size, flags);
1004        }
1005
1006        if (start_blk > last_blk || ret)
1007                goto out;
1008
1009        logical = blk_to_logical(inode, start_blk);
1010        phys = blk_to_logical(inode, map_bh.b_blocknr);
1011        size = map_bh.b_size;
1012        flags = 0;
1013        if (buffer_unwritten(&map_bh))
1014                flags = FIEMAP_EXTENT_UNWRITTEN;
1015
1016        start_blk += logical_to_blk(inode, size);
1017
1018prep_next:
1019        cond_resched();
1020        if (fatal_signal_pending(current))
1021                ret = -EINTR;
1022        else
1023                goto next;
1024out:
1025        if (ret == 1)
1026                ret = 0;
1027
1028        inode_unlock(inode);
1029        return ret;
1030}
1031
1032static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
1033                                 unsigned nr_pages)
1034{
1035        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1036        struct fscrypt_ctx *ctx = NULL;
1037        struct bio *bio;
1038
1039        if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1040                ctx = fscrypt_get_ctx(inode, GFP_NOFS);
1041                if (IS_ERR(ctx))
1042                        return ERR_CAST(ctx);
1043
1044                /* wait the page to be moved by cleaning */
1045                f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1046        }
1047
1048        bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
1049        if (!bio) {
1050                if (ctx)
1051                        fscrypt_release_ctx(ctx);
1052                return ERR_PTR(-ENOMEM);
1053        }
1054        f2fs_target_device(sbi, blkaddr, bio);
1055        bio->bi_end_io = f2fs_read_end_io;
1056        bio->bi_private = ctx;
1057
1058        return bio;
1059}
1060
1061/*
1062 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1063 * Major change was from block_size == page_size in f2fs by default.
1064 */
1065static int f2fs_mpage_readpages(struct address_space *mapping,
1066                        struct list_head *pages, struct page *page,
1067                        unsigned nr_pages)
1068{
1069        struct bio *bio = NULL;
1070        unsigned page_idx;
1071        sector_t last_block_in_bio = 0;
1072        struct inode *inode = mapping->host;
1073        const unsigned blkbits = inode->i_blkbits;
1074        const unsigned blocksize = 1 << blkbits;
1075        sector_t block_in_file;
1076        sector_t last_block;
1077        sector_t last_block_in_file;
1078        sector_t block_nr;
1079        struct f2fs_map_blocks map;
1080
1081        map.m_pblk = 0;
1082        map.m_lblk = 0;
1083        map.m_len = 0;
1084        map.m_flags = 0;
1085        map.m_next_pgofs = NULL;
1086
1087        for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1088
1089                prefetchw(&page->flags);
1090                if (pages) {
1091                        page = list_entry(pages->prev, struct page, lru);
1092                        list_del(&page->lru);
1093                        if (add_to_page_cache_lru(page, mapping,
1094                                                  page->index,
1095                                                  readahead_gfp_mask(mapping)))
1096                                goto next_page;
1097                }
1098
1099                block_in_file = (sector_t)page->index;
1100                last_block = block_in_file + nr_pages;
1101                last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1102                                                                blkbits;
1103                if (last_block > last_block_in_file)
1104                        last_block = last_block_in_file;
1105
1106                /*
1107                 * Map blocks using the previous result first.
1108                 */
1109                if ((map.m_flags & F2FS_MAP_MAPPED) &&
1110                                block_in_file > map.m_lblk &&
1111                                block_in_file < (map.m_lblk + map.m_len))
1112                        goto got_it;
1113
1114                /*
1115                 * Then do more f2fs_map_blocks() calls until we are
1116                 * done with this page.
1117                 */
1118                map.m_flags = 0;
1119
1120                if (block_in_file < last_block) {
1121                        map.m_lblk = block_in_file;
1122                        map.m_len = last_block - block_in_file;
1123
1124                        if (f2fs_map_blocks(inode, &map, 0,
1125                                                F2FS_GET_BLOCK_READ))
1126                                goto set_error_page;
1127                }
1128got_it:
1129                if ((map.m_flags & F2FS_MAP_MAPPED)) {
1130                        block_nr = map.m_pblk + block_in_file - map.m_lblk;
1131                        SetPageMappedToDisk(page);
1132
1133                        if (!PageUptodate(page) && !cleancache_get_page(page)) {
1134                                SetPageUptodate(page);
1135                                goto confused;
1136                        }
1137                } else {
1138                        zero_user_segment(page, 0, PAGE_SIZE);
1139                        if (!PageUptodate(page))
1140                                SetPageUptodate(page);
1141                        unlock_page(page);
1142                        goto next_page;
1143                }
1144
1145                /*
1146                 * This page will go to BIO.  Do we need to send this
1147                 * BIO off first?
1148                 */
1149                if (bio && (last_block_in_bio != block_nr - 1 ||
1150                        !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1151submit_and_realloc:
1152                        __submit_bio(F2FS_I_SB(inode), bio, DATA);
1153                        bio = NULL;
1154                }
1155                if (bio == NULL) {
1156                        bio = f2fs_grab_bio(inode, block_nr, nr_pages);
1157                        if (IS_ERR(bio)) {
1158                                bio = NULL;
1159                                goto set_error_page;
1160                        }
1161                        bio_set_op_attrs(bio, REQ_OP_READ, 0);
1162                }
1163
1164                if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1165                        goto submit_and_realloc;
1166
1167                last_block_in_bio = block_nr;
1168                goto next_page;
1169set_error_page:
1170                SetPageError(page);
1171                zero_user_segment(page, 0, PAGE_SIZE);
1172                unlock_page(page);
1173                goto next_page;
1174confused:
1175                if (bio) {
1176                        __submit_bio(F2FS_I_SB(inode), bio, DATA);
1177                        bio = NULL;
1178                }
1179                unlock_page(page);
1180next_page:
1181                if (pages)
1182                        put_page(page);
1183        }
1184        BUG_ON(pages && !list_empty(pages));
1185        if (bio)
1186                __submit_bio(F2FS_I_SB(inode), bio, DATA);
1187        return 0;
1188}
1189
1190static int f2fs_read_data_page(struct file *file, struct page *page)
1191{
1192        struct inode *inode = page->mapping->host;
1193        int ret = -EAGAIN;
1194
1195        trace_f2fs_readpage(page, DATA);
1196
1197        /* If the file has inline data, try to read it directly */
1198        if (f2fs_has_inline_data(inode))
1199                ret = f2fs_read_inline_data(inode, page);
1200        if (ret == -EAGAIN)
1201                ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1202        return ret;
1203}
1204
1205static int f2fs_read_data_pages(struct file *file,
1206                        struct address_space *mapping,
1207                        struct list_head *pages, unsigned nr_pages)
1208{
1209        struct inode *inode = file->f_mapping->host;
1210        struct page *page = list_entry(pages->prev, struct page, lru);
1211
1212        trace_f2fs_readpages(inode, page, nr_pages);
1213
1214        /* If the file has inline data, skip readpages */
1215        if (f2fs_has_inline_data(inode))
1216                return 0;
1217
1218        return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1219}
1220
1221int do_write_data_page(struct f2fs_io_info *fio)
1222{
1223        struct page *page = fio->page;
1224        struct inode *inode = page->mapping->host;
1225        struct dnode_of_data dn;
1226        int err = 0;
1227
1228        set_new_dnode(&dn, inode, NULL, NULL, 0);
1229        err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1230        if (err)
1231                return err;
1232
1233        fio->old_blkaddr = dn.data_blkaddr;
1234
1235        /* This page is already truncated */
1236        if (fio->old_blkaddr == NULL_ADDR) {
1237                ClearPageUptodate(page);
1238                goto out_writepage;
1239        }
1240
1241        if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1242                gfp_t gfp_flags = GFP_NOFS;
1243
1244                /* wait for GCed encrypted page writeback */
1245                f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1246                                                        fio->old_blkaddr);
1247retry_encrypt:
1248                fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1249                                                        PAGE_SIZE, 0,
1250                                                        fio->page->index,
1251                                                        gfp_flags);
1252                if (IS_ERR(fio->encrypted_page)) {
1253                        err = PTR_ERR(fio->encrypted_page);
1254                        if (err == -ENOMEM) {
1255                                /* flush pending ios and wait for a while */
1256                                f2fs_flush_merged_bios(F2FS_I_SB(inode));
1257                                congestion_wait(BLK_RW_ASYNC, HZ/50);
1258                                gfp_flags |= __GFP_NOFAIL;
1259                                err = 0;
1260                                goto retry_encrypt;
1261                        }
1262                        goto out_writepage;
1263                }
1264        }
1265
1266        set_page_writeback(page);
1267
1268        /*
1269         * If current allocation needs SSR,
1270         * it had better in-place writes for updated data.
1271         */
1272        if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1273                        !is_cold_data(page) &&
1274                        !IS_ATOMIC_WRITTEN_PAGE(page) &&
1275                        need_inplace_update(inode))) {
1276                rewrite_data_page(fio);
1277                set_inode_flag(inode, FI_UPDATE_WRITE);
1278                trace_f2fs_do_write_data_page(page, IPU);
1279        } else {
1280                write_data_page(&dn, fio);
1281                trace_f2fs_do_write_data_page(page, OPU);
1282                set_inode_flag(inode, FI_APPEND_WRITE);
1283                if (page->index == 0)
1284                        set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1285        }
1286out_writepage:
1287        f2fs_put_dnode(&dn);
1288        return err;
1289}
1290
1291static int f2fs_write_data_page(struct page *page,
1292                                        struct writeback_control *wbc)
1293{
1294        struct inode *inode = page->mapping->host;
1295        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1296        loff_t i_size = i_size_read(inode);
1297        const pgoff_t end_index = ((unsigned long long) i_size)
1298                                                        >> PAGE_SHIFT;
1299        loff_t psize = (page->index + 1) << PAGE_SHIFT;
1300        unsigned offset = 0;
1301        bool need_balance_fs = false;
1302        int err = 0;
1303        struct f2fs_io_info fio = {
1304                .sbi = sbi,
1305                .type = DATA,
1306                .op = REQ_OP_WRITE,
1307                .op_flags = wbc_to_write_flags(wbc),
1308                .page = page,
1309                .encrypted_page = NULL,
1310        };
1311
1312        trace_f2fs_writepage(page, DATA);
1313
1314        if (page->index < end_index)
1315                goto write;
1316
1317        /*
1318         * If the offset is out-of-range of file size,
1319         * this page does not have to be written to disk.
1320         */
1321        offset = i_size & (PAGE_SIZE - 1);
1322        if ((page->index >= end_index + 1) || !offset)
1323                goto out;
1324
1325        zero_user_segment(page, offset, PAGE_SIZE);
1326write:
1327        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1328                goto redirty_out;
1329        if (f2fs_is_drop_cache(inode))
1330                goto out;
1331        /* we should not write 0'th page having journal header */
1332        if (f2fs_is_volatile_file(inode) && (!page->index ||
1333                        (!wbc->for_reclaim &&
1334                        available_free_memory(sbi, BASE_CHECK))))
1335                goto redirty_out;
1336
1337        /* we should bypass data pages to proceed the kworkder jobs */
1338        if (unlikely(f2fs_cp_error(sbi))) {
1339                mapping_set_error(page->mapping, -EIO);
1340                goto out;
1341        }
1342
1343        /* Dentry blocks are controlled by checkpoint */
1344        if (S_ISDIR(inode->i_mode)) {
1345                err = do_write_data_page(&fio);
1346                goto done;
1347        }
1348
1349        if (!wbc->for_reclaim)
1350                need_balance_fs = true;
1351        else if (has_not_enough_free_secs(sbi, 0, 0))
1352                goto redirty_out;
1353
1354        err = -EAGAIN;
1355        f2fs_lock_op(sbi);
1356        if (f2fs_has_inline_data(inode))
1357                err = f2fs_write_inline_data(inode, page);
1358        if (err == -EAGAIN)
1359                err = do_write_data_page(&fio);
1360        if (F2FS_I(inode)->last_disk_size < psize)
1361                F2FS_I(inode)->last_disk_size = psize;
1362        f2fs_unlock_op(sbi);
1363done:
1364        if (err && err != -ENOENT)
1365                goto redirty_out;
1366
1367out:
1368        inode_dec_dirty_pages(inode);
1369        if (err)
1370                ClearPageUptodate(page);
1371
1372        if (wbc->for_reclaim) {
1373                f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
1374                remove_dirty_inode(inode);
1375        }
1376
1377        unlock_page(page);
1378        f2fs_balance_fs(sbi, need_balance_fs);
1379
1380        if (unlikely(f2fs_cp_error(sbi)))
1381                f2fs_submit_merged_bio(sbi, DATA, WRITE);
1382
1383        return 0;
1384
1385redirty_out:
1386        redirty_page_for_writepage(wbc, page);
1387        if (!err)
1388                return AOP_WRITEPAGE_ACTIVATE;
1389        unlock_page(page);
1390        return err;
1391}
1392
1393/*
1394 * This function was copied from write_cche_pages from mm/page-writeback.c.
1395 * The major change is making write step of cold data page separately from
1396 * warm/hot data page.
1397 */
1398static int f2fs_write_cache_pages(struct address_space *mapping,
1399                                        struct writeback_control *wbc)
1400{
1401        int ret = 0;
1402        int done = 0;
1403        struct pagevec pvec;
1404        int nr_pages;
1405        pgoff_t uninitialized_var(writeback_index);
1406        pgoff_t index;
1407        pgoff_t end;            /* Inclusive */
1408        pgoff_t done_index;
1409        int cycled;
1410        int range_whole = 0;
1411        int tag;
1412        int nwritten = 0;
1413
1414        pagevec_init(&pvec, 0);
1415
1416        if (wbc->range_cyclic) {
1417                writeback_index = mapping->writeback_index; /* prev offset */
1418                index = writeback_index;
1419                if (index == 0)
1420                        cycled = 1;
1421                else
1422                        cycled = 0;
1423                end = -1;
1424        } else {
1425                index = wbc->range_start >> PAGE_SHIFT;
1426                end = wbc->range_end >> PAGE_SHIFT;
1427                if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1428                        range_whole = 1;
1429                cycled = 1; /* ignore range_cyclic tests */
1430        }
1431        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1432                tag = PAGECACHE_TAG_TOWRITE;
1433        else
1434                tag = PAGECACHE_TAG_DIRTY;
1435retry:
1436        if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1437                tag_pages_for_writeback(mapping, index, end);
1438        done_index = index;
1439        while (!done && (index <= end)) {
1440                int i;
1441
1442                nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1443                              min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1444                if (nr_pages == 0)
1445                        break;
1446
1447                for (i = 0; i < nr_pages; i++) {
1448                        struct page *page = pvec.pages[i];
1449
1450                        if (page->index > end) {
1451                                done = 1;
1452                                break;
1453                        }
1454
1455                        done_index = page->index;
1456
1457                        lock_page(page);
1458
1459                        if (unlikely(page->mapping != mapping)) {
1460continue_unlock:
1461                                unlock_page(page);
1462                                continue;
1463                        }
1464
1465                        if (!PageDirty(page)) {
1466                                /* someone wrote it for us */
1467                                goto continue_unlock;
1468                        }
1469
1470                        if (PageWriteback(page)) {
1471                                if (wbc->sync_mode != WB_SYNC_NONE)
1472                                        f2fs_wait_on_page_writeback(page,
1473                                                                DATA, true);
1474                                else
1475                                        goto continue_unlock;
1476                        }
1477
1478                        BUG_ON(PageWriteback(page));
1479                        if (!clear_page_dirty_for_io(page))
1480                                goto continue_unlock;
1481
1482                        ret = mapping->a_ops->writepage(page, wbc);
1483                        if (unlikely(ret)) {
1484                                /*
1485                                 * keep nr_to_write, since vfs uses this to
1486                                 * get # of written pages.
1487                                 */
1488                                if (ret == AOP_WRITEPAGE_ACTIVATE) {
1489                                        unlock_page(page);
1490                                        ret = 0;
1491                                        continue;
1492                                }
1493                                done_index = page->index + 1;
1494                                done = 1;
1495                                break;
1496                        } else {
1497                                nwritten++;
1498                        }
1499
1500                        if (--wbc->nr_to_write <= 0 &&
1501                            wbc->sync_mode == WB_SYNC_NONE) {
1502                                done = 1;
1503                                break;
1504                        }
1505                }
1506                pagevec_release(&pvec);
1507                cond_resched();
1508        }
1509
1510        if (!cycled && !done) {
1511                cycled = 1;
1512                index = 0;
1513                end = writeback_index - 1;
1514                goto retry;
1515        }
1516        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1517                mapping->writeback_index = done_index;
1518
1519        if (nwritten)
1520                f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host,
1521                                                        NULL, 0, DATA, WRITE);
1522
1523        return ret;
1524}
1525
1526static int f2fs_write_data_pages(struct address_space *mapping,
1527                            struct writeback_control *wbc)
1528{
1529        struct inode *inode = mapping->host;
1530        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1531        struct blk_plug plug;
1532        int ret;
1533
1534        /* deal with chardevs and other special file */
1535        if (!mapping->a_ops->writepage)
1536                return 0;
1537
1538        /* skip writing if there is no dirty page in this inode */
1539        if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1540                return 0;
1541
1542        if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1543                        get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1544                        available_free_memory(sbi, DIRTY_DENTS))
1545                goto skip_write;
1546
1547        /* skip writing during file defragment */
1548        if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1549                goto skip_write;
1550
1551        /* during POR, we don't need to trigger writepage at all. */
1552        if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1553                goto skip_write;
1554
1555        trace_f2fs_writepages(mapping->host, wbc, DATA);
1556
1557        blk_start_plug(&plug);
1558        ret = f2fs_write_cache_pages(mapping, wbc);
1559        blk_finish_plug(&plug);
1560        /*
1561         * if some pages were truncated, we cannot guarantee its mapping->host
1562         * to detect pending bios.
1563         */
1564
1565        remove_dirty_inode(inode);
1566        return ret;
1567
1568skip_write:
1569        wbc->pages_skipped += get_dirty_pages(inode);
1570        trace_f2fs_writepages(mapping->host, wbc, DATA);
1571        return 0;
1572}
1573
1574static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1575{
1576        struct inode *inode = mapping->host;
1577        loff_t i_size = i_size_read(inode);
1578
1579        if (to > i_size) {
1580                truncate_pagecache(inode, i_size);
1581                truncate_blocks(inode, i_size, true);
1582        }
1583}
1584
1585static int prepare_write_begin(struct f2fs_sb_info *sbi,
1586                        struct page *page, loff_t pos, unsigned len,
1587                        block_t *blk_addr, bool *node_changed)
1588{
1589        struct inode *inode = page->mapping->host;
1590        pgoff_t index = page->index;
1591        struct dnode_of_data dn;
1592        struct page *ipage;
1593        bool locked = false;
1594        struct extent_info ei;
1595        int err = 0;
1596
1597        /*
1598         * we already allocated all the blocks, so we don't need to get
1599         * the block addresses when there is no need to fill the page.
1600         */
1601        if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE)
1602                return 0;
1603
1604        if (f2fs_has_inline_data(inode) ||
1605                        (pos & PAGE_MASK) >= i_size_read(inode)) {
1606                f2fs_lock_op(sbi);
1607                locked = true;
1608        }
1609restart:
1610        /* check inline_data */
1611        ipage = get_node_page(sbi, inode->i_ino);
1612        if (IS_ERR(ipage)) {
1613                err = PTR_ERR(ipage);
1614                goto unlock_out;
1615        }
1616
1617        set_new_dnode(&dn, inode, ipage, ipage, 0);
1618
1619        if (f2fs_has_inline_data(inode)) {
1620                if (pos + len <= MAX_INLINE_DATA) {
1621                        read_inline_data(page, ipage);
1622                        set_inode_flag(inode, FI_DATA_EXIST);
1623                        if (inode->i_nlink)
1624                                set_inline_node(ipage);
1625                } else {
1626                        err = f2fs_convert_inline_page(&dn, page);
1627                        if (err)
1628                                goto out;
1629                        if (dn.data_blkaddr == NULL_ADDR)
1630                                err = f2fs_get_block(&dn, index);
1631                }
1632        } else if (locked) {
1633                err = f2fs_get_block(&dn, index);
1634        } else {
1635                if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1636                        dn.data_blkaddr = ei.blk + index - ei.fofs;
1637                } else {
1638                        /* hole case */
1639                        err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1640                        if (err || dn.data_blkaddr == NULL_ADDR) {
1641                                f2fs_put_dnode(&dn);
1642                                f2fs_lock_op(sbi);
1643                                locked = true;
1644                                goto restart;
1645                        }
1646                }
1647        }
1648
1649        /* convert_inline_page can make node_changed */
1650        *blk_addr = dn.data_blkaddr;
1651        *node_changed = dn.node_changed;
1652out:
1653        f2fs_put_dnode(&dn);
1654unlock_out:
1655        if (locked)
1656                f2fs_unlock_op(sbi);
1657        return err;
1658}
1659
1660static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1661                loff_t pos, unsigned len, unsigned flags,
1662                struct page **pagep, void **fsdata)
1663{
1664        struct inode *inode = mapping->host;
1665        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1666        struct page *page = NULL;
1667        pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1668        bool need_balance = false;
1669        block_t blkaddr = NULL_ADDR;
1670        int err = 0;
1671
1672        trace_f2fs_write_begin(inode, pos, len, flags);
1673
1674        /*
1675         * We should check this at this moment to avoid deadlock on inode page
1676         * and #0 page. The locking rule for inline_data conversion should be:
1677         * lock_page(page #0) -> lock_page(inode_page)
1678         */
1679        if (index != 0) {
1680                err = f2fs_convert_inline_inode(inode);
1681                if (err)
1682                        goto fail;
1683        }
1684repeat:
1685        page = grab_cache_page_write_begin(mapping, index, flags);
1686        if (!page) {
1687                err = -ENOMEM;
1688                goto fail;
1689        }
1690
1691        *pagep = page;
1692
1693        err = prepare_write_begin(sbi, page, pos, len,
1694                                        &blkaddr, &need_balance);
1695        if (err)
1696                goto fail;
1697
1698        if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
1699                unlock_page(page);
1700                f2fs_balance_fs(sbi, true);
1701                lock_page(page);
1702                if (page->mapping != mapping) {
1703                        /* The page got truncated from under us */
1704                        f2fs_put_page(page, 1);
1705                        goto repeat;
1706                }
1707        }
1708
1709        f2fs_wait_on_page_writeback(page, DATA, false);
1710
1711        /* wait for GCed encrypted page writeback */
1712        if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1713                f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1714
1715        if (len == PAGE_SIZE || PageUptodate(page))
1716                return 0;
1717
1718        if (blkaddr == NEW_ADDR) {
1719                zero_user_segment(page, 0, PAGE_SIZE);
1720                SetPageUptodate(page);
1721        } else {
1722                struct bio *bio;
1723
1724                bio = f2fs_grab_bio(inode, blkaddr, 1);
1725                if (IS_ERR(bio)) {
1726                        err = PTR_ERR(bio);
1727                        goto fail;
1728                }
1729                bio->bi_opf = REQ_OP_READ;
1730                if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1731                        bio_put(bio);
1732                        err = -EFAULT;
1733                        goto fail;
1734                }
1735
1736                __submit_bio(sbi, bio, DATA);
1737
1738                lock_page(page);
1739                if (unlikely(page->mapping != mapping)) {
1740                        f2fs_put_page(page, 1);
1741                        goto repeat;
1742                }
1743                if (unlikely(!PageUptodate(page))) {
1744                        err = -EIO;
1745                        goto fail;
1746                }
1747        }
1748        return 0;
1749
1750fail:
1751        f2fs_put_page(page, 1);
1752        f2fs_write_failed(mapping, pos + len);
1753        return err;
1754}
1755
1756static int f2fs_write_end(struct file *file,
1757                        struct address_space *mapping,
1758                        loff_t pos, unsigned len, unsigned copied,
1759                        struct page *page, void *fsdata)
1760{
1761        struct inode *inode = page->mapping->host;
1762
1763        trace_f2fs_write_end(inode, pos, len, copied);
1764
1765        /*
1766         * This should be come from len == PAGE_SIZE, and we expect copied
1767         * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
1768         * let generic_perform_write() try to copy data again through copied=0.
1769         */
1770        if (!PageUptodate(page)) {
1771                if (unlikely(copied != PAGE_SIZE))
1772                        copied = 0;
1773                else
1774                        SetPageUptodate(page);
1775        }
1776        if (!copied)
1777                goto unlock_out;
1778
1779        set_page_dirty(page);
1780
1781        if (pos + copied > i_size_read(inode))
1782                f2fs_i_size_write(inode, pos + copied);
1783unlock_out:
1784        f2fs_put_page(page, 1);
1785        f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1786        return copied;
1787}
1788
1789static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1790                           loff_t offset)
1791{
1792        unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1793
1794        if (offset & blocksize_mask)
1795                return -EINVAL;
1796
1797        if (iov_iter_alignment(iter) & blocksize_mask)
1798                return -EINVAL;
1799
1800        return 0;
1801}
1802
1803static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1804{
1805        struct address_space *mapping = iocb->ki_filp->f_mapping;
1806        struct inode *inode = mapping->host;
1807        size_t count = iov_iter_count(iter);
1808        loff_t offset = iocb->ki_pos;
1809        int rw = iov_iter_rw(iter);
1810        int err;
1811
1812        err = check_direct_IO(inode, iter, offset);
1813        if (err)
1814                return err;
1815
1816        if (__force_buffered_io(inode, rw))
1817                return 0;
1818
1819        trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1820
1821        down_read(&F2FS_I(inode)->dio_rwsem[rw]);
1822        err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
1823        up_read(&F2FS_I(inode)->dio_rwsem[rw]);
1824
1825        if (rw == WRITE) {
1826                if (err > 0)
1827                        set_inode_flag(inode, FI_UPDATE_WRITE);
1828                else if (err < 0)
1829                        f2fs_write_failed(mapping, offset + count);
1830        }
1831
1832        trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1833
1834        return err;
1835}
1836
1837void f2fs_invalidate_page(struct page *page, unsigned int offset,
1838                                                        unsigned int length)
1839{
1840        struct inode *inode = page->mapping->host;
1841        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1842
1843        if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1844                (offset % PAGE_SIZE || length != PAGE_SIZE))
1845                return;
1846
1847        if (PageDirty(page)) {
1848                if (inode->i_ino == F2FS_META_INO(sbi)) {
1849                        dec_page_count(sbi, F2FS_DIRTY_META);
1850                } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
1851                        dec_page_count(sbi, F2FS_DIRTY_NODES);
1852                } else {
1853                        inode_dec_dirty_pages(inode);
1854                        remove_dirty_inode(inode);
1855                }
1856        }
1857
1858        /* This is atomic written page, keep Private */
1859        if (IS_ATOMIC_WRITTEN_PAGE(page))
1860                return;
1861
1862        set_page_private(page, 0);
1863        ClearPagePrivate(page);
1864}
1865
1866int f2fs_release_page(struct page *page, gfp_t wait)
1867{
1868        /* If this is dirty page, keep PagePrivate */
1869        if (PageDirty(page))
1870                return 0;
1871
1872        /* This is atomic written page, keep Private */
1873        if (IS_ATOMIC_WRITTEN_PAGE(page))
1874                return 0;
1875
1876        set_page_private(page, 0);
1877        ClearPagePrivate(page);
1878        return 1;
1879}
1880
1881/*
1882 * This was copied from __set_page_dirty_buffers which gives higher performance
1883 * in very high speed storages. (e.g., pmem)
1884 */
1885void f2fs_set_page_dirty_nobuffers(struct page *page)
1886{
1887        struct address_space *mapping = page->mapping;
1888        unsigned long flags;
1889
1890        if (unlikely(!mapping))
1891                return;
1892
1893        spin_lock(&mapping->private_lock);
1894        lock_page_memcg(page);
1895        SetPageDirty(page);
1896        spin_unlock(&mapping->private_lock);
1897
1898        spin_lock_irqsave(&mapping->tree_lock, flags);
1899        WARN_ON_ONCE(!PageUptodate(page));
1900        account_page_dirtied(page, mapping);
1901        radix_tree_tag_set(&mapping->page_tree,
1902                        page_index(page), PAGECACHE_TAG_DIRTY);
1903        spin_unlock_irqrestore(&mapping->tree_lock, flags);
1904        unlock_page_memcg(page);
1905
1906        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1907        return;
1908}
1909
1910static int f2fs_set_data_page_dirty(struct page *page)
1911{
1912        struct address_space *mapping = page->mapping;
1913        struct inode *inode = mapping->host;
1914
1915        trace_f2fs_set_page_dirty(page, DATA);
1916
1917        if (!PageUptodate(page))
1918                SetPageUptodate(page);
1919
1920        if (f2fs_is_atomic_file(inode)) {
1921                if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1922                        register_inmem_page(inode, page);
1923                        return 1;
1924                }
1925                /*
1926                 * Previously, this page has been registered, we just
1927                 * return here.
1928                 */
1929                return 0;
1930        }
1931
1932        if (!PageDirty(page)) {
1933                f2fs_set_page_dirty_nobuffers(page);
1934                update_dirty_page(inode, page);
1935                return 1;
1936        }
1937        return 0;
1938}
1939
1940static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1941{
1942        struct inode *inode = mapping->host;
1943
1944        if (f2fs_has_inline_data(inode))
1945                return 0;
1946
1947        /* make sure allocating whole blocks */
1948        if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1949                filemap_write_and_wait(mapping);
1950
1951        return generic_block_bmap(mapping, block, get_data_block_bmap);
1952}
1953
1954#ifdef CONFIG_MIGRATION
1955#include <linux/migrate.h>
1956
1957int f2fs_migrate_page(struct address_space *mapping,
1958                struct page *newpage, struct page *page, enum migrate_mode mode)
1959{
1960        int rc, extra_count;
1961        struct f2fs_inode_info *fi = F2FS_I(mapping->host);
1962        bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
1963
1964        BUG_ON(PageWriteback(page));
1965
1966        /* migrating an atomic written page is safe with the inmem_lock hold */
1967        if (atomic_written && !mutex_trylock(&fi->inmem_lock))
1968                return -EAGAIN;
1969
1970        /*
1971         * A reference is expected if PagePrivate set when move mapping,
1972         * however F2FS breaks this for maintaining dirty page counts when
1973         * truncating pages. So here adjusting the 'extra_count' make it work.
1974         */
1975        extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
1976        rc = migrate_page_move_mapping(mapping, newpage,
1977                                page, NULL, mode, extra_count);
1978        if (rc != MIGRATEPAGE_SUCCESS) {
1979                if (atomic_written)
1980                        mutex_unlock(&fi->inmem_lock);
1981                return rc;
1982        }
1983
1984        if (atomic_written) {
1985                struct inmem_pages *cur;
1986                list_for_each_entry(cur, &fi->inmem_pages, list)
1987                        if (cur->page == page) {
1988                                cur->page = newpage;
1989                                break;
1990                        }
1991                mutex_unlock(&fi->inmem_lock);
1992                put_page(page);
1993                get_page(newpage);
1994        }
1995
1996        if (PagePrivate(page))
1997                SetPagePrivate(newpage);
1998        set_page_private(newpage, page_private(page));
1999
2000        migrate_page_copy(newpage, page);
2001
2002        return MIGRATEPAGE_SUCCESS;
2003}
2004#endif
2005
2006const struct address_space_operations f2fs_dblock_aops = {
2007        .readpage       = f2fs_read_data_page,
2008        .readpages      = f2fs_read_data_pages,
2009        .writepage      = f2fs_write_data_page,
2010        .writepages     = f2fs_write_data_pages,
2011        .write_begin    = f2fs_write_begin,
2012        .write_end      = f2fs_write_end,
2013        .set_page_dirty = f2fs_set_data_page_dirty,
2014        .invalidatepage = f2fs_invalidate_page,
2015        .releasepage    = f2fs_release_page,
2016        .direct_IO      = f2fs_direct_IO,
2017        .bmap           = f2fs_bmap,
2018#ifdef CONFIG_MIGRATION
2019        .migratepage    = f2fs_migrate_page,
2020#endif
2021};
2022