linux/fs/f2fs/segment.c
<<
>>
Prefs
   1/*
   2 * fs/f2fs/segment.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/bio.h>
  14#include <linux/blkdev.h>
  15#include <linux/prefetch.h>
  16#include <linux/kthread.h>
  17#include <linux/swap.h>
  18#include <linux/timer.h>
  19
  20#include "f2fs.h"
  21#include "segment.h"
  22#include "node.h"
  23#include "trace.h"
  24#include <trace/events/f2fs.h>
  25
  26#define __reverse_ffz(x) __reverse_ffs(~(x))
  27
  28static struct kmem_cache *discard_entry_slab;
  29static struct kmem_cache *bio_entry_slab;
  30static struct kmem_cache *sit_entry_set_slab;
  31static struct kmem_cache *inmem_entry_slab;
  32
  33static unsigned long __reverse_ulong(unsigned char *str)
  34{
  35        unsigned long tmp = 0;
  36        int shift = 24, idx = 0;
  37
  38#if BITS_PER_LONG == 64
  39        shift = 56;
  40#endif
  41        while (shift >= 0) {
  42                tmp |= (unsigned long)str[idx++] << shift;
  43                shift -= BITS_PER_BYTE;
  44        }
  45        return tmp;
  46}
  47
  48/*
  49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  51 */
  52static inline unsigned long __reverse_ffs(unsigned long word)
  53{
  54        int num = 0;
  55
  56#if BITS_PER_LONG == 64
  57        if ((word & 0xffffffff00000000UL) == 0)
  58                num += 32;
  59        else
  60                word >>= 32;
  61#endif
  62        if ((word & 0xffff0000) == 0)
  63                num += 16;
  64        else
  65                word >>= 16;
  66
  67        if ((word & 0xff00) == 0)
  68                num += 8;
  69        else
  70                word >>= 8;
  71
  72        if ((word & 0xf0) == 0)
  73                num += 4;
  74        else
  75                word >>= 4;
  76
  77        if ((word & 0xc) == 0)
  78                num += 2;
  79        else
  80                word >>= 2;
  81
  82        if ((word & 0x2) == 0)
  83                num += 1;
  84        return num;
  85}
  86
  87/*
  88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  90 * @size must be integral times of unsigned long.
  91 * Example:
  92 *                             MSB <--> LSB
  93 *   f2fs_set_bit(0, bitmap) => 1000 0000
  94 *   f2fs_set_bit(7, bitmap) => 0000 0001
  95 */
  96static unsigned long __find_rev_next_bit(const unsigned long *addr,
  97                        unsigned long size, unsigned long offset)
  98{
  99        const unsigned long *p = addr + BIT_WORD(offset);
 100        unsigned long result = size;
 101        unsigned long tmp;
 102
 103        if (offset >= size)
 104                return size;
 105
 106        size -= (offset & ~(BITS_PER_LONG - 1));
 107        offset %= BITS_PER_LONG;
 108
 109        while (1) {
 110                if (*p == 0)
 111                        goto pass;
 112
 113                tmp = __reverse_ulong((unsigned char *)p);
 114
 115                tmp &= ~0UL >> offset;
 116                if (size < BITS_PER_LONG)
 117                        tmp &= (~0UL << (BITS_PER_LONG - size));
 118                if (tmp)
 119                        goto found;
 120pass:
 121                if (size <= BITS_PER_LONG)
 122                        break;
 123                size -= BITS_PER_LONG;
 124                offset = 0;
 125                p++;
 126        }
 127        return result;
 128found:
 129        return result - size + __reverse_ffs(tmp);
 130}
 131
 132static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 133                        unsigned long size, unsigned long offset)
 134{
 135        const unsigned long *p = addr + BIT_WORD(offset);
 136        unsigned long result = size;
 137        unsigned long tmp;
 138
 139        if (offset >= size)
 140                return size;
 141
 142        size -= (offset & ~(BITS_PER_LONG - 1));
 143        offset %= BITS_PER_LONG;
 144
 145        while (1) {
 146                if (*p == ~0UL)
 147                        goto pass;
 148
 149                tmp = __reverse_ulong((unsigned char *)p);
 150
 151                if (offset)
 152                        tmp |= ~0UL << (BITS_PER_LONG - offset);
 153                if (size < BITS_PER_LONG)
 154                        tmp |= ~0UL >> size;
 155                if (tmp != ~0UL)
 156                        goto found;
 157pass:
 158                if (size <= BITS_PER_LONG)
 159                        break;
 160                size -= BITS_PER_LONG;
 161                offset = 0;
 162                p++;
 163        }
 164        return result;
 165found:
 166        return result - size + __reverse_ffz(tmp);
 167}
 168
 169void register_inmem_page(struct inode *inode, struct page *page)
 170{
 171        struct f2fs_inode_info *fi = F2FS_I(inode);
 172        struct inmem_pages *new;
 173
 174        f2fs_trace_pid(page);
 175
 176        set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
 177        SetPagePrivate(page);
 178
 179        new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
 180
 181        /* add atomic page indices to the list */
 182        new->page = page;
 183        INIT_LIST_HEAD(&new->list);
 184
 185        /* increase reference count with clean state */
 186        mutex_lock(&fi->inmem_lock);
 187        get_page(page);
 188        list_add_tail(&new->list, &fi->inmem_pages);
 189        inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 190        mutex_unlock(&fi->inmem_lock);
 191
 192        trace_f2fs_register_inmem_page(page, INMEM);
 193}
 194
 195static int __revoke_inmem_pages(struct inode *inode,
 196                                struct list_head *head, bool drop, bool recover)
 197{
 198        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 199        struct inmem_pages *cur, *tmp;
 200        int err = 0;
 201
 202        list_for_each_entry_safe(cur, tmp, head, list) {
 203                struct page *page = cur->page;
 204
 205                if (drop)
 206                        trace_f2fs_commit_inmem_page(page, INMEM_DROP);
 207
 208                lock_page(page);
 209
 210                if (recover) {
 211                        struct dnode_of_data dn;
 212                        struct node_info ni;
 213
 214                        trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
 215
 216                        set_new_dnode(&dn, inode, NULL, NULL, 0);
 217                        if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
 218                                err = -EAGAIN;
 219                                goto next;
 220                        }
 221                        get_node_info(sbi, dn.nid, &ni);
 222                        f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 223                                        cur->old_addr, ni.version, true, true);
 224                        f2fs_put_dnode(&dn);
 225                }
 226next:
 227                /* we don't need to invalidate this in the sccessful status */
 228                if (drop || recover)
 229                        ClearPageUptodate(page);
 230                set_page_private(page, 0);
 231                ClearPagePrivate(page);
 232                f2fs_put_page(page, 1);
 233
 234                list_del(&cur->list);
 235                kmem_cache_free(inmem_entry_slab, cur);
 236                dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 237        }
 238        return err;
 239}
 240
 241void drop_inmem_pages(struct inode *inode)
 242{
 243        struct f2fs_inode_info *fi = F2FS_I(inode);
 244
 245        clear_inode_flag(inode, FI_ATOMIC_FILE);
 246
 247        mutex_lock(&fi->inmem_lock);
 248        __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
 249        mutex_unlock(&fi->inmem_lock);
 250}
 251
 252static int __commit_inmem_pages(struct inode *inode,
 253                                        struct list_head *revoke_list)
 254{
 255        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 256        struct f2fs_inode_info *fi = F2FS_I(inode);
 257        struct inmem_pages *cur, *tmp;
 258        struct f2fs_io_info fio = {
 259                .sbi = sbi,
 260                .type = DATA,
 261                .op = REQ_OP_WRITE,
 262                .op_flags = REQ_SYNC | REQ_PRIO,
 263                .encrypted_page = NULL,
 264        };
 265        bool submit_bio = false;
 266        int err = 0;
 267
 268        list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
 269                struct page *page = cur->page;
 270
 271                lock_page(page);
 272                if (page->mapping == inode->i_mapping) {
 273                        trace_f2fs_commit_inmem_page(page, INMEM);
 274
 275                        set_page_dirty(page);
 276                        f2fs_wait_on_page_writeback(page, DATA, true);
 277                        if (clear_page_dirty_for_io(page)) {
 278                                inode_dec_dirty_pages(inode);
 279                                remove_dirty_inode(inode);
 280                        }
 281
 282                        fio.page = page;
 283                        err = do_write_data_page(&fio);
 284                        if (err) {
 285                                unlock_page(page);
 286                                break;
 287                        }
 288
 289                        /* record old blkaddr for revoking */
 290                        cur->old_addr = fio.old_blkaddr;
 291
 292                        submit_bio = true;
 293                }
 294                unlock_page(page);
 295                list_move_tail(&cur->list, revoke_list);
 296        }
 297
 298        if (submit_bio)
 299                f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
 300
 301        if (!err)
 302                __revoke_inmem_pages(inode, revoke_list, false, false);
 303
 304        return err;
 305}
 306
 307int commit_inmem_pages(struct inode *inode)
 308{
 309        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 310        struct f2fs_inode_info *fi = F2FS_I(inode);
 311        struct list_head revoke_list;
 312        int err;
 313
 314        INIT_LIST_HEAD(&revoke_list);
 315        f2fs_balance_fs(sbi, true);
 316        f2fs_lock_op(sbi);
 317
 318        mutex_lock(&fi->inmem_lock);
 319        err = __commit_inmem_pages(inode, &revoke_list);
 320        if (err) {
 321                int ret;
 322                /*
 323                 * try to revoke all committed pages, but still we could fail
 324                 * due to no memory or other reason, if that happened, EAGAIN
 325                 * will be returned, which means in such case, transaction is
 326                 * already not integrity, caller should use journal to do the
 327                 * recovery or rewrite & commit last transaction. For other
 328                 * error number, revoking was done by filesystem itself.
 329                 */
 330                ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
 331                if (ret)
 332                        err = ret;
 333
 334                /* drop all uncommitted pages */
 335                __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
 336        }
 337        mutex_unlock(&fi->inmem_lock);
 338
 339        f2fs_unlock_op(sbi);
 340        return err;
 341}
 342
 343/*
 344 * This function balances dirty node and dentry pages.
 345 * In addition, it controls garbage collection.
 346 */
 347void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 348{
 349#ifdef CONFIG_F2FS_FAULT_INJECTION
 350        if (time_to_inject(sbi, FAULT_CHECKPOINT))
 351                f2fs_stop_checkpoint(sbi, false);
 352#endif
 353
 354        if (!need)
 355                return;
 356
 357        /* balance_fs_bg is able to be pending */
 358        if (excess_cached_nats(sbi))
 359                f2fs_balance_fs_bg(sbi);
 360
 361        /*
 362         * We should do GC or end up with checkpoint, if there are so many dirty
 363         * dir/node pages without enough free segments.
 364         */
 365        if (has_not_enough_free_secs(sbi, 0, 0)) {
 366                mutex_lock(&sbi->gc_mutex);
 367                f2fs_gc(sbi, false, false);
 368        }
 369}
 370
 371void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
 372{
 373        /* try to shrink extent cache when there is no enough memory */
 374        if (!available_free_memory(sbi, EXTENT_CACHE))
 375                f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
 376
 377        /* check the # of cached NAT entries */
 378        if (!available_free_memory(sbi, NAT_ENTRIES))
 379                try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 380
 381        if (!available_free_memory(sbi, FREE_NIDS))
 382                try_to_free_nids(sbi, MAX_FREE_NIDS);
 383        else
 384                build_free_nids(sbi, false);
 385
 386        if (!is_idle(sbi))
 387                return;
 388
 389        /* checkpoint is the only way to shrink partial cached entries */
 390        if (!available_free_memory(sbi, NAT_ENTRIES) ||
 391                        !available_free_memory(sbi, INO_ENTRIES) ||
 392                        excess_prefree_segs(sbi) ||
 393                        excess_dirty_nats(sbi) ||
 394                        f2fs_time_over(sbi, CP_TIME)) {
 395                if (test_opt(sbi, DATA_FLUSH)) {
 396                        struct blk_plug plug;
 397
 398                        blk_start_plug(&plug);
 399                        sync_dirty_inodes(sbi, FILE_INODE);
 400                        blk_finish_plug(&plug);
 401                }
 402                f2fs_sync_fs(sbi->sb, true);
 403                stat_inc_bg_cp_count(sbi->stat_info);
 404        }
 405}
 406
 407static int __submit_flush_wait(struct block_device *bdev)
 408{
 409        struct bio *bio = f2fs_bio_alloc(0);
 410        int ret;
 411
 412        bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
 413        bio->bi_bdev = bdev;
 414        ret = submit_bio_wait(bio);
 415        bio_put(bio);
 416        return ret;
 417}
 418
 419static int submit_flush_wait(struct f2fs_sb_info *sbi)
 420{
 421        int ret = __submit_flush_wait(sbi->sb->s_bdev);
 422        int i;
 423
 424        if (sbi->s_ndevs && !ret) {
 425                for (i = 1; i < sbi->s_ndevs; i++) {
 426                        ret = __submit_flush_wait(FDEV(i).bdev);
 427                        if (ret)
 428                                break;
 429                }
 430        }
 431        return ret;
 432}
 433
 434static int issue_flush_thread(void *data)
 435{
 436        struct f2fs_sb_info *sbi = data;
 437        struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 438        wait_queue_head_t *q = &fcc->flush_wait_queue;
 439repeat:
 440        if (kthread_should_stop())
 441                return 0;
 442
 443        if (!llist_empty(&fcc->issue_list)) {
 444                struct flush_cmd *cmd, *next;
 445                int ret;
 446
 447                fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 448                fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 449
 450                ret = submit_flush_wait(sbi);
 451                llist_for_each_entry_safe(cmd, next,
 452                                          fcc->dispatch_list, llnode) {
 453                        cmd->ret = ret;
 454                        complete(&cmd->wait);
 455                }
 456                fcc->dispatch_list = NULL;
 457        }
 458
 459        wait_event_interruptible(*q,
 460                kthread_should_stop() || !llist_empty(&fcc->issue_list));
 461        goto repeat;
 462}
 463
 464int f2fs_issue_flush(struct f2fs_sb_info *sbi)
 465{
 466        struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 467        struct flush_cmd cmd;
 468
 469        trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
 470                                        test_opt(sbi, FLUSH_MERGE));
 471
 472        if (test_opt(sbi, NOBARRIER))
 473                return 0;
 474
 475        if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) {
 476                int ret;
 477
 478                atomic_inc(&fcc->submit_flush);
 479                ret = submit_flush_wait(sbi);
 480                atomic_dec(&fcc->submit_flush);
 481                return ret;
 482        }
 483
 484        init_completion(&cmd.wait);
 485
 486        atomic_inc(&fcc->submit_flush);
 487        llist_add(&cmd.llnode, &fcc->issue_list);
 488
 489        if (!fcc->dispatch_list)
 490                wake_up(&fcc->flush_wait_queue);
 491
 492        if (fcc->f2fs_issue_flush) {
 493                wait_for_completion(&cmd.wait);
 494                atomic_dec(&fcc->submit_flush);
 495        } else {
 496                llist_del_all(&fcc->issue_list);
 497                atomic_set(&fcc->submit_flush, 0);
 498        }
 499
 500        return cmd.ret;
 501}
 502
 503int create_flush_cmd_control(struct f2fs_sb_info *sbi)
 504{
 505        dev_t dev = sbi->sb->s_bdev->bd_dev;
 506        struct flush_cmd_control *fcc;
 507        int err = 0;
 508
 509        if (SM_I(sbi)->cmd_control_info) {
 510                fcc = SM_I(sbi)->cmd_control_info;
 511                goto init_thread;
 512        }
 513
 514        fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
 515        if (!fcc)
 516                return -ENOMEM;
 517        atomic_set(&fcc->submit_flush, 0);
 518        init_waitqueue_head(&fcc->flush_wait_queue);
 519        init_llist_head(&fcc->issue_list);
 520        SM_I(sbi)->cmd_control_info = fcc;
 521init_thread:
 522        fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 523                                "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 524        if (IS_ERR(fcc->f2fs_issue_flush)) {
 525                err = PTR_ERR(fcc->f2fs_issue_flush);
 526                kfree(fcc);
 527                SM_I(sbi)->cmd_control_info = NULL;
 528                return err;
 529        }
 530
 531        return err;
 532}
 533
 534void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
 535{
 536        struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 537
 538        if (fcc && fcc->f2fs_issue_flush) {
 539                struct task_struct *flush_thread = fcc->f2fs_issue_flush;
 540
 541                fcc->f2fs_issue_flush = NULL;
 542                kthread_stop(flush_thread);
 543        }
 544        if (free) {
 545                kfree(fcc);
 546                SM_I(sbi)->cmd_control_info = NULL;
 547        }
 548}
 549
 550static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 551                enum dirty_type dirty_type)
 552{
 553        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 554
 555        /* need not be added */
 556        if (IS_CURSEG(sbi, segno))
 557                return;
 558
 559        if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 560                dirty_i->nr_dirty[dirty_type]++;
 561
 562        if (dirty_type == DIRTY) {
 563                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 564                enum dirty_type t = sentry->type;
 565
 566                if (unlikely(t >= DIRTY)) {
 567                        f2fs_bug_on(sbi, 1);
 568                        return;
 569                }
 570                if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 571                        dirty_i->nr_dirty[t]++;
 572        }
 573}
 574
 575static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 576                enum dirty_type dirty_type)
 577{
 578        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 579
 580        if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 581                dirty_i->nr_dirty[dirty_type]--;
 582
 583        if (dirty_type == DIRTY) {
 584                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 585                enum dirty_type t = sentry->type;
 586
 587                if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 588                        dirty_i->nr_dirty[t]--;
 589
 590                if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
 591                        clear_bit(GET_SECNO(sbi, segno),
 592                                                dirty_i->victim_secmap);
 593        }
 594}
 595
 596/*
 597 * Should not occur error such as -ENOMEM.
 598 * Adding dirty entry into seglist is not critical operation.
 599 * If a given segment is one of current working segments, it won't be added.
 600 */
 601static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 602{
 603        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 604        unsigned short valid_blocks;
 605
 606        if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 607                return;
 608
 609        mutex_lock(&dirty_i->seglist_lock);
 610
 611        valid_blocks = get_valid_blocks(sbi, segno, 0);
 612
 613        if (valid_blocks == 0) {
 614                __locate_dirty_segment(sbi, segno, PRE);
 615                __remove_dirty_segment(sbi, segno, DIRTY);
 616        } else if (valid_blocks < sbi->blocks_per_seg) {
 617                __locate_dirty_segment(sbi, segno, DIRTY);
 618        } else {
 619                /* Recovery routine with SSR needs this */
 620                __remove_dirty_segment(sbi, segno, DIRTY);
 621        }
 622
 623        mutex_unlock(&dirty_i->seglist_lock);
 624}
 625
 626static struct bio_entry *__add_bio_entry(struct f2fs_sb_info *sbi,
 627                                                        struct bio *bio)
 628{
 629        struct list_head *wait_list = &(SM_I(sbi)->wait_list);
 630        struct bio_entry *be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
 631
 632        INIT_LIST_HEAD(&be->list);
 633        be->bio = bio;
 634        init_completion(&be->event);
 635        list_add_tail(&be->list, wait_list);
 636
 637        return be;
 638}
 639
 640void f2fs_wait_all_discard_bio(struct f2fs_sb_info *sbi)
 641{
 642        struct list_head *wait_list = &(SM_I(sbi)->wait_list);
 643        struct bio_entry *be, *tmp;
 644
 645        list_for_each_entry_safe(be, tmp, wait_list, list) {
 646                struct bio *bio = be->bio;
 647                int err;
 648
 649                wait_for_completion_io(&be->event);
 650                err = be->error;
 651                if (err == -EOPNOTSUPP)
 652                        err = 0;
 653
 654                if (err)
 655                        f2fs_msg(sbi->sb, KERN_INFO,
 656                                "Issue discard failed, ret: %d", err);
 657
 658                bio_put(bio);
 659                list_del(&be->list);
 660                kmem_cache_free(bio_entry_slab, be);
 661        }
 662}
 663
 664static void f2fs_submit_bio_wait_endio(struct bio *bio)
 665{
 666        struct bio_entry *be = (struct bio_entry *)bio->bi_private;
 667
 668        be->error = bio->bi_error;
 669        complete(&be->event);
 670}
 671
 672/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
 673static int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi,
 674                struct block_device *bdev, block_t blkstart, block_t blklen)
 675{
 676        struct bio *bio = NULL;
 677        int err;
 678
 679        trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
 680
 681        if (sbi->s_ndevs) {
 682                int devi = f2fs_target_device_index(sbi, blkstart);
 683
 684                blkstart -= FDEV(devi).start_blk;
 685        }
 686        err = __blkdev_issue_discard(bdev,
 687                                SECTOR_FROM_BLOCK(blkstart),
 688                                SECTOR_FROM_BLOCK(blklen),
 689                                GFP_NOFS, 0, &bio);
 690        if (!err && bio) {
 691                struct bio_entry *be = __add_bio_entry(sbi, bio);
 692
 693                bio->bi_private = be;
 694                bio->bi_end_io = f2fs_submit_bio_wait_endio;
 695                bio->bi_opf |= REQ_SYNC;
 696                submit_bio(bio);
 697        }
 698
 699        return err;
 700}
 701
 702#ifdef CONFIG_BLK_DEV_ZONED
 703static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
 704                struct block_device *bdev, block_t blkstart, block_t blklen)
 705{
 706        sector_t nr_sects = SECTOR_FROM_BLOCK(blklen);
 707        sector_t sector;
 708        int devi = 0;
 709
 710        if (sbi->s_ndevs) {
 711                devi = f2fs_target_device_index(sbi, blkstart);
 712                blkstart -= FDEV(devi).start_blk;
 713        }
 714        sector = SECTOR_FROM_BLOCK(blkstart);
 715
 716        if (sector & (bdev_zone_sectors(bdev) - 1) ||
 717            nr_sects != bdev_zone_sectors(bdev)) {
 718                f2fs_msg(sbi->sb, KERN_INFO,
 719                        "(%d) %s: Unaligned discard attempted (block %x + %x)",
 720                        devi, sbi->s_ndevs ? FDEV(devi).path: "",
 721                        blkstart, blklen);
 722                return -EIO;
 723        }
 724
 725        /*
 726         * We need to know the type of the zone: for conventional zones,
 727         * use regular discard if the drive supports it. For sequential
 728         * zones, reset the zone write pointer.
 729         */
 730        switch (get_blkz_type(sbi, bdev, blkstart)) {
 731
 732        case BLK_ZONE_TYPE_CONVENTIONAL:
 733                if (!blk_queue_discard(bdev_get_queue(bdev)))
 734                        return 0;
 735                return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen);
 736        case BLK_ZONE_TYPE_SEQWRITE_REQ:
 737        case BLK_ZONE_TYPE_SEQWRITE_PREF:
 738                trace_f2fs_issue_reset_zone(sbi->sb, blkstart);
 739                return blkdev_reset_zones(bdev, sector,
 740                                          nr_sects, GFP_NOFS);
 741        default:
 742                /* Unknown zone type: broken device ? */
 743                return -EIO;
 744        }
 745}
 746#endif
 747
 748static int __issue_discard_async(struct f2fs_sb_info *sbi,
 749                struct block_device *bdev, block_t blkstart, block_t blklen)
 750{
 751#ifdef CONFIG_BLK_DEV_ZONED
 752        if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
 753                                bdev_zoned_model(bdev) != BLK_ZONED_NONE)
 754                return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
 755#endif
 756        return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen);
 757}
 758
 759static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
 760                                block_t blkstart, block_t blklen)
 761{
 762        sector_t start = blkstart, len = 0;
 763        struct block_device *bdev;
 764        struct seg_entry *se;
 765        unsigned int offset;
 766        block_t i;
 767        int err = 0;
 768
 769        bdev = f2fs_target_device(sbi, blkstart, NULL);
 770
 771        for (i = blkstart; i < blkstart + blklen; i++, len++) {
 772                if (i != start) {
 773                        struct block_device *bdev2 =
 774                                f2fs_target_device(sbi, i, NULL);
 775
 776                        if (bdev2 != bdev) {
 777                                err = __issue_discard_async(sbi, bdev,
 778                                                start, len);
 779                                if (err)
 780                                        return err;
 781                                bdev = bdev2;
 782                                start = i;
 783                                len = 0;
 784                        }
 785                }
 786
 787                se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
 788                offset = GET_BLKOFF_FROM_SEG0(sbi, i);
 789
 790                if (!f2fs_test_and_set_bit(offset, se->discard_map))
 791                        sbi->discard_blks--;
 792        }
 793
 794        if (len)
 795                err = __issue_discard_async(sbi, bdev, start, len);
 796        return err;
 797}
 798
 799static void __add_discard_entry(struct f2fs_sb_info *sbi,
 800                struct cp_control *cpc, struct seg_entry *se,
 801                unsigned int start, unsigned int end)
 802{
 803        struct list_head *head = &SM_I(sbi)->discard_list;
 804        struct discard_entry *new, *last;
 805
 806        if (!list_empty(head)) {
 807                last = list_last_entry(head, struct discard_entry, list);
 808                if (START_BLOCK(sbi, cpc->trim_start) + start ==
 809                                                last->blkaddr + last->len) {
 810                        last->len += end - start;
 811                        goto done;
 812                }
 813        }
 814
 815        new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
 816        INIT_LIST_HEAD(&new->list);
 817        new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
 818        new->len = end - start;
 819        list_add_tail(&new->list, head);
 820done:
 821        SM_I(sbi)->nr_discards += end - start;
 822}
 823
 824static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 825{
 826        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
 827        int max_blocks = sbi->blocks_per_seg;
 828        struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
 829        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
 830        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
 831        unsigned long *discard_map = (unsigned long *)se->discard_map;
 832        unsigned long *dmap = SIT_I(sbi)->tmp_map;
 833        unsigned int start = 0, end = -1;
 834        bool force = (cpc->reason == CP_DISCARD);
 835        int i;
 836
 837        if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
 838                return;
 839
 840        if (!force) {
 841                if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
 842                    SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
 843                        return;
 844        }
 845
 846        /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
 847        for (i = 0; i < entries; i++)
 848                dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
 849                                (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
 850
 851        while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
 852                start = __find_rev_next_bit(dmap, max_blocks, end + 1);
 853                if (start >= max_blocks)
 854                        break;
 855
 856                end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
 857                if (force && start && end != max_blocks
 858                                        && (end - start) < cpc->trim_minlen)
 859                        continue;
 860
 861                __add_discard_entry(sbi, cpc, se, start, end);
 862        }
 863}
 864
 865void release_discard_addrs(struct f2fs_sb_info *sbi)
 866{
 867        struct list_head *head = &(SM_I(sbi)->discard_list);
 868        struct discard_entry *entry, *this;
 869
 870        /* drop caches */
 871        list_for_each_entry_safe(entry, this, head, list) {
 872                list_del(&entry->list);
 873                kmem_cache_free(discard_entry_slab, entry);
 874        }
 875}
 876
 877/*
 878 * Should call clear_prefree_segments after checkpoint is done.
 879 */
 880static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
 881{
 882        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 883        unsigned int segno;
 884
 885        mutex_lock(&dirty_i->seglist_lock);
 886        for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
 887                __set_test_and_free(sbi, segno);
 888        mutex_unlock(&dirty_i->seglist_lock);
 889}
 890
 891void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 892{
 893        struct list_head *head = &(SM_I(sbi)->discard_list);
 894        struct discard_entry *entry, *this;
 895        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 896        struct blk_plug plug;
 897        unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
 898        unsigned int start = 0, end = -1;
 899        unsigned int secno, start_segno;
 900        bool force = (cpc->reason == CP_DISCARD);
 901
 902        blk_start_plug(&plug);
 903
 904        mutex_lock(&dirty_i->seglist_lock);
 905
 906        while (1) {
 907                int i;
 908                start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
 909                if (start >= MAIN_SEGS(sbi))
 910                        break;
 911                end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
 912                                                                start + 1);
 913
 914                for (i = start; i < end; i++)
 915                        clear_bit(i, prefree_map);
 916
 917                dirty_i->nr_dirty[PRE] -= end - start;
 918
 919                if (force || !test_opt(sbi, DISCARD))
 920                        continue;
 921
 922                if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
 923                        f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
 924                                (end - start) << sbi->log_blocks_per_seg);
 925                        continue;
 926                }
 927next:
 928                secno = GET_SECNO(sbi, start);
 929                start_segno = secno * sbi->segs_per_sec;
 930                if (!IS_CURSEC(sbi, secno) &&
 931                        !get_valid_blocks(sbi, start, sbi->segs_per_sec))
 932                        f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
 933                                sbi->segs_per_sec << sbi->log_blocks_per_seg);
 934
 935                start = start_segno + sbi->segs_per_sec;
 936                if (start < end)
 937                        goto next;
 938        }
 939        mutex_unlock(&dirty_i->seglist_lock);
 940
 941        /* send small discards */
 942        list_for_each_entry_safe(entry, this, head, list) {
 943                if (force && entry->len < cpc->trim_minlen)
 944                        goto skip;
 945                f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
 946                cpc->trimmed += entry->len;
 947skip:
 948                list_del(&entry->list);
 949                SM_I(sbi)->nr_discards -= entry->len;
 950                kmem_cache_free(discard_entry_slab, entry);
 951        }
 952
 953        blk_finish_plug(&plug);
 954}
 955
 956static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
 957{
 958        struct sit_info *sit_i = SIT_I(sbi);
 959
 960        if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
 961                sit_i->dirty_sentries++;
 962                return false;
 963        }
 964
 965        return true;
 966}
 967
 968static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
 969                                        unsigned int segno, int modified)
 970{
 971        struct seg_entry *se = get_seg_entry(sbi, segno);
 972        se->type = type;
 973        if (modified)
 974                __mark_sit_entry_dirty(sbi, segno);
 975}
 976
 977static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
 978{
 979        struct seg_entry *se;
 980        unsigned int segno, offset;
 981        long int new_vblocks;
 982
 983        segno = GET_SEGNO(sbi, blkaddr);
 984
 985        se = get_seg_entry(sbi, segno);
 986        new_vblocks = se->valid_blocks + del;
 987        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 988
 989        f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
 990                                (new_vblocks > sbi->blocks_per_seg)));
 991
 992        se->valid_blocks = new_vblocks;
 993        se->mtime = get_mtime(sbi);
 994        SIT_I(sbi)->max_mtime = se->mtime;
 995
 996        /* Update valid block bitmap */
 997        if (del > 0) {
 998                if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
 999                        f2fs_bug_on(sbi, 1);
1000                if (f2fs_discard_en(sbi) &&
1001                        !f2fs_test_and_set_bit(offset, se->discard_map))
1002                        sbi->discard_blks--;
1003        } else {
1004                if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
1005                        f2fs_bug_on(sbi, 1);
1006                if (f2fs_discard_en(sbi) &&
1007                        f2fs_test_and_clear_bit(offset, se->discard_map))
1008                        sbi->discard_blks++;
1009        }
1010        if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1011                se->ckpt_valid_blocks += del;
1012
1013        __mark_sit_entry_dirty(sbi, segno);
1014
1015        /* update total number of valid blocks to be written in ckpt area */
1016        SIT_I(sbi)->written_valid_blocks += del;
1017
1018        if (sbi->segs_per_sec > 1)
1019                get_sec_entry(sbi, segno)->valid_blocks += del;
1020}
1021
1022void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
1023{
1024        update_sit_entry(sbi, new, 1);
1025        if (GET_SEGNO(sbi, old) != NULL_SEGNO)
1026                update_sit_entry(sbi, old, -1);
1027
1028        locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
1029        locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
1030}
1031
1032void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1033{
1034        unsigned int segno = GET_SEGNO(sbi, addr);
1035        struct sit_info *sit_i = SIT_I(sbi);
1036
1037        f2fs_bug_on(sbi, addr == NULL_ADDR);
1038        if (addr == NEW_ADDR)
1039                return;
1040
1041        /* add it into sit main buffer */
1042        mutex_lock(&sit_i->sentry_lock);
1043
1044        update_sit_entry(sbi, addr, -1);
1045
1046        /* add it into dirty seglist */
1047        locate_dirty_segment(sbi, segno);
1048
1049        mutex_unlock(&sit_i->sentry_lock);
1050}
1051
1052bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1053{
1054        struct sit_info *sit_i = SIT_I(sbi);
1055        unsigned int segno, offset;
1056        struct seg_entry *se;
1057        bool is_cp = false;
1058
1059        if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1060                return true;
1061
1062        mutex_lock(&sit_i->sentry_lock);
1063
1064        segno = GET_SEGNO(sbi, blkaddr);
1065        se = get_seg_entry(sbi, segno);
1066        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1067
1068        if (f2fs_test_bit(offset, se->ckpt_valid_map))
1069                is_cp = true;
1070
1071        mutex_unlock(&sit_i->sentry_lock);
1072
1073        return is_cp;
1074}
1075
1076/*
1077 * This function should be resided under the curseg_mutex lock
1078 */
1079static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1080                                        struct f2fs_summary *sum)
1081{
1082        struct curseg_info *curseg = CURSEG_I(sbi, type);
1083        void *addr = curseg->sum_blk;
1084        addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1085        memcpy(addr, sum, sizeof(struct f2fs_summary));
1086}
1087
1088/*
1089 * Calculate the number of current summary pages for writing
1090 */
1091int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1092{
1093        int valid_sum_count = 0;
1094        int i, sum_in_page;
1095
1096        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1097                if (sbi->ckpt->alloc_type[i] == SSR)
1098                        valid_sum_count += sbi->blocks_per_seg;
1099                else {
1100                        if (for_ra)
1101                                valid_sum_count += le16_to_cpu(
1102                                        F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1103                        else
1104                                valid_sum_count += curseg_blkoff(sbi, i);
1105                }
1106        }
1107
1108        sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1109                        SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1110        if (valid_sum_count <= sum_in_page)
1111                return 1;
1112        else if ((valid_sum_count - sum_in_page) <=
1113                (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1114                return 2;
1115        return 3;
1116}
1117
1118/*
1119 * Caller should put this summary page
1120 */
1121struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1122{
1123        return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1124}
1125
1126void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1127{
1128        struct page *page = grab_meta_page(sbi, blk_addr);
1129        void *dst = page_address(page);
1130
1131        if (src)
1132                memcpy(dst, src, PAGE_SIZE);
1133        else
1134                memset(dst, 0, PAGE_SIZE);
1135        set_page_dirty(page);
1136        f2fs_put_page(page, 1);
1137}
1138
1139static void write_sum_page(struct f2fs_sb_info *sbi,
1140                        struct f2fs_summary_block *sum_blk, block_t blk_addr)
1141{
1142        update_meta_page(sbi, (void *)sum_blk, blk_addr);
1143}
1144
1145static void write_current_sum_page(struct f2fs_sb_info *sbi,
1146                                                int type, block_t blk_addr)
1147{
1148        struct curseg_info *curseg = CURSEG_I(sbi, type);
1149        struct page *page = grab_meta_page(sbi, blk_addr);
1150        struct f2fs_summary_block *src = curseg->sum_blk;
1151        struct f2fs_summary_block *dst;
1152
1153        dst = (struct f2fs_summary_block *)page_address(page);
1154
1155        mutex_lock(&curseg->curseg_mutex);
1156
1157        down_read(&curseg->journal_rwsem);
1158        memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
1159        up_read(&curseg->journal_rwsem);
1160
1161        memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
1162        memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
1163
1164        mutex_unlock(&curseg->curseg_mutex);
1165
1166        set_page_dirty(page);
1167        f2fs_put_page(page, 1);
1168}
1169
1170static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
1171{
1172        struct curseg_info *curseg = CURSEG_I(sbi, type);
1173        unsigned int segno = curseg->segno + 1;
1174        struct free_segmap_info *free_i = FREE_I(sbi);
1175
1176        if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
1177                return !test_bit(segno, free_i->free_segmap);
1178        return 0;
1179}
1180
1181/*
1182 * Find a new segment from the free segments bitmap to right order
1183 * This function should be returned with success, otherwise BUG
1184 */
1185static void get_new_segment(struct f2fs_sb_info *sbi,
1186                        unsigned int *newseg, bool new_sec, int dir)
1187{
1188        struct free_segmap_info *free_i = FREE_I(sbi);
1189        unsigned int segno, secno, zoneno;
1190        unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
1191        unsigned int hint = *newseg / sbi->segs_per_sec;
1192        unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
1193        unsigned int left_start = hint;
1194        bool init = true;
1195        int go_left = 0;
1196        int i;
1197
1198        spin_lock(&free_i->segmap_lock);
1199
1200        if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1201                segno = find_next_zero_bit(free_i->free_segmap,
1202                                (hint + 1) * sbi->segs_per_sec, *newseg + 1);
1203                if (segno < (hint + 1) * sbi->segs_per_sec)
1204                        goto got_it;
1205        }
1206find_other_zone:
1207        secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1208        if (secno >= MAIN_SECS(sbi)) {
1209                if (dir == ALLOC_RIGHT) {
1210                        secno = find_next_zero_bit(free_i->free_secmap,
1211                                                        MAIN_SECS(sbi), 0);
1212                        f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1213                } else {
1214                        go_left = 1;
1215                        left_start = hint - 1;
1216                }
1217        }
1218        if (go_left == 0)
1219                goto skip_left;
1220
1221        while (test_bit(left_start, free_i->free_secmap)) {
1222                if (left_start > 0) {
1223                        left_start--;
1224                        continue;
1225                }
1226                left_start = find_next_zero_bit(free_i->free_secmap,
1227                                                        MAIN_SECS(sbi), 0);
1228                f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1229                break;
1230        }
1231        secno = left_start;
1232skip_left:
1233        hint = secno;
1234        segno = secno * sbi->segs_per_sec;
1235        zoneno = secno / sbi->secs_per_zone;
1236
1237        /* give up on finding another zone */
1238        if (!init)
1239                goto got_it;
1240        if (sbi->secs_per_zone == 1)
1241                goto got_it;
1242        if (zoneno == old_zoneno)
1243                goto got_it;
1244        if (dir == ALLOC_LEFT) {
1245                if (!go_left && zoneno + 1 >= total_zones)
1246                        goto got_it;
1247                if (go_left && zoneno == 0)
1248                        goto got_it;
1249        }
1250        for (i = 0; i < NR_CURSEG_TYPE; i++)
1251                if (CURSEG_I(sbi, i)->zone == zoneno)
1252                        break;
1253
1254        if (i < NR_CURSEG_TYPE) {
1255                /* zone is in user, try another */
1256                if (go_left)
1257                        hint = zoneno * sbi->secs_per_zone - 1;
1258                else if (zoneno + 1 >= total_zones)
1259                        hint = 0;
1260                else
1261                        hint = (zoneno + 1) * sbi->secs_per_zone;
1262                init = false;
1263                goto find_other_zone;
1264        }
1265got_it:
1266        /* set it as dirty segment in free segmap */
1267        f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1268        __set_inuse(sbi, segno);
1269        *newseg = segno;
1270        spin_unlock(&free_i->segmap_lock);
1271}
1272
1273static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1274{
1275        struct curseg_info *curseg = CURSEG_I(sbi, type);
1276        struct summary_footer *sum_footer;
1277
1278        curseg->segno = curseg->next_segno;
1279        curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1280        curseg->next_blkoff = 0;
1281        curseg->next_segno = NULL_SEGNO;
1282
1283        sum_footer = &(curseg->sum_blk->footer);
1284        memset(sum_footer, 0, sizeof(struct summary_footer));
1285        if (IS_DATASEG(type))
1286                SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1287        if (IS_NODESEG(type))
1288                SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1289        __set_sit_entry_type(sbi, type, curseg->segno, modified);
1290}
1291
1292/*
1293 * Allocate a current working segment.
1294 * This function always allocates a free segment in LFS manner.
1295 */
1296static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1297{
1298        struct curseg_info *curseg = CURSEG_I(sbi, type);
1299        unsigned int segno = curseg->segno;
1300        int dir = ALLOC_LEFT;
1301
1302        write_sum_page(sbi, curseg->sum_blk,
1303                                GET_SUM_BLOCK(sbi, segno));
1304        if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1305                dir = ALLOC_RIGHT;
1306
1307        if (test_opt(sbi, NOHEAP))
1308                dir = ALLOC_RIGHT;
1309
1310        get_new_segment(sbi, &segno, new_sec, dir);
1311        curseg->next_segno = segno;
1312        reset_curseg(sbi, type, 1);
1313        curseg->alloc_type = LFS;
1314}
1315
1316static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1317                        struct curseg_info *seg, block_t start)
1318{
1319        struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1320        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1321        unsigned long *target_map = SIT_I(sbi)->tmp_map;
1322        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1323        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1324        int i, pos;
1325
1326        for (i = 0; i < entries; i++)
1327                target_map[i] = ckpt_map[i] | cur_map[i];
1328
1329        pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1330
1331        seg->next_blkoff = pos;
1332}
1333
1334/*
1335 * If a segment is written by LFS manner, next block offset is just obtained
1336 * by increasing the current block offset. However, if a segment is written by
1337 * SSR manner, next block offset obtained by calling __next_free_blkoff
1338 */
1339static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1340                                struct curseg_info *seg)
1341{
1342        if (seg->alloc_type == SSR)
1343                __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1344        else
1345                seg->next_blkoff++;
1346}
1347
1348/*
1349 * This function always allocates a used segment(from dirty seglist) by SSR
1350 * manner, so it should recover the existing segment information of valid blocks
1351 */
1352static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1353{
1354        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1355        struct curseg_info *curseg = CURSEG_I(sbi, type);
1356        unsigned int new_segno = curseg->next_segno;
1357        struct f2fs_summary_block *sum_node;
1358        struct page *sum_page;
1359
1360        write_sum_page(sbi, curseg->sum_blk,
1361                                GET_SUM_BLOCK(sbi, curseg->segno));
1362        __set_test_and_inuse(sbi, new_segno);
1363
1364        mutex_lock(&dirty_i->seglist_lock);
1365        __remove_dirty_segment(sbi, new_segno, PRE);
1366        __remove_dirty_segment(sbi, new_segno, DIRTY);
1367        mutex_unlock(&dirty_i->seglist_lock);
1368
1369        reset_curseg(sbi, type, 1);
1370        curseg->alloc_type = SSR;
1371        __next_free_blkoff(sbi, curseg, 0);
1372
1373        if (reuse) {
1374                sum_page = get_sum_page(sbi, new_segno);
1375                sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1376                memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1377                f2fs_put_page(sum_page, 1);
1378        }
1379}
1380
1381static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1382{
1383        struct curseg_info *curseg = CURSEG_I(sbi, type);
1384        const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1385
1386        if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0, 0))
1387                return v_ops->get_victim(sbi,
1388                                &(curseg)->next_segno, BG_GC, type, SSR);
1389
1390        /* For data segments, let's do SSR more intensively */
1391        for (; type >= CURSEG_HOT_DATA; type--)
1392                if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1393                                                BG_GC, type, SSR))
1394                        return 1;
1395        return 0;
1396}
1397
1398/*
1399 * flush out current segment and replace it with new segment
1400 * This function should be returned with success, otherwise BUG
1401 */
1402static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1403                                                int type, bool force)
1404{
1405        struct curseg_info *curseg = CURSEG_I(sbi, type);
1406
1407        if (force)
1408                new_curseg(sbi, type, true);
1409        else if (type == CURSEG_WARM_NODE)
1410                new_curseg(sbi, type, false);
1411        else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1412                new_curseg(sbi, type, false);
1413        else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1414                change_curseg(sbi, type, true);
1415        else
1416                new_curseg(sbi, type, false);
1417
1418        stat_inc_seg_type(sbi, curseg);
1419}
1420
1421void allocate_new_segments(struct f2fs_sb_info *sbi)
1422{
1423        struct curseg_info *curseg;
1424        unsigned int old_segno;
1425        int i;
1426
1427        if (test_opt(sbi, LFS))
1428                return;
1429
1430        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1431                curseg = CURSEG_I(sbi, i);
1432                old_segno = curseg->segno;
1433                SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
1434                locate_dirty_segment(sbi, old_segno);
1435        }
1436}
1437
1438static const struct segment_allocation default_salloc_ops = {
1439        .allocate_segment = allocate_segment_by_default,
1440};
1441
1442int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1443{
1444        __u64 start = F2FS_BYTES_TO_BLK(range->start);
1445        __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1446        unsigned int start_segno, end_segno;
1447        struct cp_control cpc;
1448        int err = 0;
1449
1450        if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1451                return -EINVAL;
1452
1453        cpc.trimmed = 0;
1454        if (end <= MAIN_BLKADDR(sbi))
1455                goto out;
1456
1457        if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1458                f2fs_msg(sbi->sb, KERN_WARNING,
1459                        "Found FS corruption, run fsck to fix.");
1460                goto out;
1461        }
1462
1463        /* start/end segment number in main_area */
1464        start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1465        end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1466                                                GET_SEGNO(sbi, end);
1467        cpc.reason = CP_DISCARD;
1468        cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1469
1470        /* do checkpoint to issue discard commands safely */
1471        for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1472                cpc.trim_start = start_segno;
1473
1474                if (sbi->discard_blks == 0)
1475                        break;
1476                else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1477                        cpc.trim_end = end_segno;
1478                else
1479                        cpc.trim_end = min_t(unsigned int,
1480                                rounddown(start_segno +
1481                                BATCHED_TRIM_SEGMENTS(sbi),
1482                                sbi->segs_per_sec) - 1, end_segno);
1483
1484                mutex_lock(&sbi->gc_mutex);
1485                err = write_checkpoint(sbi, &cpc);
1486                mutex_unlock(&sbi->gc_mutex);
1487                if (err)
1488                        break;
1489
1490                schedule();
1491        }
1492out:
1493        range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1494        return err;
1495}
1496
1497static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1498{
1499        struct curseg_info *curseg = CURSEG_I(sbi, type);
1500        if (curseg->next_blkoff < sbi->blocks_per_seg)
1501                return true;
1502        return false;
1503}
1504
1505static int __get_segment_type_2(struct page *page, enum page_type p_type)
1506{
1507        if (p_type == DATA)
1508                return CURSEG_HOT_DATA;
1509        else
1510                return CURSEG_HOT_NODE;
1511}
1512
1513static int __get_segment_type_4(struct page *page, enum page_type p_type)
1514{
1515        if (p_type == DATA) {
1516                struct inode *inode = page->mapping->host;
1517
1518                if (S_ISDIR(inode->i_mode))
1519                        return CURSEG_HOT_DATA;
1520                else
1521                        return CURSEG_COLD_DATA;
1522        } else {
1523                if (IS_DNODE(page) && is_cold_node(page))
1524                        return CURSEG_WARM_NODE;
1525                else
1526                        return CURSEG_COLD_NODE;
1527        }
1528}
1529
1530static int __get_segment_type_6(struct page *page, enum page_type p_type)
1531{
1532        if (p_type == DATA) {
1533                struct inode *inode = page->mapping->host;
1534
1535                if (S_ISDIR(inode->i_mode))
1536                        return CURSEG_HOT_DATA;
1537                else if (is_cold_data(page) || file_is_cold(inode))
1538                        return CURSEG_COLD_DATA;
1539                else
1540                        return CURSEG_WARM_DATA;
1541        } else {
1542                if (IS_DNODE(page))
1543                        return is_cold_node(page) ? CURSEG_WARM_NODE :
1544                                                CURSEG_HOT_NODE;
1545                else
1546                        return CURSEG_COLD_NODE;
1547        }
1548}
1549
1550static int __get_segment_type(struct page *page, enum page_type p_type)
1551{
1552        switch (F2FS_P_SB(page)->active_logs) {
1553        case 2:
1554                return __get_segment_type_2(page, p_type);
1555        case 4:
1556                return __get_segment_type_4(page, p_type);
1557        }
1558        /* NR_CURSEG_TYPE(6) logs by default */
1559        f2fs_bug_on(F2FS_P_SB(page),
1560                F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1561        return __get_segment_type_6(page, p_type);
1562}
1563
1564void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1565                block_t old_blkaddr, block_t *new_blkaddr,
1566                struct f2fs_summary *sum, int type)
1567{
1568        struct sit_info *sit_i = SIT_I(sbi);
1569        struct curseg_info *curseg = CURSEG_I(sbi, type);
1570
1571        mutex_lock(&curseg->curseg_mutex);
1572        mutex_lock(&sit_i->sentry_lock);
1573
1574        *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1575
1576        /*
1577         * __add_sum_entry should be resided under the curseg_mutex
1578         * because, this function updates a summary entry in the
1579         * current summary block.
1580         */
1581        __add_sum_entry(sbi, type, sum);
1582
1583        __refresh_next_blkoff(sbi, curseg);
1584
1585        stat_inc_block_count(sbi, curseg);
1586
1587        if (!__has_curseg_space(sbi, type))
1588                sit_i->s_ops->allocate_segment(sbi, type, false);
1589        /*
1590         * SIT information should be updated before segment allocation,
1591         * since SSR needs latest valid block information.
1592         */
1593        refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1594
1595        mutex_unlock(&sit_i->sentry_lock);
1596
1597        if (page && IS_NODESEG(type))
1598                fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1599
1600        mutex_unlock(&curseg->curseg_mutex);
1601}
1602
1603static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1604{
1605        int type = __get_segment_type(fio->page, fio->type);
1606
1607        if (fio->type == NODE || fio->type == DATA)
1608                mutex_lock(&fio->sbi->wio_mutex[fio->type]);
1609
1610        allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1611                                        &fio->new_blkaddr, sum, type);
1612
1613        /* writeout dirty page into bdev */
1614        f2fs_submit_page_mbio(fio);
1615
1616        if (fio->type == NODE || fio->type == DATA)
1617                mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
1618}
1619
1620void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1621{
1622        struct f2fs_io_info fio = {
1623                .sbi = sbi,
1624                .type = META,
1625                .op = REQ_OP_WRITE,
1626                .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
1627                .old_blkaddr = page->index,
1628                .new_blkaddr = page->index,
1629                .page = page,
1630                .encrypted_page = NULL,
1631        };
1632
1633        if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1634                fio.op_flags &= ~REQ_META;
1635
1636        set_page_writeback(page);
1637        f2fs_submit_page_mbio(&fio);
1638}
1639
1640void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1641{
1642        struct f2fs_summary sum;
1643
1644        set_summary(&sum, nid, 0, 0);
1645        do_write_page(&sum, fio);
1646}
1647
1648void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1649{
1650        struct f2fs_sb_info *sbi = fio->sbi;
1651        struct f2fs_summary sum;
1652        struct node_info ni;
1653
1654        f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1655        get_node_info(sbi, dn->nid, &ni);
1656        set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1657        do_write_page(&sum, fio);
1658        f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1659}
1660
1661void rewrite_data_page(struct f2fs_io_info *fio)
1662{
1663        fio->new_blkaddr = fio->old_blkaddr;
1664        stat_inc_inplace_blocks(fio->sbi);
1665        f2fs_submit_page_mbio(fio);
1666}
1667
1668void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1669                                block_t old_blkaddr, block_t new_blkaddr,
1670                                bool recover_curseg, bool recover_newaddr)
1671{
1672        struct sit_info *sit_i = SIT_I(sbi);
1673        struct curseg_info *curseg;
1674        unsigned int segno, old_cursegno;
1675        struct seg_entry *se;
1676        int type;
1677        unsigned short old_blkoff;
1678
1679        segno = GET_SEGNO(sbi, new_blkaddr);
1680        se = get_seg_entry(sbi, segno);
1681        type = se->type;
1682
1683        if (!recover_curseg) {
1684                /* for recovery flow */
1685                if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1686                        if (old_blkaddr == NULL_ADDR)
1687                                type = CURSEG_COLD_DATA;
1688                        else
1689                                type = CURSEG_WARM_DATA;
1690                }
1691        } else {
1692                if (!IS_CURSEG(sbi, segno))
1693                        type = CURSEG_WARM_DATA;
1694        }
1695
1696        curseg = CURSEG_I(sbi, type);
1697
1698        mutex_lock(&curseg->curseg_mutex);
1699        mutex_lock(&sit_i->sentry_lock);
1700
1701        old_cursegno = curseg->segno;
1702        old_blkoff = curseg->next_blkoff;
1703
1704        /* change the current segment */
1705        if (segno != curseg->segno) {
1706                curseg->next_segno = segno;
1707                change_curseg(sbi, type, true);
1708        }
1709
1710        curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1711        __add_sum_entry(sbi, type, sum);
1712
1713        if (!recover_curseg || recover_newaddr)
1714                update_sit_entry(sbi, new_blkaddr, 1);
1715        if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1716                update_sit_entry(sbi, old_blkaddr, -1);
1717
1718        locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1719        locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1720
1721        locate_dirty_segment(sbi, old_cursegno);
1722
1723        if (recover_curseg) {
1724                if (old_cursegno != curseg->segno) {
1725                        curseg->next_segno = old_cursegno;
1726                        change_curseg(sbi, type, true);
1727                }
1728                curseg->next_blkoff = old_blkoff;
1729        }
1730
1731        mutex_unlock(&sit_i->sentry_lock);
1732        mutex_unlock(&curseg->curseg_mutex);
1733}
1734
1735void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1736                                block_t old_addr, block_t new_addr,
1737                                unsigned char version, bool recover_curseg,
1738                                bool recover_newaddr)
1739{
1740        struct f2fs_summary sum;
1741
1742        set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1743
1744        __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1745                                        recover_curseg, recover_newaddr);
1746
1747        f2fs_update_data_blkaddr(dn, new_addr);
1748}
1749
1750void f2fs_wait_on_page_writeback(struct page *page,
1751                                enum page_type type, bool ordered)
1752{
1753        if (PageWriteback(page)) {
1754                struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1755
1756                f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1757                if (ordered)
1758                        wait_on_page_writeback(page);
1759                else
1760                        wait_for_stable_page(page);
1761        }
1762}
1763
1764void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1765                                                        block_t blkaddr)
1766{
1767        struct page *cpage;
1768
1769        if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1770                return;
1771
1772        cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1773        if (cpage) {
1774                f2fs_wait_on_page_writeback(cpage, DATA, true);
1775                f2fs_put_page(cpage, 1);
1776        }
1777}
1778
1779static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1780{
1781        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1782        struct curseg_info *seg_i;
1783        unsigned char *kaddr;
1784        struct page *page;
1785        block_t start;
1786        int i, j, offset;
1787
1788        start = start_sum_block(sbi);
1789
1790        page = get_meta_page(sbi, start++);
1791        kaddr = (unsigned char *)page_address(page);
1792
1793        /* Step 1: restore nat cache */
1794        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1795        memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1796
1797        /* Step 2: restore sit cache */
1798        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1799        memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1800        offset = 2 * SUM_JOURNAL_SIZE;
1801
1802        /* Step 3: restore summary entries */
1803        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1804                unsigned short blk_off;
1805                unsigned int segno;
1806
1807                seg_i = CURSEG_I(sbi, i);
1808                segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1809                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1810                seg_i->next_segno = segno;
1811                reset_curseg(sbi, i, 0);
1812                seg_i->alloc_type = ckpt->alloc_type[i];
1813                seg_i->next_blkoff = blk_off;
1814
1815                if (seg_i->alloc_type == SSR)
1816                        blk_off = sbi->blocks_per_seg;
1817
1818                for (j = 0; j < blk_off; j++) {
1819                        struct f2fs_summary *s;
1820                        s = (struct f2fs_summary *)(kaddr + offset);
1821                        seg_i->sum_blk->entries[j] = *s;
1822                        offset += SUMMARY_SIZE;
1823                        if (offset + SUMMARY_SIZE <= PAGE_SIZE -
1824                                                SUM_FOOTER_SIZE)
1825                                continue;
1826
1827                        f2fs_put_page(page, 1);
1828                        page = NULL;
1829
1830                        page = get_meta_page(sbi, start++);
1831                        kaddr = (unsigned char *)page_address(page);
1832                        offset = 0;
1833                }
1834        }
1835        f2fs_put_page(page, 1);
1836        return 0;
1837}
1838
1839static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1840{
1841        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1842        struct f2fs_summary_block *sum;
1843        struct curseg_info *curseg;
1844        struct page *new;
1845        unsigned short blk_off;
1846        unsigned int segno = 0;
1847        block_t blk_addr = 0;
1848
1849        /* get segment number and block addr */
1850        if (IS_DATASEG(type)) {
1851                segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1852                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1853                                                        CURSEG_HOT_DATA]);
1854                if (__exist_node_summaries(sbi))
1855                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1856                else
1857                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1858        } else {
1859                segno = le32_to_cpu(ckpt->cur_node_segno[type -
1860                                                        CURSEG_HOT_NODE]);
1861                blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1862                                                        CURSEG_HOT_NODE]);
1863                if (__exist_node_summaries(sbi))
1864                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1865                                                        type - CURSEG_HOT_NODE);
1866                else
1867                        blk_addr = GET_SUM_BLOCK(sbi, segno);
1868        }
1869
1870        new = get_meta_page(sbi, blk_addr);
1871        sum = (struct f2fs_summary_block *)page_address(new);
1872
1873        if (IS_NODESEG(type)) {
1874                if (__exist_node_summaries(sbi)) {
1875                        struct f2fs_summary *ns = &sum->entries[0];
1876                        int i;
1877                        for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1878                                ns->version = 0;
1879                                ns->ofs_in_node = 0;
1880                        }
1881                } else {
1882                        int err;
1883
1884                        err = restore_node_summary(sbi, segno, sum);
1885                        if (err) {
1886                                f2fs_put_page(new, 1);
1887                                return err;
1888                        }
1889                }
1890        }
1891
1892        /* set uncompleted segment to curseg */
1893        curseg = CURSEG_I(sbi, type);
1894        mutex_lock(&curseg->curseg_mutex);
1895
1896        /* update journal info */
1897        down_write(&curseg->journal_rwsem);
1898        memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1899        up_write(&curseg->journal_rwsem);
1900
1901        memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1902        memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1903        curseg->next_segno = segno;
1904        reset_curseg(sbi, type, 0);
1905        curseg->alloc_type = ckpt->alloc_type[type];
1906        curseg->next_blkoff = blk_off;
1907        mutex_unlock(&curseg->curseg_mutex);
1908        f2fs_put_page(new, 1);
1909        return 0;
1910}
1911
1912static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1913{
1914        int type = CURSEG_HOT_DATA;
1915        int err;
1916
1917        if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
1918                int npages = npages_for_summary_flush(sbi, true);
1919
1920                if (npages >= 2)
1921                        ra_meta_pages(sbi, start_sum_block(sbi), npages,
1922                                                        META_CP, true);
1923
1924                /* restore for compacted data summary */
1925                if (read_compacted_summaries(sbi))
1926                        return -EINVAL;
1927                type = CURSEG_HOT_NODE;
1928        }
1929
1930        if (__exist_node_summaries(sbi))
1931                ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1932                                        NR_CURSEG_TYPE - type, META_CP, true);
1933
1934        for (; type <= CURSEG_COLD_NODE; type++) {
1935                err = read_normal_summaries(sbi, type);
1936                if (err)
1937                        return err;
1938        }
1939
1940        return 0;
1941}
1942
1943static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1944{
1945        struct page *page;
1946        unsigned char *kaddr;
1947        struct f2fs_summary *summary;
1948        struct curseg_info *seg_i;
1949        int written_size = 0;
1950        int i, j;
1951
1952        page = grab_meta_page(sbi, blkaddr++);
1953        kaddr = (unsigned char *)page_address(page);
1954
1955        /* Step 1: write nat cache */
1956        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1957        memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1958        written_size += SUM_JOURNAL_SIZE;
1959
1960        /* Step 2: write sit cache */
1961        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1962        memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1963        written_size += SUM_JOURNAL_SIZE;
1964
1965        /* Step 3: write summary entries */
1966        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1967                unsigned short blkoff;
1968                seg_i = CURSEG_I(sbi, i);
1969                if (sbi->ckpt->alloc_type[i] == SSR)
1970                        blkoff = sbi->blocks_per_seg;
1971                else
1972                        blkoff = curseg_blkoff(sbi, i);
1973
1974                for (j = 0; j < blkoff; j++) {
1975                        if (!page) {
1976                                page = grab_meta_page(sbi, blkaddr++);
1977                                kaddr = (unsigned char *)page_address(page);
1978                                written_size = 0;
1979                        }
1980                        summary = (struct f2fs_summary *)(kaddr + written_size);
1981                        *summary = seg_i->sum_blk->entries[j];
1982                        written_size += SUMMARY_SIZE;
1983
1984                        if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
1985                                                        SUM_FOOTER_SIZE)
1986                                continue;
1987
1988                        set_page_dirty(page);
1989                        f2fs_put_page(page, 1);
1990                        page = NULL;
1991                }
1992        }
1993        if (page) {
1994                set_page_dirty(page);
1995                f2fs_put_page(page, 1);
1996        }
1997}
1998
1999static void write_normal_summaries(struct f2fs_sb_info *sbi,
2000                                        block_t blkaddr, int type)
2001{
2002        int i, end;
2003        if (IS_DATASEG(type))
2004                end = type + NR_CURSEG_DATA_TYPE;
2005        else
2006                end = type + NR_CURSEG_NODE_TYPE;
2007
2008        for (i = type; i < end; i++)
2009                write_current_sum_page(sbi, i, blkaddr + (i - type));
2010}
2011
2012void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2013{
2014        if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
2015                write_compacted_summaries(sbi, start_blk);
2016        else
2017                write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
2018}
2019
2020void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2021{
2022        write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
2023}
2024
2025int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2026                                        unsigned int val, int alloc)
2027{
2028        int i;
2029
2030        if (type == NAT_JOURNAL) {
2031                for (i = 0; i < nats_in_cursum(journal); i++) {
2032                        if (le32_to_cpu(nid_in_journal(journal, i)) == val)
2033                                return i;
2034                }
2035                if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
2036                        return update_nats_in_cursum(journal, 1);
2037        } else if (type == SIT_JOURNAL) {
2038                for (i = 0; i < sits_in_cursum(journal); i++)
2039                        if (le32_to_cpu(segno_in_journal(journal, i)) == val)
2040                                return i;
2041                if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
2042                        return update_sits_in_cursum(journal, 1);
2043        }
2044        return -1;
2045}
2046
2047static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
2048                                        unsigned int segno)
2049{
2050        return get_meta_page(sbi, current_sit_addr(sbi, segno));
2051}
2052
2053static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
2054                                        unsigned int start)
2055{
2056        struct sit_info *sit_i = SIT_I(sbi);
2057        struct page *src_page, *dst_page;
2058        pgoff_t src_off, dst_off;
2059        void *src_addr, *dst_addr;
2060
2061        src_off = current_sit_addr(sbi, start);
2062        dst_off = next_sit_addr(sbi, src_off);
2063
2064        /* get current sit block page without lock */
2065        src_page = get_meta_page(sbi, src_off);
2066        dst_page = grab_meta_page(sbi, dst_off);
2067        f2fs_bug_on(sbi, PageDirty(src_page));
2068
2069        src_addr = page_address(src_page);
2070        dst_addr = page_address(dst_page);
2071        memcpy(dst_addr, src_addr, PAGE_SIZE);
2072
2073        set_page_dirty(dst_page);
2074        f2fs_put_page(src_page, 1);
2075
2076        set_to_next_sit(sit_i, start);
2077
2078        return dst_page;
2079}
2080
2081static struct sit_entry_set *grab_sit_entry_set(void)
2082{
2083        struct sit_entry_set *ses =
2084                        f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
2085
2086        ses->entry_cnt = 0;
2087        INIT_LIST_HEAD(&ses->set_list);
2088        return ses;
2089}
2090
2091static void release_sit_entry_set(struct sit_entry_set *ses)
2092{
2093        list_del(&ses->set_list);
2094        kmem_cache_free(sit_entry_set_slab, ses);
2095}
2096
2097static void adjust_sit_entry_set(struct sit_entry_set *ses,
2098                                                struct list_head *head)
2099{
2100        struct sit_entry_set *next = ses;
2101
2102        if (list_is_last(&ses->set_list, head))
2103                return;
2104
2105        list_for_each_entry_continue(next, head, set_list)
2106                if (ses->entry_cnt <= next->entry_cnt)
2107                        break;
2108
2109        list_move_tail(&ses->set_list, &next->set_list);
2110}
2111
2112static void add_sit_entry(unsigned int segno, struct list_head *head)
2113{
2114        struct sit_entry_set *ses;
2115        unsigned int start_segno = START_SEGNO(segno);
2116
2117        list_for_each_entry(ses, head, set_list) {
2118                if (ses->start_segno == start_segno) {
2119                        ses->entry_cnt++;
2120                        adjust_sit_entry_set(ses, head);
2121                        return;
2122                }
2123        }
2124
2125        ses = grab_sit_entry_set();
2126
2127        ses->start_segno = start_segno;
2128        ses->entry_cnt++;
2129        list_add(&ses->set_list, head);
2130}
2131
2132static void add_sits_in_set(struct f2fs_sb_info *sbi)
2133{
2134        struct f2fs_sm_info *sm_info = SM_I(sbi);
2135        struct list_head *set_list = &sm_info->sit_entry_set;
2136        unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
2137        unsigned int segno;
2138
2139        for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
2140                add_sit_entry(segno, set_list);
2141}
2142
2143static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
2144{
2145        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2146        struct f2fs_journal *journal = curseg->journal;
2147        int i;
2148
2149        down_write(&curseg->journal_rwsem);
2150        for (i = 0; i < sits_in_cursum(journal); i++) {
2151                unsigned int segno;
2152                bool dirtied;
2153
2154                segno = le32_to_cpu(segno_in_journal(journal, i));
2155                dirtied = __mark_sit_entry_dirty(sbi, segno);
2156
2157                if (!dirtied)
2158                        add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
2159        }
2160        update_sits_in_cursum(journal, -i);
2161        up_write(&curseg->journal_rwsem);
2162}
2163
2164/*
2165 * CP calls this function, which flushes SIT entries including sit_journal,
2166 * and moves prefree segs to free segs.
2167 */
2168void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2169{
2170        struct sit_info *sit_i = SIT_I(sbi);
2171        unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
2172        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2173        struct f2fs_journal *journal = curseg->journal;
2174        struct sit_entry_set *ses, *tmp;
2175        struct list_head *head = &SM_I(sbi)->sit_entry_set;
2176        bool to_journal = true;
2177        struct seg_entry *se;
2178
2179        mutex_lock(&sit_i->sentry_lock);
2180
2181        if (!sit_i->dirty_sentries)
2182                goto out;
2183
2184        /*
2185         * add and account sit entries of dirty bitmap in sit entry
2186         * set temporarily
2187         */
2188        add_sits_in_set(sbi);
2189
2190        /*
2191         * if there are no enough space in journal to store dirty sit
2192         * entries, remove all entries from journal and add and account
2193         * them in sit entry set.
2194         */
2195        if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
2196                remove_sits_in_journal(sbi);
2197
2198        /*
2199         * there are two steps to flush sit entries:
2200         * #1, flush sit entries to journal in current cold data summary block.
2201         * #2, flush sit entries to sit page.
2202         */
2203        list_for_each_entry_safe(ses, tmp, head, set_list) {
2204                struct page *page = NULL;
2205                struct f2fs_sit_block *raw_sit = NULL;
2206                unsigned int start_segno = ses->start_segno;
2207                unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
2208                                                (unsigned long)MAIN_SEGS(sbi));
2209                unsigned int segno = start_segno;
2210
2211                if (to_journal &&
2212                        !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
2213                        to_journal = false;
2214
2215                if (to_journal) {
2216                        down_write(&curseg->journal_rwsem);
2217                } else {
2218                        page = get_next_sit_page(sbi, start_segno);
2219                        raw_sit = page_address(page);
2220                }
2221
2222                /* flush dirty sit entries in region of current sit set */
2223                for_each_set_bit_from(segno, bitmap, end) {
2224                        int offset, sit_offset;
2225
2226                        se = get_seg_entry(sbi, segno);
2227
2228                        /* add discard candidates */
2229                        if (cpc->reason != CP_DISCARD) {
2230                                cpc->trim_start = segno;
2231                                add_discard_addrs(sbi, cpc);
2232                        }
2233
2234                        if (to_journal) {
2235                                offset = lookup_journal_in_cursum(journal,
2236                                                        SIT_JOURNAL, segno, 1);
2237                                f2fs_bug_on(sbi, offset < 0);
2238                                segno_in_journal(journal, offset) =
2239                                                        cpu_to_le32(segno);
2240                                seg_info_to_raw_sit(se,
2241                                        &sit_in_journal(journal, offset));
2242                        } else {
2243                                sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2244                                seg_info_to_raw_sit(se,
2245                                                &raw_sit->entries[sit_offset]);
2246                        }
2247
2248                        __clear_bit(segno, bitmap);
2249                        sit_i->dirty_sentries--;
2250                        ses->entry_cnt--;
2251                }
2252
2253                if (to_journal)
2254                        up_write(&curseg->journal_rwsem);
2255                else
2256                        f2fs_put_page(page, 1);
2257
2258                f2fs_bug_on(sbi, ses->entry_cnt);
2259                release_sit_entry_set(ses);
2260        }
2261
2262        f2fs_bug_on(sbi, !list_empty(head));
2263        f2fs_bug_on(sbi, sit_i->dirty_sentries);
2264out:
2265        if (cpc->reason == CP_DISCARD) {
2266                for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2267                        add_discard_addrs(sbi, cpc);
2268        }
2269        mutex_unlock(&sit_i->sentry_lock);
2270
2271        set_prefree_as_free_segments(sbi);
2272}
2273
2274static int build_sit_info(struct f2fs_sb_info *sbi)
2275{
2276        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2277        struct sit_info *sit_i;
2278        unsigned int sit_segs, start;
2279        char *src_bitmap, *dst_bitmap;
2280        unsigned int bitmap_size;
2281
2282        /* allocate memory for SIT information */
2283        sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2284        if (!sit_i)
2285                return -ENOMEM;
2286
2287        SM_I(sbi)->sit_info = sit_i;
2288
2289        sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2290                                        sizeof(struct seg_entry), GFP_KERNEL);
2291        if (!sit_i->sentries)
2292                return -ENOMEM;
2293
2294        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2295        sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2296        if (!sit_i->dirty_sentries_bitmap)
2297                return -ENOMEM;
2298
2299        for (start = 0; start < MAIN_SEGS(sbi); start++) {
2300                sit_i->sentries[start].cur_valid_map
2301                        = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2302                sit_i->sentries[start].ckpt_valid_map
2303                        = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2304                if (!sit_i->sentries[start].cur_valid_map ||
2305                                !sit_i->sentries[start].ckpt_valid_map)
2306                        return -ENOMEM;
2307
2308                if (f2fs_discard_en(sbi)) {
2309                        sit_i->sentries[start].discard_map
2310                                = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2311                        if (!sit_i->sentries[start].discard_map)
2312                                return -ENOMEM;
2313                }
2314        }
2315
2316        sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2317        if (!sit_i->tmp_map)
2318                return -ENOMEM;
2319
2320        if (sbi->segs_per_sec > 1) {
2321                sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2322                                        sizeof(struct sec_entry), GFP_KERNEL);
2323                if (!sit_i->sec_entries)
2324                        return -ENOMEM;
2325        }
2326
2327        /* get information related with SIT */
2328        sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2329
2330        /* setup SIT bitmap from ckeckpoint pack */
2331        bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2332        src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2333
2334        dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2335        if (!dst_bitmap)
2336                return -ENOMEM;
2337
2338        /* init SIT information */
2339        sit_i->s_ops = &default_salloc_ops;
2340
2341        sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2342        sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2343        sit_i->written_valid_blocks = 0;
2344        sit_i->sit_bitmap = dst_bitmap;
2345        sit_i->bitmap_size = bitmap_size;
2346        sit_i->dirty_sentries = 0;
2347        sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2348        sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2349        sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2350        mutex_init(&sit_i->sentry_lock);
2351        return 0;
2352}
2353
2354static int build_free_segmap(struct f2fs_sb_info *sbi)
2355{
2356        struct free_segmap_info *free_i;
2357        unsigned int bitmap_size, sec_bitmap_size;
2358
2359        /* allocate memory for free segmap information */
2360        free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2361        if (!free_i)
2362                return -ENOMEM;
2363
2364        SM_I(sbi)->free_info = free_i;
2365
2366        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2367        free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2368        if (!free_i->free_segmap)
2369                return -ENOMEM;
2370
2371        sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2372        free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2373        if (!free_i->free_secmap)
2374                return -ENOMEM;
2375
2376        /* set all segments as dirty temporarily */
2377        memset(free_i->free_segmap, 0xff, bitmap_size);
2378        memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2379
2380        /* init free segmap information */
2381        free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2382        free_i->free_segments = 0;
2383        free_i->free_sections = 0;
2384        spin_lock_init(&free_i->segmap_lock);
2385        return 0;
2386}
2387
2388static int build_curseg(struct f2fs_sb_info *sbi)
2389{
2390        struct curseg_info *array;
2391        int i;
2392
2393        array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2394        if (!array)
2395                return -ENOMEM;
2396
2397        SM_I(sbi)->curseg_array = array;
2398
2399        for (i = 0; i < NR_CURSEG_TYPE; i++) {
2400                mutex_init(&array[i].curseg_mutex);
2401                array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2402                if (!array[i].sum_blk)
2403                        return -ENOMEM;
2404                init_rwsem(&array[i].journal_rwsem);
2405                array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2406                                                        GFP_KERNEL);
2407                if (!array[i].journal)
2408                        return -ENOMEM;
2409                array[i].segno = NULL_SEGNO;
2410                array[i].next_blkoff = 0;
2411        }
2412        return restore_curseg_summaries(sbi);
2413}
2414
2415static void build_sit_entries(struct f2fs_sb_info *sbi)
2416{
2417        struct sit_info *sit_i = SIT_I(sbi);
2418        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2419        struct f2fs_journal *journal = curseg->journal;
2420        struct seg_entry *se;
2421        struct f2fs_sit_entry sit;
2422        int sit_blk_cnt = SIT_BLK_CNT(sbi);
2423        unsigned int i, start, end;
2424        unsigned int readed, start_blk = 0;
2425
2426        do {
2427                readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
2428                                                        META_SIT, true);
2429
2430                start = start_blk * sit_i->sents_per_block;
2431                end = (start_blk + readed) * sit_i->sents_per_block;
2432
2433                for (; start < end && start < MAIN_SEGS(sbi); start++) {
2434                        struct f2fs_sit_block *sit_blk;
2435                        struct page *page;
2436
2437                        se = &sit_i->sentries[start];
2438                        page = get_current_sit_page(sbi, start);
2439                        sit_blk = (struct f2fs_sit_block *)page_address(page);
2440                        sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2441                        f2fs_put_page(page, 1);
2442
2443                        check_block_count(sbi, start, &sit);
2444                        seg_info_from_raw_sit(se, &sit);
2445
2446                        /* build discard map only one time */
2447                        if (f2fs_discard_en(sbi)) {
2448                                memcpy(se->discard_map, se->cur_valid_map,
2449                                                        SIT_VBLOCK_MAP_SIZE);
2450                                sbi->discard_blks += sbi->blocks_per_seg -
2451                                                        se->valid_blocks;
2452                        }
2453
2454                        if (sbi->segs_per_sec > 1)
2455                                get_sec_entry(sbi, start)->valid_blocks +=
2456                                                        se->valid_blocks;
2457                }
2458                start_blk += readed;
2459        } while (start_blk < sit_blk_cnt);
2460
2461        down_read(&curseg->journal_rwsem);
2462        for (i = 0; i < sits_in_cursum(journal); i++) {
2463                unsigned int old_valid_blocks;
2464
2465                start = le32_to_cpu(segno_in_journal(journal, i));
2466                se = &sit_i->sentries[start];
2467                sit = sit_in_journal(journal, i);
2468
2469                old_valid_blocks = se->valid_blocks;
2470
2471                check_block_count(sbi, start, &sit);
2472                seg_info_from_raw_sit(se, &sit);
2473
2474                if (f2fs_discard_en(sbi)) {
2475                        memcpy(se->discard_map, se->cur_valid_map,
2476                                                SIT_VBLOCK_MAP_SIZE);
2477                        sbi->discard_blks += old_valid_blocks -
2478                                                se->valid_blocks;
2479                }
2480
2481                if (sbi->segs_per_sec > 1)
2482                        get_sec_entry(sbi, start)->valid_blocks +=
2483                                se->valid_blocks - old_valid_blocks;
2484        }
2485        up_read(&curseg->journal_rwsem);
2486}
2487
2488static void init_free_segmap(struct f2fs_sb_info *sbi)
2489{
2490        unsigned int start;
2491        int type;
2492
2493        for (start = 0; start < MAIN_SEGS(sbi); start++) {
2494                struct seg_entry *sentry = get_seg_entry(sbi, start);
2495                if (!sentry->valid_blocks)
2496                        __set_free(sbi, start);
2497                else
2498                        SIT_I(sbi)->written_valid_blocks +=
2499                                                sentry->valid_blocks;
2500        }
2501
2502        /* set use the current segments */
2503        for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2504                struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2505                __set_test_and_inuse(sbi, curseg_t->segno);
2506        }
2507}
2508
2509static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2510{
2511        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2512        struct free_segmap_info *free_i = FREE_I(sbi);
2513        unsigned int segno = 0, offset = 0;
2514        unsigned short valid_blocks;
2515
2516        while (1) {
2517                /* find dirty segment based on free segmap */
2518                segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2519                if (segno >= MAIN_SEGS(sbi))
2520                        break;
2521                offset = segno + 1;
2522                valid_blocks = get_valid_blocks(sbi, segno, 0);
2523                if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2524                        continue;
2525                if (valid_blocks > sbi->blocks_per_seg) {
2526                        f2fs_bug_on(sbi, 1);
2527                        continue;
2528                }
2529                mutex_lock(&dirty_i->seglist_lock);
2530                __locate_dirty_segment(sbi, segno, DIRTY);
2531                mutex_unlock(&dirty_i->seglist_lock);
2532        }
2533}
2534
2535static int init_victim_secmap(struct f2fs_sb_info *sbi)
2536{
2537        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2538        unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2539
2540        dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2541        if (!dirty_i->victim_secmap)
2542                return -ENOMEM;
2543        return 0;
2544}
2545
2546static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2547{
2548        struct dirty_seglist_info *dirty_i;
2549        unsigned int bitmap_size, i;
2550
2551        /* allocate memory for dirty segments list information */
2552        dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2553        if (!dirty_i)
2554                return -ENOMEM;
2555
2556        SM_I(sbi)->dirty_info = dirty_i;
2557        mutex_init(&dirty_i->seglist_lock);
2558
2559        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2560
2561        for (i = 0; i < NR_DIRTY_TYPE; i++) {
2562                dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2563                if (!dirty_i->dirty_segmap[i])
2564                        return -ENOMEM;
2565        }
2566
2567        init_dirty_segmap(sbi);
2568        return init_victim_secmap(sbi);
2569}
2570
2571/*
2572 * Update min, max modified time for cost-benefit GC algorithm
2573 */
2574static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2575{
2576        struct sit_info *sit_i = SIT_I(sbi);
2577        unsigned int segno;
2578
2579        mutex_lock(&sit_i->sentry_lock);
2580
2581        sit_i->min_mtime = LLONG_MAX;
2582
2583        for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2584                unsigned int i;
2585                unsigned long long mtime = 0;
2586
2587                for (i = 0; i < sbi->segs_per_sec; i++)
2588                        mtime += get_seg_entry(sbi, segno + i)->mtime;
2589
2590                mtime = div_u64(mtime, sbi->segs_per_sec);
2591
2592                if (sit_i->min_mtime > mtime)
2593                        sit_i->min_mtime = mtime;
2594        }
2595        sit_i->max_mtime = get_mtime(sbi);
2596        mutex_unlock(&sit_i->sentry_lock);
2597}
2598
2599int build_segment_manager(struct f2fs_sb_info *sbi)
2600{
2601        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2602        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2603        struct f2fs_sm_info *sm_info;
2604        int err;
2605
2606        sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2607        if (!sm_info)
2608                return -ENOMEM;
2609
2610        /* init sm info */
2611        sbi->sm_info = sm_info;
2612        sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2613        sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2614        sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2615        sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2616        sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2617        sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2618        sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2619        sm_info->rec_prefree_segments = sm_info->main_segments *
2620                                        DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2621        if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
2622                sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
2623
2624        if (!test_opt(sbi, LFS))
2625                sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2626        sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2627        sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2628
2629        INIT_LIST_HEAD(&sm_info->discard_list);
2630        INIT_LIST_HEAD(&sm_info->wait_list);
2631        sm_info->nr_discards = 0;
2632        sm_info->max_discards = 0;
2633
2634        sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2635
2636        INIT_LIST_HEAD(&sm_info->sit_entry_set);
2637
2638        if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2639                err = create_flush_cmd_control(sbi);
2640                if (err)
2641                        return err;
2642        }
2643
2644        err = build_sit_info(sbi);
2645        if (err)
2646                return err;
2647        err = build_free_segmap(sbi);
2648        if (err)
2649                return err;
2650        err = build_curseg(sbi);
2651        if (err)
2652                return err;
2653
2654        /* reinit free segmap based on SIT */
2655        build_sit_entries(sbi);
2656
2657        init_free_segmap(sbi);
2658        err = build_dirty_segmap(sbi);
2659        if (err)
2660                return err;
2661
2662        init_min_max_mtime(sbi);
2663        return 0;
2664}
2665
2666static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2667                enum dirty_type dirty_type)
2668{
2669        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2670
2671        mutex_lock(&dirty_i->seglist_lock);
2672        kvfree(dirty_i->dirty_segmap[dirty_type]);
2673        dirty_i->nr_dirty[dirty_type] = 0;
2674        mutex_unlock(&dirty_i->seglist_lock);
2675}
2676
2677static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2678{
2679        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2680        kvfree(dirty_i->victim_secmap);
2681}
2682
2683static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2684{
2685        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2686        int i;
2687
2688        if (!dirty_i)
2689                return;
2690
2691        /* discard pre-free/dirty segments list */
2692        for (i = 0; i < NR_DIRTY_TYPE; i++)
2693                discard_dirty_segmap(sbi, i);
2694
2695        destroy_victim_secmap(sbi);
2696        SM_I(sbi)->dirty_info = NULL;
2697        kfree(dirty_i);
2698}
2699
2700static void destroy_curseg(struct f2fs_sb_info *sbi)
2701{
2702        struct curseg_info *array = SM_I(sbi)->curseg_array;
2703        int i;
2704
2705        if (!array)
2706                return;
2707        SM_I(sbi)->curseg_array = NULL;
2708        for (i = 0; i < NR_CURSEG_TYPE; i++) {
2709                kfree(array[i].sum_blk);
2710                kfree(array[i].journal);
2711        }
2712        kfree(array);
2713}
2714
2715static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2716{
2717        struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2718        if (!free_i)
2719                return;
2720        SM_I(sbi)->free_info = NULL;
2721        kvfree(free_i->free_segmap);
2722        kvfree(free_i->free_secmap);
2723        kfree(free_i);
2724}
2725
2726static void destroy_sit_info(struct f2fs_sb_info *sbi)
2727{
2728        struct sit_info *sit_i = SIT_I(sbi);
2729        unsigned int start;
2730
2731        if (!sit_i)
2732                return;
2733
2734        if (sit_i->sentries) {
2735                for (start = 0; start < MAIN_SEGS(sbi); start++) {
2736                        kfree(sit_i->sentries[start].cur_valid_map);
2737                        kfree(sit_i->sentries[start].ckpt_valid_map);
2738                        kfree(sit_i->sentries[start].discard_map);
2739                }
2740        }
2741        kfree(sit_i->tmp_map);
2742
2743        kvfree(sit_i->sentries);
2744        kvfree(sit_i->sec_entries);
2745        kvfree(sit_i->dirty_sentries_bitmap);
2746
2747        SM_I(sbi)->sit_info = NULL;
2748        kfree(sit_i->sit_bitmap);
2749        kfree(sit_i);
2750}
2751
2752void destroy_segment_manager(struct f2fs_sb_info *sbi)
2753{
2754        struct f2fs_sm_info *sm_info = SM_I(sbi);
2755
2756        if (!sm_info)
2757                return;
2758        destroy_flush_cmd_control(sbi, true);
2759        destroy_dirty_segmap(sbi);
2760        destroy_curseg(sbi);
2761        destroy_free_segmap(sbi);
2762        destroy_sit_info(sbi);
2763        sbi->sm_info = NULL;
2764        kfree(sm_info);
2765}
2766
2767int __init create_segment_manager_caches(void)
2768{
2769        discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2770                        sizeof(struct discard_entry));
2771        if (!discard_entry_slab)
2772                goto fail;
2773
2774        bio_entry_slab = f2fs_kmem_cache_create("bio_entry",
2775                        sizeof(struct bio_entry));
2776        if (!bio_entry_slab)
2777                goto destroy_discard_entry;
2778
2779        sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2780                        sizeof(struct sit_entry_set));
2781        if (!sit_entry_set_slab)
2782                goto destroy_bio_entry;
2783
2784        inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2785                        sizeof(struct inmem_pages));
2786        if (!inmem_entry_slab)
2787                goto destroy_sit_entry_set;
2788        return 0;
2789
2790destroy_sit_entry_set:
2791        kmem_cache_destroy(sit_entry_set_slab);
2792destroy_bio_entry:
2793        kmem_cache_destroy(bio_entry_slab);
2794destroy_discard_entry:
2795        kmem_cache_destroy(discard_entry_slab);
2796fail:
2797        return -ENOMEM;
2798}
2799
2800void destroy_segment_manager_caches(void)
2801{
2802        kmem_cache_destroy(sit_entry_set_slab);
2803        kmem_cache_destroy(bio_entry_slab);
2804        kmem_cache_destroy(discard_entry_slab);
2805        kmem_cache_destroy(inmem_entry_slab);
2806}
2807