linux/fs/nilfs2/super.c
<<
>>
Prefs
   1/*
   2 * super.c - NILFS module and super block management.
   3 *
   4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * Written by Ryusuke Konishi.
  17 */
  18/*
  19 *  linux/fs/ext2/super.c
  20 *
  21 * Copyright (C) 1992, 1993, 1994, 1995
  22 * Remy Card (card@masi.ibp.fr)
  23 * Laboratoire MASI - Institut Blaise Pascal
  24 * Universite Pierre et Marie Curie (Paris VI)
  25 *
  26 *  from
  27 *
  28 *  linux/fs/minix/inode.c
  29 *
  30 *  Copyright (C) 1991, 1992  Linus Torvalds
  31 *
  32 *  Big-endian to little-endian byte-swapping/bitmaps by
  33 *        David S. Miller (davem@caip.rutgers.edu), 1995
  34 */
  35
  36#include <linux/module.h>
  37#include <linux/string.h>
  38#include <linux/slab.h>
  39#include <linux/init.h>
  40#include <linux/blkdev.h>
  41#include <linux/parser.h>
  42#include <linux/crc32.h>
  43#include <linux/vfs.h>
  44#include <linux/writeback.h>
  45#include <linux/seq_file.h>
  46#include <linux/mount.h>
  47#include "nilfs.h"
  48#include "export.h"
  49#include "mdt.h"
  50#include "alloc.h"
  51#include "btree.h"
  52#include "btnode.h"
  53#include "page.h"
  54#include "cpfile.h"
  55#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
  56#include "ifile.h"
  57#include "dat.h"
  58#include "segment.h"
  59#include "segbuf.h"
  60
  61MODULE_AUTHOR("NTT Corp.");
  62MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
  63                   "(NILFS)");
  64MODULE_LICENSE("GPL");
  65
  66static struct kmem_cache *nilfs_inode_cachep;
  67struct kmem_cache *nilfs_transaction_cachep;
  68struct kmem_cache *nilfs_segbuf_cachep;
  69struct kmem_cache *nilfs_btree_path_cache;
  70
  71static int nilfs_setup_super(struct super_block *sb, int is_mount);
  72static int nilfs_remount(struct super_block *sb, int *flags, char *data);
  73
  74void __nilfs_msg(struct super_block *sb, const char *level, const char *fmt,
  75                 ...)
  76{
  77        struct va_format vaf;
  78        va_list args;
  79
  80        va_start(args, fmt);
  81        vaf.fmt = fmt;
  82        vaf.va = &args;
  83        if (sb)
  84                printk("%sNILFS (%s): %pV\n", level, sb->s_id, &vaf);
  85        else
  86                printk("%sNILFS: %pV\n", level, &vaf);
  87        va_end(args);
  88}
  89
  90static void nilfs_set_error(struct super_block *sb)
  91{
  92        struct the_nilfs *nilfs = sb->s_fs_info;
  93        struct nilfs_super_block **sbp;
  94
  95        down_write(&nilfs->ns_sem);
  96        if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
  97                nilfs->ns_mount_state |= NILFS_ERROR_FS;
  98                sbp = nilfs_prepare_super(sb, 0);
  99                if (likely(sbp)) {
 100                        sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 101                        if (sbp[1])
 102                                sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 103                        nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 104                }
 105        }
 106        up_write(&nilfs->ns_sem);
 107}
 108
 109/**
 110 * __nilfs_error() - report failure condition on a filesystem
 111 *
 112 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
 113 * reporting an error message.  This function should be called when
 114 * NILFS detects incoherences or defects of meta data on disk.
 115 *
 116 * This implements the body of nilfs_error() macro.  Normally,
 117 * nilfs_error() should be used.  As for sustainable errors such as a
 118 * single-shot I/O error, nilfs_msg() should be used instead.
 119 *
 120 * Callers should not add a trailing newline since this will do it.
 121 */
 122void __nilfs_error(struct super_block *sb, const char *function,
 123                   const char *fmt, ...)
 124{
 125        struct the_nilfs *nilfs = sb->s_fs_info;
 126        struct va_format vaf;
 127        va_list args;
 128
 129        va_start(args, fmt);
 130
 131        vaf.fmt = fmt;
 132        vaf.va = &args;
 133
 134        printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
 135               sb->s_id, function, &vaf);
 136
 137        va_end(args);
 138
 139        if (!(sb->s_flags & MS_RDONLY)) {
 140                nilfs_set_error(sb);
 141
 142                if (nilfs_test_opt(nilfs, ERRORS_RO)) {
 143                        printk(KERN_CRIT "Remounting filesystem read-only\n");
 144                        sb->s_flags |= MS_RDONLY;
 145                }
 146        }
 147
 148        if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 149                panic("NILFS (device %s): panic forced after error\n",
 150                      sb->s_id);
 151}
 152
 153struct inode *nilfs_alloc_inode(struct super_block *sb)
 154{
 155        struct nilfs_inode_info *ii;
 156
 157        ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
 158        if (!ii)
 159                return NULL;
 160        ii->i_bh = NULL;
 161        ii->i_state = 0;
 162        ii->i_cno = 0;
 163        ii->vfs_inode.i_version = 1;
 164        nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode);
 165        return &ii->vfs_inode;
 166}
 167
 168static void nilfs_i_callback(struct rcu_head *head)
 169{
 170        struct inode *inode = container_of(head, struct inode, i_rcu);
 171
 172        if (nilfs_is_metadata_file_inode(inode))
 173                nilfs_mdt_destroy(inode);
 174
 175        kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
 176}
 177
 178void nilfs_destroy_inode(struct inode *inode)
 179{
 180        call_rcu(&inode->i_rcu, nilfs_i_callback);
 181}
 182
 183static int nilfs_sync_super(struct super_block *sb, int flag)
 184{
 185        struct the_nilfs *nilfs = sb->s_fs_info;
 186        int err;
 187
 188 retry:
 189        set_buffer_dirty(nilfs->ns_sbh[0]);
 190        if (nilfs_test_opt(nilfs, BARRIER)) {
 191                err = __sync_dirty_buffer(nilfs->ns_sbh[0],
 192                                          REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
 193        } else {
 194                err = sync_dirty_buffer(nilfs->ns_sbh[0]);
 195        }
 196
 197        if (unlikely(err)) {
 198                nilfs_msg(sb, KERN_ERR, "unable to write superblock: err=%d",
 199                          err);
 200                if (err == -EIO && nilfs->ns_sbh[1]) {
 201                        /*
 202                         * sbp[0] points to newer log than sbp[1],
 203                         * so copy sbp[0] to sbp[1] to take over sbp[0].
 204                         */
 205                        memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
 206                               nilfs->ns_sbsize);
 207                        nilfs_fall_back_super_block(nilfs);
 208                        goto retry;
 209                }
 210        } else {
 211                struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
 212
 213                nilfs->ns_sbwcount++;
 214
 215                /*
 216                 * The latest segment becomes trailable from the position
 217                 * written in superblock.
 218                 */
 219                clear_nilfs_discontinued(nilfs);
 220
 221                /* update GC protection for recent segments */
 222                if (nilfs->ns_sbh[1]) {
 223                        if (flag == NILFS_SB_COMMIT_ALL) {
 224                                set_buffer_dirty(nilfs->ns_sbh[1]);
 225                                if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
 226                                        goto out;
 227                        }
 228                        if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
 229                            le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
 230                                sbp = nilfs->ns_sbp[1];
 231                }
 232
 233                spin_lock(&nilfs->ns_last_segment_lock);
 234                nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
 235                spin_unlock(&nilfs->ns_last_segment_lock);
 236        }
 237 out:
 238        return err;
 239}
 240
 241void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
 242                          struct the_nilfs *nilfs)
 243{
 244        sector_t nfreeblocks;
 245
 246        /* nilfs->ns_sem must be locked by the caller. */
 247        nilfs_count_free_blocks(nilfs, &nfreeblocks);
 248        sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
 249
 250        spin_lock(&nilfs->ns_last_segment_lock);
 251        sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
 252        sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
 253        sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
 254        spin_unlock(&nilfs->ns_last_segment_lock);
 255}
 256
 257struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
 258                                               int flip)
 259{
 260        struct the_nilfs *nilfs = sb->s_fs_info;
 261        struct nilfs_super_block **sbp = nilfs->ns_sbp;
 262
 263        /* nilfs->ns_sem must be locked by the caller. */
 264        if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 265                if (sbp[1] &&
 266                    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
 267                        memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
 268                } else {
 269                        nilfs_msg(sb, KERN_CRIT, "superblock broke");
 270                        return NULL;
 271                }
 272        } else if (sbp[1] &&
 273                   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
 274                memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 275        }
 276
 277        if (flip && sbp[1])
 278                nilfs_swap_super_block(nilfs);
 279
 280        return sbp;
 281}
 282
 283int nilfs_commit_super(struct super_block *sb, int flag)
 284{
 285        struct the_nilfs *nilfs = sb->s_fs_info;
 286        struct nilfs_super_block **sbp = nilfs->ns_sbp;
 287        time_t t;
 288
 289        /* nilfs->ns_sem must be locked by the caller. */
 290        t = get_seconds();
 291        nilfs->ns_sbwtime = t;
 292        sbp[0]->s_wtime = cpu_to_le64(t);
 293        sbp[0]->s_sum = 0;
 294        sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 295                                             (unsigned char *)sbp[0],
 296                                             nilfs->ns_sbsize));
 297        if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
 298                sbp[1]->s_wtime = sbp[0]->s_wtime;
 299                sbp[1]->s_sum = 0;
 300                sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
 301                                            (unsigned char *)sbp[1],
 302                                            nilfs->ns_sbsize));
 303        }
 304        clear_nilfs_sb_dirty(nilfs);
 305        nilfs->ns_flushed_device = 1;
 306        /* make sure store to ns_flushed_device cannot be reordered */
 307        smp_wmb();
 308        return nilfs_sync_super(sb, flag);
 309}
 310
 311/**
 312 * nilfs_cleanup_super() - write filesystem state for cleanup
 313 * @sb: super block instance to be unmounted or degraded to read-only
 314 *
 315 * This function restores state flags in the on-disk super block.
 316 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
 317 * filesystem was not clean previously.
 318 */
 319int nilfs_cleanup_super(struct super_block *sb)
 320{
 321        struct the_nilfs *nilfs = sb->s_fs_info;
 322        struct nilfs_super_block **sbp;
 323        int flag = NILFS_SB_COMMIT;
 324        int ret = -EIO;
 325
 326        sbp = nilfs_prepare_super(sb, 0);
 327        if (sbp) {
 328                sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
 329                nilfs_set_log_cursor(sbp[0], nilfs);
 330                if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
 331                        /*
 332                         * make the "clean" flag also to the opposite
 333                         * super block if both super blocks point to
 334                         * the same checkpoint.
 335                         */
 336                        sbp[1]->s_state = sbp[0]->s_state;
 337                        flag = NILFS_SB_COMMIT_ALL;
 338                }
 339                ret = nilfs_commit_super(sb, flag);
 340        }
 341        return ret;
 342}
 343
 344/**
 345 * nilfs_move_2nd_super - relocate secondary super block
 346 * @sb: super block instance
 347 * @sb2off: new offset of the secondary super block (in bytes)
 348 */
 349static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
 350{
 351        struct the_nilfs *nilfs = sb->s_fs_info;
 352        struct buffer_head *nsbh;
 353        struct nilfs_super_block *nsbp;
 354        sector_t blocknr, newblocknr;
 355        unsigned long offset;
 356        int sb2i;  /* array index of the secondary superblock */
 357        int ret = 0;
 358
 359        /* nilfs->ns_sem must be locked by the caller. */
 360        if (nilfs->ns_sbh[1] &&
 361            nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
 362                sb2i = 1;
 363                blocknr = nilfs->ns_sbh[1]->b_blocknr;
 364        } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
 365                sb2i = 0;
 366                blocknr = nilfs->ns_sbh[0]->b_blocknr;
 367        } else {
 368                sb2i = -1;
 369                blocknr = 0;
 370        }
 371        if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
 372                goto out;  /* super block location is unchanged */
 373
 374        /* Get new super block buffer */
 375        newblocknr = sb2off >> nilfs->ns_blocksize_bits;
 376        offset = sb2off & (nilfs->ns_blocksize - 1);
 377        nsbh = sb_getblk(sb, newblocknr);
 378        if (!nsbh) {
 379                nilfs_msg(sb, KERN_WARNING,
 380                          "unable to move secondary superblock to block %llu",
 381                          (unsigned long long)newblocknr);
 382                ret = -EIO;
 383                goto out;
 384        }
 385        nsbp = (void *)nsbh->b_data + offset;
 386        memset(nsbp, 0, nilfs->ns_blocksize);
 387
 388        if (sb2i >= 0) {
 389                memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
 390                brelse(nilfs->ns_sbh[sb2i]);
 391                nilfs->ns_sbh[sb2i] = nsbh;
 392                nilfs->ns_sbp[sb2i] = nsbp;
 393        } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
 394                /* secondary super block will be restored to index 1 */
 395                nilfs->ns_sbh[1] = nsbh;
 396                nilfs->ns_sbp[1] = nsbp;
 397        } else {
 398                brelse(nsbh);
 399        }
 400out:
 401        return ret;
 402}
 403
 404/**
 405 * nilfs_resize_fs - resize the filesystem
 406 * @sb: super block instance
 407 * @newsize: new size of the filesystem (in bytes)
 408 */
 409int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
 410{
 411        struct the_nilfs *nilfs = sb->s_fs_info;
 412        struct nilfs_super_block **sbp;
 413        __u64 devsize, newnsegs;
 414        loff_t sb2off;
 415        int ret;
 416
 417        ret = -ERANGE;
 418        devsize = i_size_read(sb->s_bdev->bd_inode);
 419        if (newsize > devsize)
 420                goto out;
 421
 422        /*
 423         * Write lock is required to protect some functions depending
 424         * on the number of segments, the number of reserved segments,
 425         * and so forth.
 426         */
 427        down_write(&nilfs->ns_segctor_sem);
 428
 429        sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
 430        newnsegs = sb2off >> nilfs->ns_blocksize_bits;
 431        do_div(newnsegs, nilfs->ns_blocks_per_segment);
 432
 433        ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
 434        up_write(&nilfs->ns_segctor_sem);
 435        if (ret < 0)
 436                goto out;
 437
 438        ret = nilfs_construct_segment(sb);
 439        if (ret < 0)
 440                goto out;
 441
 442        down_write(&nilfs->ns_sem);
 443        nilfs_move_2nd_super(sb, sb2off);
 444        ret = -EIO;
 445        sbp = nilfs_prepare_super(sb, 0);
 446        if (likely(sbp)) {
 447                nilfs_set_log_cursor(sbp[0], nilfs);
 448                /*
 449                 * Drop NILFS_RESIZE_FS flag for compatibility with
 450                 * mount-time resize which may be implemented in a
 451                 * future release.
 452                 */
 453                sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
 454                                              ~NILFS_RESIZE_FS);
 455                sbp[0]->s_dev_size = cpu_to_le64(newsize);
 456                sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
 457                if (sbp[1])
 458                        memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 459                ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 460        }
 461        up_write(&nilfs->ns_sem);
 462
 463        /*
 464         * Reset the range of allocatable segments last.  This order
 465         * is important in the case of expansion because the secondary
 466         * superblock must be protected from log write until migration
 467         * completes.
 468         */
 469        if (!ret)
 470                nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
 471out:
 472        return ret;
 473}
 474
 475static void nilfs_put_super(struct super_block *sb)
 476{
 477        struct the_nilfs *nilfs = sb->s_fs_info;
 478
 479        nilfs_detach_log_writer(sb);
 480
 481        if (!(sb->s_flags & MS_RDONLY)) {
 482                down_write(&nilfs->ns_sem);
 483                nilfs_cleanup_super(sb);
 484                up_write(&nilfs->ns_sem);
 485        }
 486
 487        iput(nilfs->ns_sufile);
 488        iput(nilfs->ns_cpfile);
 489        iput(nilfs->ns_dat);
 490
 491        destroy_nilfs(nilfs);
 492        sb->s_fs_info = NULL;
 493}
 494
 495static int nilfs_sync_fs(struct super_block *sb, int wait)
 496{
 497        struct the_nilfs *nilfs = sb->s_fs_info;
 498        struct nilfs_super_block **sbp;
 499        int err = 0;
 500
 501        /* This function is called when super block should be written back */
 502        if (wait)
 503                err = nilfs_construct_segment(sb);
 504
 505        down_write(&nilfs->ns_sem);
 506        if (nilfs_sb_dirty(nilfs)) {
 507                sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
 508                if (likely(sbp)) {
 509                        nilfs_set_log_cursor(sbp[0], nilfs);
 510                        nilfs_commit_super(sb, NILFS_SB_COMMIT);
 511                }
 512        }
 513        up_write(&nilfs->ns_sem);
 514
 515        if (!err)
 516                err = nilfs_flush_device(nilfs);
 517
 518        return err;
 519}
 520
 521int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
 522                            struct nilfs_root **rootp)
 523{
 524        struct the_nilfs *nilfs = sb->s_fs_info;
 525        struct nilfs_root *root;
 526        struct nilfs_checkpoint *raw_cp;
 527        struct buffer_head *bh_cp;
 528        int err = -ENOMEM;
 529
 530        root = nilfs_find_or_create_root(
 531                nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
 532        if (!root)
 533                return err;
 534
 535        if (root->ifile)
 536                goto reuse; /* already attached checkpoint */
 537
 538        down_read(&nilfs->ns_segctor_sem);
 539        err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
 540                                          &bh_cp);
 541        up_read(&nilfs->ns_segctor_sem);
 542        if (unlikely(err)) {
 543                if (err == -ENOENT || err == -EINVAL) {
 544                        nilfs_msg(sb, KERN_ERR,
 545                                  "Invalid checkpoint (checkpoint number=%llu)",
 546                                  (unsigned long long)cno);
 547                        err = -EINVAL;
 548                }
 549                goto failed;
 550        }
 551
 552        err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
 553                               &raw_cp->cp_ifile_inode, &root->ifile);
 554        if (err)
 555                goto failed_bh;
 556
 557        atomic64_set(&root->inodes_count,
 558                        le64_to_cpu(raw_cp->cp_inodes_count));
 559        atomic64_set(&root->blocks_count,
 560                        le64_to_cpu(raw_cp->cp_blocks_count));
 561
 562        nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 563
 564 reuse:
 565        *rootp = root;
 566        return 0;
 567
 568 failed_bh:
 569        nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
 570 failed:
 571        nilfs_put_root(root);
 572
 573        return err;
 574}
 575
 576static int nilfs_freeze(struct super_block *sb)
 577{
 578        struct the_nilfs *nilfs = sb->s_fs_info;
 579        int err;
 580
 581        if (sb->s_flags & MS_RDONLY)
 582                return 0;
 583
 584        /* Mark super block clean */
 585        down_write(&nilfs->ns_sem);
 586        err = nilfs_cleanup_super(sb);
 587        up_write(&nilfs->ns_sem);
 588        return err;
 589}
 590
 591static int nilfs_unfreeze(struct super_block *sb)
 592{
 593        struct the_nilfs *nilfs = sb->s_fs_info;
 594
 595        if (sb->s_flags & MS_RDONLY)
 596                return 0;
 597
 598        down_write(&nilfs->ns_sem);
 599        nilfs_setup_super(sb, false);
 600        up_write(&nilfs->ns_sem);
 601        return 0;
 602}
 603
 604static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 605{
 606        struct super_block *sb = dentry->d_sb;
 607        struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 608        struct the_nilfs *nilfs = root->nilfs;
 609        u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 610        unsigned long long blocks;
 611        unsigned long overhead;
 612        unsigned long nrsvblocks;
 613        sector_t nfreeblocks;
 614        u64 nmaxinodes, nfreeinodes;
 615        int err;
 616
 617        /*
 618         * Compute all of the segment blocks
 619         *
 620         * The blocks before first segment and after last segment
 621         * are excluded.
 622         */
 623        blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
 624                - nilfs->ns_first_data_block;
 625        nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
 626
 627        /*
 628         * Compute the overhead
 629         *
 630         * When distributing meta data blocks outside segment structure,
 631         * We must count them as the overhead.
 632         */
 633        overhead = 0;
 634
 635        err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
 636        if (unlikely(err))
 637                return err;
 638
 639        err = nilfs_ifile_count_free_inodes(root->ifile,
 640                                            &nmaxinodes, &nfreeinodes);
 641        if (unlikely(err)) {
 642                nilfs_msg(sb, KERN_WARNING,
 643                          "failed to count free inodes: err=%d", err);
 644                if (err == -ERANGE) {
 645                        /*
 646                         * If nilfs_palloc_count_max_entries() returns
 647                         * -ERANGE error code then we simply treat
 648                         * curent inodes count as maximum possible and
 649                         * zero as free inodes value.
 650                         */
 651                        nmaxinodes = atomic64_read(&root->inodes_count);
 652                        nfreeinodes = 0;
 653                        err = 0;
 654                } else
 655                        return err;
 656        }
 657
 658        buf->f_type = NILFS_SUPER_MAGIC;
 659        buf->f_bsize = sb->s_blocksize;
 660        buf->f_blocks = blocks - overhead;
 661        buf->f_bfree = nfreeblocks;
 662        buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
 663                (buf->f_bfree - nrsvblocks) : 0;
 664        buf->f_files = nmaxinodes;
 665        buf->f_ffree = nfreeinodes;
 666        buf->f_namelen = NILFS_NAME_LEN;
 667        buf->f_fsid.val[0] = (u32)id;
 668        buf->f_fsid.val[1] = (u32)(id >> 32);
 669
 670        return 0;
 671}
 672
 673static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
 674{
 675        struct super_block *sb = dentry->d_sb;
 676        struct the_nilfs *nilfs = sb->s_fs_info;
 677        struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
 678
 679        if (!nilfs_test_opt(nilfs, BARRIER))
 680                seq_puts(seq, ",nobarrier");
 681        if (root->cno != NILFS_CPTREE_CURRENT_CNO)
 682                seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
 683        if (nilfs_test_opt(nilfs, ERRORS_PANIC))
 684                seq_puts(seq, ",errors=panic");
 685        if (nilfs_test_opt(nilfs, ERRORS_CONT))
 686                seq_puts(seq, ",errors=continue");
 687        if (nilfs_test_opt(nilfs, STRICT_ORDER))
 688                seq_puts(seq, ",order=strict");
 689        if (nilfs_test_opt(nilfs, NORECOVERY))
 690                seq_puts(seq, ",norecovery");
 691        if (nilfs_test_opt(nilfs, DISCARD))
 692                seq_puts(seq, ",discard");
 693
 694        return 0;
 695}
 696
 697static const struct super_operations nilfs_sops = {
 698        .alloc_inode    = nilfs_alloc_inode,
 699        .destroy_inode  = nilfs_destroy_inode,
 700        .dirty_inode    = nilfs_dirty_inode,
 701        .evict_inode    = nilfs_evict_inode,
 702        .put_super      = nilfs_put_super,
 703        .sync_fs        = nilfs_sync_fs,
 704        .freeze_fs      = nilfs_freeze,
 705        .unfreeze_fs    = nilfs_unfreeze,
 706        .statfs         = nilfs_statfs,
 707        .remount_fs     = nilfs_remount,
 708        .show_options = nilfs_show_options
 709};
 710
 711enum {
 712        Opt_err_cont, Opt_err_panic, Opt_err_ro,
 713        Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
 714        Opt_discard, Opt_nodiscard, Opt_err,
 715};
 716
 717static match_table_t tokens = {
 718        {Opt_err_cont, "errors=continue"},
 719        {Opt_err_panic, "errors=panic"},
 720        {Opt_err_ro, "errors=remount-ro"},
 721        {Opt_barrier, "barrier"},
 722        {Opt_nobarrier, "nobarrier"},
 723        {Opt_snapshot, "cp=%u"},
 724        {Opt_order, "order=%s"},
 725        {Opt_norecovery, "norecovery"},
 726        {Opt_discard, "discard"},
 727        {Opt_nodiscard, "nodiscard"},
 728        {Opt_err, NULL}
 729};
 730
 731static int parse_options(char *options, struct super_block *sb, int is_remount)
 732{
 733        struct the_nilfs *nilfs = sb->s_fs_info;
 734        char *p;
 735        substring_t args[MAX_OPT_ARGS];
 736
 737        if (!options)
 738                return 1;
 739
 740        while ((p = strsep(&options, ",")) != NULL) {
 741                int token;
 742
 743                if (!*p)
 744                        continue;
 745
 746                token = match_token(p, tokens, args);
 747                switch (token) {
 748                case Opt_barrier:
 749                        nilfs_set_opt(nilfs, BARRIER);
 750                        break;
 751                case Opt_nobarrier:
 752                        nilfs_clear_opt(nilfs, BARRIER);
 753                        break;
 754                case Opt_order:
 755                        if (strcmp(args[0].from, "relaxed") == 0)
 756                                /* Ordered data semantics */
 757                                nilfs_clear_opt(nilfs, STRICT_ORDER);
 758                        else if (strcmp(args[0].from, "strict") == 0)
 759                                /* Strict in-order semantics */
 760                                nilfs_set_opt(nilfs, STRICT_ORDER);
 761                        else
 762                                return 0;
 763                        break;
 764                case Opt_err_panic:
 765                        nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
 766                        break;
 767                case Opt_err_ro:
 768                        nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
 769                        break;
 770                case Opt_err_cont:
 771                        nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
 772                        break;
 773                case Opt_snapshot:
 774                        if (is_remount) {
 775                                nilfs_msg(sb, KERN_ERR,
 776                                          "\"%s\" option is invalid for remount",
 777                                          p);
 778                                return 0;
 779                        }
 780                        break;
 781                case Opt_norecovery:
 782                        nilfs_set_opt(nilfs, NORECOVERY);
 783                        break;
 784                case Opt_discard:
 785                        nilfs_set_opt(nilfs, DISCARD);
 786                        break;
 787                case Opt_nodiscard:
 788                        nilfs_clear_opt(nilfs, DISCARD);
 789                        break;
 790                default:
 791                        nilfs_msg(sb, KERN_ERR,
 792                                  "unrecognized mount option \"%s\"", p);
 793                        return 0;
 794                }
 795        }
 796        return 1;
 797}
 798
 799static inline void
 800nilfs_set_default_options(struct super_block *sb,
 801                          struct nilfs_super_block *sbp)
 802{
 803        struct the_nilfs *nilfs = sb->s_fs_info;
 804
 805        nilfs->ns_mount_opt =
 806                NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
 807}
 808
 809static int nilfs_setup_super(struct super_block *sb, int is_mount)
 810{
 811        struct the_nilfs *nilfs = sb->s_fs_info;
 812        struct nilfs_super_block **sbp;
 813        int max_mnt_count;
 814        int mnt_count;
 815
 816        /* nilfs->ns_sem must be locked by the caller. */
 817        sbp = nilfs_prepare_super(sb, 0);
 818        if (!sbp)
 819                return -EIO;
 820
 821        if (!is_mount)
 822                goto skip_mount_setup;
 823
 824        max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
 825        mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
 826
 827        if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
 828                nilfs_msg(sb, KERN_WARNING, "mounting fs with errors");
 829#if 0
 830        } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
 831                nilfs_msg(sb, KERN_WARNING, "maximal mount count reached");
 832#endif
 833        }
 834        if (!max_mnt_count)
 835                sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
 836
 837        sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
 838        sbp[0]->s_mtime = cpu_to_le64(get_seconds());
 839
 840skip_mount_setup:
 841        sbp[0]->s_state =
 842                cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
 843        /* synchronize sbp[1] with sbp[0] */
 844        if (sbp[1])
 845                memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
 846        return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
 847}
 848
 849struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
 850                                                 u64 pos, int blocksize,
 851                                                 struct buffer_head **pbh)
 852{
 853        unsigned long long sb_index = pos;
 854        unsigned long offset;
 855
 856        offset = do_div(sb_index, blocksize);
 857        *pbh = sb_bread(sb, sb_index);
 858        if (!*pbh)
 859                return NULL;
 860        return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
 861}
 862
 863int nilfs_store_magic_and_option(struct super_block *sb,
 864                                 struct nilfs_super_block *sbp,
 865                                 char *data)
 866{
 867        struct the_nilfs *nilfs = sb->s_fs_info;
 868
 869        sb->s_magic = le16_to_cpu(sbp->s_magic);
 870
 871        /* FS independent flags */
 872#ifdef NILFS_ATIME_DISABLE
 873        sb->s_flags |= MS_NOATIME;
 874#endif
 875
 876        nilfs_set_default_options(sb, sbp);
 877
 878        nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
 879        nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
 880        nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
 881        nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
 882
 883        return !parse_options(data, sb, 0) ? -EINVAL : 0;
 884}
 885
 886int nilfs_check_feature_compatibility(struct super_block *sb,
 887                                      struct nilfs_super_block *sbp)
 888{
 889        __u64 features;
 890
 891        features = le64_to_cpu(sbp->s_feature_incompat) &
 892                ~NILFS_FEATURE_INCOMPAT_SUPP;
 893        if (features) {
 894                nilfs_msg(sb, KERN_ERR,
 895                          "couldn't mount because of unsupported optional features (%llx)",
 896                          (unsigned long long)features);
 897                return -EINVAL;
 898        }
 899        features = le64_to_cpu(sbp->s_feature_compat_ro) &
 900                ~NILFS_FEATURE_COMPAT_RO_SUPP;
 901        if (!(sb->s_flags & MS_RDONLY) && features) {
 902                nilfs_msg(sb, KERN_ERR,
 903                          "couldn't mount RDWR because of unsupported optional features (%llx)",
 904                          (unsigned long long)features);
 905                return -EINVAL;
 906        }
 907        return 0;
 908}
 909
 910static int nilfs_get_root_dentry(struct super_block *sb,
 911                                 struct nilfs_root *root,
 912                                 struct dentry **root_dentry)
 913{
 914        struct inode *inode;
 915        struct dentry *dentry;
 916        int ret = 0;
 917
 918        inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
 919        if (IS_ERR(inode)) {
 920                ret = PTR_ERR(inode);
 921                nilfs_msg(sb, KERN_ERR, "error %d getting root inode", ret);
 922                goto out;
 923        }
 924        if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
 925                iput(inode);
 926                nilfs_msg(sb, KERN_ERR, "corrupt root inode");
 927                ret = -EINVAL;
 928                goto out;
 929        }
 930
 931        if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
 932                dentry = d_find_alias(inode);
 933                if (!dentry) {
 934                        dentry = d_make_root(inode);
 935                        if (!dentry) {
 936                                ret = -ENOMEM;
 937                                goto failed_dentry;
 938                        }
 939                } else {
 940                        iput(inode);
 941                }
 942        } else {
 943                dentry = d_obtain_root(inode);
 944                if (IS_ERR(dentry)) {
 945                        ret = PTR_ERR(dentry);
 946                        goto failed_dentry;
 947                }
 948        }
 949        *root_dentry = dentry;
 950 out:
 951        return ret;
 952
 953 failed_dentry:
 954        nilfs_msg(sb, KERN_ERR, "error %d getting root dentry", ret);
 955        goto out;
 956}
 957
 958static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
 959                                 struct dentry **root_dentry)
 960{
 961        struct the_nilfs *nilfs = s->s_fs_info;
 962        struct nilfs_root *root;
 963        int ret;
 964
 965        mutex_lock(&nilfs->ns_snapshot_mount_mutex);
 966
 967        down_read(&nilfs->ns_segctor_sem);
 968        ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
 969        up_read(&nilfs->ns_segctor_sem);
 970        if (ret < 0) {
 971                ret = (ret == -ENOENT) ? -EINVAL : ret;
 972                goto out;
 973        } else if (!ret) {
 974                nilfs_msg(s, KERN_ERR,
 975                          "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
 976                          (unsigned long long)cno);
 977                ret = -EINVAL;
 978                goto out;
 979        }
 980
 981        ret = nilfs_attach_checkpoint(s, cno, false, &root);
 982        if (ret) {
 983                nilfs_msg(s, KERN_ERR,
 984                          "error %d while loading snapshot (checkpoint number=%llu)",
 985                          ret, (unsigned long long)cno);
 986                goto out;
 987        }
 988        ret = nilfs_get_root_dentry(s, root, root_dentry);
 989        nilfs_put_root(root);
 990 out:
 991        mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
 992        return ret;
 993}
 994
 995/**
 996 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
 997 * @root_dentry: root dentry of the tree to be shrunk
 998 *
 999 * This function returns true if the tree was in-use.
1000 */
1001static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1002{
1003        shrink_dcache_parent(root_dentry);
1004        return d_count(root_dentry) > 1;
1005}
1006
1007int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1008{
1009        struct the_nilfs *nilfs = sb->s_fs_info;
1010        struct nilfs_root *root;
1011        struct inode *inode;
1012        struct dentry *dentry;
1013        int ret;
1014
1015        if (cno > nilfs->ns_cno)
1016                return false;
1017
1018        if (cno >= nilfs_last_cno(nilfs))
1019                return true;    /* protect recent checkpoints */
1020
1021        ret = false;
1022        root = nilfs_lookup_root(nilfs, cno);
1023        if (root) {
1024                inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1025                if (inode) {
1026                        dentry = d_find_alias(inode);
1027                        if (dentry) {
1028                                ret = nilfs_tree_is_busy(dentry);
1029                                dput(dentry);
1030                        }
1031                        iput(inode);
1032                }
1033                nilfs_put_root(root);
1034        }
1035        return ret;
1036}
1037
1038/**
1039 * nilfs_fill_super() - initialize a super block instance
1040 * @sb: super_block
1041 * @data: mount options
1042 * @silent: silent mode flag
1043 *
1044 * This function is called exclusively by nilfs->ns_mount_mutex.
1045 * So, the recovery process is protected from other simultaneous mounts.
1046 */
1047static int
1048nilfs_fill_super(struct super_block *sb, void *data, int silent)
1049{
1050        struct the_nilfs *nilfs;
1051        struct nilfs_root *fsroot;
1052        __u64 cno;
1053        int err;
1054
1055        nilfs = alloc_nilfs(sb);
1056        if (!nilfs)
1057                return -ENOMEM;
1058
1059        sb->s_fs_info = nilfs;
1060
1061        err = init_nilfs(nilfs, sb, (char *)data);
1062        if (err)
1063                goto failed_nilfs;
1064
1065        sb->s_op = &nilfs_sops;
1066        sb->s_export_op = &nilfs_export_ops;
1067        sb->s_root = NULL;
1068        sb->s_time_gran = 1;
1069        sb->s_max_links = NILFS_LINK_MAX;
1070
1071        sb->s_bdi = &bdev_get_queue(sb->s_bdev)->backing_dev_info;
1072
1073        err = load_nilfs(nilfs, sb);
1074        if (err)
1075                goto failed_nilfs;
1076
1077        cno = nilfs_last_cno(nilfs);
1078        err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1079        if (err) {
1080                nilfs_msg(sb, KERN_ERR,
1081                          "error %d while loading last checkpoint (checkpoint number=%llu)",
1082                          err, (unsigned long long)cno);
1083                goto failed_unload;
1084        }
1085
1086        if (!(sb->s_flags & MS_RDONLY)) {
1087                err = nilfs_attach_log_writer(sb, fsroot);
1088                if (err)
1089                        goto failed_checkpoint;
1090        }
1091
1092        err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1093        if (err)
1094                goto failed_segctor;
1095
1096        nilfs_put_root(fsroot);
1097
1098        if (!(sb->s_flags & MS_RDONLY)) {
1099                down_write(&nilfs->ns_sem);
1100                nilfs_setup_super(sb, true);
1101                up_write(&nilfs->ns_sem);
1102        }
1103
1104        return 0;
1105
1106 failed_segctor:
1107        nilfs_detach_log_writer(sb);
1108
1109 failed_checkpoint:
1110        nilfs_put_root(fsroot);
1111
1112 failed_unload:
1113        iput(nilfs->ns_sufile);
1114        iput(nilfs->ns_cpfile);
1115        iput(nilfs->ns_dat);
1116
1117 failed_nilfs:
1118        destroy_nilfs(nilfs);
1119        return err;
1120}
1121
1122static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1123{
1124        struct the_nilfs *nilfs = sb->s_fs_info;
1125        unsigned long old_sb_flags;
1126        unsigned long old_mount_opt;
1127        int err;
1128
1129        sync_filesystem(sb);
1130        old_sb_flags = sb->s_flags;
1131        old_mount_opt = nilfs->ns_mount_opt;
1132
1133        if (!parse_options(data, sb, 1)) {
1134                err = -EINVAL;
1135                goto restore_opts;
1136        }
1137        sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
1138
1139        err = -EINVAL;
1140
1141        if (!nilfs_valid_fs(nilfs)) {
1142                nilfs_msg(sb, KERN_WARNING,
1143                          "couldn't remount because the filesystem is in an incomplete recovery state");
1144                goto restore_opts;
1145        }
1146
1147        if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1148                goto out;
1149        if (*flags & MS_RDONLY) {
1150                /* Shutting down log writer */
1151                nilfs_detach_log_writer(sb);
1152                sb->s_flags |= MS_RDONLY;
1153
1154                /*
1155                 * Remounting a valid RW partition RDONLY, so set
1156                 * the RDONLY flag and then mark the partition as valid again.
1157                 */
1158                down_write(&nilfs->ns_sem);
1159                nilfs_cleanup_super(sb);
1160                up_write(&nilfs->ns_sem);
1161        } else {
1162                __u64 features;
1163                struct nilfs_root *root;
1164
1165                /*
1166                 * Mounting a RDONLY partition read-write, so reread and
1167                 * store the current valid flag.  (It may have been changed
1168                 * by fsck since we originally mounted the partition.)
1169                 */
1170                down_read(&nilfs->ns_sem);
1171                features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1172                        ~NILFS_FEATURE_COMPAT_RO_SUPP;
1173                up_read(&nilfs->ns_sem);
1174                if (features) {
1175                        nilfs_msg(sb, KERN_WARNING,
1176                                  "couldn't remount RDWR because of unsupported optional features (%llx)",
1177                                  (unsigned long long)features);
1178                        err = -EROFS;
1179                        goto restore_opts;
1180                }
1181
1182                sb->s_flags &= ~MS_RDONLY;
1183
1184                root = NILFS_I(d_inode(sb->s_root))->i_root;
1185                err = nilfs_attach_log_writer(sb, root);
1186                if (err)
1187                        goto restore_opts;
1188
1189                down_write(&nilfs->ns_sem);
1190                nilfs_setup_super(sb, true);
1191                up_write(&nilfs->ns_sem);
1192        }
1193 out:
1194        return 0;
1195
1196 restore_opts:
1197        sb->s_flags = old_sb_flags;
1198        nilfs->ns_mount_opt = old_mount_opt;
1199        return err;
1200}
1201
1202struct nilfs_super_data {
1203        struct block_device *bdev;
1204        __u64 cno;
1205        int flags;
1206};
1207
1208static int nilfs_parse_snapshot_option(const char *option,
1209                                       const substring_t *arg,
1210                                       struct nilfs_super_data *sd)
1211{
1212        unsigned long long val;
1213        const char *msg = NULL;
1214        int err;
1215
1216        if (!(sd->flags & MS_RDONLY)) {
1217                msg = "read-only option is not specified";
1218                goto parse_error;
1219        }
1220
1221        err = kstrtoull(arg->from, 0, &val);
1222        if (err) {
1223                if (err == -ERANGE)
1224                        msg = "too large checkpoint number";
1225                else
1226                        msg = "malformed argument";
1227                goto parse_error;
1228        } else if (val == 0) {
1229                msg = "invalid checkpoint number 0";
1230                goto parse_error;
1231        }
1232        sd->cno = val;
1233        return 0;
1234
1235parse_error:
1236        nilfs_msg(NULL, KERN_ERR, "invalid option \"%s\": %s", option, msg);
1237        return 1;
1238}
1239
1240/**
1241 * nilfs_identify - pre-read mount options needed to identify mount instance
1242 * @data: mount options
1243 * @sd: nilfs_super_data
1244 */
1245static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1246{
1247        char *p, *options = data;
1248        substring_t args[MAX_OPT_ARGS];
1249        int token;
1250        int ret = 0;
1251
1252        do {
1253                p = strsep(&options, ",");
1254                if (p != NULL && *p) {
1255                        token = match_token(p, tokens, args);
1256                        if (token == Opt_snapshot)
1257                                ret = nilfs_parse_snapshot_option(p, &args[0],
1258                                                                  sd);
1259                }
1260                if (!options)
1261                        break;
1262                BUG_ON(options == data);
1263                *(options - 1) = ',';
1264        } while (!ret);
1265        return ret;
1266}
1267
1268static int nilfs_set_bdev_super(struct super_block *s, void *data)
1269{
1270        s->s_bdev = data;
1271        s->s_dev = s->s_bdev->bd_dev;
1272        return 0;
1273}
1274
1275static int nilfs_test_bdev_super(struct super_block *s, void *data)
1276{
1277        return (void *)s->s_bdev == data;
1278}
1279
1280static struct dentry *
1281nilfs_mount(struct file_system_type *fs_type, int flags,
1282             const char *dev_name, void *data)
1283{
1284        struct nilfs_super_data sd;
1285        struct super_block *s;
1286        fmode_t mode = FMODE_READ | FMODE_EXCL;
1287        struct dentry *root_dentry;
1288        int err, s_new = false;
1289
1290        if (!(flags & MS_RDONLY))
1291                mode |= FMODE_WRITE;
1292
1293        sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1294        if (IS_ERR(sd.bdev))
1295                return ERR_CAST(sd.bdev);
1296
1297        sd.cno = 0;
1298        sd.flags = flags;
1299        if (nilfs_identify((char *)data, &sd)) {
1300                err = -EINVAL;
1301                goto failed;
1302        }
1303
1304        /*
1305         * once the super is inserted into the list by sget, s_umount
1306         * will protect the lockfs code from trying to start a snapshot
1307         * while we are mounting
1308         */
1309        mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1310        if (sd.bdev->bd_fsfreeze_count > 0) {
1311                mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1312                err = -EBUSY;
1313                goto failed;
1314        }
1315        s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1316                 sd.bdev);
1317        mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1318        if (IS_ERR(s)) {
1319                err = PTR_ERR(s);
1320                goto failed;
1321        }
1322
1323        if (!s->s_root) {
1324                s_new = true;
1325
1326                /* New superblock instance created */
1327                s->s_mode = mode;
1328                snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1329                sb_set_blocksize(s, block_size(sd.bdev));
1330
1331                err = nilfs_fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1332                if (err)
1333                        goto failed_super;
1334
1335                s->s_flags |= MS_ACTIVE;
1336        } else if (!sd.cno) {
1337                if (nilfs_tree_is_busy(s->s_root)) {
1338                        if ((flags ^ s->s_flags) & MS_RDONLY) {
1339                                nilfs_msg(s, KERN_ERR,
1340                                          "the device already has a %s mount.",
1341                                          (s->s_flags & MS_RDONLY) ?
1342                                          "read-only" : "read/write");
1343                                err = -EBUSY;
1344                                goto failed_super;
1345                        }
1346                } else {
1347                        /*
1348                         * Try remount to setup mount states if the current
1349                         * tree is not mounted and only snapshots use this sb.
1350                         */
1351                        err = nilfs_remount(s, &flags, data);
1352                        if (err)
1353                                goto failed_super;
1354                }
1355        }
1356
1357        if (sd.cno) {
1358                err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1359                if (err)
1360                        goto failed_super;
1361        } else {
1362                root_dentry = dget(s->s_root);
1363        }
1364
1365        if (!s_new)
1366                blkdev_put(sd.bdev, mode);
1367
1368        return root_dentry;
1369
1370 failed_super:
1371        deactivate_locked_super(s);
1372
1373 failed:
1374        if (!s_new)
1375                blkdev_put(sd.bdev, mode);
1376        return ERR_PTR(err);
1377}
1378
1379struct file_system_type nilfs_fs_type = {
1380        .owner    = THIS_MODULE,
1381        .name     = "nilfs2",
1382        .mount    = nilfs_mount,
1383        .kill_sb  = kill_block_super,
1384        .fs_flags = FS_REQUIRES_DEV,
1385};
1386MODULE_ALIAS_FS("nilfs2");
1387
1388static void nilfs_inode_init_once(void *obj)
1389{
1390        struct nilfs_inode_info *ii = obj;
1391
1392        INIT_LIST_HEAD(&ii->i_dirty);
1393#ifdef CONFIG_NILFS_XATTR
1394        init_rwsem(&ii->xattr_sem);
1395#endif
1396        address_space_init_once(&ii->i_btnode_cache);
1397        ii->i_bmap = &ii->i_bmap_data;
1398        inode_init_once(&ii->vfs_inode);
1399}
1400
1401static void nilfs_segbuf_init_once(void *obj)
1402{
1403        memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1404}
1405
1406static void nilfs_destroy_cachep(void)
1407{
1408        /*
1409         * Make sure all delayed rcu free inodes are flushed before we
1410         * destroy cache.
1411         */
1412        rcu_barrier();
1413
1414        kmem_cache_destroy(nilfs_inode_cachep);
1415        kmem_cache_destroy(nilfs_transaction_cachep);
1416        kmem_cache_destroy(nilfs_segbuf_cachep);
1417        kmem_cache_destroy(nilfs_btree_path_cache);
1418}
1419
1420static int __init nilfs_init_cachep(void)
1421{
1422        nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1423                        sizeof(struct nilfs_inode_info), 0,
1424                        SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1425                        nilfs_inode_init_once);
1426        if (!nilfs_inode_cachep)
1427                goto fail;
1428
1429        nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1430                        sizeof(struct nilfs_transaction_info), 0,
1431                        SLAB_RECLAIM_ACCOUNT, NULL);
1432        if (!nilfs_transaction_cachep)
1433                goto fail;
1434
1435        nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1436                        sizeof(struct nilfs_segment_buffer), 0,
1437                        SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1438        if (!nilfs_segbuf_cachep)
1439                goto fail;
1440
1441        nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1442                        sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1443                        0, 0, NULL);
1444        if (!nilfs_btree_path_cache)
1445                goto fail;
1446
1447        return 0;
1448
1449fail:
1450        nilfs_destroy_cachep();
1451        return -ENOMEM;
1452}
1453
1454static int __init init_nilfs_fs(void)
1455{
1456        int err;
1457
1458        err = nilfs_init_cachep();
1459        if (err)
1460                goto fail;
1461
1462        err = nilfs_sysfs_init();
1463        if (err)
1464                goto free_cachep;
1465
1466        err = register_filesystem(&nilfs_fs_type);
1467        if (err)
1468                goto deinit_sysfs_entry;
1469
1470        printk(KERN_INFO "NILFS version 2 loaded\n");
1471        return 0;
1472
1473deinit_sysfs_entry:
1474        nilfs_sysfs_exit();
1475free_cachep:
1476        nilfs_destroy_cachep();
1477fail:
1478        return err;
1479}
1480
1481static void __exit exit_nilfs_fs(void)
1482{
1483        nilfs_destroy_cachep();
1484        nilfs_sysfs_exit();
1485        unregister_filesystem(&nilfs_fs_type);
1486}
1487
1488module_init(init_nilfs_fs)
1489module_exit(exit_nilfs_fs)
1490