linux/fs/ocfs2/aops.c
<<
>>
Prefs
   1/* -*- mode: c; c-basic-offset: 8; -*-
   2 * vim: noexpandtab sw=8 ts=8 sts=0:
   3 *
   4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public
  17 * License along with this program; if not, write to the
  18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  19 * Boston, MA 021110-1307, USA.
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/slab.h>
  24#include <linux/highmem.h>
  25#include <linux/pagemap.h>
  26#include <asm/byteorder.h>
  27#include <linux/swap.h>
  28#include <linux/pipe_fs_i.h>
  29#include <linux/mpage.h>
  30#include <linux/quotaops.h>
  31#include <linux/blkdev.h>
  32#include <linux/uio.h>
  33
  34#include <cluster/masklog.h>
  35
  36#include "ocfs2.h"
  37
  38#include "alloc.h"
  39#include "aops.h"
  40#include "dlmglue.h"
  41#include "extent_map.h"
  42#include "file.h"
  43#include "inode.h"
  44#include "journal.h"
  45#include "suballoc.h"
  46#include "super.h"
  47#include "symlink.h"
  48#include "refcounttree.h"
  49#include "ocfs2_trace.h"
  50
  51#include "buffer_head_io.h"
  52#include "dir.h"
  53#include "namei.h"
  54#include "sysfile.h"
  55
  56static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
  57                                   struct buffer_head *bh_result, int create)
  58{
  59        int err = -EIO;
  60        int status;
  61        struct ocfs2_dinode *fe = NULL;
  62        struct buffer_head *bh = NULL;
  63        struct buffer_head *buffer_cache_bh = NULL;
  64        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
  65        void *kaddr;
  66
  67        trace_ocfs2_symlink_get_block(
  68                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
  69                        (unsigned long long)iblock, bh_result, create);
  70
  71        BUG_ON(ocfs2_inode_is_fast_symlink(inode));
  72
  73        if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
  74                mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
  75                     (unsigned long long)iblock);
  76                goto bail;
  77        }
  78
  79        status = ocfs2_read_inode_block(inode, &bh);
  80        if (status < 0) {
  81                mlog_errno(status);
  82                goto bail;
  83        }
  84        fe = (struct ocfs2_dinode *) bh->b_data;
  85
  86        if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
  87                                                    le32_to_cpu(fe->i_clusters))) {
  88                err = -ENOMEM;
  89                mlog(ML_ERROR, "block offset is outside the allocated size: "
  90                     "%llu\n", (unsigned long long)iblock);
  91                goto bail;
  92        }
  93
  94        /* We don't use the page cache to create symlink data, so if
  95         * need be, copy it over from the buffer cache. */
  96        if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
  97                u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
  98                            iblock;
  99                buffer_cache_bh = sb_getblk(osb->sb, blkno);
 100                if (!buffer_cache_bh) {
 101                        err = -ENOMEM;
 102                        mlog(ML_ERROR, "couldn't getblock for symlink!\n");
 103                        goto bail;
 104                }
 105
 106                /* we haven't locked out transactions, so a commit
 107                 * could've happened. Since we've got a reference on
 108                 * the bh, even if it commits while we're doing the
 109                 * copy, the data is still good. */
 110                if (buffer_jbd(buffer_cache_bh)
 111                    && ocfs2_inode_is_new(inode)) {
 112                        kaddr = kmap_atomic(bh_result->b_page);
 113                        if (!kaddr) {
 114                                mlog(ML_ERROR, "couldn't kmap!\n");
 115                                goto bail;
 116                        }
 117                        memcpy(kaddr + (bh_result->b_size * iblock),
 118                               buffer_cache_bh->b_data,
 119                               bh_result->b_size);
 120                        kunmap_atomic(kaddr);
 121                        set_buffer_uptodate(bh_result);
 122                }
 123                brelse(buffer_cache_bh);
 124        }
 125
 126        map_bh(bh_result, inode->i_sb,
 127               le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
 128
 129        err = 0;
 130
 131bail:
 132        brelse(bh);
 133
 134        return err;
 135}
 136
 137int ocfs2_get_block(struct inode *inode, sector_t iblock,
 138                    struct buffer_head *bh_result, int create)
 139{
 140        int err = 0;
 141        unsigned int ext_flags;
 142        u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
 143        u64 p_blkno, count, past_eof;
 144        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 145
 146        trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
 147                              (unsigned long long)iblock, bh_result, create);
 148
 149        if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
 150                mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
 151                     inode, inode->i_ino);
 152
 153        if (S_ISLNK(inode->i_mode)) {
 154                /* this always does I/O for some reason. */
 155                err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
 156                goto bail;
 157        }
 158
 159        err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
 160                                          &ext_flags);
 161        if (err) {
 162                mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
 163                     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
 164                     (unsigned long long)p_blkno);
 165                goto bail;
 166        }
 167
 168        if (max_blocks < count)
 169                count = max_blocks;
 170
 171        /*
 172         * ocfs2 never allocates in this function - the only time we
 173         * need to use BH_New is when we're extending i_size on a file
 174         * system which doesn't support holes, in which case BH_New
 175         * allows __block_write_begin() to zero.
 176         *
 177         * If we see this on a sparse file system, then a truncate has
 178         * raced us and removed the cluster. In this case, we clear
 179         * the buffers dirty and uptodate bits and let the buffer code
 180         * ignore it as a hole.
 181         */
 182        if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
 183                clear_buffer_dirty(bh_result);
 184                clear_buffer_uptodate(bh_result);
 185                goto bail;
 186        }
 187
 188        /* Treat the unwritten extent as a hole for zeroing purposes. */
 189        if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
 190                map_bh(bh_result, inode->i_sb, p_blkno);
 191
 192        bh_result->b_size = count << inode->i_blkbits;
 193
 194        if (!ocfs2_sparse_alloc(osb)) {
 195                if (p_blkno == 0) {
 196                        err = -EIO;
 197                        mlog(ML_ERROR,
 198                             "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
 199                             (unsigned long long)iblock,
 200                             (unsigned long long)p_blkno,
 201                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
 202                        mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
 203                        dump_stack();
 204                        goto bail;
 205                }
 206        }
 207
 208        past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
 209
 210        trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
 211                                  (unsigned long long)past_eof);
 212        if (create && (iblock >= past_eof))
 213                set_buffer_new(bh_result);
 214
 215bail:
 216        if (err < 0)
 217                err = -EIO;
 218
 219        return err;
 220}
 221
 222int ocfs2_read_inline_data(struct inode *inode, struct page *page,
 223                           struct buffer_head *di_bh)
 224{
 225        void *kaddr;
 226        loff_t size;
 227        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
 228
 229        if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
 230                ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
 231                            (unsigned long long)OCFS2_I(inode)->ip_blkno);
 232                return -EROFS;
 233        }
 234
 235        size = i_size_read(inode);
 236
 237        if (size > PAGE_SIZE ||
 238            size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
 239                ocfs2_error(inode->i_sb,
 240                            "Inode %llu has with inline data has bad size: %Lu\n",
 241                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
 242                            (unsigned long long)size);
 243                return -EROFS;
 244        }
 245
 246        kaddr = kmap_atomic(page);
 247        if (size)
 248                memcpy(kaddr, di->id2.i_data.id_data, size);
 249        /* Clear the remaining part of the page */
 250        memset(kaddr + size, 0, PAGE_SIZE - size);
 251        flush_dcache_page(page);
 252        kunmap_atomic(kaddr);
 253
 254        SetPageUptodate(page);
 255
 256        return 0;
 257}
 258
 259static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
 260{
 261        int ret;
 262        struct buffer_head *di_bh = NULL;
 263
 264        BUG_ON(!PageLocked(page));
 265        BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
 266
 267        ret = ocfs2_read_inode_block(inode, &di_bh);
 268        if (ret) {
 269                mlog_errno(ret);
 270                goto out;
 271        }
 272
 273        ret = ocfs2_read_inline_data(inode, page, di_bh);
 274out:
 275        unlock_page(page);
 276
 277        brelse(di_bh);
 278        return ret;
 279}
 280
 281static int ocfs2_readpage(struct file *file, struct page *page)
 282{
 283        struct inode *inode = page->mapping->host;
 284        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 285        loff_t start = (loff_t)page->index << PAGE_SHIFT;
 286        int ret, unlock = 1;
 287
 288        trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
 289                             (page ? page->index : 0));
 290
 291        ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
 292        if (ret != 0) {
 293                if (ret == AOP_TRUNCATED_PAGE)
 294                        unlock = 0;
 295                mlog_errno(ret);
 296                goto out;
 297        }
 298
 299        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 300                /*
 301                 * Unlock the page and cycle ip_alloc_sem so that we don't
 302                 * busyloop waiting for ip_alloc_sem to unlock
 303                 */
 304                ret = AOP_TRUNCATED_PAGE;
 305                unlock_page(page);
 306                unlock = 0;
 307                down_read(&oi->ip_alloc_sem);
 308                up_read(&oi->ip_alloc_sem);
 309                goto out_inode_unlock;
 310        }
 311
 312        /*
 313         * i_size might have just been updated as we grabed the meta lock.  We
 314         * might now be discovering a truncate that hit on another node.
 315         * block_read_full_page->get_block freaks out if it is asked to read
 316         * beyond the end of a file, so we check here.  Callers
 317         * (generic_file_read, vm_ops->fault) are clever enough to check i_size
 318         * and notice that the page they just read isn't needed.
 319         *
 320         * XXX sys_readahead() seems to get that wrong?
 321         */
 322        if (start >= i_size_read(inode)) {
 323                zero_user(page, 0, PAGE_SIZE);
 324                SetPageUptodate(page);
 325                ret = 0;
 326                goto out_alloc;
 327        }
 328
 329        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 330                ret = ocfs2_readpage_inline(inode, page);
 331        else
 332                ret = block_read_full_page(page, ocfs2_get_block);
 333        unlock = 0;
 334
 335out_alloc:
 336        up_read(&OCFS2_I(inode)->ip_alloc_sem);
 337out_inode_unlock:
 338        ocfs2_inode_unlock(inode, 0);
 339out:
 340        if (unlock)
 341                unlock_page(page);
 342        return ret;
 343}
 344
 345/*
 346 * This is used only for read-ahead. Failures or difficult to handle
 347 * situations are safe to ignore.
 348 *
 349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
 350 * are quite large (243 extents on 4k blocks), so most inodes don't
 351 * grow out to a tree. If need be, detecting boundary extents could
 352 * trivially be added in a future version of ocfs2_get_block().
 353 */
 354static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
 355                           struct list_head *pages, unsigned nr_pages)
 356{
 357        int ret, err = -EIO;
 358        struct inode *inode = mapping->host;
 359        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 360        loff_t start;
 361        struct page *last;
 362
 363        /*
 364         * Use the nonblocking flag for the dlm code to avoid page
 365         * lock inversion, but don't bother with retrying.
 366         */
 367        ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
 368        if (ret)
 369                return err;
 370
 371        if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
 372                ocfs2_inode_unlock(inode, 0);
 373                return err;
 374        }
 375
 376        /*
 377         * Don't bother with inline-data. There isn't anything
 378         * to read-ahead in that case anyway...
 379         */
 380        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
 381                goto out_unlock;
 382
 383        /*
 384         * Check whether a remote node truncated this file - we just
 385         * drop out in that case as it's not worth handling here.
 386         */
 387        last = list_entry(pages->prev, struct page, lru);
 388        start = (loff_t)last->index << PAGE_SHIFT;
 389        if (start >= i_size_read(inode))
 390                goto out_unlock;
 391
 392        err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
 393
 394out_unlock:
 395        up_read(&oi->ip_alloc_sem);
 396        ocfs2_inode_unlock(inode, 0);
 397
 398        return err;
 399}
 400
 401/* Note: Because we don't support holes, our allocation has
 402 * already happened (allocation writes zeros to the file data)
 403 * so we don't have to worry about ordered writes in
 404 * ocfs2_writepage.
 405 *
 406 * ->writepage is called during the process of invalidating the page cache
 407 * during blocked lock processing.  It can't block on any cluster locks
 408 * to during block mapping.  It's relying on the fact that the block
 409 * mapping can't have disappeared under the dirty pages that it is
 410 * being asked to write back.
 411 */
 412static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
 413{
 414        trace_ocfs2_writepage(
 415                (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
 416                page->index);
 417
 418        return block_write_full_page(page, ocfs2_get_block, wbc);
 419}
 420
 421/* Taken from ext3. We don't necessarily need the full blown
 422 * functionality yet, but IMHO it's better to cut and paste the whole
 423 * thing so we can avoid introducing our own bugs (and easily pick up
 424 * their fixes when they happen) --Mark */
 425int walk_page_buffers(  handle_t *handle,
 426                        struct buffer_head *head,
 427                        unsigned from,
 428                        unsigned to,
 429                        int *partial,
 430                        int (*fn)(      handle_t *handle,
 431                                        struct buffer_head *bh))
 432{
 433        struct buffer_head *bh;
 434        unsigned block_start, block_end;
 435        unsigned blocksize = head->b_size;
 436        int err, ret = 0;
 437        struct buffer_head *next;
 438
 439        for (   bh = head, block_start = 0;
 440                ret == 0 && (bh != head || !block_start);
 441                block_start = block_end, bh = next)
 442        {
 443                next = bh->b_this_page;
 444                block_end = block_start + blocksize;
 445                if (block_end <= from || block_start >= to) {
 446                        if (partial && !buffer_uptodate(bh))
 447                                *partial = 1;
 448                        continue;
 449                }
 450                err = (*fn)(handle, bh);
 451                if (!ret)
 452                        ret = err;
 453        }
 454        return ret;
 455}
 456
 457static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
 458{
 459        sector_t status;
 460        u64 p_blkno = 0;
 461        int err = 0;
 462        struct inode *inode = mapping->host;
 463
 464        trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
 465                         (unsigned long long)block);
 466
 467        /*
 468         * The swap code (ab-)uses ->bmap to get a block mapping and then
 469         * bypasseѕ the file system for actual I/O.  We really can't allow
 470         * that on refcounted inodes, so we have to skip out here.  And yes,
 471         * 0 is the magic code for a bmap error..
 472         */
 473        if (ocfs2_is_refcount_inode(inode))
 474                return 0;
 475
 476        /* We don't need to lock journal system files, since they aren't
 477         * accessed concurrently from multiple nodes.
 478         */
 479        if (!INODE_JOURNAL(inode)) {
 480                err = ocfs2_inode_lock(inode, NULL, 0);
 481                if (err) {
 482                        if (err != -ENOENT)
 483                                mlog_errno(err);
 484                        goto bail;
 485                }
 486                down_read(&OCFS2_I(inode)->ip_alloc_sem);
 487        }
 488
 489        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
 490                err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
 491                                                  NULL);
 492
 493        if (!INODE_JOURNAL(inode)) {
 494                up_read(&OCFS2_I(inode)->ip_alloc_sem);
 495                ocfs2_inode_unlock(inode, 0);
 496        }
 497
 498        if (err) {
 499                mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
 500                     (unsigned long long)block);
 501                mlog_errno(err);
 502                goto bail;
 503        }
 504
 505bail:
 506        status = err ? 0 : p_blkno;
 507
 508        return status;
 509}
 510
 511static int ocfs2_releasepage(struct page *page, gfp_t wait)
 512{
 513        if (!page_has_buffers(page))
 514                return 0;
 515        return try_to_free_buffers(page);
 516}
 517
 518static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
 519                                            u32 cpos,
 520                                            unsigned int *start,
 521                                            unsigned int *end)
 522{
 523        unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
 524
 525        if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
 526                unsigned int cpp;
 527
 528                cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
 529
 530                cluster_start = cpos % cpp;
 531                cluster_start = cluster_start << osb->s_clustersize_bits;
 532
 533                cluster_end = cluster_start + osb->s_clustersize;
 534        }
 535
 536        BUG_ON(cluster_start > PAGE_SIZE);
 537        BUG_ON(cluster_end > PAGE_SIZE);
 538
 539        if (start)
 540                *start = cluster_start;
 541        if (end)
 542                *end = cluster_end;
 543}
 544
 545/*
 546 * 'from' and 'to' are the region in the page to avoid zeroing.
 547 *
 548 * If pagesize > clustersize, this function will avoid zeroing outside
 549 * of the cluster boundary.
 550 *
 551 * from == to == 0 is code for "zero the entire cluster region"
 552 */
 553static void ocfs2_clear_page_regions(struct page *page,
 554                                     struct ocfs2_super *osb, u32 cpos,
 555                                     unsigned from, unsigned to)
 556{
 557        void *kaddr;
 558        unsigned int cluster_start, cluster_end;
 559
 560        ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
 561
 562        kaddr = kmap_atomic(page);
 563
 564        if (from || to) {
 565                if (from > cluster_start)
 566                        memset(kaddr + cluster_start, 0, from - cluster_start);
 567                if (to < cluster_end)
 568                        memset(kaddr + to, 0, cluster_end - to);
 569        } else {
 570                memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
 571        }
 572
 573        kunmap_atomic(kaddr);
 574}
 575
 576/*
 577 * Nonsparse file systems fully allocate before we get to the write
 578 * code. This prevents ocfs2_write() from tagging the write as an
 579 * allocating one, which means ocfs2_map_page_blocks() might try to
 580 * read-in the blocks at the tail of our file. Avoid reading them by
 581 * testing i_size against each block offset.
 582 */
 583static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
 584                                 unsigned int block_start)
 585{
 586        u64 offset = page_offset(page) + block_start;
 587
 588        if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
 589                return 1;
 590
 591        if (i_size_read(inode) > offset)
 592                return 1;
 593
 594        return 0;
 595}
 596
 597/*
 598 * Some of this taken from __block_write_begin(). We already have our
 599 * mapping by now though, and the entire write will be allocating or
 600 * it won't, so not much need to use BH_New.
 601 *
 602 * This will also skip zeroing, which is handled externally.
 603 */
 604int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
 605                          struct inode *inode, unsigned int from,
 606                          unsigned int to, int new)
 607{
 608        int ret = 0;
 609        struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
 610        unsigned int block_end, block_start;
 611        unsigned int bsize = 1 << inode->i_blkbits;
 612
 613        if (!page_has_buffers(page))
 614                create_empty_buffers(page, bsize, 0);
 615
 616        head = page_buffers(page);
 617        for (bh = head, block_start = 0; bh != head || !block_start;
 618             bh = bh->b_this_page, block_start += bsize) {
 619                block_end = block_start + bsize;
 620
 621                clear_buffer_new(bh);
 622
 623                /*
 624                 * Ignore blocks outside of our i/o range -
 625                 * they may belong to unallocated clusters.
 626                 */
 627                if (block_start >= to || block_end <= from) {
 628                        if (PageUptodate(page))
 629                                set_buffer_uptodate(bh);
 630                        continue;
 631                }
 632
 633                /*
 634                 * For an allocating write with cluster size >= page
 635                 * size, we always write the entire page.
 636                 */
 637                if (new)
 638                        set_buffer_new(bh);
 639
 640                if (!buffer_mapped(bh)) {
 641                        map_bh(bh, inode->i_sb, *p_blkno);
 642                        clean_bdev_bh_alias(bh);
 643                }
 644
 645                if (PageUptodate(page)) {
 646                        if (!buffer_uptodate(bh))
 647                                set_buffer_uptodate(bh);
 648                } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
 649                           !buffer_new(bh) &&
 650                           ocfs2_should_read_blk(inode, page, block_start) &&
 651                           (block_start < from || block_end > to)) {
 652                        ll_rw_block(REQ_OP_READ, 0, 1, &bh);
 653                        *wait_bh++=bh;
 654                }
 655
 656                *p_blkno = *p_blkno + 1;
 657        }
 658
 659        /*
 660         * If we issued read requests - let them complete.
 661         */
 662        while(wait_bh > wait) {
 663                wait_on_buffer(*--wait_bh);
 664                if (!buffer_uptodate(*wait_bh))
 665                        ret = -EIO;
 666        }
 667
 668        if (ret == 0 || !new)
 669                return ret;
 670
 671        /*
 672         * If we get -EIO above, zero out any newly allocated blocks
 673         * to avoid exposing stale data.
 674         */
 675        bh = head;
 676        block_start = 0;
 677        do {
 678                block_end = block_start + bsize;
 679                if (block_end <= from)
 680                        goto next_bh;
 681                if (block_start >= to)
 682                        break;
 683
 684                zero_user(page, block_start, bh->b_size);
 685                set_buffer_uptodate(bh);
 686                mark_buffer_dirty(bh);
 687
 688next_bh:
 689                block_start = block_end;
 690                bh = bh->b_this_page;
 691        } while (bh != head);
 692
 693        return ret;
 694}
 695
 696#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
 697#define OCFS2_MAX_CTXT_PAGES    1
 698#else
 699#define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
 700#endif
 701
 702#define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
 703
 704struct ocfs2_unwritten_extent {
 705        struct list_head        ue_node;
 706        struct list_head        ue_ip_node;
 707        u32                     ue_cpos;
 708        u32                     ue_phys;
 709};
 710
 711/*
 712 * Describe the state of a single cluster to be written to.
 713 */
 714struct ocfs2_write_cluster_desc {
 715        u32             c_cpos;
 716        u32             c_phys;
 717        /*
 718         * Give this a unique field because c_phys eventually gets
 719         * filled.
 720         */
 721        unsigned        c_new;
 722        unsigned        c_clear_unwritten;
 723        unsigned        c_needs_zero;
 724};
 725
 726struct ocfs2_write_ctxt {
 727        /* Logical cluster position / len of write */
 728        u32                             w_cpos;
 729        u32                             w_clen;
 730
 731        /* First cluster allocated in a nonsparse extend */
 732        u32                             w_first_new_cpos;
 733
 734        /* Type of caller. Must be one of buffer, mmap, direct.  */
 735        ocfs2_write_type_t              w_type;
 736
 737        struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
 738
 739        /*
 740         * This is true if page_size > cluster_size.
 741         *
 742         * It triggers a set of special cases during write which might
 743         * have to deal with allocating writes to partial pages.
 744         */
 745        unsigned int                    w_large_pages;
 746
 747        /*
 748         * Pages involved in this write.
 749         *
 750         * w_target_page is the page being written to by the user.
 751         *
 752         * w_pages is an array of pages which always contains
 753         * w_target_page, and in the case of an allocating write with
 754         * page_size < cluster size, it will contain zero'd and mapped
 755         * pages adjacent to w_target_page which need to be written
 756         * out in so that future reads from that region will get
 757         * zero's.
 758         */
 759        unsigned int                    w_num_pages;
 760        struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
 761        struct page                     *w_target_page;
 762
 763        /*
 764         * w_target_locked is used for page_mkwrite path indicating no unlocking
 765         * against w_target_page in ocfs2_write_end_nolock.
 766         */
 767        unsigned int                    w_target_locked:1;
 768
 769        /*
 770         * ocfs2_write_end() uses this to know what the real range to
 771         * write in the target should be.
 772         */
 773        unsigned int                    w_target_from;
 774        unsigned int                    w_target_to;
 775
 776        /*
 777         * We could use journal_current_handle() but this is cleaner,
 778         * IMHO -Mark
 779         */
 780        handle_t                        *w_handle;
 781
 782        struct buffer_head              *w_di_bh;
 783
 784        struct ocfs2_cached_dealloc_ctxt w_dealloc;
 785
 786        struct list_head                w_unwritten_list;
 787};
 788
 789void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
 790{
 791        int i;
 792
 793        for(i = 0; i < num_pages; i++) {
 794                if (pages[i]) {
 795                        unlock_page(pages[i]);
 796                        mark_page_accessed(pages[i]);
 797                        put_page(pages[i]);
 798                }
 799        }
 800}
 801
 802static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
 803{
 804        int i;
 805
 806        /*
 807         * w_target_locked is only set to true in the page_mkwrite() case.
 808         * The intent is to allow us to lock the target page from write_begin()
 809         * to write_end(). The caller must hold a ref on w_target_page.
 810         */
 811        if (wc->w_target_locked) {
 812                BUG_ON(!wc->w_target_page);
 813                for (i = 0; i < wc->w_num_pages; i++) {
 814                        if (wc->w_target_page == wc->w_pages[i]) {
 815                                wc->w_pages[i] = NULL;
 816                                break;
 817                        }
 818                }
 819                mark_page_accessed(wc->w_target_page);
 820                put_page(wc->w_target_page);
 821        }
 822        ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
 823}
 824
 825static void ocfs2_free_unwritten_list(struct inode *inode,
 826                                 struct list_head *head)
 827{
 828        struct ocfs2_inode_info *oi = OCFS2_I(inode);
 829        struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
 830
 831        list_for_each_entry_safe(ue, tmp, head, ue_node) {
 832                list_del(&ue->ue_node);
 833                spin_lock(&oi->ip_lock);
 834                list_del(&ue->ue_ip_node);
 835                spin_unlock(&oi->ip_lock);
 836                kfree(ue);
 837        }
 838}
 839
 840static void ocfs2_free_write_ctxt(struct inode *inode,
 841                                  struct ocfs2_write_ctxt *wc)
 842{
 843        ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
 844        ocfs2_unlock_pages(wc);
 845        brelse(wc->w_di_bh);
 846        kfree(wc);
 847}
 848
 849static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
 850                                  struct ocfs2_super *osb, loff_t pos,
 851                                  unsigned len, ocfs2_write_type_t type,
 852                                  struct buffer_head *di_bh)
 853{
 854        u32 cend;
 855        struct ocfs2_write_ctxt *wc;
 856
 857        wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
 858        if (!wc)
 859                return -ENOMEM;
 860
 861        wc->w_cpos = pos >> osb->s_clustersize_bits;
 862        wc->w_first_new_cpos = UINT_MAX;
 863        cend = (pos + len - 1) >> osb->s_clustersize_bits;
 864        wc->w_clen = cend - wc->w_cpos + 1;
 865        get_bh(di_bh);
 866        wc->w_di_bh = di_bh;
 867        wc->w_type = type;
 868
 869        if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
 870                wc->w_large_pages = 1;
 871        else
 872                wc->w_large_pages = 0;
 873
 874        ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
 875        INIT_LIST_HEAD(&wc->w_unwritten_list);
 876
 877        *wcp = wc;
 878
 879        return 0;
 880}
 881
 882/*
 883 * If a page has any new buffers, zero them out here, and mark them uptodate
 884 * and dirty so they'll be written out (in order to prevent uninitialised
 885 * block data from leaking). And clear the new bit.
 886 */
 887static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
 888{
 889        unsigned int block_start, block_end;
 890        struct buffer_head *head, *bh;
 891
 892        BUG_ON(!PageLocked(page));
 893        if (!page_has_buffers(page))
 894                return;
 895
 896        bh = head = page_buffers(page);
 897        block_start = 0;
 898        do {
 899                block_end = block_start + bh->b_size;
 900
 901                if (buffer_new(bh)) {
 902                        if (block_end > from && block_start < to) {
 903                                if (!PageUptodate(page)) {
 904                                        unsigned start, end;
 905
 906                                        start = max(from, block_start);
 907                                        end = min(to, block_end);
 908
 909                                        zero_user_segment(page, start, end);
 910                                        set_buffer_uptodate(bh);
 911                                }
 912
 913                                clear_buffer_new(bh);
 914                                mark_buffer_dirty(bh);
 915                        }
 916                }
 917
 918                block_start = block_end;
 919                bh = bh->b_this_page;
 920        } while (bh != head);
 921}
 922
 923/*
 924 * Only called when we have a failure during allocating write to write
 925 * zero's to the newly allocated region.
 926 */
 927static void ocfs2_write_failure(struct inode *inode,
 928                                struct ocfs2_write_ctxt *wc,
 929                                loff_t user_pos, unsigned user_len)
 930{
 931        int i;
 932        unsigned from = user_pos & (PAGE_SIZE - 1),
 933                to = user_pos + user_len;
 934        struct page *tmppage;
 935
 936        if (wc->w_target_page)
 937                ocfs2_zero_new_buffers(wc->w_target_page, from, to);
 938
 939        for(i = 0; i < wc->w_num_pages; i++) {
 940                tmppage = wc->w_pages[i];
 941
 942                if (tmppage && page_has_buffers(tmppage)) {
 943                        if (ocfs2_should_order_data(inode))
 944                                ocfs2_jbd2_file_inode(wc->w_handle, inode);
 945
 946                        block_commit_write(tmppage, from, to);
 947                }
 948        }
 949}
 950
 951static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
 952                                        struct ocfs2_write_ctxt *wc,
 953                                        struct page *page, u32 cpos,
 954                                        loff_t user_pos, unsigned user_len,
 955                                        int new)
 956{
 957        int ret;
 958        unsigned int map_from = 0, map_to = 0;
 959        unsigned int cluster_start, cluster_end;
 960        unsigned int user_data_from = 0, user_data_to = 0;
 961
 962        ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
 963                                        &cluster_start, &cluster_end);
 964
 965        /* treat the write as new if the a hole/lseek spanned across
 966         * the page boundary.
 967         */
 968        new = new | ((i_size_read(inode) <= page_offset(page)) &&
 969                        (page_offset(page) <= user_pos));
 970
 971        if (page == wc->w_target_page) {
 972                map_from = user_pos & (PAGE_SIZE - 1);
 973                map_to = map_from + user_len;
 974
 975                if (new)
 976                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 977                                                    cluster_start, cluster_end,
 978                                                    new);
 979                else
 980                        ret = ocfs2_map_page_blocks(page, p_blkno, inode,
 981                                                    map_from, map_to, new);
 982                if (ret) {
 983                        mlog_errno(ret);
 984                        goto out;
 985                }
 986
 987                user_data_from = map_from;
 988                user_data_to = map_to;
 989                if (new) {
 990                        map_from = cluster_start;
 991                        map_to = cluster_end;
 992                }
 993        } else {
 994                /*
 995                 * If we haven't allocated the new page yet, we
 996                 * shouldn't be writing it out without copying user
 997                 * data. This is likely a math error from the caller.
 998                 */
 999                BUG_ON(!new);
1000
1001                map_from = cluster_start;
1002                map_to = cluster_end;
1003
1004                ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1005                                            cluster_start, cluster_end, new);
1006                if (ret) {
1007                        mlog_errno(ret);
1008                        goto out;
1009                }
1010        }
1011
1012        /*
1013         * Parts of newly allocated pages need to be zero'd.
1014         *
1015         * Above, we have also rewritten 'to' and 'from' - as far as
1016         * the rest of the function is concerned, the entire cluster
1017         * range inside of a page needs to be written.
1018         *
1019         * We can skip this if the page is up to date - it's already
1020         * been zero'd from being read in as a hole.
1021         */
1022        if (new && !PageUptodate(page))
1023                ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1024                                         cpos, user_data_from, user_data_to);
1025
1026        flush_dcache_page(page);
1027
1028out:
1029        return ret;
1030}
1031
1032/*
1033 * This function will only grab one clusters worth of pages.
1034 */
1035static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1036                                      struct ocfs2_write_ctxt *wc,
1037                                      u32 cpos, loff_t user_pos,
1038                                      unsigned user_len, int new,
1039                                      struct page *mmap_page)
1040{
1041        int ret = 0, i;
1042        unsigned long start, target_index, end_index, index;
1043        struct inode *inode = mapping->host;
1044        loff_t last_byte;
1045
1046        target_index = user_pos >> PAGE_SHIFT;
1047
1048        /*
1049         * Figure out how many pages we'll be manipulating here. For
1050         * non allocating write, we just change the one
1051         * page. Otherwise, we'll need a whole clusters worth.  If we're
1052         * writing past i_size, we only need enough pages to cover the
1053         * last page of the write.
1054         */
1055        if (new) {
1056                wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1057                start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1058                /*
1059                 * We need the index *past* the last page we could possibly
1060                 * touch.  This is the page past the end of the write or
1061                 * i_size, whichever is greater.
1062                 */
1063                last_byte = max(user_pos + user_len, i_size_read(inode));
1064                BUG_ON(last_byte < 1);
1065                end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1066                if ((start + wc->w_num_pages) > end_index)
1067                        wc->w_num_pages = end_index - start;
1068        } else {
1069                wc->w_num_pages = 1;
1070                start = target_index;
1071        }
1072        end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1073
1074        for(i = 0; i < wc->w_num_pages; i++) {
1075                index = start + i;
1076
1077                if (index >= target_index && index <= end_index &&
1078                    wc->w_type == OCFS2_WRITE_MMAP) {
1079                        /*
1080                         * ocfs2_pagemkwrite() is a little different
1081                         * and wants us to directly use the page
1082                         * passed in.
1083                         */
1084                        lock_page(mmap_page);
1085
1086                        /* Exit and let the caller retry */
1087                        if (mmap_page->mapping != mapping) {
1088                                WARN_ON(mmap_page->mapping);
1089                                unlock_page(mmap_page);
1090                                ret = -EAGAIN;
1091                                goto out;
1092                        }
1093
1094                        get_page(mmap_page);
1095                        wc->w_pages[i] = mmap_page;
1096                        wc->w_target_locked = true;
1097                } else if (index >= target_index && index <= end_index &&
1098                           wc->w_type == OCFS2_WRITE_DIRECT) {
1099                        /* Direct write has no mapping page. */
1100                        wc->w_pages[i] = NULL;
1101                        continue;
1102                } else {
1103                        wc->w_pages[i] = find_or_create_page(mapping, index,
1104                                                             GFP_NOFS);
1105                        if (!wc->w_pages[i]) {
1106                                ret = -ENOMEM;
1107                                mlog_errno(ret);
1108                                goto out;
1109                        }
1110                }
1111                wait_for_stable_page(wc->w_pages[i]);
1112
1113                if (index == target_index)
1114                        wc->w_target_page = wc->w_pages[i];
1115        }
1116out:
1117        if (ret)
1118                wc->w_target_locked = false;
1119        return ret;
1120}
1121
1122/*
1123 * Prepare a single cluster for write one cluster into the file.
1124 */
1125static int ocfs2_write_cluster(struct address_space *mapping,
1126                               u32 *phys, unsigned int new,
1127                               unsigned int clear_unwritten,
1128                               unsigned int should_zero,
1129                               struct ocfs2_alloc_context *data_ac,
1130                               struct ocfs2_alloc_context *meta_ac,
1131                               struct ocfs2_write_ctxt *wc, u32 cpos,
1132                               loff_t user_pos, unsigned user_len)
1133{
1134        int ret, i;
1135        u64 p_blkno;
1136        struct inode *inode = mapping->host;
1137        struct ocfs2_extent_tree et;
1138        int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1139
1140        if (new) {
1141                u32 tmp_pos;
1142
1143                /*
1144                 * This is safe to call with the page locks - it won't take
1145                 * any additional semaphores or cluster locks.
1146                 */
1147                tmp_pos = cpos;
1148                ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1149                                           &tmp_pos, 1, !clear_unwritten,
1150                                           wc->w_di_bh, wc->w_handle,
1151                                           data_ac, meta_ac, NULL);
1152                /*
1153                 * This shouldn't happen because we must have already
1154                 * calculated the correct meta data allocation required. The
1155                 * internal tree allocation code should know how to increase
1156                 * transaction credits itself.
1157                 *
1158                 * If need be, we could handle -EAGAIN for a
1159                 * RESTART_TRANS here.
1160                 */
1161                mlog_bug_on_msg(ret == -EAGAIN,
1162                                "Inode %llu: EAGAIN return during allocation.\n",
1163                                (unsigned long long)OCFS2_I(inode)->ip_blkno);
1164                if (ret < 0) {
1165                        mlog_errno(ret);
1166                        goto out;
1167                }
1168        } else if (clear_unwritten) {
1169                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1170                                              wc->w_di_bh);
1171                ret = ocfs2_mark_extent_written(inode, &et,
1172                                                wc->w_handle, cpos, 1, *phys,
1173                                                meta_ac, &wc->w_dealloc);
1174                if (ret < 0) {
1175                        mlog_errno(ret);
1176                        goto out;
1177                }
1178        }
1179
1180        /*
1181         * The only reason this should fail is due to an inability to
1182         * find the extent added.
1183         */
1184        ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1185        if (ret < 0) {
1186                mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1187                            "at logical cluster %u",
1188                            (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1189                goto out;
1190        }
1191
1192        BUG_ON(*phys == 0);
1193
1194        p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1195        if (!should_zero)
1196                p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1197
1198        for(i = 0; i < wc->w_num_pages; i++) {
1199                int tmpret;
1200
1201                /* This is the direct io target page. */
1202                if (wc->w_pages[i] == NULL) {
1203                        p_blkno++;
1204                        continue;
1205                }
1206
1207                tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1208                                                      wc->w_pages[i], cpos,
1209                                                      user_pos, user_len,
1210                                                      should_zero);
1211                if (tmpret) {
1212                        mlog_errno(tmpret);
1213                        if (ret == 0)
1214                                ret = tmpret;
1215                }
1216        }
1217
1218        /*
1219         * We only have cleanup to do in case of allocating write.
1220         */
1221        if (ret && new)
1222                ocfs2_write_failure(inode, wc, user_pos, user_len);
1223
1224out:
1225
1226        return ret;
1227}
1228
1229static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1230                                       struct ocfs2_alloc_context *data_ac,
1231                                       struct ocfs2_alloc_context *meta_ac,
1232                                       struct ocfs2_write_ctxt *wc,
1233                                       loff_t pos, unsigned len)
1234{
1235        int ret, i;
1236        loff_t cluster_off;
1237        unsigned int local_len = len;
1238        struct ocfs2_write_cluster_desc *desc;
1239        struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1240
1241        for (i = 0; i < wc->w_clen; i++) {
1242                desc = &wc->w_desc[i];
1243
1244                /*
1245                 * We have to make sure that the total write passed in
1246                 * doesn't extend past a single cluster.
1247                 */
1248                local_len = len;
1249                cluster_off = pos & (osb->s_clustersize - 1);
1250                if ((cluster_off + local_len) > osb->s_clustersize)
1251                        local_len = osb->s_clustersize - cluster_off;
1252
1253                ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1254                                          desc->c_new,
1255                                          desc->c_clear_unwritten,
1256                                          desc->c_needs_zero,
1257                                          data_ac, meta_ac,
1258                                          wc, desc->c_cpos, pos, local_len);
1259                if (ret) {
1260                        mlog_errno(ret);
1261                        goto out;
1262                }
1263
1264                len -= local_len;
1265                pos += local_len;
1266        }
1267
1268        ret = 0;
1269out:
1270        return ret;
1271}
1272
1273/*
1274 * ocfs2_write_end() wants to know which parts of the target page it
1275 * should complete the write on. It's easiest to compute them ahead of
1276 * time when a more complete view of the write is available.
1277 */
1278static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1279                                        struct ocfs2_write_ctxt *wc,
1280                                        loff_t pos, unsigned len, int alloc)
1281{
1282        struct ocfs2_write_cluster_desc *desc;
1283
1284        wc->w_target_from = pos & (PAGE_SIZE - 1);
1285        wc->w_target_to = wc->w_target_from + len;
1286
1287        if (alloc == 0)
1288                return;
1289
1290        /*
1291         * Allocating write - we may have different boundaries based
1292         * on page size and cluster size.
1293         *
1294         * NOTE: We can no longer compute one value from the other as
1295         * the actual write length and user provided length may be
1296         * different.
1297         */
1298
1299        if (wc->w_large_pages) {
1300                /*
1301                 * We only care about the 1st and last cluster within
1302                 * our range and whether they should be zero'd or not. Either
1303                 * value may be extended out to the start/end of a
1304                 * newly allocated cluster.
1305                 */
1306                desc = &wc->w_desc[0];
1307                if (desc->c_needs_zero)
1308                        ocfs2_figure_cluster_boundaries(osb,
1309                                                        desc->c_cpos,
1310                                                        &wc->w_target_from,
1311                                                        NULL);
1312
1313                desc = &wc->w_desc[wc->w_clen - 1];
1314                if (desc->c_needs_zero)
1315                        ocfs2_figure_cluster_boundaries(osb,
1316                                                        desc->c_cpos,
1317                                                        NULL,
1318                                                        &wc->w_target_to);
1319        } else {
1320                wc->w_target_from = 0;
1321                wc->w_target_to = PAGE_SIZE;
1322        }
1323}
1324
1325/*
1326 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1327 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1328 * by the direct io procedure.
1329 * If this is a new extent that allocated by direct io, we should mark it in
1330 * the ip_unwritten_list.
1331 */
1332static int ocfs2_unwritten_check(struct inode *inode,
1333                                 struct ocfs2_write_ctxt *wc,
1334                                 struct ocfs2_write_cluster_desc *desc)
1335{
1336        struct ocfs2_inode_info *oi = OCFS2_I(inode);
1337        struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1338        int ret = 0;
1339
1340        if (!desc->c_needs_zero)
1341                return 0;
1342
1343retry:
1344        spin_lock(&oi->ip_lock);
1345        /* Needs not to zero no metter buffer or direct. The one who is zero
1346         * the cluster is doing zero. And he will clear unwritten after all
1347         * cluster io finished. */
1348        list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1349                if (desc->c_cpos == ue->ue_cpos) {
1350                        BUG_ON(desc->c_new);
1351                        desc->c_needs_zero = 0;
1352                        desc->c_clear_unwritten = 0;
1353                        goto unlock;
1354                }
1355        }
1356
1357        if (wc->w_type != OCFS2_WRITE_DIRECT)
1358                goto unlock;
1359
1360        if (new == NULL) {
1361                spin_unlock(&oi->ip_lock);
1362                new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1363                             GFP_NOFS);
1364                if (new == NULL) {
1365                        ret = -ENOMEM;
1366                        goto out;
1367                }
1368                goto retry;
1369        }
1370        /* This direct write will doing zero. */
1371        new->ue_cpos = desc->c_cpos;
1372        new->ue_phys = desc->c_phys;
1373        desc->c_clear_unwritten = 0;
1374        list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1375        list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1376        new = NULL;
1377unlock:
1378        spin_unlock(&oi->ip_lock);
1379out:
1380        if (new)
1381                kfree(new);
1382        return ret;
1383}
1384
1385/*
1386 * Populate each single-cluster write descriptor in the write context
1387 * with information about the i/o to be done.
1388 *
1389 * Returns the number of clusters that will have to be allocated, as
1390 * well as a worst case estimate of the number of extent records that
1391 * would have to be created during a write to an unwritten region.
1392 */
1393static int ocfs2_populate_write_desc(struct inode *inode,
1394                                     struct ocfs2_write_ctxt *wc,
1395                                     unsigned int *clusters_to_alloc,
1396                                     unsigned int *extents_to_split)
1397{
1398        int ret;
1399        struct ocfs2_write_cluster_desc *desc;
1400        unsigned int num_clusters = 0;
1401        unsigned int ext_flags = 0;
1402        u32 phys = 0;
1403        int i;
1404
1405        *clusters_to_alloc = 0;
1406        *extents_to_split = 0;
1407
1408        for (i = 0; i < wc->w_clen; i++) {
1409                desc = &wc->w_desc[i];
1410                desc->c_cpos = wc->w_cpos + i;
1411
1412                if (num_clusters == 0) {
1413                        /*
1414                         * Need to look up the next extent record.
1415                         */
1416                        ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1417                                                 &num_clusters, &ext_flags);
1418                        if (ret) {
1419                                mlog_errno(ret);
1420                                goto out;
1421                        }
1422
1423                        /* We should already CoW the refcountd extent. */
1424                        BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1425
1426                        /*
1427                         * Assume worst case - that we're writing in
1428                         * the middle of the extent.
1429                         *
1430                         * We can assume that the write proceeds from
1431                         * left to right, in which case the extent
1432                         * insert code is smart enough to coalesce the
1433                         * next splits into the previous records created.
1434                         */
1435                        if (ext_flags & OCFS2_EXT_UNWRITTEN)
1436                                *extents_to_split = *extents_to_split + 2;
1437                } else if (phys) {
1438                        /*
1439                         * Only increment phys if it doesn't describe
1440                         * a hole.
1441                         */
1442                        phys++;
1443                }
1444
1445                /*
1446                 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1447                 * file that got extended.  w_first_new_cpos tells us
1448                 * where the newly allocated clusters are so we can
1449                 * zero them.
1450                 */
1451                if (desc->c_cpos >= wc->w_first_new_cpos) {
1452                        BUG_ON(phys == 0);
1453                        desc->c_needs_zero = 1;
1454                }
1455
1456                desc->c_phys = phys;
1457                if (phys == 0) {
1458                        desc->c_new = 1;
1459                        desc->c_needs_zero = 1;
1460                        desc->c_clear_unwritten = 1;
1461                        *clusters_to_alloc = *clusters_to_alloc + 1;
1462                }
1463
1464                if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1465                        desc->c_clear_unwritten = 1;
1466                        desc->c_needs_zero = 1;
1467                }
1468
1469                ret = ocfs2_unwritten_check(inode, wc, desc);
1470                if (ret) {
1471                        mlog_errno(ret);
1472                        goto out;
1473                }
1474
1475                num_clusters--;
1476        }
1477
1478        ret = 0;
1479out:
1480        return ret;
1481}
1482
1483static int ocfs2_write_begin_inline(struct address_space *mapping,
1484                                    struct inode *inode,
1485                                    struct ocfs2_write_ctxt *wc)
1486{
1487        int ret;
1488        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1489        struct page *page;
1490        handle_t *handle;
1491        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1492
1493        handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1494        if (IS_ERR(handle)) {
1495                ret = PTR_ERR(handle);
1496                mlog_errno(ret);
1497                goto out;
1498        }
1499
1500        page = find_or_create_page(mapping, 0, GFP_NOFS);
1501        if (!page) {
1502                ocfs2_commit_trans(osb, handle);
1503                ret = -ENOMEM;
1504                mlog_errno(ret);
1505                goto out;
1506        }
1507        /*
1508         * If we don't set w_num_pages then this page won't get unlocked
1509         * and freed on cleanup of the write context.
1510         */
1511        wc->w_pages[0] = wc->w_target_page = page;
1512        wc->w_num_pages = 1;
1513
1514        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1515                                      OCFS2_JOURNAL_ACCESS_WRITE);
1516        if (ret) {
1517                ocfs2_commit_trans(osb, handle);
1518
1519                mlog_errno(ret);
1520                goto out;
1521        }
1522
1523        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1524                ocfs2_set_inode_data_inline(inode, di);
1525
1526        if (!PageUptodate(page)) {
1527                ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1528                if (ret) {
1529                        ocfs2_commit_trans(osb, handle);
1530
1531                        goto out;
1532                }
1533        }
1534
1535        wc->w_handle = handle;
1536out:
1537        return ret;
1538}
1539
1540int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1541{
1542        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1543
1544        if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1545                return 1;
1546        return 0;
1547}
1548
1549static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1550                                          struct inode *inode, loff_t pos,
1551                                          unsigned len, struct page *mmap_page,
1552                                          struct ocfs2_write_ctxt *wc)
1553{
1554        int ret, written = 0;
1555        loff_t end = pos + len;
1556        struct ocfs2_inode_info *oi = OCFS2_I(inode);
1557        struct ocfs2_dinode *di = NULL;
1558
1559        trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1560                                             len, (unsigned long long)pos,
1561                                             oi->ip_dyn_features);
1562
1563        /*
1564         * Handle inodes which already have inline data 1st.
1565         */
1566        if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1567                if (mmap_page == NULL &&
1568                    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1569                        goto do_inline_write;
1570
1571                /*
1572                 * The write won't fit - we have to give this inode an
1573                 * inline extent list now.
1574                 */
1575                ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1576                if (ret)
1577                        mlog_errno(ret);
1578                goto out;
1579        }
1580
1581        /*
1582         * Check whether the inode can accept inline data.
1583         */
1584        if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1585                return 0;
1586
1587        /*
1588         * Check whether the write can fit.
1589         */
1590        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1591        if (mmap_page ||
1592            end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1593                return 0;
1594
1595do_inline_write:
1596        ret = ocfs2_write_begin_inline(mapping, inode, wc);
1597        if (ret) {
1598                mlog_errno(ret);
1599                goto out;
1600        }
1601
1602        /*
1603         * This signals to the caller that the data can be written
1604         * inline.
1605         */
1606        written = 1;
1607out:
1608        return written ? written : ret;
1609}
1610
1611/*
1612 * This function only does anything for file systems which can't
1613 * handle sparse files.
1614 *
1615 * What we want to do here is fill in any hole between the current end
1616 * of allocation and the end of our write. That way the rest of the
1617 * write path can treat it as an non-allocating write, which has no
1618 * special case code for sparse/nonsparse files.
1619 */
1620static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1621                                        struct buffer_head *di_bh,
1622                                        loff_t pos, unsigned len,
1623                                        struct ocfs2_write_ctxt *wc)
1624{
1625        int ret;
1626        loff_t newsize = pos + len;
1627
1628        BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1629
1630        if (newsize <= i_size_read(inode))
1631                return 0;
1632
1633        ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1634        if (ret)
1635                mlog_errno(ret);
1636
1637        /* There is no wc if this is call from direct. */
1638        if (wc)
1639                wc->w_first_new_cpos =
1640                        ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1641
1642        return ret;
1643}
1644
1645static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1646                           loff_t pos)
1647{
1648        int ret = 0;
1649
1650        BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1651        if (pos > i_size_read(inode))
1652                ret = ocfs2_zero_extend(inode, di_bh, pos);
1653
1654        return ret;
1655}
1656
1657int ocfs2_write_begin_nolock(struct address_space *mapping,
1658                             loff_t pos, unsigned len, ocfs2_write_type_t type,
1659                             struct page **pagep, void **fsdata,
1660                             struct buffer_head *di_bh, struct page *mmap_page)
1661{
1662        int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1663        unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1664        struct ocfs2_write_ctxt *wc;
1665        struct inode *inode = mapping->host;
1666        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1667        struct ocfs2_dinode *di;
1668        struct ocfs2_alloc_context *data_ac = NULL;
1669        struct ocfs2_alloc_context *meta_ac = NULL;
1670        handle_t *handle;
1671        struct ocfs2_extent_tree et;
1672        int try_free = 1, ret1;
1673
1674try_again:
1675        ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1676        if (ret) {
1677                mlog_errno(ret);
1678                return ret;
1679        }
1680
1681        if (ocfs2_supports_inline_data(osb)) {
1682                ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1683                                                     mmap_page, wc);
1684                if (ret == 1) {
1685                        ret = 0;
1686                        goto success;
1687                }
1688                if (ret < 0) {
1689                        mlog_errno(ret);
1690                        goto out;
1691                }
1692        }
1693
1694        /* Direct io change i_size late, should not zero tail here. */
1695        if (type != OCFS2_WRITE_DIRECT) {
1696                if (ocfs2_sparse_alloc(osb))
1697                        ret = ocfs2_zero_tail(inode, di_bh, pos);
1698                else
1699                        ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1700                                                           len, wc);
1701                if (ret) {
1702                        mlog_errno(ret);
1703                        goto out;
1704                }
1705        }
1706
1707        ret = ocfs2_check_range_for_refcount(inode, pos, len);
1708        if (ret < 0) {
1709                mlog_errno(ret);
1710                goto out;
1711        } else if (ret == 1) {
1712                clusters_need = wc->w_clen;
1713                ret = ocfs2_refcount_cow(inode, di_bh,
1714                                         wc->w_cpos, wc->w_clen, UINT_MAX);
1715                if (ret) {
1716                        mlog_errno(ret);
1717                        goto out;
1718                }
1719        }
1720
1721        ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1722                                        &extents_to_split);
1723        if (ret) {
1724                mlog_errno(ret);
1725                goto out;
1726        }
1727        clusters_need += clusters_to_alloc;
1728
1729        di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1730
1731        trace_ocfs2_write_begin_nolock(
1732                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
1733                        (long long)i_size_read(inode),
1734                        le32_to_cpu(di->i_clusters),
1735                        pos, len, type, mmap_page,
1736                        clusters_to_alloc, extents_to_split);
1737
1738        /*
1739         * We set w_target_from, w_target_to here so that
1740         * ocfs2_write_end() knows which range in the target page to
1741         * write out. An allocation requires that we write the entire
1742         * cluster range.
1743         */
1744        if (clusters_to_alloc || extents_to_split) {
1745                /*
1746                 * XXX: We are stretching the limits of
1747                 * ocfs2_lock_allocators(). It greatly over-estimates
1748                 * the work to be done.
1749                 */
1750                ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1751                                              wc->w_di_bh);
1752                ret = ocfs2_lock_allocators(inode, &et,
1753                                            clusters_to_alloc, extents_to_split,
1754                                            &data_ac, &meta_ac);
1755                if (ret) {
1756                        mlog_errno(ret);
1757                        goto out;
1758                }
1759
1760                if (data_ac)
1761                        data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1762
1763                credits = ocfs2_calc_extend_credits(inode->i_sb,
1764                                                    &di->id2.i_list);
1765        } else if (type == OCFS2_WRITE_DIRECT)
1766                /* direct write needs not to start trans if no extents alloc. */
1767                goto success;
1768
1769        /*
1770         * We have to zero sparse allocated clusters, unwritten extent clusters,
1771         * and non-sparse clusters we just extended.  For non-sparse writes,
1772         * we know zeros will only be needed in the first and/or last cluster.
1773         */
1774        if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1775                           wc->w_desc[wc->w_clen - 1].c_needs_zero))
1776                cluster_of_pages = 1;
1777        else
1778                cluster_of_pages = 0;
1779
1780        ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1781
1782        handle = ocfs2_start_trans(osb, credits);
1783        if (IS_ERR(handle)) {
1784                ret = PTR_ERR(handle);
1785                mlog_errno(ret);
1786                goto out;
1787        }
1788
1789        wc->w_handle = handle;
1790
1791        if (clusters_to_alloc) {
1792                ret = dquot_alloc_space_nodirty(inode,
1793                        ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1794                if (ret)
1795                        goto out_commit;
1796        }
1797
1798        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1799                                      OCFS2_JOURNAL_ACCESS_WRITE);
1800        if (ret) {
1801                mlog_errno(ret);
1802                goto out_quota;
1803        }
1804
1805        /*
1806         * Fill our page array first. That way we've grabbed enough so
1807         * that we can zero and flush if we error after adding the
1808         * extent.
1809         */
1810        ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1811                                         cluster_of_pages, mmap_page);
1812        if (ret && ret != -EAGAIN) {
1813                mlog_errno(ret);
1814                goto out_quota;
1815        }
1816
1817        /*
1818         * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1819         * the target page. In this case, we exit with no error and no target
1820         * page. This will trigger the caller, page_mkwrite(), to re-try
1821         * the operation.
1822         */
1823        if (ret == -EAGAIN) {
1824                BUG_ON(wc->w_target_page);
1825                ret = 0;
1826                goto out_quota;
1827        }
1828
1829        ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1830                                          len);
1831        if (ret) {
1832                mlog_errno(ret);
1833                goto out_quota;
1834        }
1835
1836        if (data_ac)
1837                ocfs2_free_alloc_context(data_ac);
1838        if (meta_ac)
1839                ocfs2_free_alloc_context(meta_ac);
1840
1841success:
1842        if (pagep)
1843                *pagep = wc->w_target_page;
1844        *fsdata = wc;
1845        return 0;
1846out_quota:
1847        if (clusters_to_alloc)
1848                dquot_free_space(inode,
1849                          ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1850out_commit:
1851        ocfs2_commit_trans(osb, handle);
1852
1853out:
1854        /*
1855         * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1856         * even in case of error here like ENOSPC and ENOMEM. So, we need
1857         * to unlock the target page manually to prevent deadlocks when
1858         * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1859         * to VM code.
1860         */
1861        if (wc->w_target_locked)
1862                unlock_page(mmap_page);
1863
1864        ocfs2_free_write_ctxt(inode, wc);
1865
1866        if (data_ac) {
1867                ocfs2_free_alloc_context(data_ac);
1868                data_ac = NULL;
1869        }
1870        if (meta_ac) {
1871                ocfs2_free_alloc_context(meta_ac);
1872                meta_ac = NULL;
1873        }
1874
1875        if (ret == -ENOSPC && try_free) {
1876                /*
1877                 * Try to free some truncate log so that we can have enough
1878                 * clusters to allocate.
1879                 */
1880                try_free = 0;
1881
1882                ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1883                if (ret1 == 1)
1884                        goto try_again;
1885
1886                if (ret1 < 0)
1887                        mlog_errno(ret1);
1888        }
1889
1890        return ret;
1891}
1892
1893static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1894                             loff_t pos, unsigned len, unsigned flags,
1895                             struct page **pagep, void **fsdata)
1896{
1897        int ret;
1898        struct buffer_head *di_bh = NULL;
1899        struct inode *inode = mapping->host;
1900
1901        ret = ocfs2_inode_lock(inode, &di_bh, 1);
1902        if (ret) {
1903                mlog_errno(ret);
1904                return ret;
1905        }
1906
1907        /*
1908         * Take alloc sem here to prevent concurrent lookups. That way
1909         * the mapping, zeroing and tree manipulation within
1910         * ocfs2_write() will be safe against ->readpage(). This
1911         * should also serve to lock out allocation from a shared
1912         * writeable region.
1913         */
1914        down_write(&OCFS2_I(inode)->ip_alloc_sem);
1915
1916        ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1917                                       pagep, fsdata, di_bh, NULL);
1918        if (ret) {
1919                mlog_errno(ret);
1920                goto out_fail;
1921        }
1922
1923        brelse(di_bh);
1924
1925        return 0;
1926
1927out_fail:
1928        up_write(&OCFS2_I(inode)->ip_alloc_sem);
1929
1930        brelse(di_bh);
1931        ocfs2_inode_unlock(inode, 1);
1932
1933        return ret;
1934}
1935
1936static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1937                                   unsigned len, unsigned *copied,
1938                                   struct ocfs2_dinode *di,
1939                                   struct ocfs2_write_ctxt *wc)
1940{
1941        void *kaddr;
1942
1943        if (unlikely(*copied < len)) {
1944                if (!PageUptodate(wc->w_target_page)) {
1945                        *copied = 0;
1946                        return;
1947                }
1948        }
1949
1950        kaddr = kmap_atomic(wc->w_target_page);
1951        memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1952        kunmap_atomic(kaddr);
1953
1954        trace_ocfs2_write_end_inline(
1955             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1956             (unsigned long long)pos, *copied,
1957             le16_to_cpu(di->id2.i_data.id_count),
1958             le16_to_cpu(di->i_dyn_features));
1959}
1960
1961int ocfs2_write_end_nolock(struct address_space *mapping,
1962                           loff_t pos, unsigned len, unsigned copied, void *fsdata)
1963{
1964        int i, ret;
1965        unsigned from, to, start = pos & (PAGE_SIZE - 1);
1966        struct inode *inode = mapping->host;
1967        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1968        struct ocfs2_write_ctxt *wc = fsdata;
1969        struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1970        handle_t *handle = wc->w_handle;
1971        struct page *tmppage;
1972
1973        BUG_ON(!list_empty(&wc->w_unwritten_list));
1974
1975        if (handle) {
1976                ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1977                                wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1978                if (ret) {
1979                        copied = ret;
1980                        mlog_errno(ret);
1981                        goto out;
1982                }
1983        }
1984
1985        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1986                ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1987                goto out_write_size;
1988        }
1989
1990        if (unlikely(copied < len) && wc->w_target_page) {
1991                if (!PageUptodate(wc->w_target_page))
1992                        copied = 0;
1993
1994                ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1995                                       start+len);
1996        }
1997        if (wc->w_target_page)
1998                flush_dcache_page(wc->w_target_page);
1999
2000        for(i = 0; i < wc->w_num_pages; i++) {
2001                tmppage = wc->w_pages[i];
2002
2003                /* This is the direct io target page. */
2004                if (tmppage == NULL)
2005                        continue;
2006
2007                if (tmppage == wc->w_target_page) {
2008                        from = wc->w_target_from;
2009                        to = wc->w_target_to;
2010
2011                        BUG_ON(from > PAGE_SIZE ||
2012                               to > PAGE_SIZE ||
2013                               to < from);
2014                } else {
2015                        /*
2016                         * Pages adjacent to the target (if any) imply
2017                         * a hole-filling write in which case we want
2018                         * to flush their entire range.
2019                         */
2020                        from = 0;
2021                        to = PAGE_SIZE;
2022                }
2023
2024                if (page_has_buffers(tmppage)) {
2025                        if (handle && ocfs2_should_order_data(inode))
2026                                ocfs2_jbd2_file_inode(handle, inode);
2027                        block_commit_write(tmppage, from, to);
2028                }
2029        }
2030
2031out_write_size:
2032        /* Direct io do not update i_size here. */
2033        if (wc->w_type != OCFS2_WRITE_DIRECT) {
2034                pos += copied;
2035                if (pos > i_size_read(inode)) {
2036                        i_size_write(inode, pos);
2037                        mark_inode_dirty(inode);
2038                }
2039                inode->i_blocks = ocfs2_inode_sector_count(inode);
2040                di->i_size = cpu_to_le64((u64)i_size_read(inode));
2041                inode->i_mtime = inode->i_ctime = current_time(inode);
2042                di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2043                di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2044                ocfs2_update_inode_fsync_trans(handle, inode, 1);
2045        }
2046        if (handle)
2047                ocfs2_journal_dirty(handle, wc->w_di_bh);
2048
2049out:
2050        /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2051         * lock, or it will cause a deadlock since journal commit threads holds
2052         * this lock and will ask for the page lock when flushing the data.
2053         * put it here to preserve the unlock order.
2054         */
2055        ocfs2_unlock_pages(wc);
2056
2057        if (handle)
2058                ocfs2_commit_trans(osb, handle);
2059
2060        ocfs2_run_deallocs(osb, &wc->w_dealloc);
2061
2062        brelse(wc->w_di_bh);
2063        kfree(wc);
2064
2065        return copied;
2066}
2067
2068static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2069                           loff_t pos, unsigned len, unsigned copied,
2070                           struct page *page, void *fsdata)
2071{
2072        int ret;
2073        struct inode *inode = mapping->host;
2074
2075        ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2076
2077        up_write(&OCFS2_I(inode)->ip_alloc_sem);
2078        ocfs2_inode_unlock(inode, 1);
2079
2080        return ret;
2081}
2082
2083struct ocfs2_dio_write_ctxt {
2084        struct list_head        dw_zero_list;
2085        unsigned                dw_zero_count;
2086        int                     dw_orphaned;
2087        pid_t                   dw_writer_pid;
2088};
2089
2090static struct ocfs2_dio_write_ctxt *
2091ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2092{
2093        struct ocfs2_dio_write_ctxt *dwc = NULL;
2094
2095        if (bh->b_private)
2096                return bh->b_private;
2097
2098        dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2099        if (dwc == NULL)
2100                return NULL;
2101        INIT_LIST_HEAD(&dwc->dw_zero_list);
2102        dwc->dw_zero_count = 0;
2103        dwc->dw_orphaned = 0;
2104        dwc->dw_writer_pid = task_pid_nr(current);
2105        bh->b_private = dwc;
2106        *alloc = 1;
2107
2108        return dwc;
2109}
2110
2111static void ocfs2_dio_free_write_ctx(struct inode *inode,
2112                                     struct ocfs2_dio_write_ctxt *dwc)
2113{
2114        ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2115        kfree(dwc);
2116}
2117
2118/*
2119 * TODO: Make this into a generic get_blocks function.
2120 *
2121 * From do_direct_io in direct-io.c:
2122 *  "So what we do is to permit the ->get_blocks function to populate
2123 *   bh.b_size with the size of IO which is permitted at this offset and
2124 *   this i_blkbits."
2125 *
2126 * This function is called directly from get_more_blocks in direct-io.c.
2127 *
2128 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2129 *                                      fs_count, map_bh, dio->rw == WRITE);
2130 */
2131static int ocfs2_dio_get_block(struct inode *inode, sector_t iblock,
2132                               struct buffer_head *bh_result, int create)
2133{
2134        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2135        struct ocfs2_inode_info *oi = OCFS2_I(inode);
2136        struct ocfs2_write_ctxt *wc;
2137        struct ocfs2_write_cluster_desc *desc = NULL;
2138        struct ocfs2_dio_write_ctxt *dwc = NULL;
2139        struct buffer_head *di_bh = NULL;
2140        u64 p_blkno;
2141        loff_t pos = iblock << inode->i_sb->s_blocksize_bits;
2142        unsigned len, total_len = bh_result->b_size;
2143        int ret = 0, first_get_block = 0;
2144
2145        len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2146        len = min(total_len, len);
2147
2148        mlog(0, "get block of %lu at %llu:%u req %u\n",
2149                        inode->i_ino, pos, len, total_len);
2150
2151        /*
2152         * Because we need to change file size in ocfs2_dio_end_io_write(), or
2153         * we may need to add it to orphan dir. So can not fall to fast path
2154         * while file size will be changed.
2155         */
2156        if (pos + total_len <= i_size_read(inode)) {
2157                down_read(&oi->ip_alloc_sem);
2158                /* This is the fast path for re-write. */
2159                ret = ocfs2_get_block(inode, iblock, bh_result, create);
2160
2161                up_read(&oi->ip_alloc_sem);
2162
2163                if (buffer_mapped(bh_result) &&
2164                    !buffer_new(bh_result) &&
2165                    ret == 0)
2166                        goto out;
2167
2168                /* Clear state set by ocfs2_get_block. */
2169                bh_result->b_state = 0;
2170        }
2171
2172        dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2173        if (unlikely(dwc == NULL)) {
2174                ret = -ENOMEM;
2175                mlog_errno(ret);
2176                goto out;
2177        }
2178
2179        if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2180            ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2181            !dwc->dw_orphaned) {
2182                /*
2183                 * when we are going to alloc extents beyond file size, add the
2184                 * inode to orphan dir, so we can recall those spaces when
2185                 * system crashed during write.
2186                 */
2187                ret = ocfs2_add_inode_to_orphan(osb, inode);
2188                if (ret < 0) {
2189                        mlog_errno(ret);
2190                        goto out;
2191                }
2192                dwc->dw_orphaned = 1;
2193        }
2194
2195        ret = ocfs2_inode_lock(inode, &di_bh, 1);
2196        if (ret) {
2197                mlog_errno(ret);
2198                goto out;
2199        }
2200
2201        down_write(&oi->ip_alloc_sem);
2202
2203        if (first_get_block) {
2204                if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
2205                        ret = ocfs2_zero_tail(inode, di_bh, pos);
2206                else
2207                        ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2208                                                           total_len, NULL);
2209                if (ret < 0) {
2210                        mlog_errno(ret);
2211                        goto unlock;
2212                }
2213        }
2214
2215        ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2216                                       OCFS2_WRITE_DIRECT, NULL,
2217                                       (void **)&wc, di_bh, NULL);
2218        if (ret) {
2219                mlog_errno(ret);
2220                goto unlock;
2221        }
2222
2223        desc = &wc->w_desc[0];
2224
2225        p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2226        BUG_ON(p_blkno == 0);
2227        p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2228
2229        map_bh(bh_result, inode->i_sb, p_blkno);
2230        bh_result->b_size = len;
2231        if (desc->c_needs_zero)
2232                set_buffer_new(bh_result);
2233
2234        /* May sleep in end_io. It should not happen in a irq context. So defer
2235         * it to dio work queue. */
2236        set_buffer_defer_completion(bh_result);
2237
2238        if (!list_empty(&wc->w_unwritten_list)) {
2239                struct ocfs2_unwritten_extent *ue = NULL;
2240
2241                ue = list_first_entry(&wc->w_unwritten_list,
2242                                      struct ocfs2_unwritten_extent,
2243                                      ue_node);
2244                BUG_ON(ue->ue_cpos != desc->c_cpos);
2245                /* The physical address may be 0, fill it. */
2246                ue->ue_phys = desc->c_phys;
2247
2248                list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2249                dwc->dw_zero_count++;
2250        }
2251
2252        ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2253        BUG_ON(ret != len);
2254        ret = 0;
2255unlock:
2256        up_write(&oi->ip_alloc_sem);
2257        ocfs2_inode_unlock(inode, 1);
2258        brelse(di_bh);
2259out:
2260        if (ret < 0)
2261                ret = -EIO;
2262        return ret;
2263}
2264
2265static int ocfs2_dio_end_io_write(struct inode *inode,
2266                                  struct ocfs2_dio_write_ctxt *dwc,
2267                                  loff_t offset,
2268                                  ssize_t bytes)
2269{
2270        struct ocfs2_cached_dealloc_ctxt dealloc;
2271        struct ocfs2_extent_tree et;
2272        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2273        struct ocfs2_inode_info *oi = OCFS2_I(inode);
2274        struct ocfs2_unwritten_extent *ue = NULL;
2275        struct buffer_head *di_bh = NULL;
2276        struct ocfs2_dinode *di;
2277        struct ocfs2_alloc_context *data_ac = NULL;
2278        struct ocfs2_alloc_context *meta_ac = NULL;
2279        handle_t *handle = NULL;
2280        loff_t end = offset + bytes;
2281        int ret = 0, credits = 0, locked = 0;
2282
2283        ocfs2_init_dealloc_ctxt(&dealloc);
2284
2285        /* We do clear unwritten, delete orphan, change i_size here. If neither
2286         * of these happen, we can skip all this. */
2287        if (list_empty(&dwc->dw_zero_list) &&
2288            end <= i_size_read(inode) &&
2289            !dwc->dw_orphaned)
2290                goto out;
2291
2292        /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2293         * are in that context. */
2294        if (dwc->dw_writer_pid != task_pid_nr(current)) {
2295                inode_lock(inode);
2296                locked = 1;
2297        }
2298
2299        ret = ocfs2_inode_lock(inode, &di_bh, 1);
2300        if (ret < 0) {
2301                mlog_errno(ret);
2302                goto out;
2303        }
2304
2305        down_write(&oi->ip_alloc_sem);
2306
2307        /* Delete orphan before acquire i_mutex. */
2308        if (dwc->dw_orphaned) {
2309                BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2310
2311                end = end > i_size_read(inode) ? end : 0;
2312
2313                ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2314                                !!end, end);
2315                if (ret < 0)
2316                        mlog_errno(ret);
2317        }
2318
2319        di = (struct ocfs2_dinode *)di_bh->b_data;
2320
2321        ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2322
2323        ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2324                                    &data_ac, &meta_ac);
2325        if (ret) {
2326                mlog_errno(ret);
2327                goto unlock;
2328        }
2329
2330        credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2331
2332        handle = ocfs2_start_trans(osb, credits);
2333        if (IS_ERR(handle)) {
2334                ret = PTR_ERR(handle);
2335                mlog_errno(ret);
2336                goto unlock;
2337        }
2338        ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2339                                      OCFS2_JOURNAL_ACCESS_WRITE);
2340        if (ret) {
2341                mlog_errno(ret);
2342                goto commit;
2343        }
2344
2345        list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2346                ret = ocfs2_mark_extent_written(inode, &et, handle,
2347                                                ue->ue_cpos, 1,
2348                                                ue->ue_phys,
2349                                                meta_ac, &dealloc);
2350                if (ret < 0) {
2351                        mlog_errno(ret);
2352                        break;
2353                }
2354        }
2355
2356        if (end > i_size_read(inode)) {
2357                ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2358                if (ret < 0)
2359                        mlog_errno(ret);
2360        }
2361commit:
2362        ocfs2_commit_trans(osb, handle);
2363unlock:
2364        up_write(&oi->ip_alloc_sem);
2365        ocfs2_inode_unlock(inode, 1);
2366        brelse(di_bh);
2367out:
2368        if (data_ac)
2369                ocfs2_free_alloc_context(data_ac);
2370        if (meta_ac)
2371                ocfs2_free_alloc_context(meta_ac);
2372        ocfs2_run_deallocs(osb, &dealloc);
2373        if (locked)
2374                inode_unlock(inode);
2375        ocfs2_dio_free_write_ctx(inode, dwc);
2376
2377        return ret;
2378}
2379
2380/*
2381 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2382 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2383 * to protect io on one node from truncation on another.
2384 */
2385static int ocfs2_dio_end_io(struct kiocb *iocb,
2386                            loff_t offset,
2387                            ssize_t bytes,
2388                            void *private)
2389{
2390        struct inode *inode = file_inode(iocb->ki_filp);
2391        int level;
2392        int ret = 0;
2393
2394        /* this io's submitter should not have unlocked this before we could */
2395        BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2396
2397        if (bytes > 0 && private)
2398                ret = ocfs2_dio_end_io_write(inode, private, offset, bytes);
2399
2400        ocfs2_iocb_clear_rw_locked(iocb);
2401
2402        level = ocfs2_iocb_rw_locked_level(iocb);
2403        ocfs2_rw_unlock(inode, level);
2404        return ret;
2405}
2406
2407static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2408{
2409        struct file *file = iocb->ki_filp;
2410        struct inode *inode = file->f_mapping->host;
2411        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2412        get_block_t *get_block;
2413
2414        /*
2415         * Fallback to buffered I/O if we see an inode without
2416         * extents.
2417         */
2418        if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2419                return 0;
2420
2421        /* Fallback to buffered I/O if we do not support append dio. */
2422        if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2423            !ocfs2_supports_append_dio(osb))
2424                return 0;
2425
2426        if (iov_iter_rw(iter) == READ)
2427                get_block = ocfs2_get_block;
2428        else
2429                get_block = ocfs2_dio_get_block;
2430
2431        return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2432                                    iter, get_block,
2433                                    ocfs2_dio_end_io, NULL, 0);
2434}
2435
2436const struct address_space_operations ocfs2_aops = {
2437        .readpage               = ocfs2_readpage,
2438        .readpages              = ocfs2_readpages,
2439        .writepage              = ocfs2_writepage,
2440        .write_begin            = ocfs2_write_begin,
2441        .write_end              = ocfs2_write_end,
2442        .bmap                   = ocfs2_bmap,
2443        .direct_IO              = ocfs2_direct_IO,
2444        .invalidatepage         = block_invalidatepage,
2445        .releasepage            = ocfs2_releasepage,
2446        .migratepage            = buffer_migrate_page,
2447        .is_partially_uptodate  = block_is_partially_uptodate,
2448        .error_remove_page      = generic_error_remove_page,
2449};
2450