linux/fs/kernfs/file.c
<<
>>
Prefs
   1/*
   2 * fs/kernfs/file.c - kernfs file implementation
   3 *
   4 * Copyright (c) 2001-3 Patrick Mochel
   5 * Copyright (c) 2007 SUSE Linux Products GmbH
   6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
   7 *
   8 * This file is released under the GPLv2.
   9 */
  10
  11#include <linux/fs.h>
  12#include <linux/seq_file.h>
  13#include <linux/slab.h>
  14#include <linux/poll.h>
  15#include <linux/pagemap.h>
  16#include <linux/sched.h>
  17#include <linux/fsnotify.h>
  18
  19#include "kernfs-internal.h"
  20
  21/*
  22 * There's one kernfs_open_file for each open file and one kernfs_open_node
  23 * for each kernfs_node with one or more open files.
  24 *
  25 * kernfs_node->attr.open points to kernfs_open_node.  attr.open is
  26 * protected by kernfs_open_node_lock.
  27 *
  28 * filp->private_data points to seq_file whose ->private points to
  29 * kernfs_open_file.  kernfs_open_files are chained at
  30 * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
  31 */
  32static DEFINE_SPINLOCK(kernfs_open_node_lock);
  33static DEFINE_MUTEX(kernfs_open_file_mutex);
  34
  35struct kernfs_open_node {
  36        atomic_t                refcnt;
  37        atomic_t                event;
  38        wait_queue_head_t       poll;
  39        struct list_head        files; /* goes through kernfs_open_file.list */
  40};
  41
  42/*
  43 * kernfs_notify() may be called from any context and bounces notifications
  44 * through a work item.  To minimize space overhead in kernfs_node, the
  45 * pending queue is implemented as a singly linked list of kernfs_nodes.
  46 * The list is terminated with the self pointer so that whether a
  47 * kernfs_node is on the list or not can be determined by testing the next
  48 * pointer for NULL.
  49 */
  50#define KERNFS_NOTIFY_EOL                       ((void *)&kernfs_notify_list)
  51
  52static DEFINE_SPINLOCK(kernfs_notify_lock);
  53static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
  54
  55static struct kernfs_open_file *kernfs_of(struct file *file)
  56{
  57        return ((struct seq_file *)file->private_data)->private;
  58}
  59
  60/*
  61 * Determine the kernfs_ops for the given kernfs_node.  This function must
  62 * be called while holding an active reference.
  63 */
  64static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
  65{
  66        if (kn->flags & KERNFS_LOCKDEP)
  67                lockdep_assert_held(kn);
  68        return kn->attr.ops;
  69}
  70
  71/*
  72 * As kernfs_seq_stop() is also called after kernfs_seq_start() or
  73 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
  74 * a seq_file iteration which is fully initialized with an active reference
  75 * or an aborted kernfs_seq_start() due to get_active failure.  The
  76 * position pointer is the only context for each seq_file iteration and
  77 * thus the stop condition should be encoded in it.  As the return value is
  78 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
  79 * choice to indicate get_active failure.
  80 *
  81 * Unfortunately, this is complicated due to the optional custom seq_file
  82 * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
  83 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
  84 * custom seq_file operations and thus can't decide whether put_active
  85 * should be performed or not only on ERR_PTR(-ENODEV).
  86 *
  87 * This is worked around by factoring out the custom seq_stop() and
  88 * put_active part into kernfs_seq_stop_active(), skipping it from
  89 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
  90 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
  91 * that kernfs_seq_stop_active() is skipped only after get_active failure.
  92 */
  93static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
  94{
  95        struct kernfs_open_file *of = sf->private;
  96        const struct kernfs_ops *ops = kernfs_ops(of->kn);
  97
  98        if (ops->seq_stop)
  99                ops->seq_stop(sf, v);
 100        kernfs_put_active(of->kn);
 101}
 102
 103static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
 104{
 105        struct kernfs_open_file *of = sf->private;
 106        const struct kernfs_ops *ops;
 107
 108        /*
 109         * @of->mutex nests outside active ref and is primarily to ensure that
 110         * the ops aren't called concurrently for the same open file.
 111         */
 112        mutex_lock(&of->mutex);
 113        if (!kernfs_get_active(of->kn))
 114                return ERR_PTR(-ENODEV);
 115
 116        ops = kernfs_ops(of->kn);
 117        if (ops->seq_start) {
 118                void *next = ops->seq_start(sf, ppos);
 119                /* see the comment above kernfs_seq_stop_active() */
 120                if (next == ERR_PTR(-ENODEV))
 121                        kernfs_seq_stop_active(sf, next);
 122                return next;
 123        } else {
 124                /*
 125                 * The same behavior and code as single_open().  Returns
 126                 * !NULL if pos is at the beginning; otherwise, NULL.
 127                 */
 128                return NULL + !*ppos;
 129        }
 130}
 131
 132static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
 133{
 134        struct kernfs_open_file *of = sf->private;
 135        const struct kernfs_ops *ops = kernfs_ops(of->kn);
 136
 137        if (ops->seq_next) {
 138                void *next = ops->seq_next(sf, v, ppos);
 139                /* see the comment above kernfs_seq_stop_active() */
 140                if (next == ERR_PTR(-ENODEV))
 141                        kernfs_seq_stop_active(sf, next);
 142                return next;
 143        } else {
 144                /*
 145                 * The same behavior and code as single_open(), always
 146                 * terminate after the initial read.
 147                 */
 148                ++*ppos;
 149                return NULL;
 150        }
 151}
 152
 153static void kernfs_seq_stop(struct seq_file *sf, void *v)
 154{
 155        struct kernfs_open_file *of = sf->private;
 156
 157        if (v != ERR_PTR(-ENODEV))
 158                kernfs_seq_stop_active(sf, v);
 159        mutex_unlock(&of->mutex);
 160}
 161
 162static int kernfs_seq_show(struct seq_file *sf, void *v)
 163{
 164        struct kernfs_open_file *of = sf->private;
 165
 166        of->event = atomic_read(&of->kn->attr.open->event);
 167
 168        return of->kn->attr.ops->seq_show(sf, v);
 169}
 170
 171static const struct seq_operations kernfs_seq_ops = {
 172        .start = kernfs_seq_start,
 173        .next = kernfs_seq_next,
 174        .stop = kernfs_seq_stop,
 175        .show = kernfs_seq_show,
 176};
 177
 178/*
 179 * As reading a bin file can have side-effects, the exact offset and bytes
 180 * specified in read(2) call should be passed to the read callback making
 181 * it difficult to use seq_file.  Implement simplistic custom buffering for
 182 * bin files.
 183 */
 184static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of,
 185                                       char __user *user_buf, size_t count,
 186                                       loff_t *ppos)
 187{
 188        ssize_t len = min_t(size_t, count, PAGE_SIZE);
 189        const struct kernfs_ops *ops;
 190        char *buf;
 191
 192        buf = of->prealloc_buf;
 193        if (buf)
 194                mutex_lock(&of->prealloc_mutex);
 195        else
 196                buf = kmalloc(len, GFP_KERNEL);
 197        if (!buf)
 198                return -ENOMEM;
 199
 200        /*
 201         * @of->mutex nests outside active ref and is used both to ensure that
 202         * the ops aren't called concurrently for the same open file.
 203         */
 204        mutex_lock(&of->mutex);
 205        if (!kernfs_get_active(of->kn)) {
 206                len = -ENODEV;
 207                mutex_unlock(&of->mutex);
 208                goto out_free;
 209        }
 210
 211        of->event = atomic_read(&of->kn->attr.open->event);
 212        ops = kernfs_ops(of->kn);
 213        if (ops->read)
 214                len = ops->read(of, buf, len, *ppos);
 215        else
 216                len = -EINVAL;
 217
 218        kernfs_put_active(of->kn);
 219        mutex_unlock(&of->mutex);
 220
 221        if (len < 0)
 222                goto out_free;
 223
 224        if (copy_to_user(user_buf, buf, len)) {
 225                len = -EFAULT;
 226                goto out_free;
 227        }
 228
 229        *ppos += len;
 230
 231 out_free:
 232        if (buf == of->prealloc_buf)
 233                mutex_unlock(&of->prealloc_mutex);
 234        else
 235                kfree(buf);
 236        return len;
 237}
 238
 239/**
 240 * kernfs_fop_read - kernfs vfs read callback
 241 * @file: file pointer
 242 * @user_buf: data to write
 243 * @count: number of bytes
 244 * @ppos: starting offset
 245 */
 246static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf,
 247                               size_t count, loff_t *ppos)
 248{
 249        struct kernfs_open_file *of = kernfs_of(file);
 250
 251        if (of->kn->flags & KERNFS_HAS_SEQ_SHOW)
 252                return seq_read(file, user_buf, count, ppos);
 253        else
 254                return kernfs_file_direct_read(of, user_buf, count, ppos);
 255}
 256
 257/**
 258 * kernfs_fop_write - kernfs vfs write callback
 259 * @file: file pointer
 260 * @user_buf: data to write
 261 * @count: number of bytes
 262 * @ppos: starting offset
 263 *
 264 * Copy data in from userland and pass it to the matching kernfs write
 265 * operation.
 266 *
 267 * There is no easy way for us to know if userspace is only doing a partial
 268 * write, so we don't support them. We expect the entire buffer to come on
 269 * the first write.  Hint: if you're writing a value, first read the file,
 270 * modify only the the value you're changing, then write entire buffer
 271 * back.
 272 */
 273static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf,
 274                                size_t count, loff_t *ppos)
 275{
 276        struct kernfs_open_file *of = kernfs_of(file);
 277        const struct kernfs_ops *ops;
 278        size_t len;
 279        char *buf;
 280
 281        if (of->atomic_write_len) {
 282                len = count;
 283                if (len > of->atomic_write_len)
 284                        return -E2BIG;
 285        } else {
 286                len = min_t(size_t, count, PAGE_SIZE);
 287        }
 288
 289        buf = of->prealloc_buf;
 290        if (buf)
 291                mutex_lock(&of->prealloc_mutex);
 292        else
 293                buf = kmalloc(len + 1, GFP_KERNEL);
 294        if (!buf)
 295                return -ENOMEM;
 296
 297        if (copy_from_user(buf, user_buf, len)) {
 298                len = -EFAULT;
 299                goto out_free;
 300        }
 301        buf[len] = '\0';        /* guarantee string termination */
 302
 303        /*
 304         * @of->mutex nests outside active ref and is used both to ensure that
 305         * the ops aren't called concurrently for the same open file.
 306         */
 307        mutex_lock(&of->mutex);
 308        if (!kernfs_get_active(of->kn)) {
 309                mutex_unlock(&of->mutex);
 310                len = -ENODEV;
 311                goto out_free;
 312        }
 313
 314        ops = kernfs_ops(of->kn);
 315        if (ops->write)
 316                len = ops->write(of, buf, len, *ppos);
 317        else
 318                len = -EINVAL;
 319
 320        kernfs_put_active(of->kn);
 321        mutex_unlock(&of->mutex);
 322
 323        if (len > 0)
 324                *ppos += len;
 325
 326out_free:
 327        if (buf == of->prealloc_buf)
 328                mutex_unlock(&of->prealloc_mutex);
 329        else
 330                kfree(buf);
 331        return len;
 332}
 333
 334static void kernfs_vma_open(struct vm_area_struct *vma)
 335{
 336        struct file *file = vma->vm_file;
 337        struct kernfs_open_file *of = kernfs_of(file);
 338
 339        if (!of->vm_ops)
 340                return;
 341
 342        if (!kernfs_get_active(of->kn))
 343                return;
 344
 345        if (of->vm_ops->open)
 346                of->vm_ops->open(vma);
 347
 348        kernfs_put_active(of->kn);
 349}
 350
 351static int kernfs_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
 352{
 353        struct file *file = vma->vm_file;
 354        struct kernfs_open_file *of = kernfs_of(file);
 355        int ret;
 356
 357        if (!of->vm_ops)
 358                return VM_FAULT_SIGBUS;
 359
 360        if (!kernfs_get_active(of->kn))
 361                return VM_FAULT_SIGBUS;
 362
 363        ret = VM_FAULT_SIGBUS;
 364        if (of->vm_ops->fault)
 365                ret = of->vm_ops->fault(vma, vmf);
 366
 367        kernfs_put_active(of->kn);
 368        return ret;
 369}
 370
 371static int kernfs_vma_page_mkwrite(struct vm_area_struct *vma,
 372                                   struct vm_fault *vmf)
 373{
 374        struct file *file = vma->vm_file;
 375        struct kernfs_open_file *of = kernfs_of(file);
 376        int ret;
 377
 378        if (!of->vm_ops)
 379                return VM_FAULT_SIGBUS;
 380
 381        if (!kernfs_get_active(of->kn))
 382                return VM_FAULT_SIGBUS;
 383
 384        ret = 0;
 385        if (of->vm_ops->page_mkwrite)
 386                ret = of->vm_ops->page_mkwrite(vma, vmf);
 387        else
 388                file_update_time(file);
 389
 390        kernfs_put_active(of->kn);
 391        return ret;
 392}
 393
 394static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
 395                             void *buf, int len, int write)
 396{
 397        struct file *file = vma->vm_file;
 398        struct kernfs_open_file *of = kernfs_of(file);
 399        int ret;
 400
 401        if (!of->vm_ops)
 402                return -EINVAL;
 403
 404        if (!kernfs_get_active(of->kn))
 405                return -EINVAL;
 406
 407        ret = -EINVAL;
 408        if (of->vm_ops->access)
 409                ret = of->vm_ops->access(vma, addr, buf, len, write);
 410
 411        kernfs_put_active(of->kn);
 412        return ret;
 413}
 414
 415#ifdef CONFIG_NUMA
 416static int kernfs_vma_set_policy(struct vm_area_struct *vma,
 417                                 struct mempolicy *new)
 418{
 419        struct file *file = vma->vm_file;
 420        struct kernfs_open_file *of = kernfs_of(file);
 421        int ret;
 422
 423        if (!of->vm_ops)
 424                return 0;
 425
 426        if (!kernfs_get_active(of->kn))
 427                return -EINVAL;
 428
 429        ret = 0;
 430        if (of->vm_ops->set_policy)
 431                ret = of->vm_ops->set_policy(vma, new);
 432
 433        kernfs_put_active(of->kn);
 434        return ret;
 435}
 436
 437static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
 438                                               unsigned long addr)
 439{
 440        struct file *file = vma->vm_file;
 441        struct kernfs_open_file *of = kernfs_of(file);
 442        struct mempolicy *pol;
 443
 444        if (!of->vm_ops)
 445                return vma->vm_policy;
 446
 447        if (!kernfs_get_active(of->kn))
 448                return vma->vm_policy;
 449
 450        pol = vma->vm_policy;
 451        if (of->vm_ops->get_policy)
 452                pol = of->vm_ops->get_policy(vma, addr);
 453
 454        kernfs_put_active(of->kn);
 455        return pol;
 456}
 457
 458#endif
 459
 460static const struct vm_operations_struct kernfs_vm_ops = {
 461        .open           = kernfs_vma_open,
 462        .fault          = kernfs_vma_fault,
 463        .page_mkwrite   = kernfs_vma_page_mkwrite,
 464        .access         = kernfs_vma_access,
 465#ifdef CONFIG_NUMA
 466        .set_policy     = kernfs_vma_set_policy,
 467        .get_policy     = kernfs_vma_get_policy,
 468#endif
 469};
 470
 471static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
 472{
 473        struct kernfs_open_file *of = kernfs_of(file);
 474        const struct kernfs_ops *ops;
 475        int rc;
 476
 477        /*
 478         * mmap path and of->mutex are prone to triggering spurious lockdep
 479         * warnings and we don't want to add spurious locking dependency
 480         * between the two.  Check whether mmap is actually implemented
 481         * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
 482         * comment in kernfs_file_open() for more details.
 483         */
 484        if (!(of->kn->flags & KERNFS_HAS_MMAP))
 485                return -ENODEV;
 486
 487        mutex_lock(&of->mutex);
 488
 489        rc = -ENODEV;
 490        if (!kernfs_get_active(of->kn))
 491                goto out_unlock;
 492
 493        ops = kernfs_ops(of->kn);
 494        rc = ops->mmap(of, vma);
 495        if (rc)
 496                goto out_put;
 497
 498        /*
 499         * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
 500         * to satisfy versions of X which crash if the mmap fails: that
 501         * substitutes a new vm_file, and we don't then want bin_vm_ops.
 502         */
 503        if (vma->vm_file != file)
 504                goto out_put;
 505
 506        rc = -EINVAL;
 507        if (of->mmapped && of->vm_ops != vma->vm_ops)
 508                goto out_put;
 509
 510        /*
 511         * It is not possible to successfully wrap close.
 512         * So error if someone is trying to use close.
 513         */
 514        rc = -EINVAL;
 515        if (vma->vm_ops && vma->vm_ops->close)
 516                goto out_put;
 517
 518        rc = 0;
 519        of->mmapped = 1;
 520        of->vm_ops = vma->vm_ops;
 521        vma->vm_ops = &kernfs_vm_ops;
 522out_put:
 523        kernfs_put_active(of->kn);
 524out_unlock:
 525        mutex_unlock(&of->mutex);
 526
 527        return rc;
 528}
 529
 530/**
 531 *      kernfs_get_open_node - get or create kernfs_open_node
 532 *      @kn: target kernfs_node
 533 *      @of: kernfs_open_file for this instance of open
 534 *
 535 *      If @kn->attr.open exists, increment its reference count; otherwise,
 536 *      create one.  @of is chained to the files list.
 537 *
 538 *      LOCKING:
 539 *      Kernel thread context (may sleep).
 540 *
 541 *      RETURNS:
 542 *      0 on success, -errno on failure.
 543 */
 544static int kernfs_get_open_node(struct kernfs_node *kn,
 545                                struct kernfs_open_file *of)
 546{
 547        struct kernfs_open_node *on, *new_on = NULL;
 548
 549 retry:
 550        mutex_lock(&kernfs_open_file_mutex);
 551        spin_lock_irq(&kernfs_open_node_lock);
 552
 553        if (!kn->attr.open && new_on) {
 554                kn->attr.open = new_on;
 555                new_on = NULL;
 556        }
 557
 558        on = kn->attr.open;
 559        if (on) {
 560                atomic_inc(&on->refcnt);
 561                list_add_tail(&of->list, &on->files);
 562        }
 563
 564        spin_unlock_irq(&kernfs_open_node_lock);
 565        mutex_unlock(&kernfs_open_file_mutex);
 566
 567        if (on) {
 568                kfree(new_on);
 569                return 0;
 570        }
 571
 572        /* not there, initialize a new one and retry */
 573        new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
 574        if (!new_on)
 575                return -ENOMEM;
 576
 577        atomic_set(&new_on->refcnt, 0);
 578        atomic_set(&new_on->event, 1);
 579        init_waitqueue_head(&new_on->poll);
 580        INIT_LIST_HEAD(&new_on->files);
 581        goto retry;
 582}
 583
 584/**
 585 *      kernfs_put_open_node - put kernfs_open_node
 586 *      @kn: target kernfs_nodet
 587 *      @of: associated kernfs_open_file
 588 *
 589 *      Put @kn->attr.open and unlink @of from the files list.  If
 590 *      reference count reaches zero, disassociate and free it.
 591 *
 592 *      LOCKING:
 593 *      None.
 594 */
 595static void kernfs_put_open_node(struct kernfs_node *kn,
 596                                 struct kernfs_open_file *of)
 597{
 598        struct kernfs_open_node *on = kn->attr.open;
 599        unsigned long flags;
 600
 601        mutex_lock(&kernfs_open_file_mutex);
 602        spin_lock_irqsave(&kernfs_open_node_lock, flags);
 603
 604        if (of)
 605                list_del(&of->list);
 606
 607        if (atomic_dec_and_test(&on->refcnt))
 608                kn->attr.open = NULL;
 609        else
 610                on = NULL;
 611
 612        spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
 613        mutex_unlock(&kernfs_open_file_mutex);
 614
 615        kfree(on);
 616}
 617
 618static int kernfs_fop_open(struct inode *inode, struct file *file)
 619{
 620        struct kernfs_node *kn = file->f_path.dentry->d_fsdata;
 621        struct kernfs_root *root = kernfs_root(kn);
 622        const struct kernfs_ops *ops;
 623        struct kernfs_open_file *of;
 624        bool has_read, has_write, has_mmap;
 625        int error = -EACCES;
 626
 627        if (!kernfs_get_active(kn))
 628                return -ENODEV;
 629
 630        ops = kernfs_ops(kn);
 631
 632        has_read = ops->seq_show || ops->read || ops->mmap;
 633        has_write = ops->write || ops->mmap;
 634        has_mmap = ops->mmap;
 635
 636        /* see the flag definition for details */
 637        if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
 638                if ((file->f_mode & FMODE_WRITE) &&
 639                    (!(inode->i_mode & S_IWUGO) || !has_write))
 640                        goto err_out;
 641
 642                if ((file->f_mode & FMODE_READ) &&
 643                    (!(inode->i_mode & S_IRUGO) || !has_read))
 644                        goto err_out;
 645        }
 646
 647        /* allocate a kernfs_open_file for the file */
 648        error = -ENOMEM;
 649        of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
 650        if (!of)
 651                goto err_out;
 652
 653        /*
 654         * The following is done to give a different lockdep key to
 655         * @of->mutex for files which implement mmap.  This is a rather
 656         * crude way to avoid false positive lockdep warning around
 657         * mm->mmap_sem - mmap nests @of->mutex under mm->mmap_sem and
 658         * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
 659         * which mm->mmap_sem nests, while holding @of->mutex.  As each
 660         * open file has a separate mutex, it's okay as long as those don't
 661         * happen on the same file.  At this point, we can't easily give
 662         * each file a separate locking class.  Let's differentiate on
 663         * whether the file has mmap or not for now.
 664         *
 665         * Both paths of the branch look the same.  They're supposed to
 666         * look that way and give @of->mutex different static lockdep keys.
 667         */
 668        if (has_mmap)
 669                mutex_init(&of->mutex);
 670        else
 671                mutex_init(&of->mutex);
 672
 673        of->kn = kn;
 674        of->file = file;
 675
 676        /*
 677         * Write path needs to atomic_write_len outside active reference.
 678         * Cache it in open_file.  See kernfs_fop_write() for details.
 679         */
 680        of->atomic_write_len = ops->atomic_write_len;
 681
 682        error = -EINVAL;
 683        /*
 684         * ->seq_show is incompatible with ->prealloc,
 685         * as seq_read does its own allocation.
 686         * ->read must be used instead.
 687         */
 688        if (ops->prealloc && ops->seq_show)
 689                goto err_free;
 690        if (ops->prealloc) {
 691                int len = of->atomic_write_len ?: PAGE_SIZE;
 692                of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
 693                error = -ENOMEM;
 694                if (!of->prealloc_buf)
 695                        goto err_free;
 696                mutex_init(&of->prealloc_mutex);
 697        }
 698
 699        /*
 700         * Always instantiate seq_file even if read access doesn't use
 701         * seq_file or is not requested.  This unifies private data access
 702         * and readable regular files are the vast majority anyway.
 703         */
 704        if (ops->seq_show)
 705                error = seq_open(file, &kernfs_seq_ops);
 706        else
 707                error = seq_open(file, NULL);
 708        if (error)
 709                goto err_free;
 710
 711        ((struct seq_file *)file->private_data)->private = of;
 712
 713        /* seq_file clears PWRITE unconditionally, restore it if WRITE */
 714        if (file->f_mode & FMODE_WRITE)
 715                file->f_mode |= FMODE_PWRITE;
 716
 717        /* make sure we have open node struct */
 718        error = kernfs_get_open_node(kn, of);
 719        if (error)
 720                goto err_close;
 721
 722        /* open succeeded, put active references */
 723        kernfs_put_active(kn);
 724        return 0;
 725
 726err_close:
 727        seq_release(inode, file);
 728err_free:
 729        kfree(of->prealloc_buf);
 730        kfree(of);
 731err_out:
 732        kernfs_put_active(kn);
 733        return error;
 734}
 735
 736static int kernfs_fop_release(struct inode *inode, struct file *filp)
 737{
 738        struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
 739        struct kernfs_open_file *of = kernfs_of(filp);
 740
 741        kernfs_put_open_node(kn, of);
 742        seq_release(inode, filp);
 743        kfree(of->prealloc_buf);
 744        kfree(of);
 745
 746        return 0;
 747}
 748
 749void kernfs_unmap_bin_file(struct kernfs_node *kn)
 750{
 751        struct kernfs_open_node *on;
 752        struct kernfs_open_file *of;
 753
 754        if (!(kn->flags & KERNFS_HAS_MMAP))
 755                return;
 756
 757        spin_lock_irq(&kernfs_open_node_lock);
 758        on = kn->attr.open;
 759        if (on)
 760                atomic_inc(&on->refcnt);
 761        spin_unlock_irq(&kernfs_open_node_lock);
 762        if (!on)
 763                return;
 764
 765        mutex_lock(&kernfs_open_file_mutex);
 766        list_for_each_entry(of, &on->files, list) {
 767                struct inode *inode = file_inode(of->file);
 768                unmap_mapping_range(inode->i_mapping, 0, 0, 1);
 769        }
 770        mutex_unlock(&kernfs_open_file_mutex);
 771
 772        kernfs_put_open_node(kn, NULL);
 773}
 774
 775/*
 776 * Kernfs attribute files are pollable.  The idea is that you read
 777 * the content and then you use 'poll' or 'select' to wait for
 778 * the content to change.  When the content changes (assuming the
 779 * manager for the kobject supports notification), poll will
 780 * return POLLERR|POLLPRI, and select will return the fd whether
 781 * it is waiting for read, write, or exceptions.
 782 * Once poll/select indicates that the value has changed, you
 783 * need to close and re-open the file, or seek to 0 and read again.
 784 * Reminder: this only works for attributes which actively support
 785 * it, and it is not possible to test an attribute from userspace
 786 * to see if it supports poll (Neither 'poll' nor 'select' return
 787 * an appropriate error code).  When in doubt, set a suitable timeout value.
 788 */
 789static unsigned int kernfs_fop_poll(struct file *filp, poll_table *wait)
 790{
 791        struct kernfs_open_file *of = kernfs_of(filp);
 792        struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
 793        struct kernfs_open_node *on = kn->attr.open;
 794
 795        if (!kernfs_get_active(kn))
 796                goto trigger;
 797
 798        poll_wait(filp, &on->poll, wait);
 799
 800        kernfs_put_active(kn);
 801
 802        if (of->event != atomic_read(&on->event))
 803                goto trigger;
 804
 805        return DEFAULT_POLLMASK;
 806
 807 trigger:
 808        return DEFAULT_POLLMASK|POLLERR|POLLPRI;
 809}
 810
 811static void kernfs_notify_workfn(struct work_struct *work)
 812{
 813        struct kernfs_node *kn;
 814        struct kernfs_open_node *on;
 815        struct kernfs_super_info *info;
 816repeat:
 817        /* pop one off the notify_list */
 818        spin_lock_irq(&kernfs_notify_lock);
 819        kn = kernfs_notify_list;
 820        if (kn == KERNFS_NOTIFY_EOL) {
 821                spin_unlock_irq(&kernfs_notify_lock);
 822                return;
 823        }
 824        kernfs_notify_list = kn->attr.notify_next;
 825        kn->attr.notify_next = NULL;
 826        spin_unlock_irq(&kernfs_notify_lock);
 827
 828        /* kick poll */
 829        spin_lock_irq(&kernfs_open_node_lock);
 830
 831        on = kn->attr.open;
 832        if (on) {
 833                atomic_inc(&on->event);
 834                wake_up_interruptible(&on->poll);
 835        }
 836
 837        spin_unlock_irq(&kernfs_open_node_lock);
 838
 839        /* kick fsnotify */
 840        mutex_lock(&kernfs_mutex);
 841
 842        list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
 843                struct kernfs_node *parent;
 844                struct inode *inode;
 845
 846                /*
 847                 * We want fsnotify_modify() on @kn but as the
 848                 * modifications aren't originating from userland don't
 849                 * have the matching @file available.  Look up the inodes
 850                 * and generate the events manually.
 851                 */
 852                inode = ilookup(info->sb, kn->ino);
 853                if (!inode)
 854                        continue;
 855
 856                parent = kernfs_get_parent(kn);
 857                if (parent) {
 858                        struct inode *p_inode;
 859
 860                        p_inode = ilookup(info->sb, parent->ino);
 861                        if (p_inode) {
 862                                fsnotify(p_inode, FS_MODIFY | FS_EVENT_ON_CHILD,
 863                                         inode, FSNOTIFY_EVENT_INODE, kn->name, 0);
 864                                iput(p_inode);
 865                        }
 866
 867                        kernfs_put(parent);
 868                }
 869
 870                fsnotify(inode, FS_MODIFY, inode, FSNOTIFY_EVENT_INODE,
 871                         kn->name, 0);
 872                iput(inode);
 873        }
 874
 875        mutex_unlock(&kernfs_mutex);
 876        kernfs_put(kn);
 877        goto repeat;
 878}
 879
 880/**
 881 * kernfs_notify - notify a kernfs file
 882 * @kn: file to notify
 883 *
 884 * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
 885 * context.
 886 */
 887void kernfs_notify(struct kernfs_node *kn)
 888{
 889        static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
 890        unsigned long flags;
 891
 892        if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
 893                return;
 894
 895        spin_lock_irqsave(&kernfs_notify_lock, flags);
 896        if (!kn->attr.notify_next) {
 897                kernfs_get(kn);
 898                kn->attr.notify_next = kernfs_notify_list;
 899                kernfs_notify_list = kn;
 900                schedule_work(&kernfs_notify_work);
 901        }
 902        spin_unlock_irqrestore(&kernfs_notify_lock, flags);
 903}
 904EXPORT_SYMBOL_GPL(kernfs_notify);
 905
 906const struct file_operations kernfs_file_fops = {
 907        .read           = kernfs_fop_read,
 908        .write          = kernfs_fop_write,
 909        .llseek         = generic_file_llseek,
 910        .mmap           = kernfs_fop_mmap,
 911        .open           = kernfs_fop_open,
 912        .release        = kernfs_fop_release,
 913        .poll           = kernfs_fop_poll,
 914        .fsync          = noop_fsync,
 915};
 916
 917/**
 918 * __kernfs_create_file - kernfs internal function to create a file
 919 * @parent: directory to create the file in
 920 * @name: name of the file
 921 * @mode: mode of the file
 922 * @size: size of the file
 923 * @ops: kernfs operations for the file
 924 * @priv: private data for the file
 925 * @ns: optional namespace tag of the file
 926 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
 927 *
 928 * Returns the created node on success, ERR_PTR() value on error.
 929 */
 930struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
 931                                         const char *name,
 932                                         umode_t mode, loff_t size,
 933                                         const struct kernfs_ops *ops,
 934                                         void *priv, const void *ns,
 935                                         struct lock_class_key *key)
 936{
 937        struct kernfs_node *kn;
 938        unsigned flags;
 939        int rc;
 940
 941        flags = KERNFS_FILE;
 942
 943        kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG, flags);
 944        if (!kn)
 945                return ERR_PTR(-ENOMEM);
 946
 947        kn->attr.ops = ops;
 948        kn->attr.size = size;
 949        kn->ns = ns;
 950        kn->priv = priv;
 951
 952#ifdef CONFIG_DEBUG_LOCK_ALLOC
 953        if (key) {
 954                lockdep_init_map(&kn->dep_map, "s_active", key, 0);
 955                kn->flags |= KERNFS_LOCKDEP;
 956        }
 957#endif
 958
 959        /*
 960         * kn->attr.ops is accesible only while holding active ref.  We
 961         * need to know whether some ops are implemented outside active
 962         * ref.  Cache their existence in flags.
 963         */
 964        if (ops->seq_show)
 965                kn->flags |= KERNFS_HAS_SEQ_SHOW;
 966        if (ops->mmap)
 967                kn->flags |= KERNFS_HAS_MMAP;
 968
 969        rc = kernfs_add_one(kn);
 970        if (rc) {
 971                kernfs_put(kn);
 972                return ERR_PTR(rc);
 973        }
 974        return kn;
 975}
 976