linux/fs/f2fs/node.h
<<
>>
Prefs
   1/*
   2 * fs/f2fs/node.h
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11/* start node id of a node block dedicated to the given node id */
  12#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
  13
  14/* node block offset on the NAT area dedicated to the given start node id */
  15#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
  16
  17/* # of pages to perform synchronous readahead before building free nids */
  18#define FREE_NID_PAGES  8
  19#define MAX_FREE_NIDS   (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
  20
  21#define DEF_RA_NID_PAGES        0       /* # of nid pages to be readaheaded */
  22
  23/* maximum readahead size for node during getting data blocks */
  24#define MAX_RA_NODE             128
  25
  26/* control the memory footprint threshold (10MB per 1GB ram) */
  27#define DEF_RAM_THRESHOLD       1
  28
  29/* control dirty nats ratio threshold (default: 10% over max nid count) */
  30#define DEF_DIRTY_NAT_RATIO_THRESHOLD           10
  31/* control total # of nats */
  32#define DEF_NAT_CACHE_THRESHOLD                 100000
  33
  34/* vector size for gang look-up from nat cache that consists of radix tree */
  35#define NATVEC_SIZE     64
  36#define SETVEC_SIZE     32
  37
  38/* return value for read_node_page */
  39#define LOCKED_PAGE     1
  40
  41/* For flag in struct node_info */
  42enum {
  43        IS_CHECKPOINTED,        /* is it checkpointed before? */
  44        HAS_FSYNCED_INODE,      /* is the inode fsynced before? */
  45        HAS_LAST_FSYNC,         /* has the latest node fsync mark? */
  46        IS_DIRTY,               /* this nat entry is dirty? */
  47};
  48
  49/*
  50 * For node information
  51 */
  52struct node_info {
  53        nid_t nid;              /* node id */
  54        nid_t ino;              /* inode number of the node's owner */
  55        block_t blk_addr;       /* block address of the node */
  56        unsigned char version;  /* version of the node */
  57        unsigned char flag;     /* for node information bits */
  58};
  59
  60struct nat_entry {
  61        struct list_head list;  /* for clean or dirty nat list */
  62        struct node_info ni;    /* in-memory node information */
  63};
  64
  65#define nat_get_nid(nat)                (nat->ni.nid)
  66#define nat_set_nid(nat, n)             (nat->ni.nid = n)
  67#define nat_get_blkaddr(nat)            (nat->ni.blk_addr)
  68#define nat_set_blkaddr(nat, b)         (nat->ni.blk_addr = b)
  69#define nat_get_ino(nat)                (nat->ni.ino)
  70#define nat_set_ino(nat, i)             (nat->ni.ino = i)
  71#define nat_get_version(nat)            (nat->ni.version)
  72#define nat_set_version(nat, v)         (nat->ni.version = v)
  73
  74#define inc_node_version(version)       (++version)
  75
  76static inline void copy_node_info(struct node_info *dst,
  77                                                struct node_info *src)
  78{
  79        dst->nid = src->nid;
  80        dst->ino = src->ino;
  81        dst->blk_addr = src->blk_addr;
  82        dst->version = src->version;
  83        /* should not copy flag here */
  84}
  85
  86static inline void set_nat_flag(struct nat_entry *ne,
  87                                unsigned int type, bool set)
  88{
  89        unsigned char mask = 0x01 << type;
  90        if (set)
  91                ne->ni.flag |= mask;
  92        else
  93                ne->ni.flag &= ~mask;
  94}
  95
  96static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
  97{
  98        unsigned char mask = 0x01 << type;
  99        return ne->ni.flag & mask;
 100}
 101
 102static inline void nat_reset_flag(struct nat_entry *ne)
 103{
 104        /* these states can be set only after checkpoint was done */
 105        set_nat_flag(ne, IS_CHECKPOINTED, true);
 106        set_nat_flag(ne, HAS_FSYNCED_INODE, false);
 107        set_nat_flag(ne, HAS_LAST_FSYNC, true);
 108}
 109
 110static inline void node_info_from_raw_nat(struct node_info *ni,
 111                                                struct f2fs_nat_entry *raw_ne)
 112{
 113        ni->ino = le32_to_cpu(raw_ne->ino);
 114        ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
 115        ni->version = raw_ne->version;
 116}
 117
 118static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
 119                                                struct node_info *ni)
 120{
 121        raw_ne->ino = cpu_to_le32(ni->ino);
 122        raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
 123        raw_ne->version = ni->version;
 124}
 125
 126static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
 127{
 128        return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
 129                                        NM_I(sbi)->dirty_nats_ratio / 100;
 130}
 131
 132static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
 133{
 134        return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
 135}
 136
 137enum mem_type {
 138        FREE_NIDS,      /* indicates the free nid list */
 139        NAT_ENTRIES,    /* indicates the cached nat entry */
 140        DIRTY_DENTS,    /* indicates dirty dentry pages */
 141        INO_ENTRIES,    /* indicates inode entries */
 142        EXTENT_CACHE,   /* indicates extent cache */
 143        BASE_CHECK,     /* check kernel status */
 144};
 145
 146struct nat_entry_set {
 147        struct list_head set_list;      /* link with other nat sets */
 148        struct list_head entry_list;    /* link with dirty nat entries */
 149        nid_t set;                      /* set number*/
 150        unsigned int entry_cnt;         /* the # of nat entries in set */
 151};
 152
 153/*
 154 * For free nid mangement
 155 */
 156enum nid_state {
 157        NID_NEW,        /* newly added to free nid list */
 158        NID_ALLOC       /* it is allocated */
 159};
 160
 161struct free_nid {
 162        struct list_head list;  /* for free node id list */
 163        nid_t nid;              /* node id */
 164        int state;              /* in use or not: NID_NEW or NID_ALLOC */
 165};
 166
 167static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
 168{
 169        struct f2fs_nm_info *nm_i = NM_I(sbi);
 170        struct free_nid *fnid;
 171
 172        spin_lock(&nm_i->nid_list_lock);
 173        if (nm_i->nid_cnt[FREE_NID_LIST] <= 0) {
 174                spin_unlock(&nm_i->nid_list_lock);
 175                return;
 176        }
 177        fnid = list_entry(nm_i->nid_list[FREE_NID_LIST].next,
 178                                                struct free_nid, list);
 179        *nid = fnid->nid;
 180        spin_unlock(&nm_i->nid_list_lock);
 181}
 182
 183/*
 184 * inline functions
 185 */
 186static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
 187{
 188        struct f2fs_nm_info *nm_i = NM_I(sbi);
 189        memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
 190}
 191
 192static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
 193{
 194        struct f2fs_nm_info *nm_i = NM_I(sbi);
 195        pgoff_t block_off;
 196        pgoff_t block_addr;
 197        int seg_off;
 198
 199        block_off = NAT_BLOCK_OFFSET(start);
 200        seg_off = block_off >> sbi->log_blocks_per_seg;
 201
 202        block_addr = (pgoff_t)(nm_i->nat_blkaddr +
 203                (seg_off << sbi->log_blocks_per_seg << 1) +
 204                (block_off & (sbi->blocks_per_seg - 1)));
 205
 206        if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
 207                block_addr += sbi->blocks_per_seg;
 208
 209        return block_addr;
 210}
 211
 212static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
 213                                                pgoff_t block_addr)
 214{
 215        struct f2fs_nm_info *nm_i = NM_I(sbi);
 216
 217        block_addr -= nm_i->nat_blkaddr;
 218        if ((block_addr >> sbi->log_blocks_per_seg) % 2)
 219                block_addr -= sbi->blocks_per_seg;
 220        else
 221                block_addr += sbi->blocks_per_seg;
 222
 223        return block_addr + nm_i->nat_blkaddr;
 224}
 225
 226static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
 227{
 228        unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
 229
 230        f2fs_change_bit(block_off, nm_i->nat_bitmap);
 231}
 232
 233static inline nid_t ino_of_node(struct page *node_page)
 234{
 235        struct f2fs_node *rn = F2FS_NODE(node_page);
 236        return le32_to_cpu(rn->footer.ino);
 237}
 238
 239static inline nid_t nid_of_node(struct page *node_page)
 240{
 241        struct f2fs_node *rn = F2FS_NODE(node_page);
 242        return le32_to_cpu(rn->footer.nid);
 243}
 244
 245static inline unsigned int ofs_of_node(struct page *node_page)
 246{
 247        struct f2fs_node *rn = F2FS_NODE(node_page);
 248        unsigned flag = le32_to_cpu(rn->footer.flag);
 249        return flag >> OFFSET_BIT_SHIFT;
 250}
 251
 252static inline __u64 cpver_of_node(struct page *node_page)
 253{
 254        struct f2fs_node *rn = F2FS_NODE(node_page);
 255        return le64_to_cpu(rn->footer.cp_ver);
 256}
 257
 258static inline block_t next_blkaddr_of_node(struct page *node_page)
 259{
 260        struct f2fs_node *rn = F2FS_NODE(node_page);
 261        return le32_to_cpu(rn->footer.next_blkaddr);
 262}
 263
 264static inline void fill_node_footer(struct page *page, nid_t nid,
 265                                nid_t ino, unsigned int ofs, bool reset)
 266{
 267        struct f2fs_node *rn = F2FS_NODE(page);
 268        unsigned int old_flag = 0;
 269
 270        if (reset)
 271                memset(rn, 0, sizeof(*rn));
 272        else
 273                old_flag = le32_to_cpu(rn->footer.flag);
 274
 275        rn->footer.nid = cpu_to_le32(nid);
 276        rn->footer.ino = cpu_to_le32(ino);
 277
 278        /* should remain old flag bits such as COLD_BIT_SHIFT */
 279        rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
 280                                        (old_flag & OFFSET_BIT_MASK));
 281}
 282
 283static inline void copy_node_footer(struct page *dst, struct page *src)
 284{
 285        struct f2fs_node *src_rn = F2FS_NODE(src);
 286        struct f2fs_node *dst_rn = F2FS_NODE(dst);
 287        memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
 288}
 289
 290static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
 291{
 292        struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
 293        struct f2fs_node *rn = F2FS_NODE(page);
 294        size_t crc_offset = le32_to_cpu(ckpt->checksum_offset);
 295        __u64 cp_ver = le64_to_cpu(ckpt->checkpoint_ver);
 296
 297        if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) {
 298                __u64 crc = le32_to_cpu(*((__le32 *)
 299                                ((unsigned char *)ckpt + crc_offset)));
 300                cp_ver |= (crc << 32);
 301        }
 302        rn->footer.cp_ver = cpu_to_le64(cp_ver);
 303        rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
 304}
 305
 306static inline bool is_recoverable_dnode(struct page *page)
 307{
 308        struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
 309        size_t crc_offset = le32_to_cpu(ckpt->checksum_offset);
 310        __u64 cp_ver = cur_cp_version(ckpt);
 311
 312        if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) {
 313                __u64 crc = le32_to_cpu(*((__le32 *)
 314                                ((unsigned char *)ckpt + crc_offset)));
 315                cp_ver |= (crc << 32);
 316        }
 317        return cp_ver == cpver_of_node(page);
 318}
 319
 320/*
 321 * f2fs assigns the following node offsets described as (num).
 322 * N = NIDS_PER_BLOCK
 323 *
 324 *  Inode block (0)
 325 *    |- direct node (1)
 326 *    |- direct node (2)
 327 *    |- indirect node (3)
 328 *    |            `- direct node (4 => 4 + N - 1)
 329 *    |- indirect node (4 + N)
 330 *    |            `- direct node (5 + N => 5 + 2N - 1)
 331 *    `- double indirect node (5 + 2N)
 332 *                 `- indirect node (6 + 2N)
 333 *                       `- direct node
 334 *                 ......
 335 *                 `- indirect node ((6 + 2N) + x(N + 1))
 336 *                       `- direct node
 337 *                 ......
 338 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
 339 *                       `- direct node
 340 */
 341static inline bool IS_DNODE(struct page *node_page)
 342{
 343        unsigned int ofs = ofs_of_node(node_page);
 344
 345        if (f2fs_has_xattr_block(ofs))
 346                return false;
 347
 348        if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
 349                        ofs == 5 + 2 * NIDS_PER_BLOCK)
 350                return false;
 351        if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
 352                ofs -= 6 + 2 * NIDS_PER_BLOCK;
 353                if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
 354                        return false;
 355        }
 356        return true;
 357}
 358
 359static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
 360{
 361        struct f2fs_node *rn = F2FS_NODE(p);
 362
 363        f2fs_wait_on_page_writeback(p, NODE, true);
 364
 365        if (i)
 366                rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
 367        else
 368                rn->in.nid[off] = cpu_to_le32(nid);
 369        return set_page_dirty(p);
 370}
 371
 372static inline nid_t get_nid(struct page *p, int off, bool i)
 373{
 374        struct f2fs_node *rn = F2FS_NODE(p);
 375
 376        if (i)
 377                return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
 378        return le32_to_cpu(rn->in.nid[off]);
 379}
 380
 381/*
 382 * Coldness identification:
 383 *  - Mark cold files in f2fs_inode_info
 384 *  - Mark cold node blocks in their node footer
 385 *  - Mark cold data pages in page cache
 386 */
 387static inline int is_cold_data(struct page *page)
 388{
 389        return PageChecked(page);
 390}
 391
 392static inline void set_cold_data(struct page *page)
 393{
 394        SetPageChecked(page);
 395}
 396
 397static inline void clear_cold_data(struct page *page)
 398{
 399        ClearPageChecked(page);
 400}
 401
 402static inline int is_node(struct page *page, int type)
 403{
 404        struct f2fs_node *rn = F2FS_NODE(page);
 405        return le32_to_cpu(rn->footer.flag) & (1 << type);
 406}
 407
 408#define is_cold_node(page)      is_node(page, COLD_BIT_SHIFT)
 409#define is_fsync_dnode(page)    is_node(page, FSYNC_BIT_SHIFT)
 410#define is_dent_dnode(page)     is_node(page, DENT_BIT_SHIFT)
 411
 412static inline int is_inline_node(struct page *page)
 413{
 414        return PageChecked(page);
 415}
 416
 417static inline void set_inline_node(struct page *page)
 418{
 419        SetPageChecked(page);
 420}
 421
 422static inline void clear_inline_node(struct page *page)
 423{
 424        ClearPageChecked(page);
 425}
 426
 427static inline void set_cold_node(struct inode *inode, struct page *page)
 428{
 429        struct f2fs_node *rn = F2FS_NODE(page);
 430        unsigned int flag = le32_to_cpu(rn->footer.flag);
 431
 432        if (S_ISDIR(inode->i_mode))
 433                flag &= ~(0x1 << COLD_BIT_SHIFT);
 434        else
 435                flag |= (0x1 << COLD_BIT_SHIFT);
 436        rn->footer.flag = cpu_to_le32(flag);
 437}
 438
 439static inline void set_mark(struct page *page, int mark, int type)
 440{
 441        struct f2fs_node *rn = F2FS_NODE(page);
 442        unsigned int flag = le32_to_cpu(rn->footer.flag);
 443        if (mark)
 444                flag |= (0x1 << type);
 445        else
 446                flag &= ~(0x1 << type);
 447        rn->footer.flag = cpu_to_le32(flag);
 448}
 449#define set_dentry_mark(page, mark)     set_mark(page, mark, DENT_BIT_SHIFT)
 450#define set_fsync_mark(page, mark)      set_mark(page, mark, FSYNC_BIT_SHIFT)
 451