linux/fs/mpage.c
<<
>>
Prefs
   1/*
   2 * fs/mpage.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * Contains functions related to preparing and submitting BIOs which contain
   7 * multiple pagecache pages.
   8 *
   9 * 15May2002    Andrew Morton
  10 *              Initial version
  11 * 27Jun2002    axboe@suse.de
  12 *              use bio_add_page() to build bio's just the right size
  13 */
  14
  15#include <linux/kernel.h>
  16#include <linux/export.h>
  17#include <linux/mm.h>
  18#include <linux/kdev_t.h>
  19#include <linux/gfp.h>
  20#include <linux/bio.h>
  21#include <linux/fs.h>
  22#include <linux/buffer_head.h>
  23#include <linux/blkdev.h>
  24#include <linux/highmem.h>
  25#include <linux/prefetch.h>
  26#include <linux/mpage.h>
  27#include <linux/mm_inline.h>
  28#include <linux/writeback.h>
  29#include <linux/backing-dev.h>
  30#include <linux/pagevec.h>
  31#include <linux/cleancache.h>
  32#include "internal.h"
  33
  34/*
  35 * I/O completion handler for multipage BIOs.
  36 *
  37 * The mpage code never puts partial pages into a BIO (except for end-of-file).
  38 * If a page does not map to a contiguous run of blocks then it simply falls
  39 * back to block_read_full_page().
  40 *
  41 * Why is this?  If a page's completion depends on a number of different BIOs
  42 * which can complete in any order (or at the same time) then determining the
  43 * status of that page is hard.  See end_buffer_async_read() for the details.
  44 * There is no point in duplicating all that complexity.
  45 */
  46static void mpage_end_io(struct bio *bio)
  47{
  48        struct bio_vec *bv;
  49        int i;
  50
  51        bio_for_each_segment_all(bv, bio, i) {
  52                struct page *page = bv->bv_page;
  53                page_endio(page, op_is_write(bio_op(bio)), bio->bi_error);
  54        }
  55
  56        bio_put(bio);
  57}
  58
  59static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio)
  60{
  61        bio->bi_end_io = mpage_end_io;
  62        bio_set_op_attrs(bio, op, op_flags);
  63        guard_bio_eod(op, bio);
  64        submit_bio(bio);
  65        return NULL;
  66}
  67
  68static struct bio *
  69mpage_alloc(struct block_device *bdev,
  70                sector_t first_sector, int nr_vecs,
  71                gfp_t gfp_flags)
  72{
  73        struct bio *bio;
  74
  75        /* Restrict the given (page cache) mask for slab allocations */
  76        gfp_flags &= GFP_KERNEL;
  77        bio = bio_alloc(gfp_flags, nr_vecs);
  78
  79        if (bio == NULL && (current->flags & PF_MEMALLOC)) {
  80                while (!bio && (nr_vecs /= 2))
  81                        bio = bio_alloc(gfp_flags, nr_vecs);
  82        }
  83
  84        if (bio) {
  85                bio->bi_bdev = bdev;
  86                bio->bi_iter.bi_sector = first_sector;
  87        }
  88        return bio;
  89}
  90
  91/*
  92 * support function for mpage_readpages.  The fs supplied get_block might
  93 * return an up to date buffer.  This is used to map that buffer into
  94 * the page, which allows readpage to avoid triggering a duplicate call
  95 * to get_block.
  96 *
  97 * The idea is to avoid adding buffers to pages that don't already have
  98 * them.  So when the buffer is up to date and the page size == block size,
  99 * this marks the page up to date instead of adding new buffers.
 100 */
 101static void 
 102map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
 103{
 104        struct inode *inode = page->mapping->host;
 105        struct buffer_head *page_bh, *head;
 106        int block = 0;
 107
 108        if (!page_has_buffers(page)) {
 109                /*
 110                 * don't make any buffers if there is only one buffer on
 111                 * the page and the page just needs to be set up to date
 112                 */
 113                if (inode->i_blkbits == PAGE_SHIFT &&
 114                    buffer_uptodate(bh)) {
 115                        SetPageUptodate(page);    
 116                        return;
 117                }
 118                create_empty_buffers(page, 1 << inode->i_blkbits, 0);
 119        }
 120        head = page_buffers(page);
 121        page_bh = head;
 122        do {
 123                if (block == page_block) {
 124                        page_bh->b_state = bh->b_state;
 125                        page_bh->b_bdev = bh->b_bdev;
 126                        page_bh->b_blocknr = bh->b_blocknr;
 127                        break;
 128                }
 129                page_bh = page_bh->b_this_page;
 130                block++;
 131        } while (page_bh != head);
 132}
 133
 134/*
 135 * This is the worker routine which does all the work of mapping the disk
 136 * blocks and constructs largest possible bios, submits them for IO if the
 137 * blocks are not contiguous on the disk.
 138 *
 139 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
 140 * represent the validity of its disk mapping and to decide when to do the next
 141 * get_block() call.
 142 */
 143static struct bio *
 144do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
 145                sector_t *last_block_in_bio, struct buffer_head *map_bh,
 146                unsigned long *first_logical_block, get_block_t get_block,
 147                gfp_t gfp)
 148{
 149        struct inode *inode = page->mapping->host;
 150        const unsigned blkbits = inode->i_blkbits;
 151        const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
 152        const unsigned blocksize = 1 << blkbits;
 153        sector_t block_in_file;
 154        sector_t last_block;
 155        sector_t last_block_in_file;
 156        sector_t blocks[MAX_BUF_PER_PAGE];
 157        unsigned page_block;
 158        unsigned first_hole = blocks_per_page;
 159        struct block_device *bdev = NULL;
 160        int length;
 161        int fully_mapped = 1;
 162        unsigned nblocks;
 163        unsigned relative_block;
 164
 165        if (page_has_buffers(page))
 166                goto confused;
 167
 168        block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
 169        last_block = block_in_file + nr_pages * blocks_per_page;
 170        last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
 171        if (last_block > last_block_in_file)
 172                last_block = last_block_in_file;
 173        page_block = 0;
 174
 175        /*
 176         * Map blocks using the result from the previous get_blocks call first.
 177         */
 178        nblocks = map_bh->b_size >> blkbits;
 179        if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
 180                        block_in_file < (*first_logical_block + nblocks)) {
 181                unsigned map_offset = block_in_file - *first_logical_block;
 182                unsigned last = nblocks - map_offset;
 183
 184                for (relative_block = 0; ; relative_block++) {
 185                        if (relative_block == last) {
 186                                clear_buffer_mapped(map_bh);
 187                                break;
 188                        }
 189                        if (page_block == blocks_per_page)
 190                                break;
 191                        blocks[page_block] = map_bh->b_blocknr + map_offset +
 192                                                relative_block;
 193                        page_block++;
 194                        block_in_file++;
 195                }
 196                bdev = map_bh->b_bdev;
 197        }
 198
 199        /*
 200         * Then do more get_blocks calls until we are done with this page.
 201         */
 202        map_bh->b_page = page;
 203        while (page_block < blocks_per_page) {
 204                map_bh->b_state = 0;
 205                map_bh->b_size = 0;
 206
 207                if (block_in_file < last_block) {
 208                        map_bh->b_size = (last_block-block_in_file) << blkbits;
 209                        if (get_block(inode, block_in_file, map_bh, 0))
 210                                goto confused;
 211                        *first_logical_block = block_in_file;
 212                }
 213
 214                if (!buffer_mapped(map_bh)) {
 215                        fully_mapped = 0;
 216                        if (first_hole == blocks_per_page)
 217                                first_hole = page_block;
 218                        page_block++;
 219                        block_in_file++;
 220                        continue;
 221                }
 222
 223                /* some filesystems will copy data into the page during
 224                 * the get_block call, in which case we don't want to
 225                 * read it again.  map_buffer_to_page copies the data
 226                 * we just collected from get_block into the page's buffers
 227                 * so readpage doesn't have to repeat the get_block call
 228                 */
 229                if (buffer_uptodate(map_bh)) {
 230                        map_buffer_to_page(page, map_bh, page_block);
 231                        goto confused;
 232                }
 233        
 234                if (first_hole != blocks_per_page)
 235                        goto confused;          /* hole -> non-hole */
 236
 237                /* Contiguous blocks? */
 238                if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
 239                        goto confused;
 240                nblocks = map_bh->b_size >> blkbits;
 241                for (relative_block = 0; ; relative_block++) {
 242                        if (relative_block == nblocks) {
 243                                clear_buffer_mapped(map_bh);
 244                                break;
 245                        } else if (page_block == blocks_per_page)
 246                                break;
 247                        blocks[page_block] = map_bh->b_blocknr+relative_block;
 248                        page_block++;
 249                        block_in_file++;
 250                }
 251                bdev = map_bh->b_bdev;
 252        }
 253
 254        if (first_hole != blocks_per_page) {
 255                zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
 256                if (first_hole == 0) {
 257                        SetPageUptodate(page);
 258                        unlock_page(page);
 259                        goto out;
 260                }
 261        } else if (fully_mapped) {
 262                SetPageMappedToDisk(page);
 263        }
 264
 265        if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
 266            cleancache_get_page(page) == 0) {
 267                SetPageUptodate(page);
 268                goto confused;
 269        }
 270
 271        /*
 272         * This page will go to BIO.  Do we need to send this BIO off first?
 273         */
 274        if (bio && (*last_block_in_bio != blocks[0] - 1))
 275                bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
 276
 277alloc_new:
 278        if (bio == NULL) {
 279                if (first_hole == blocks_per_page) {
 280                        if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
 281                                                                page))
 282                                goto out;
 283                }
 284                bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
 285                                min_t(int, nr_pages, BIO_MAX_PAGES), gfp);
 286                if (bio == NULL)
 287                        goto confused;
 288        }
 289
 290        length = first_hole << blkbits;
 291        if (bio_add_page(bio, page, length, 0) < length) {
 292                bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
 293                goto alloc_new;
 294        }
 295
 296        relative_block = block_in_file - *first_logical_block;
 297        nblocks = map_bh->b_size >> blkbits;
 298        if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
 299            (first_hole != blocks_per_page))
 300                bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
 301        else
 302                *last_block_in_bio = blocks[blocks_per_page - 1];
 303out:
 304        return bio;
 305
 306confused:
 307        if (bio)
 308                bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
 309        if (!PageUptodate(page))
 310                block_read_full_page(page, get_block);
 311        else
 312                unlock_page(page);
 313        goto out;
 314}
 315
 316/**
 317 * mpage_readpages - populate an address space with some pages & start reads against them
 318 * @mapping: the address_space
 319 * @pages: The address of a list_head which contains the target pages.  These
 320 *   pages have their ->index populated and are otherwise uninitialised.
 321 *   The page at @pages->prev has the lowest file offset, and reads should be
 322 *   issued in @pages->prev to @pages->next order.
 323 * @nr_pages: The number of pages at *@pages
 324 * @get_block: The filesystem's block mapper function.
 325 *
 326 * This function walks the pages and the blocks within each page, building and
 327 * emitting large BIOs.
 328 *
 329 * If anything unusual happens, such as:
 330 *
 331 * - encountering a page which has buffers
 332 * - encountering a page which has a non-hole after a hole
 333 * - encountering a page with non-contiguous blocks
 334 *
 335 * then this code just gives up and calls the buffer_head-based read function.
 336 * It does handle a page which has holes at the end - that is a common case:
 337 * the end-of-file on blocksize < PAGE_SIZE setups.
 338 *
 339 * BH_Boundary explanation:
 340 *
 341 * There is a problem.  The mpage read code assembles several pages, gets all
 342 * their disk mappings, and then submits them all.  That's fine, but obtaining
 343 * the disk mappings may require I/O.  Reads of indirect blocks, for example.
 344 *
 345 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
 346 * submitted in the following order:
 347 *      12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
 348 *
 349 * because the indirect block has to be read to get the mappings of blocks
 350 * 13,14,15,16.  Obviously, this impacts performance.
 351 *
 352 * So what we do it to allow the filesystem's get_block() function to set
 353 * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
 354 * after this one will require I/O against a block which is probably close to
 355 * this one.  So you should push what I/O you have currently accumulated.
 356 *
 357 * This all causes the disk requests to be issued in the correct order.
 358 */
 359int
 360mpage_readpages(struct address_space *mapping, struct list_head *pages,
 361                                unsigned nr_pages, get_block_t get_block)
 362{
 363        struct bio *bio = NULL;
 364        unsigned page_idx;
 365        sector_t last_block_in_bio = 0;
 366        struct buffer_head map_bh;
 367        unsigned long first_logical_block = 0;
 368        gfp_t gfp = readahead_gfp_mask(mapping);
 369
 370        map_bh.b_state = 0;
 371        map_bh.b_size = 0;
 372        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
 373                struct page *page = lru_to_page(pages);
 374
 375                prefetchw(&page->flags);
 376                list_del(&page->lru);
 377                if (!add_to_page_cache_lru(page, mapping,
 378                                        page->index,
 379                                        gfp)) {
 380                        bio = do_mpage_readpage(bio, page,
 381                                        nr_pages - page_idx,
 382                                        &last_block_in_bio, &map_bh,
 383                                        &first_logical_block,
 384                                        get_block, gfp);
 385                }
 386                put_page(page);
 387        }
 388        BUG_ON(!list_empty(pages));
 389        if (bio)
 390                mpage_bio_submit(REQ_OP_READ, 0, bio);
 391        return 0;
 392}
 393EXPORT_SYMBOL(mpage_readpages);
 394
 395/*
 396 * This isn't called much at all
 397 */
 398int mpage_readpage(struct page *page, get_block_t get_block)
 399{
 400        struct bio *bio = NULL;
 401        sector_t last_block_in_bio = 0;
 402        struct buffer_head map_bh;
 403        unsigned long first_logical_block = 0;
 404        gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
 405
 406        map_bh.b_state = 0;
 407        map_bh.b_size = 0;
 408        bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
 409                        &map_bh, &first_logical_block, get_block, gfp);
 410        if (bio)
 411                mpage_bio_submit(REQ_OP_READ, 0, bio);
 412        return 0;
 413}
 414EXPORT_SYMBOL(mpage_readpage);
 415
 416/*
 417 * Writing is not so simple.
 418 *
 419 * If the page has buffers then they will be used for obtaining the disk
 420 * mapping.  We only support pages which are fully mapped-and-dirty, with a
 421 * special case for pages which are unmapped at the end: end-of-file.
 422 *
 423 * If the page has no buffers (preferred) then the page is mapped here.
 424 *
 425 * If all blocks are found to be contiguous then the page can go into the
 426 * BIO.  Otherwise fall back to the mapping's writepage().
 427 * 
 428 * FIXME: This code wants an estimate of how many pages are still to be
 429 * written, so it can intelligently allocate a suitably-sized BIO.  For now,
 430 * just allocate full-size (16-page) BIOs.
 431 */
 432
 433struct mpage_data {
 434        struct bio *bio;
 435        sector_t last_block_in_bio;
 436        get_block_t *get_block;
 437        unsigned use_writepage;
 438};
 439
 440/*
 441 * We have our BIO, so we can now mark the buffers clean.  Make
 442 * sure to only clean buffers which we know we'll be writing.
 443 */
 444static void clean_buffers(struct page *page, unsigned first_unmapped)
 445{
 446        unsigned buffer_counter = 0;
 447        struct buffer_head *bh, *head;
 448        if (!page_has_buffers(page))
 449                return;
 450        head = page_buffers(page);
 451        bh = head;
 452
 453        do {
 454                if (buffer_counter++ == first_unmapped)
 455                        break;
 456                clear_buffer_dirty(bh);
 457                bh = bh->b_this_page;
 458        } while (bh != head);
 459
 460        /*
 461         * we cannot drop the bh if the page is not uptodate or a concurrent
 462         * readpage would fail to serialize with the bh and it would read from
 463         * disk before we reach the platter.
 464         */
 465        if (buffer_heads_over_limit && PageUptodate(page))
 466                try_to_free_buffers(page);
 467}
 468
 469static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
 470                      void *data)
 471{
 472        struct mpage_data *mpd = data;
 473        struct bio *bio = mpd->bio;
 474        struct address_space *mapping = page->mapping;
 475        struct inode *inode = page->mapping->host;
 476        const unsigned blkbits = inode->i_blkbits;
 477        unsigned long end_index;
 478        const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
 479        sector_t last_block;
 480        sector_t block_in_file;
 481        sector_t blocks[MAX_BUF_PER_PAGE];
 482        unsigned page_block;
 483        unsigned first_unmapped = blocks_per_page;
 484        struct block_device *bdev = NULL;
 485        int boundary = 0;
 486        sector_t boundary_block = 0;
 487        struct block_device *boundary_bdev = NULL;
 488        int length;
 489        struct buffer_head map_bh;
 490        loff_t i_size = i_size_read(inode);
 491        int ret = 0;
 492        int op_flags = wbc_to_write_flags(wbc);
 493
 494        if (page_has_buffers(page)) {
 495                struct buffer_head *head = page_buffers(page);
 496                struct buffer_head *bh = head;
 497
 498                /* If they're all mapped and dirty, do it */
 499                page_block = 0;
 500                do {
 501                        BUG_ON(buffer_locked(bh));
 502                        if (!buffer_mapped(bh)) {
 503                                /*
 504                                 * unmapped dirty buffers are created by
 505                                 * __set_page_dirty_buffers -> mmapped data
 506                                 */
 507                                if (buffer_dirty(bh))
 508                                        goto confused;
 509                                if (first_unmapped == blocks_per_page)
 510                                        first_unmapped = page_block;
 511                                continue;
 512                        }
 513
 514                        if (first_unmapped != blocks_per_page)
 515                                goto confused;  /* hole -> non-hole */
 516
 517                        if (!buffer_dirty(bh) || !buffer_uptodate(bh))
 518                                goto confused;
 519                        if (page_block) {
 520                                if (bh->b_blocknr != blocks[page_block-1] + 1)
 521                                        goto confused;
 522                        }
 523                        blocks[page_block++] = bh->b_blocknr;
 524                        boundary = buffer_boundary(bh);
 525                        if (boundary) {
 526                                boundary_block = bh->b_blocknr;
 527                                boundary_bdev = bh->b_bdev;
 528                        }
 529                        bdev = bh->b_bdev;
 530                } while ((bh = bh->b_this_page) != head);
 531
 532                if (first_unmapped)
 533                        goto page_is_mapped;
 534
 535                /*
 536                 * Page has buffers, but they are all unmapped. The page was
 537                 * created by pagein or read over a hole which was handled by
 538                 * block_read_full_page().  If this address_space is also
 539                 * using mpage_readpages then this can rarely happen.
 540                 */
 541                goto confused;
 542        }
 543
 544        /*
 545         * The page has no buffers: map it to disk
 546         */
 547        BUG_ON(!PageUptodate(page));
 548        block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
 549        last_block = (i_size - 1) >> blkbits;
 550        map_bh.b_page = page;
 551        for (page_block = 0; page_block < blocks_per_page; ) {
 552
 553                map_bh.b_state = 0;
 554                map_bh.b_size = 1 << blkbits;
 555                if (mpd->get_block(inode, block_in_file, &map_bh, 1))
 556                        goto confused;
 557                if (buffer_new(&map_bh))
 558                        clean_bdev_bh_alias(&map_bh);
 559                if (buffer_boundary(&map_bh)) {
 560                        boundary_block = map_bh.b_blocknr;
 561                        boundary_bdev = map_bh.b_bdev;
 562                }
 563                if (page_block) {
 564                        if (map_bh.b_blocknr != blocks[page_block-1] + 1)
 565                                goto confused;
 566                }
 567                blocks[page_block++] = map_bh.b_blocknr;
 568                boundary = buffer_boundary(&map_bh);
 569                bdev = map_bh.b_bdev;
 570                if (block_in_file == last_block)
 571                        break;
 572                block_in_file++;
 573        }
 574        BUG_ON(page_block == 0);
 575
 576        first_unmapped = page_block;
 577
 578page_is_mapped:
 579        end_index = i_size >> PAGE_SHIFT;
 580        if (page->index >= end_index) {
 581                /*
 582                 * The page straddles i_size.  It must be zeroed out on each
 583                 * and every writepage invocation because it may be mmapped.
 584                 * "A file is mapped in multiples of the page size.  For a file
 585                 * that is not a multiple of the page size, the remaining memory
 586                 * is zeroed when mapped, and writes to that region are not
 587                 * written out to the file."
 588                 */
 589                unsigned offset = i_size & (PAGE_SIZE - 1);
 590
 591                if (page->index > end_index || !offset)
 592                        goto confused;
 593                zero_user_segment(page, offset, PAGE_SIZE);
 594        }
 595
 596        /*
 597         * This page will go to BIO.  Do we need to send this BIO off first?
 598         */
 599        if (bio && mpd->last_block_in_bio != blocks[0] - 1)
 600                bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
 601
 602alloc_new:
 603        if (bio == NULL) {
 604                if (first_unmapped == blocks_per_page) {
 605                        if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
 606                                                                page, wbc)) {
 607                                clean_buffers(page, first_unmapped);
 608                                goto out;
 609                        }
 610                }
 611                bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
 612                                BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
 613                if (bio == NULL)
 614                        goto confused;
 615
 616                wbc_init_bio(wbc, bio);
 617        }
 618
 619        /*
 620         * Must try to add the page before marking the buffer clean or
 621         * the confused fail path above (OOM) will be very confused when
 622         * it finds all bh marked clean (i.e. it will not write anything)
 623         */
 624        wbc_account_io(wbc, page, PAGE_SIZE);
 625        length = first_unmapped << blkbits;
 626        if (bio_add_page(bio, page, length, 0) < length) {
 627                bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
 628                goto alloc_new;
 629        }
 630
 631        clean_buffers(page, first_unmapped);
 632
 633        BUG_ON(PageWriteback(page));
 634        set_page_writeback(page);
 635        unlock_page(page);
 636        if (boundary || (first_unmapped != blocks_per_page)) {
 637                bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
 638                if (boundary_block) {
 639                        write_boundary_block(boundary_bdev,
 640                                        boundary_block, 1 << blkbits);
 641                }
 642        } else {
 643                mpd->last_block_in_bio = blocks[blocks_per_page - 1];
 644        }
 645        goto out;
 646
 647confused:
 648        if (bio)
 649                bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
 650
 651        if (mpd->use_writepage) {
 652                ret = mapping->a_ops->writepage(page, wbc);
 653        } else {
 654                ret = -EAGAIN;
 655                goto out;
 656        }
 657        /*
 658         * The caller has a ref on the inode, so *mapping is stable
 659         */
 660        mapping_set_error(mapping, ret);
 661out:
 662        mpd->bio = bio;
 663        return ret;
 664}
 665
 666/**
 667 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
 668 * @mapping: address space structure to write
 669 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 670 * @get_block: the filesystem's block mapper function.
 671 *             If this is NULL then use a_ops->writepage.  Otherwise, go
 672 *             direct-to-BIO.
 673 *
 674 * This is a library function, which implements the writepages()
 675 * address_space_operation.
 676 *
 677 * If a page is already under I/O, generic_writepages() skips it, even
 678 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 679 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 680 * and msync() need to guarantee that all the data which was dirty at the time
 681 * the call was made get new I/O started against them.  If wbc->sync_mode is
 682 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 683 * existing IO to complete.
 684 */
 685int
 686mpage_writepages(struct address_space *mapping,
 687                struct writeback_control *wbc, get_block_t get_block)
 688{
 689        struct blk_plug plug;
 690        int ret;
 691
 692        blk_start_plug(&plug);
 693
 694        if (!get_block)
 695                ret = generic_writepages(mapping, wbc);
 696        else {
 697                struct mpage_data mpd = {
 698                        .bio = NULL,
 699                        .last_block_in_bio = 0,
 700                        .get_block = get_block,
 701                        .use_writepage = 1,
 702                };
 703
 704                ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
 705                if (mpd.bio) {
 706                        int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
 707                                  REQ_SYNC : 0);
 708                        mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
 709                }
 710        }
 711        blk_finish_plug(&plug);
 712        return ret;
 713}
 714EXPORT_SYMBOL(mpage_writepages);
 715
 716int mpage_writepage(struct page *page, get_block_t get_block,
 717        struct writeback_control *wbc)
 718{
 719        struct mpage_data mpd = {
 720                .bio = NULL,
 721                .last_block_in_bio = 0,
 722                .get_block = get_block,
 723                .use_writepage = 0,
 724        };
 725        int ret = __mpage_writepage(page, wbc, &mpd);
 726        if (mpd.bio) {
 727                int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
 728                          REQ_SYNC : 0);
 729                mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
 730        }
 731        return ret;
 732}
 733EXPORT_SYMBOL(mpage_writepage);
 734