linux/fs/xfs/libxfs/xfs_btree.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_bit.h"
  25#include "xfs_mount.h"
  26#include "xfs_defer.h"
  27#include "xfs_inode.h"
  28#include "xfs_trans.h"
  29#include "xfs_inode_item.h"
  30#include "xfs_buf_item.h"
  31#include "xfs_btree.h"
  32#include "xfs_error.h"
  33#include "xfs_trace.h"
  34#include "xfs_cksum.h"
  35#include "xfs_alloc.h"
  36#include "xfs_log.h"
  37
  38/*
  39 * Cursor allocation zone.
  40 */
  41kmem_zone_t     *xfs_btree_cur_zone;
  42
  43/*
  44 * Btree magic numbers.
  45 */
  46static const __uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
  47        { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
  48          XFS_FIBT_MAGIC, 0 },
  49        { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
  50          XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
  51          XFS_REFC_CRC_MAGIC }
  52};
  53#define xfs_btree_magic(cur) \
  54        xfs_magics[!!((cur)->bc_flags & XFS_BTREE_CRC_BLOCKS)][cur->bc_btnum]
  55
  56STATIC int                              /* error (0 or EFSCORRUPTED) */
  57xfs_btree_check_lblock(
  58        struct xfs_btree_cur    *cur,   /* btree cursor */
  59        struct xfs_btree_block  *block, /* btree long form block pointer */
  60        int                     level,  /* level of the btree block */
  61        struct xfs_buf          *bp)    /* buffer for block, if any */
  62{
  63        int                     lblock_ok = 1; /* block passes checks */
  64        struct xfs_mount        *mp;    /* file system mount point */
  65
  66        mp = cur->bc_mp;
  67
  68        if (xfs_sb_version_hascrc(&mp->m_sb)) {
  69                lblock_ok = lblock_ok &&
  70                        uuid_equal(&block->bb_u.l.bb_uuid,
  71                                   &mp->m_sb.sb_meta_uuid) &&
  72                        block->bb_u.l.bb_blkno == cpu_to_be64(
  73                                bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
  74        }
  75
  76        lblock_ok = lblock_ok &&
  77                be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
  78                be16_to_cpu(block->bb_level) == level &&
  79                be16_to_cpu(block->bb_numrecs) <=
  80                        cur->bc_ops->get_maxrecs(cur, level) &&
  81                block->bb_u.l.bb_leftsib &&
  82                (block->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK) ||
  83                 XFS_FSB_SANITY_CHECK(mp,
  84                        be64_to_cpu(block->bb_u.l.bb_leftsib))) &&
  85                block->bb_u.l.bb_rightsib &&
  86                (block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK) ||
  87                 XFS_FSB_SANITY_CHECK(mp,
  88                        be64_to_cpu(block->bb_u.l.bb_rightsib)));
  89
  90        if (unlikely(XFS_TEST_ERROR(!lblock_ok, mp,
  91                        XFS_ERRTAG_BTREE_CHECK_LBLOCK,
  92                        XFS_RANDOM_BTREE_CHECK_LBLOCK))) {
  93                if (bp)
  94                        trace_xfs_btree_corrupt(bp, _RET_IP_);
  95                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
  96                return -EFSCORRUPTED;
  97        }
  98        return 0;
  99}
 100
 101STATIC int                              /* error (0 or EFSCORRUPTED) */
 102xfs_btree_check_sblock(
 103        struct xfs_btree_cur    *cur,   /* btree cursor */
 104        struct xfs_btree_block  *block, /* btree short form block pointer */
 105        int                     level,  /* level of the btree block */
 106        struct xfs_buf          *bp)    /* buffer containing block */
 107{
 108        struct xfs_mount        *mp;    /* file system mount point */
 109        struct xfs_buf          *agbp;  /* buffer for ag. freespace struct */
 110        struct xfs_agf          *agf;   /* ag. freespace structure */
 111        xfs_agblock_t           agflen; /* native ag. freespace length */
 112        int                     sblock_ok = 1; /* block passes checks */
 113
 114        mp = cur->bc_mp;
 115        agbp = cur->bc_private.a.agbp;
 116        agf = XFS_BUF_TO_AGF(agbp);
 117        agflen = be32_to_cpu(agf->agf_length);
 118
 119        if (xfs_sb_version_hascrc(&mp->m_sb)) {
 120                sblock_ok = sblock_ok &&
 121                        uuid_equal(&block->bb_u.s.bb_uuid,
 122                                   &mp->m_sb.sb_meta_uuid) &&
 123                        block->bb_u.s.bb_blkno == cpu_to_be64(
 124                                bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
 125        }
 126
 127        sblock_ok = sblock_ok &&
 128                be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
 129                be16_to_cpu(block->bb_level) == level &&
 130                be16_to_cpu(block->bb_numrecs) <=
 131                        cur->bc_ops->get_maxrecs(cur, level) &&
 132                (block->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) ||
 133                 be32_to_cpu(block->bb_u.s.bb_leftsib) < agflen) &&
 134                block->bb_u.s.bb_leftsib &&
 135                (block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK) ||
 136                 be32_to_cpu(block->bb_u.s.bb_rightsib) < agflen) &&
 137                block->bb_u.s.bb_rightsib;
 138
 139        if (unlikely(XFS_TEST_ERROR(!sblock_ok, mp,
 140                        XFS_ERRTAG_BTREE_CHECK_SBLOCK,
 141                        XFS_RANDOM_BTREE_CHECK_SBLOCK))) {
 142                if (bp)
 143                        trace_xfs_btree_corrupt(bp, _RET_IP_);
 144                XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
 145                return -EFSCORRUPTED;
 146        }
 147        return 0;
 148}
 149
 150/*
 151 * Debug routine: check that block header is ok.
 152 */
 153int
 154xfs_btree_check_block(
 155        struct xfs_btree_cur    *cur,   /* btree cursor */
 156        struct xfs_btree_block  *block, /* generic btree block pointer */
 157        int                     level,  /* level of the btree block */
 158        struct xfs_buf          *bp)    /* buffer containing block, if any */
 159{
 160        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
 161                return xfs_btree_check_lblock(cur, block, level, bp);
 162        else
 163                return xfs_btree_check_sblock(cur, block, level, bp);
 164}
 165
 166/*
 167 * Check that (long) pointer is ok.
 168 */
 169int                                     /* error (0 or EFSCORRUPTED) */
 170xfs_btree_check_lptr(
 171        struct xfs_btree_cur    *cur,   /* btree cursor */
 172        xfs_fsblock_t           bno,    /* btree block disk address */
 173        int                     level)  /* btree block level */
 174{
 175        XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
 176                level > 0 &&
 177                bno != NULLFSBLOCK &&
 178                XFS_FSB_SANITY_CHECK(cur->bc_mp, bno));
 179        return 0;
 180}
 181
 182#ifdef DEBUG
 183/*
 184 * Check that (short) pointer is ok.
 185 */
 186STATIC int                              /* error (0 or EFSCORRUPTED) */
 187xfs_btree_check_sptr(
 188        struct xfs_btree_cur    *cur,   /* btree cursor */
 189        xfs_agblock_t           bno,    /* btree block disk address */
 190        int                     level)  /* btree block level */
 191{
 192        xfs_agblock_t           agblocks = cur->bc_mp->m_sb.sb_agblocks;
 193
 194        XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
 195                level > 0 &&
 196                bno != NULLAGBLOCK &&
 197                bno != 0 &&
 198                bno < agblocks);
 199        return 0;
 200}
 201
 202/*
 203 * Check that block ptr is ok.
 204 */
 205STATIC int                              /* error (0 or EFSCORRUPTED) */
 206xfs_btree_check_ptr(
 207        struct xfs_btree_cur    *cur,   /* btree cursor */
 208        union xfs_btree_ptr     *ptr,   /* btree block disk address */
 209        int                     index,  /* offset from ptr to check */
 210        int                     level)  /* btree block level */
 211{
 212        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 213                return xfs_btree_check_lptr(cur,
 214                                be64_to_cpu((&ptr->l)[index]), level);
 215        } else {
 216                return xfs_btree_check_sptr(cur,
 217                                be32_to_cpu((&ptr->s)[index]), level);
 218        }
 219}
 220#endif
 221
 222/*
 223 * Calculate CRC on the whole btree block and stuff it into the
 224 * long-form btree header.
 225 *
 226 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
 227 * it into the buffer so recovery knows what the last modification was that made
 228 * it to disk.
 229 */
 230void
 231xfs_btree_lblock_calc_crc(
 232        struct xfs_buf          *bp)
 233{
 234        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 235        struct xfs_buf_log_item *bip = bp->b_fspriv;
 236
 237        if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
 238                return;
 239        if (bip)
 240                block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 241        xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
 242}
 243
 244bool
 245xfs_btree_lblock_verify_crc(
 246        struct xfs_buf          *bp)
 247{
 248        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 249        struct xfs_mount        *mp = bp->b_target->bt_mount;
 250
 251        if (xfs_sb_version_hascrc(&mp->m_sb)) {
 252                if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
 253                        return false;
 254                return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
 255        }
 256
 257        return true;
 258}
 259
 260/*
 261 * Calculate CRC on the whole btree block and stuff it into the
 262 * short-form btree header.
 263 *
 264 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
 265 * it into the buffer so recovery knows what the last modification was that made
 266 * it to disk.
 267 */
 268void
 269xfs_btree_sblock_calc_crc(
 270        struct xfs_buf          *bp)
 271{
 272        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 273        struct xfs_buf_log_item *bip = bp->b_fspriv;
 274
 275        if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
 276                return;
 277        if (bip)
 278                block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
 279        xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
 280}
 281
 282bool
 283xfs_btree_sblock_verify_crc(
 284        struct xfs_buf          *bp)
 285{
 286        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
 287        struct xfs_mount        *mp = bp->b_target->bt_mount;
 288
 289        if (xfs_sb_version_hascrc(&mp->m_sb)) {
 290                if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
 291                        return false;
 292                return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
 293        }
 294
 295        return true;
 296}
 297
 298static int
 299xfs_btree_free_block(
 300        struct xfs_btree_cur    *cur,
 301        struct xfs_buf          *bp)
 302{
 303        int                     error;
 304
 305        error = cur->bc_ops->free_block(cur, bp);
 306        if (!error) {
 307                xfs_trans_binval(cur->bc_tp, bp);
 308                XFS_BTREE_STATS_INC(cur, free);
 309        }
 310        return error;
 311}
 312
 313/*
 314 * Delete the btree cursor.
 315 */
 316void
 317xfs_btree_del_cursor(
 318        xfs_btree_cur_t *cur,           /* btree cursor */
 319        int             error)          /* del because of error */
 320{
 321        int             i;              /* btree level */
 322
 323        /*
 324         * Clear the buffer pointers, and release the buffers.
 325         * If we're doing this in the face of an error, we
 326         * need to make sure to inspect all of the entries
 327         * in the bc_bufs array for buffers to be unlocked.
 328         * This is because some of the btree code works from
 329         * level n down to 0, and if we get an error along
 330         * the way we won't have initialized all the entries
 331         * down to 0.
 332         */
 333        for (i = 0; i < cur->bc_nlevels; i++) {
 334                if (cur->bc_bufs[i])
 335                        xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
 336                else if (!error)
 337                        break;
 338        }
 339        /*
 340         * Can't free a bmap cursor without having dealt with the
 341         * allocated indirect blocks' accounting.
 342         */
 343        ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
 344               cur->bc_private.b.allocated == 0);
 345        /*
 346         * Free the cursor.
 347         */
 348        kmem_zone_free(xfs_btree_cur_zone, cur);
 349}
 350
 351/*
 352 * Duplicate the btree cursor.
 353 * Allocate a new one, copy the record, re-get the buffers.
 354 */
 355int                                     /* error */
 356xfs_btree_dup_cursor(
 357        xfs_btree_cur_t *cur,           /* input cursor */
 358        xfs_btree_cur_t **ncur)         /* output cursor */
 359{
 360        xfs_buf_t       *bp;            /* btree block's buffer pointer */
 361        int             error;          /* error return value */
 362        int             i;              /* level number of btree block */
 363        xfs_mount_t     *mp;            /* mount structure for filesystem */
 364        xfs_btree_cur_t *new;           /* new cursor value */
 365        xfs_trans_t     *tp;            /* transaction pointer, can be NULL */
 366
 367        tp = cur->bc_tp;
 368        mp = cur->bc_mp;
 369
 370        /*
 371         * Allocate a new cursor like the old one.
 372         */
 373        new = cur->bc_ops->dup_cursor(cur);
 374
 375        /*
 376         * Copy the record currently in the cursor.
 377         */
 378        new->bc_rec = cur->bc_rec;
 379
 380        /*
 381         * For each level current, re-get the buffer and copy the ptr value.
 382         */
 383        for (i = 0; i < new->bc_nlevels; i++) {
 384                new->bc_ptrs[i] = cur->bc_ptrs[i];
 385                new->bc_ra[i] = cur->bc_ra[i];
 386                bp = cur->bc_bufs[i];
 387                if (bp) {
 388                        error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
 389                                                   XFS_BUF_ADDR(bp), mp->m_bsize,
 390                                                   0, &bp,
 391                                                   cur->bc_ops->buf_ops);
 392                        if (error) {
 393                                xfs_btree_del_cursor(new, error);
 394                                *ncur = NULL;
 395                                return error;
 396                        }
 397                }
 398                new->bc_bufs[i] = bp;
 399        }
 400        *ncur = new;
 401        return 0;
 402}
 403
 404/*
 405 * XFS btree block layout and addressing:
 406 *
 407 * There are two types of blocks in the btree: leaf and non-leaf blocks.
 408 *
 409 * The leaf record start with a header then followed by records containing
 410 * the values.  A non-leaf block also starts with the same header, and
 411 * then first contains lookup keys followed by an equal number of pointers
 412 * to the btree blocks at the previous level.
 413 *
 414 *              +--------+-------+-------+-------+-------+-------+-------+
 415 * Leaf:        | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
 416 *              +--------+-------+-------+-------+-------+-------+-------+
 417 *
 418 *              +--------+-------+-------+-------+-------+-------+-------+
 419 * Non-Leaf:    | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
 420 *              +--------+-------+-------+-------+-------+-------+-------+
 421 *
 422 * The header is called struct xfs_btree_block for reasons better left unknown
 423 * and comes in different versions for short (32bit) and long (64bit) block
 424 * pointers.  The record and key structures are defined by the btree instances
 425 * and opaque to the btree core.  The block pointers are simple disk endian
 426 * integers, available in a short (32bit) and long (64bit) variant.
 427 *
 428 * The helpers below calculate the offset of a given record, key or pointer
 429 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
 430 * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
 431 * inside the btree block is done using indices starting at one, not zero!
 432 *
 433 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
 434 * overlapping intervals.  In such a tree, records are still sorted lowest to
 435 * highest and indexed by the smallest key value that refers to the record.
 436 * However, nodes are different: each pointer has two associated keys -- one
 437 * indexing the lowest key available in the block(s) below (the same behavior
 438 * as the key in a regular btree) and another indexing the highest key
 439 * available in the block(s) below.  Because records are /not/ sorted by the
 440 * highest key, all leaf block updates require us to compute the highest key
 441 * that matches any record in the leaf and to recursively update the high keys
 442 * in the nodes going further up in the tree, if necessary.  Nodes look like
 443 * this:
 444 *
 445 *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
 446 * Non-Leaf:    | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
 447 *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
 448 *
 449 * To perform an interval query on an overlapped tree, perform the usual
 450 * depth-first search and use the low and high keys to decide if we can skip
 451 * that particular node.  If a leaf node is reached, return the records that
 452 * intersect the interval.  Note that an interval query may return numerous
 453 * entries.  For a non-overlapped tree, simply search for the record associated
 454 * with the lowest key and iterate forward until a non-matching record is
 455 * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
 456 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
 457 * more detail.
 458 *
 459 * Why do we care about overlapping intervals?  Let's say you have a bunch of
 460 * reverse mapping records on a reflink filesystem:
 461 *
 462 * 1: +- file A startblock B offset C length D -----------+
 463 * 2:      +- file E startblock F offset G length H --------------+
 464 * 3:      +- file I startblock F offset J length K --+
 465 * 4:                                                        +- file L... --+
 466 *
 467 * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
 468 * we'd simply increment the length of record 1.  But how do we find the record
 469 * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
 470 * record 3 because the keys are ordered first by startblock.  An interval
 471 * query would return records 1 and 2 because they both overlap (B+D-1), and
 472 * from that we can pick out record 1 as the appropriate left neighbor.
 473 *
 474 * In the non-overlapped case you can do a LE lookup and decrement the cursor
 475 * because a record's interval must end before the next record.
 476 */
 477
 478/*
 479 * Return size of the btree block header for this btree instance.
 480 */
 481static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
 482{
 483        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 484                if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
 485                        return XFS_BTREE_LBLOCK_CRC_LEN;
 486                return XFS_BTREE_LBLOCK_LEN;
 487        }
 488        if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
 489                return XFS_BTREE_SBLOCK_CRC_LEN;
 490        return XFS_BTREE_SBLOCK_LEN;
 491}
 492
 493/*
 494 * Return size of btree block pointers for this btree instance.
 495 */
 496static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
 497{
 498        return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
 499                sizeof(__be64) : sizeof(__be32);
 500}
 501
 502/*
 503 * Calculate offset of the n-th record in a btree block.
 504 */
 505STATIC size_t
 506xfs_btree_rec_offset(
 507        struct xfs_btree_cur    *cur,
 508        int                     n)
 509{
 510        return xfs_btree_block_len(cur) +
 511                (n - 1) * cur->bc_ops->rec_len;
 512}
 513
 514/*
 515 * Calculate offset of the n-th key in a btree block.
 516 */
 517STATIC size_t
 518xfs_btree_key_offset(
 519        struct xfs_btree_cur    *cur,
 520        int                     n)
 521{
 522        return xfs_btree_block_len(cur) +
 523                (n - 1) * cur->bc_ops->key_len;
 524}
 525
 526/*
 527 * Calculate offset of the n-th high key in a btree block.
 528 */
 529STATIC size_t
 530xfs_btree_high_key_offset(
 531        struct xfs_btree_cur    *cur,
 532        int                     n)
 533{
 534        return xfs_btree_block_len(cur) +
 535                (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
 536}
 537
 538/*
 539 * Calculate offset of the n-th block pointer in a btree block.
 540 */
 541STATIC size_t
 542xfs_btree_ptr_offset(
 543        struct xfs_btree_cur    *cur,
 544        int                     n,
 545        int                     level)
 546{
 547        return xfs_btree_block_len(cur) +
 548                cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
 549                (n - 1) * xfs_btree_ptr_len(cur);
 550}
 551
 552/*
 553 * Return a pointer to the n-th record in the btree block.
 554 */
 555STATIC union xfs_btree_rec *
 556xfs_btree_rec_addr(
 557        struct xfs_btree_cur    *cur,
 558        int                     n,
 559        struct xfs_btree_block  *block)
 560{
 561        return (union xfs_btree_rec *)
 562                ((char *)block + xfs_btree_rec_offset(cur, n));
 563}
 564
 565/*
 566 * Return a pointer to the n-th key in the btree block.
 567 */
 568STATIC union xfs_btree_key *
 569xfs_btree_key_addr(
 570        struct xfs_btree_cur    *cur,
 571        int                     n,
 572        struct xfs_btree_block  *block)
 573{
 574        return (union xfs_btree_key *)
 575                ((char *)block + xfs_btree_key_offset(cur, n));
 576}
 577
 578/*
 579 * Return a pointer to the n-th high key in the btree block.
 580 */
 581STATIC union xfs_btree_key *
 582xfs_btree_high_key_addr(
 583        struct xfs_btree_cur    *cur,
 584        int                     n,
 585        struct xfs_btree_block  *block)
 586{
 587        return (union xfs_btree_key *)
 588                ((char *)block + xfs_btree_high_key_offset(cur, n));
 589}
 590
 591/*
 592 * Return a pointer to the n-th block pointer in the btree block.
 593 */
 594STATIC union xfs_btree_ptr *
 595xfs_btree_ptr_addr(
 596        struct xfs_btree_cur    *cur,
 597        int                     n,
 598        struct xfs_btree_block  *block)
 599{
 600        int                     level = xfs_btree_get_level(block);
 601
 602        ASSERT(block->bb_level != 0);
 603
 604        return (union xfs_btree_ptr *)
 605                ((char *)block + xfs_btree_ptr_offset(cur, n, level));
 606}
 607
 608/*
 609 * Get the root block which is stored in the inode.
 610 *
 611 * For now this btree implementation assumes the btree root is always
 612 * stored in the if_broot field of an inode fork.
 613 */
 614STATIC struct xfs_btree_block *
 615xfs_btree_get_iroot(
 616        struct xfs_btree_cur    *cur)
 617{
 618        struct xfs_ifork        *ifp;
 619
 620        ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
 621        return (struct xfs_btree_block *)ifp->if_broot;
 622}
 623
 624/*
 625 * Retrieve the block pointer from the cursor at the given level.
 626 * This may be an inode btree root or from a buffer.
 627 */
 628STATIC struct xfs_btree_block *         /* generic btree block pointer */
 629xfs_btree_get_block(
 630        struct xfs_btree_cur    *cur,   /* btree cursor */
 631        int                     level,  /* level in btree */
 632        struct xfs_buf          **bpp)  /* buffer containing the block */
 633{
 634        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
 635            (level == cur->bc_nlevels - 1)) {
 636                *bpp = NULL;
 637                return xfs_btree_get_iroot(cur);
 638        }
 639
 640        *bpp = cur->bc_bufs[level];
 641        return XFS_BUF_TO_BLOCK(*bpp);
 642}
 643
 644/*
 645 * Get a buffer for the block, return it with no data read.
 646 * Long-form addressing.
 647 */
 648xfs_buf_t *                             /* buffer for fsbno */
 649xfs_btree_get_bufl(
 650        xfs_mount_t     *mp,            /* file system mount point */
 651        xfs_trans_t     *tp,            /* transaction pointer */
 652        xfs_fsblock_t   fsbno,          /* file system block number */
 653        uint            lock)           /* lock flags for get_buf */
 654{
 655        xfs_daddr_t             d;              /* real disk block address */
 656
 657        ASSERT(fsbno != NULLFSBLOCK);
 658        d = XFS_FSB_TO_DADDR(mp, fsbno);
 659        return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
 660}
 661
 662/*
 663 * Get a buffer for the block, return it with no data read.
 664 * Short-form addressing.
 665 */
 666xfs_buf_t *                             /* buffer for agno/agbno */
 667xfs_btree_get_bufs(
 668        xfs_mount_t     *mp,            /* file system mount point */
 669        xfs_trans_t     *tp,            /* transaction pointer */
 670        xfs_agnumber_t  agno,           /* allocation group number */
 671        xfs_agblock_t   agbno,          /* allocation group block number */
 672        uint            lock)           /* lock flags for get_buf */
 673{
 674        xfs_daddr_t             d;              /* real disk block address */
 675
 676        ASSERT(agno != NULLAGNUMBER);
 677        ASSERT(agbno != NULLAGBLOCK);
 678        d = XFS_AGB_TO_DADDR(mp, agno, agbno);
 679        return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
 680}
 681
 682/*
 683 * Check for the cursor referring to the last block at the given level.
 684 */
 685int                                     /* 1=is last block, 0=not last block */
 686xfs_btree_islastblock(
 687        xfs_btree_cur_t         *cur,   /* btree cursor */
 688        int                     level)  /* level to check */
 689{
 690        struct xfs_btree_block  *block; /* generic btree block pointer */
 691        xfs_buf_t               *bp;    /* buffer containing block */
 692
 693        block = xfs_btree_get_block(cur, level, &bp);
 694        xfs_btree_check_block(cur, block, level, bp);
 695        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
 696                return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
 697        else
 698                return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
 699}
 700
 701/*
 702 * Change the cursor to point to the first record at the given level.
 703 * Other levels are unaffected.
 704 */
 705STATIC int                              /* success=1, failure=0 */
 706xfs_btree_firstrec(
 707        xfs_btree_cur_t         *cur,   /* btree cursor */
 708        int                     level)  /* level to change */
 709{
 710        struct xfs_btree_block  *block; /* generic btree block pointer */
 711        xfs_buf_t               *bp;    /* buffer containing block */
 712
 713        /*
 714         * Get the block pointer for this level.
 715         */
 716        block = xfs_btree_get_block(cur, level, &bp);
 717        xfs_btree_check_block(cur, block, level, bp);
 718        /*
 719         * It's empty, there is no such record.
 720         */
 721        if (!block->bb_numrecs)
 722                return 0;
 723        /*
 724         * Set the ptr value to 1, that's the first record/key.
 725         */
 726        cur->bc_ptrs[level] = 1;
 727        return 1;
 728}
 729
 730/*
 731 * Change the cursor to point to the last record in the current block
 732 * at the given level.  Other levels are unaffected.
 733 */
 734STATIC int                              /* success=1, failure=0 */
 735xfs_btree_lastrec(
 736        xfs_btree_cur_t         *cur,   /* btree cursor */
 737        int                     level)  /* level to change */
 738{
 739        struct xfs_btree_block  *block; /* generic btree block pointer */
 740        xfs_buf_t               *bp;    /* buffer containing block */
 741
 742        /*
 743         * Get the block pointer for this level.
 744         */
 745        block = xfs_btree_get_block(cur, level, &bp);
 746        xfs_btree_check_block(cur, block, level, bp);
 747        /*
 748         * It's empty, there is no such record.
 749         */
 750        if (!block->bb_numrecs)
 751                return 0;
 752        /*
 753         * Set the ptr value to numrecs, that's the last record/key.
 754         */
 755        cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
 756        return 1;
 757}
 758
 759/*
 760 * Compute first and last byte offsets for the fields given.
 761 * Interprets the offsets table, which contains struct field offsets.
 762 */
 763void
 764xfs_btree_offsets(
 765        __int64_t       fields,         /* bitmask of fields */
 766        const short     *offsets,       /* table of field offsets */
 767        int             nbits,          /* number of bits to inspect */
 768        int             *first,         /* output: first byte offset */
 769        int             *last)          /* output: last byte offset */
 770{
 771        int             i;              /* current bit number */
 772        __int64_t       imask;          /* mask for current bit number */
 773
 774        ASSERT(fields != 0);
 775        /*
 776         * Find the lowest bit, so the first byte offset.
 777         */
 778        for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
 779                if (imask & fields) {
 780                        *first = offsets[i];
 781                        break;
 782                }
 783        }
 784        /*
 785         * Find the highest bit, so the last byte offset.
 786         */
 787        for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
 788                if (imask & fields) {
 789                        *last = offsets[i + 1] - 1;
 790                        break;
 791                }
 792        }
 793}
 794
 795/*
 796 * Get a buffer for the block, return it read in.
 797 * Long-form addressing.
 798 */
 799int
 800xfs_btree_read_bufl(
 801        struct xfs_mount        *mp,            /* file system mount point */
 802        struct xfs_trans        *tp,            /* transaction pointer */
 803        xfs_fsblock_t           fsbno,          /* file system block number */
 804        uint                    lock,           /* lock flags for read_buf */
 805        struct xfs_buf          **bpp,          /* buffer for fsbno */
 806        int                     refval,         /* ref count value for buffer */
 807        const struct xfs_buf_ops *ops)
 808{
 809        struct xfs_buf          *bp;            /* return value */
 810        xfs_daddr_t             d;              /* real disk block address */
 811        int                     error;
 812
 813        ASSERT(fsbno != NULLFSBLOCK);
 814        d = XFS_FSB_TO_DADDR(mp, fsbno);
 815        error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
 816                                   mp->m_bsize, lock, &bp, ops);
 817        if (error)
 818                return error;
 819        if (bp)
 820                xfs_buf_set_ref(bp, refval);
 821        *bpp = bp;
 822        return 0;
 823}
 824
 825/*
 826 * Read-ahead the block, don't wait for it, don't return a buffer.
 827 * Long-form addressing.
 828 */
 829/* ARGSUSED */
 830void
 831xfs_btree_reada_bufl(
 832        struct xfs_mount        *mp,            /* file system mount point */
 833        xfs_fsblock_t           fsbno,          /* file system block number */
 834        xfs_extlen_t            count,          /* count of filesystem blocks */
 835        const struct xfs_buf_ops *ops)
 836{
 837        xfs_daddr_t             d;
 838
 839        ASSERT(fsbno != NULLFSBLOCK);
 840        d = XFS_FSB_TO_DADDR(mp, fsbno);
 841        xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
 842}
 843
 844/*
 845 * Read-ahead the block, don't wait for it, don't return a buffer.
 846 * Short-form addressing.
 847 */
 848/* ARGSUSED */
 849void
 850xfs_btree_reada_bufs(
 851        struct xfs_mount        *mp,            /* file system mount point */
 852        xfs_agnumber_t          agno,           /* allocation group number */
 853        xfs_agblock_t           agbno,          /* allocation group block number */
 854        xfs_extlen_t            count,          /* count of filesystem blocks */
 855        const struct xfs_buf_ops *ops)
 856{
 857        xfs_daddr_t             d;
 858
 859        ASSERT(agno != NULLAGNUMBER);
 860        ASSERT(agbno != NULLAGBLOCK);
 861        d = XFS_AGB_TO_DADDR(mp, agno, agbno);
 862        xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
 863}
 864
 865STATIC int
 866xfs_btree_readahead_lblock(
 867        struct xfs_btree_cur    *cur,
 868        int                     lr,
 869        struct xfs_btree_block  *block)
 870{
 871        int                     rval = 0;
 872        xfs_fsblock_t           left = be64_to_cpu(block->bb_u.l.bb_leftsib);
 873        xfs_fsblock_t           right = be64_to_cpu(block->bb_u.l.bb_rightsib);
 874
 875        if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
 876                xfs_btree_reada_bufl(cur->bc_mp, left, 1,
 877                                     cur->bc_ops->buf_ops);
 878                rval++;
 879        }
 880
 881        if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
 882                xfs_btree_reada_bufl(cur->bc_mp, right, 1,
 883                                     cur->bc_ops->buf_ops);
 884                rval++;
 885        }
 886
 887        return rval;
 888}
 889
 890STATIC int
 891xfs_btree_readahead_sblock(
 892        struct xfs_btree_cur    *cur,
 893        int                     lr,
 894        struct xfs_btree_block *block)
 895{
 896        int                     rval = 0;
 897        xfs_agblock_t           left = be32_to_cpu(block->bb_u.s.bb_leftsib);
 898        xfs_agblock_t           right = be32_to_cpu(block->bb_u.s.bb_rightsib);
 899
 900
 901        if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
 902                xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
 903                                     left, 1, cur->bc_ops->buf_ops);
 904                rval++;
 905        }
 906
 907        if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
 908                xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
 909                                     right, 1, cur->bc_ops->buf_ops);
 910                rval++;
 911        }
 912
 913        return rval;
 914}
 915
 916/*
 917 * Read-ahead btree blocks, at the given level.
 918 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
 919 */
 920STATIC int
 921xfs_btree_readahead(
 922        struct xfs_btree_cur    *cur,           /* btree cursor */
 923        int                     lev,            /* level in btree */
 924        int                     lr)             /* left/right bits */
 925{
 926        struct xfs_btree_block  *block;
 927
 928        /*
 929         * No readahead needed if we are at the root level and the
 930         * btree root is stored in the inode.
 931         */
 932        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
 933            (lev == cur->bc_nlevels - 1))
 934                return 0;
 935
 936        if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
 937                return 0;
 938
 939        cur->bc_ra[lev] |= lr;
 940        block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
 941
 942        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
 943                return xfs_btree_readahead_lblock(cur, lr, block);
 944        return xfs_btree_readahead_sblock(cur, lr, block);
 945}
 946
 947STATIC xfs_daddr_t
 948xfs_btree_ptr_to_daddr(
 949        struct xfs_btree_cur    *cur,
 950        union xfs_btree_ptr     *ptr)
 951{
 952        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
 953                ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
 954
 955                return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
 956        } else {
 957                ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
 958                ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
 959
 960                return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
 961                                        be32_to_cpu(ptr->s));
 962        }
 963}
 964
 965/*
 966 * Readahead @count btree blocks at the given @ptr location.
 967 *
 968 * We don't need to care about long or short form btrees here as we have a
 969 * method of converting the ptr directly to a daddr available to us.
 970 */
 971STATIC void
 972xfs_btree_readahead_ptr(
 973        struct xfs_btree_cur    *cur,
 974        union xfs_btree_ptr     *ptr,
 975        xfs_extlen_t            count)
 976{
 977        xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
 978                          xfs_btree_ptr_to_daddr(cur, ptr),
 979                          cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
 980}
 981
 982/*
 983 * Set the buffer for level "lev" in the cursor to bp, releasing
 984 * any previous buffer.
 985 */
 986STATIC void
 987xfs_btree_setbuf(
 988        xfs_btree_cur_t         *cur,   /* btree cursor */
 989        int                     lev,    /* level in btree */
 990        xfs_buf_t               *bp)    /* new buffer to set */
 991{
 992        struct xfs_btree_block  *b;     /* btree block */
 993
 994        if (cur->bc_bufs[lev])
 995                xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
 996        cur->bc_bufs[lev] = bp;
 997        cur->bc_ra[lev] = 0;
 998
 999        b = XFS_BUF_TO_BLOCK(bp);
1000        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1001                if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1002                        cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1003                if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1004                        cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1005        } else {
1006                if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1007                        cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1008                if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1009                        cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1010        }
1011}
1012
1013STATIC int
1014xfs_btree_ptr_is_null(
1015        struct xfs_btree_cur    *cur,
1016        union xfs_btree_ptr     *ptr)
1017{
1018        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1019                return ptr->l == cpu_to_be64(NULLFSBLOCK);
1020        else
1021                return ptr->s == cpu_to_be32(NULLAGBLOCK);
1022}
1023
1024STATIC void
1025xfs_btree_set_ptr_null(
1026        struct xfs_btree_cur    *cur,
1027        union xfs_btree_ptr     *ptr)
1028{
1029        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1030                ptr->l = cpu_to_be64(NULLFSBLOCK);
1031        else
1032                ptr->s = cpu_to_be32(NULLAGBLOCK);
1033}
1034
1035/*
1036 * Get/set/init sibling pointers
1037 */
1038STATIC void
1039xfs_btree_get_sibling(
1040        struct xfs_btree_cur    *cur,
1041        struct xfs_btree_block  *block,
1042        union xfs_btree_ptr     *ptr,
1043        int                     lr)
1044{
1045        ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1046
1047        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1048                if (lr == XFS_BB_RIGHTSIB)
1049                        ptr->l = block->bb_u.l.bb_rightsib;
1050                else
1051                        ptr->l = block->bb_u.l.bb_leftsib;
1052        } else {
1053                if (lr == XFS_BB_RIGHTSIB)
1054                        ptr->s = block->bb_u.s.bb_rightsib;
1055                else
1056                        ptr->s = block->bb_u.s.bb_leftsib;
1057        }
1058}
1059
1060STATIC void
1061xfs_btree_set_sibling(
1062        struct xfs_btree_cur    *cur,
1063        struct xfs_btree_block  *block,
1064        union xfs_btree_ptr     *ptr,
1065        int                     lr)
1066{
1067        ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1068
1069        if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1070                if (lr == XFS_BB_RIGHTSIB)
1071                        block->bb_u.l.bb_rightsib = ptr->l;
1072                else
1073                        block->bb_u.l.bb_leftsib = ptr->l;
1074        } else {
1075                if (lr == XFS_BB_RIGHTSIB)
1076                        block->bb_u.s.bb_rightsib = ptr->s;
1077                else
1078                        block->bb_u.s.bb_leftsib = ptr->s;
1079        }
1080}
1081
1082void
1083xfs_btree_init_block_int(
1084        struct xfs_mount        *mp,
1085        struct xfs_btree_block  *buf,
1086        xfs_daddr_t             blkno,
1087        __u32                   magic,
1088        __u16                   level,
1089        __u16                   numrecs,
1090        __u64                   owner,
1091        unsigned int            flags)
1092{
1093        buf->bb_magic = cpu_to_be32(magic);
1094        buf->bb_level = cpu_to_be16(level);
1095        buf->bb_numrecs = cpu_to_be16(numrecs);
1096
1097        if (flags & XFS_BTREE_LONG_PTRS) {
1098                buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1099                buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1100                if (flags & XFS_BTREE_CRC_BLOCKS) {
1101                        buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1102                        buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1103                        uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1104                        buf->bb_u.l.bb_pad = 0;
1105                        buf->bb_u.l.bb_lsn = 0;
1106                }
1107        } else {
1108                /* owner is a 32 bit value on short blocks */
1109                __u32 __owner = (__u32)owner;
1110
1111                buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1112                buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1113                if (flags & XFS_BTREE_CRC_BLOCKS) {
1114                        buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1115                        buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1116                        uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1117                        buf->bb_u.s.bb_lsn = 0;
1118                }
1119        }
1120}
1121
1122void
1123xfs_btree_init_block(
1124        struct xfs_mount *mp,
1125        struct xfs_buf  *bp,
1126        __u32           magic,
1127        __u16           level,
1128        __u16           numrecs,
1129        __u64           owner,
1130        unsigned int    flags)
1131{
1132        xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1133                                 magic, level, numrecs, owner, flags);
1134}
1135
1136STATIC void
1137xfs_btree_init_block_cur(
1138        struct xfs_btree_cur    *cur,
1139        struct xfs_buf          *bp,
1140        int                     level,
1141        int                     numrecs)
1142{
1143        __u64 owner;
1144
1145        /*
1146         * we can pull the owner from the cursor right now as the different
1147         * owners align directly with the pointer size of the btree. This may
1148         * change in future, but is safe for current users of the generic btree
1149         * code.
1150         */
1151        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1152                owner = cur->bc_private.b.ip->i_ino;
1153        else
1154                owner = cur->bc_private.a.agno;
1155
1156        xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1157                                 xfs_btree_magic(cur), level, numrecs,
1158                                 owner, cur->bc_flags);
1159}
1160
1161/*
1162 * Return true if ptr is the last record in the btree and
1163 * we need to track updates to this record.  The decision
1164 * will be further refined in the update_lastrec method.
1165 */
1166STATIC int
1167xfs_btree_is_lastrec(
1168        struct xfs_btree_cur    *cur,
1169        struct xfs_btree_block  *block,
1170        int                     level)
1171{
1172        union xfs_btree_ptr     ptr;
1173
1174        if (level > 0)
1175                return 0;
1176        if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1177                return 0;
1178
1179        xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1180        if (!xfs_btree_ptr_is_null(cur, &ptr))
1181                return 0;
1182        return 1;
1183}
1184
1185STATIC void
1186xfs_btree_buf_to_ptr(
1187        struct xfs_btree_cur    *cur,
1188        struct xfs_buf          *bp,
1189        union xfs_btree_ptr     *ptr)
1190{
1191        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1192                ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1193                                        XFS_BUF_ADDR(bp)));
1194        else {
1195                ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1196                                        XFS_BUF_ADDR(bp)));
1197        }
1198}
1199
1200STATIC void
1201xfs_btree_set_refs(
1202        struct xfs_btree_cur    *cur,
1203        struct xfs_buf          *bp)
1204{
1205        switch (cur->bc_btnum) {
1206        case XFS_BTNUM_BNO:
1207        case XFS_BTNUM_CNT:
1208                xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1209                break;
1210        case XFS_BTNUM_INO:
1211        case XFS_BTNUM_FINO:
1212                xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1213                break;
1214        case XFS_BTNUM_BMAP:
1215                xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1216                break;
1217        case XFS_BTNUM_RMAP:
1218                xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1219                break;
1220        case XFS_BTNUM_REFC:
1221                xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1222                break;
1223        default:
1224                ASSERT(0);
1225        }
1226}
1227
1228STATIC int
1229xfs_btree_get_buf_block(
1230        struct xfs_btree_cur    *cur,
1231        union xfs_btree_ptr     *ptr,
1232        int                     flags,
1233        struct xfs_btree_block  **block,
1234        struct xfs_buf          **bpp)
1235{
1236        struct xfs_mount        *mp = cur->bc_mp;
1237        xfs_daddr_t             d;
1238
1239        /* need to sort out how callers deal with failures first */
1240        ASSERT(!(flags & XBF_TRYLOCK));
1241
1242        d = xfs_btree_ptr_to_daddr(cur, ptr);
1243        *bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1244                                 mp->m_bsize, flags);
1245
1246        if (!*bpp)
1247                return -ENOMEM;
1248
1249        (*bpp)->b_ops = cur->bc_ops->buf_ops;
1250        *block = XFS_BUF_TO_BLOCK(*bpp);
1251        return 0;
1252}
1253
1254/*
1255 * Read in the buffer at the given ptr and return the buffer and
1256 * the block pointer within the buffer.
1257 */
1258STATIC int
1259xfs_btree_read_buf_block(
1260        struct xfs_btree_cur    *cur,
1261        union xfs_btree_ptr     *ptr,
1262        int                     flags,
1263        struct xfs_btree_block  **block,
1264        struct xfs_buf          **bpp)
1265{
1266        struct xfs_mount        *mp = cur->bc_mp;
1267        xfs_daddr_t             d;
1268        int                     error;
1269
1270        /* need to sort out how callers deal with failures first */
1271        ASSERT(!(flags & XBF_TRYLOCK));
1272
1273        d = xfs_btree_ptr_to_daddr(cur, ptr);
1274        error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1275                                   mp->m_bsize, flags, bpp,
1276                                   cur->bc_ops->buf_ops);
1277        if (error)
1278                return error;
1279
1280        xfs_btree_set_refs(cur, *bpp);
1281        *block = XFS_BUF_TO_BLOCK(*bpp);
1282        return 0;
1283}
1284
1285/*
1286 * Copy keys from one btree block to another.
1287 */
1288STATIC void
1289xfs_btree_copy_keys(
1290        struct xfs_btree_cur    *cur,
1291        union xfs_btree_key     *dst_key,
1292        union xfs_btree_key     *src_key,
1293        int                     numkeys)
1294{
1295        ASSERT(numkeys >= 0);
1296        memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1297}
1298
1299/*
1300 * Copy records from one btree block to another.
1301 */
1302STATIC void
1303xfs_btree_copy_recs(
1304        struct xfs_btree_cur    *cur,
1305        union xfs_btree_rec     *dst_rec,
1306        union xfs_btree_rec     *src_rec,
1307        int                     numrecs)
1308{
1309        ASSERT(numrecs >= 0);
1310        memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1311}
1312
1313/*
1314 * Copy block pointers from one btree block to another.
1315 */
1316STATIC void
1317xfs_btree_copy_ptrs(
1318        struct xfs_btree_cur    *cur,
1319        union xfs_btree_ptr     *dst_ptr,
1320        union xfs_btree_ptr     *src_ptr,
1321        int                     numptrs)
1322{
1323        ASSERT(numptrs >= 0);
1324        memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1325}
1326
1327/*
1328 * Shift keys one index left/right inside a single btree block.
1329 */
1330STATIC void
1331xfs_btree_shift_keys(
1332        struct xfs_btree_cur    *cur,
1333        union xfs_btree_key     *key,
1334        int                     dir,
1335        int                     numkeys)
1336{
1337        char                    *dst_key;
1338
1339        ASSERT(numkeys >= 0);
1340        ASSERT(dir == 1 || dir == -1);
1341
1342        dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1343        memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1344}
1345
1346/*
1347 * Shift records one index left/right inside a single btree block.
1348 */
1349STATIC void
1350xfs_btree_shift_recs(
1351        struct xfs_btree_cur    *cur,
1352        union xfs_btree_rec     *rec,
1353        int                     dir,
1354        int                     numrecs)
1355{
1356        char                    *dst_rec;
1357
1358        ASSERT(numrecs >= 0);
1359        ASSERT(dir == 1 || dir == -1);
1360
1361        dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1362        memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1363}
1364
1365/*
1366 * Shift block pointers one index left/right inside a single btree block.
1367 */
1368STATIC void
1369xfs_btree_shift_ptrs(
1370        struct xfs_btree_cur    *cur,
1371        union xfs_btree_ptr     *ptr,
1372        int                     dir,
1373        int                     numptrs)
1374{
1375        char                    *dst_ptr;
1376
1377        ASSERT(numptrs >= 0);
1378        ASSERT(dir == 1 || dir == -1);
1379
1380        dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1381        memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1382}
1383
1384/*
1385 * Log key values from the btree block.
1386 */
1387STATIC void
1388xfs_btree_log_keys(
1389        struct xfs_btree_cur    *cur,
1390        struct xfs_buf          *bp,
1391        int                     first,
1392        int                     last)
1393{
1394        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1395        XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1396
1397        if (bp) {
1398                xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1399                xfs_trans_log_buf(cur->bc_tp, bp,
1400                                  xfs_btree_key_offset(cur, first),
1401                                  xfs_btree_key_offset(cur, last + 1) - 1);
1402        } else {
1403                xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1404                                xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1405        }
1406
1407        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1408}
1409
1410/*
1411 * Log record values from the btree block.
1412 */
1413void
1414xfs_btree_log_recs(
1415        struct xfs_btree_cur    *cur,
1416        struct xfs_buf          *bp,
1417        int                     first,
1418        int                     last)
1419{
1420        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1421        XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1422
1423        xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1424        xfs_trans_log_buf(cur->bc_tp, bp,
1425                          xfs_btree_rec_offset(cur, first),
1426                          xfs_btree_rec_offset(cur, last + 1) - 1);
1427
1428        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1429}
1430
1431/*
1432 * Log block pointer fields from a btree block (nonleaf).
1433 */
1434STATIC void
1435xfs_btree_log_ptrs(
1436        struct xfs_btree_cur    *cur,   /* btree cursor */
1437        struct xfs_buf          *bp,    /* buffer containing btree block */
1438        int                     first,  /* index of first pointer to log */
1439        int                     last)   /* index of last pointer to log */
1440{
1441        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1442        XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1443
1444        if (bp) {
1445                struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
1446                int                     level = xfs_btree_get_level(block);
1447
1448                xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1449                xfs_trans_log_buf(cur->bc_tp, bp,
1450                                xfs_btree_ptr_offset(cur, first, level),
1451                                xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1452        } else {
1453                xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1454                        xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1455        }
1456
1457        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1458}
1459
1460/*
1461 * Log fields from a btree block header.
1462 */
1463void
1464xfs_btree_log_block(
1465        struct xfs_btree_cur    *cur,   /* btree cursor */
1466        struct xfs_buf          *bp,    /* buffer containing btree block */
1467        int                     fields) /* mask of fields: XFS_BB_... */
1468{
1469        int                     first;  /* first byte offset logged */
1470        int                     last;   /* last byte offset logged */
1471        static const short      soffsets[] = {  /* table of offsets (short) */
1472                offsetof(struct xfs_btree_block, bb_magic),
1473                offsetof(struct xfs_btree_block, bb_level),
1474                offsetof(struct xfs_btree_block, bb_numrecs),
1475                offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1476                offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1477                offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1478                offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1479                offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1480                offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1481                offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1482                XFS_BTREE_SBLOCK_CRC_LEN
1483        };
1484        static const short      loffsets[] = {  /* table of offsets (long) */
1485                offsetof(struct xfs_btree_block, bb_magic),
1486                offsetof(struct xfs_btree_block, bb_level),
1487                offsetof(struct xfs_btree_block, bb_numrecs),
1488                offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1489                offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1490                offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1491                offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1492                offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1493                offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1494                offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1495                offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1496                XFS_BTREE_LBLOCK_CRC_LEN
1497        };
1498
1499        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1500        XFS_BTREE_TRACE_ARGBI(cur, bp, fields);
1501
1502        if (bp) {
1503                int nbits;
1504
1505                if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1506                        /*
1507                         * We don't log the CRC when updating a btree
1508                         * block but instead recreate it during log
1509                         * recovery.  As the log buffers have checksums
1510                         * of their own this is safe and avoids logging a crc
1511                         * update in a lot of places.
1512                         */
1513                        if (fields == XFS_BB_ALL_BITS)
1514                                fields = XFS_BB_ALL_BITS_CRC;
1515                        nbits = XFS_BB_NUM_BITS_CRC;
1516                } else {
1517                        nbits = XFS_BB_NUM_BITS;
1518                }
1519                xfs_btree_offsets(fields,
1520                                  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1521                                        loffsets : soffsets,
1522                                  nbits, &first, &last);
1523                xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1524                xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1525        } else {
1526                xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1527                        xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1528        }
1529
1530        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1531}
1532
1533/*
1534 * Increment cursor by one record at the level.
1535 * For nonzero levels the leaf-ward information is untouched.
1536 */
1537int                                             /* error */
1538xfs_btree_increment(
1539        struct xfs_btree_cur    *cur,
1540        int                     level,
1541        int                     *stat)          /* success/failure */
1542{
1543        struct xfs_btree_block  *block;
1544        union xfs_btree_ptr     ptr;
1545        struct xfs_buf          *bp;
1546        int                     error;          /* error return value */
1547        int                     lev;
1548
1549        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1550        XFS_BTREE_TRACE_ARGI(cur, level);
1551
1552        ASSERT(level < cur->bc_nlevels);
1553
1554        /* Read-ahead to the right at this level. */
1555        xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1556
1557        /* Get a pointer to the btree block. */
1558        block = xfs_btree_get_block(cur, level, &bp);
1559
1560#ifdef DEBUG
1561        error = xfs_btree_check_block(cur, block, level, bp);
1562        if (error)
1563                goto error0;
1564#endif
1565
1566        /* We're done if we remain in the block after the increment. */
1567        if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1568                goto out1;
1569
1570        /* Fail if we just went off the right edge of the tree. */
1571        xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1572        if (xfs_btree_ptr_is_null(cur, &ptr))
1573                goto out0;
1574
1575        XFS_BTREE_STATS_INC(cur, increment);
1576
1577        /*
1578         * March up the tree incrementing pointers.
1579         * Stop when we don't go off the right edge of a block.
1580         */
1581        for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1582                block = xfs_btree_get_block(cur, lev, &bp);
1583
1584#ifdef DEBUG
1585                error = xfs_btree_check_block(cur, block, lev, bp);
1586                if (error)
1587                        goto error0;
1588#endif
1589
1590                if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1591                        break;
1592
1593                /* Read-ahead the right block for the next loop. */
1594                xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1595        }
1596
1597        /*
1598         * If we went off the root then we are either seriously
1599         * confused or have the tree root in an inode.
1600         */
1601        if (lev == cur->bc_nlevels) {
1602                if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1603                        goto out0;
1604                ASSERT(0);
1605                error = -EFSCORRUPTED;
1606                goto error0;
1607        }
1608        ASSERT(lev < cur->bc_nlevels);
1609
1610        /*
1611         * Now walk back down the tree, fixing up the cursor's buffer
1612         * pointers and key numbers.
1613         */
1614        for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1615                union xfs_btree_ptr     *ptrp;
1616
1617                ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1618                --lev;
1619                error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1620                if (error)
1621                        goto error0;
1622
1623                xfs_btree_setbuf(cur, lev, bp);
1624                cur->bc_ptrs[lev] = 1;
1625        }
1626out1:
1627        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1628        *stat = 1;
1629        return 0;
1630
1631out0:
1632        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1633        *stat = 0;
1634        return 0;
1635
1636error0:
1637        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1638        return error;
1639}
1640
1641/*
1642 * Decrement cursor by one record at the level.
1643 * For nonzero levels the leaf-ward information is untouched.
1644 */
1645int                                             /* error */
1646xfs_btree_decrement(
1647        struct xfs_btree_cur    *cur,
1648        int                     level,
1649        int                     *stat)          /* success/failure */
1650{
1651        struct xfs_btree_block  *block;
1652        xfs_buf_t               *bp;
1653        int                     error;          /* error return value */
1654        int                     lev;
1655        union xfs_btree_ptr     ptr;
1656
1657        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1658        XFS_BTREE_TRACE_ARGI(cur, level);
1659
1660        ASSERT(level < cur->bc_nlevels);
1661
1662        /* Read-ahead to the left at this level. */
1663        xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1664
1665        /* We're done if we remain in the block after the decrement. */
1666        if (--cur->bc_ptrs[level] > 0)
1667                goto out1;
1668
1669        /* Get a pointer to the btree block. */
1670        block = xfs_btree_get_block(cur, level, &bp);
1671
1672#ifdef DEBUG
1673        error = xfs_btree_check_block(cur, block, level, bp);
1674        if (error)
1675                goto error0;
1676#endif
1677
1678        /* Fail if we just went off the left edge of the tree. */
1679        xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1680        if (xfs_btree_ptr_is_null(cur, &ptr))
1681                goto out0;
1682
1683        XFS_BTREE_STATS_INC(cur, decrement);
1684
1685        /*
1686         * March up the tree decrementing pointers.
1687         * Stop when we don't go off the left edge of a block.
1688         */
1689        for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1690                if (--cur->bc_ptrs[lev] > 0)
1691                        break;
1692                /* Read-ahead the left block for the next loop. */
1693                xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1694        }
1695
1696        /*
1697         * If we went off the root then we are seriously confused.
1698         * or the root of the tree is in an inode.
1699         */
1700        if (lev == cur->bc_nlevels) {
1701                if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1702                        goto out0;
1703                ASSERT(0);
1704                error = -EFSCORRUPTED;
1705                goto error0;
1706        }
1707        ASSERT(lev < cur->bc_nlevels);
1708
1709        /*
1710         * Now walk back down the tree, fixing up the cursor's buffer
1711         * pointers and key numbers.
1712         */
1713        for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1714                union xfs_btree_ptr     *ptrp;
1715
1716                ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1717                --lev;
1718                error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1719                if (error)
1720                        goto error0;
1721                xfs_btree_setbuf(cur, lev, bp);
1722                cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1723        }
1724out1:
1725        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1726        *stat = 1;
1727        return 0;
1728
1729out0:
1730        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1731        *stat = 0;
1732        return 0;
1733
1734error0:
1735        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1736        return error;
1737}
1738
1739STATIC int
1740xfs_btree_lookup_get_block(
1741        struct xfs_btree_cur    *cur,   /* btree cursor */
1742        int                     level,  /* level in the btree */
1743        union xfs_btree_ptr     *pp,    /* ptr to btree block */
1744        struct xfs_btree_block  **blkp) /* return btree block */
1745{
1746        struct xfs_buf          *bp;    /* buffer pointer for btree block */
1747        int                     error = 0;
1748
1749        /* special case the root block if in an inode */
1750        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1751            (level == cur->bc_nlevels - 1)) {
1752                *blkp = xfs_btree_get_iroot(cur);
1753                return 0;
1754        }
1755
1756        /*
1757         * If the old buffer at this level for the disk address we are
1758         * looking for re-use it.
1759         *
1760         * Otherwise throw it away and get a new one.
1761         */
1762        bp = cur->bc_bufs[level];
1763        if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
1764                *blkp = XFS_BUF_TO_BLOCK(bp);
1765                return 0;
1766        }
1767
1768        error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1769        if (error)
1770                return error;
1771
1772        /* Check the inode owner since the verifiers don't. */
1773        if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1774            (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1775            be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1776                        cur->bc_private.b.ip->i_ino)
1777                goto out_bad;
1778
1779        /* Did we get the level we were looking for? */
1780        if (be16_to_cpu((*blkp)->bb_level) != level)
1781                goto out_bad;
1782
1783        /* Check that internal nodes have at least one record. */
1784        if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1785                goto out_bad;
1786
1787        xfs_btree_setbuf(cur, level, bp);
1788        return 0;
1789
1790out_bad:
1791        *blkp = NULL;
1792        xfs_trans_brelse(cur->bc_tp, bp);
1793        return -EFSCORRUPTED;
1794}
1795
1796/*
1797 * Get current search key.  For level 0 we don't actually have a key
1798 * structure so we make one up from the record.  For all other levels
1799 * we just return the right key.
1800 */
1801STATIC union xfs_btree_key *
1802xfs_lookup_get_search_key(
1803        struct xfs_btree_cur    *cur,
1804        int                     level,
1805        int                     keyno,
1806        struct xfs_btree_block  *block,
1807        union xfs_btree_key     *kp)
1808{
1809        if (level == 0) {
1810                cur->bc_ops->init_key_from_rec(kp,
1811                                xfs_btree_rec_addr(cur, keyno, block));
1812                return kp;
1813        }
1814
1815        return xfs_btree_key_addr(cur, keyno, block);
1816}
1817
1818/*
1819 * Lookup the record.  The cursor is made to point to it, based on dir.
1820 * stat is set to 0 if can't find any such record, 1 for success.
1821 */
1822int                                     /* error */
1823xfs_btree_lookup(
1824        struct xfs_btree_cur    *cur,   /* btree cursor */
1825        xfs_lookup_t            dir,    /* <=, ==, or >= */
1826        int                     *stat)  /* success/failure */
1827{
1828        struct xfs_btree_block  *block; /* current btree block */
1829        __int64_t               diff;   /* difference for the current key */
1830        int                     error;  /* error return value */
1831        int                     keyno;  /* current key number */
1832        int                     level;  /* level in the btree */
1833        union xfs_btree_ptr     *pp;    /* ptr to btree block */
1834        union xfs_btree_ptr     ptr;    /* ptr to btree block */
1835
1836        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1837        XFS_BTREE_TRACE_ARGI(cur, dir);
1838
1839        XFS_BTREE_STATS_INC(cur, lookup);
1840
1841        /* No such thing as a zero-level tree. */
1842        if (cur->bc_nlevels == 0)
1843                return -EFSCORRUPTED;
1844
1845        block = NULL;
1846        keyno = 0;
1847
1848        /* initialise start pointer from cursor */
1849        cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1850        pp = &ptr;
1851
1852        /*
1853         * Iterate over each level in the btree, starting at the root.
1854         * For each level above the leaves, find the key we need, based
1855         * on the lookup record, then follow the corresponding block
1856         * pointer down to the next level.
1857         */
1858        for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1859                /* Get the block we need to do the lookup on. */
1860                error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1861                if (error)
1862                        goto error0;
1863
1864                if (diff == 0) {
1865                        /*
1866                         * If we already had a key match at a higher level, we
1867                         * know we need to use the first entry in this block.
1868                         */
1869                        keyno = 1;
1870                } else {
1871                        /* Otherwise search this block. Do a binary search. */
1872
1873                        int     high;   /* high entry number */
1874                        int     low;    /* low entry number */
1875
1876                        /* Set low and high entry numbers, 1-based. */
1877                        low = 1;
1878                        high = xfs_btree_get_numrecs(block);
1879                        if (!high) {
1880                                /* Block is empty, must be an empty leaf. */
1881                                ASSERT(level == 0 && cur->bc_nlevels == 1);
1882
1883                                cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1884                                XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1885                                *stat = 0;
1886                                return 0;
1887                        }
1888
1889                        /* Binary search the block. */
1890                        while (low <= high) {
1891                                union xfs_btree_key     key;
1892                                union xfs_btree_key     *kp;
1893
1894                                XFS_BTREE_STATS_INC(cur, compare);
1895
1896                                /* keyno is average of low and high. */
1897                                keyno = (low + high) >> 1;
1898
1899                                /* Get current search key */
1900                                kp = xfs_lookup_get_search_key(cur, level,
1901                                                keyno, block, &key);
1902
1903                                /*
1904                                 * Compute difference to get next direction:
1905                                 *  - less than, move right
1906                                 *  - greater than, move left
1907                                 *  - equal, we're done
1908                                 */
1909                                diff = cur->bc_ops->key_diff(cur, kp);
1910                                if (diff < 0)
1911                                        low = keyno + 1;
1912                                else if (diff > 0)
1913                                        high = keyno - 1;
1914                                else
1915                                        break;
1916                        }
1917                }
1918
1919                /*
1920                 * If there are more levels, set up for the next level
1921                 * by getting the block number and filling in the cursor.
1922                 */
1923                if (level > 0) {
1924                        /*
1925                         * If we moved left, need the previous key number,
1926                         * unless there isn't one.
1927                         */
1928                        if (diff > 0 && --keyno < 1)
1929                                keyno = 1;
1930                        pp = xfs_btree_ptr_addr(cur, keyno, block);
1931
1932#ifdef DEBUG
1933                        error = xfs_btree_check_ptr(cur, pp, 0, level);
1934                        if (error)
1935                                goto error0;
1936#endif
1937                        cur->bc_ptrs[level] = keyno;
1938                }
1939        }
1940
1941        /* Done with the search. See if we need to adjust the results. */
1942        if (dir != XFS_LOOKUP_LE && diff < 0) {
1943                keyno++;
1944                /*
1945                 * If ge search and we went off the end of the block, but it's
1946                 * not the last block, we're in the wrong block.
1947                 */
1948                xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1949                if (dir == XFS_LOOKUP_GE &&
1950                    keyno > xfs_btree_get_numrecs(block) &&
1951                    !xfs_btree_ptr_is_null(cur, &ptr)) {
1952                        int     i;
1953
1954                        cur->bc_ptrs[0] = keyno;
1955                        error = xfs_btree_increment(cur, 0, &i);
1956                        if (error)
1957                                goto error0;
1958                        XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1959                        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1960                        *stat = 1;
1961                        return 0;
1962                }
1963        } else if (dir == XFS_LOOKUP_LE && diff > 0)
1964                keyno--;
1965        cur->bc_ptrs[0] = keyno;
1966
1967        /* Return if we succeeded or not. */
1968        if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1969                *stat = 0;
1970        else if (dir != XFS_LOOKUP_EQ || diff == 0)
1971                *stat = 1;
1972        else
1973                *stat = 0;
1974        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1975        return 0;
1976
1977error0:
1978        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1979        return error;
1980}
1981
1982/* Find the high key storage area from a regular key. */
1983STATIC union xfs_btree_key *
1984xfs_btree_high_key_from_key(
1985        struct xfs_btree_cur    *cur,
1986        union xfs_btree_key     *key)
1987{
1988        ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1989        return (union xfs_btree_key *)((char *)key +
1990                        (cur->bc_ops->key_len / 2));
1991}
1992
1993/* Determine the low (and high if overlapped) keys of a leaf block */
1994STATIC void
1995xfs_btree_get_leaf_keys(
1996        struct xfs_btree_cur    *cur,
1997        struct xfs_btree_block  *block,
1998        union xfs_btree_key     *key)
1999{
2000        union xfs_btree_key     max_hkey;
2001        union xfs_btree_key     hkey;
2002        union xfs_btree_rec     *rec;
2003        union xfs_btree_key     *high;
2004        int                     n;
2005
2006        rec = xfs_btree_rec_addr(cur, 1, block);
2007        cur->bc_ops->init_key_from_rec(key, rec);
2008
2009        if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2010
2011                cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2012                for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2013                        rec = xfs_btree_rec_addr(cur, n, block);
2014                        cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2015                        if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2016                                        > 0)
2017                                max_hkey = hkey;
2018                }
2019
2020                high = xfs_btree_high_key_from_key(cur, key);
2021                memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2022        }
2023}
2024
2025/* Determine the low (and high if overlapped) keys of a node block */
2026STATIC void
2027xfs_btree_get_node_keys(
2028        struct xfs_btree_cur    *cur,
2029        struct xfs_btree_block  *block,
2030        union xfs_btree_key     *key)
2031{
2032        union xfs_btree_key     *hkey;
2033        union xfs_btree_key     *max_hkey;
2034        union xfs_btree_key     *high;
2035        int                     n;
2036
2037        if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2038                memcpy(key, xfs_btree_key_addr(cur, 1, block),
2039                                cur->bc_ops->key_len / 2);
2040
2041                max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2042                for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2043                        hkey = xfs_btree_high_key_addr(cur, n, block);
2044                        if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2045                                max_hkey = hkey;
2046                }
2047
2048                high = xfs_btree_high_key_from_key(cur, key);
2049                memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2050        } else {
2051                memcpy(key, xfs_btree_key_addr(cur, 1, block),
2052                                cur->bc_ops->key_len);
2053        }
2054}
2055
2056/* Derive the keys for any btree block. */
2057STATIC void
2058xfs_btree_get_keys(
2059        struct xfs_btree_cur    *cur,
2060        struct xfs_btree_block  *block,
2061        union xfs_btree_key     *key)
2062{
2063        if (be16_to_cpu(block->bb_level) == 0)
2064                xfs_btree_get_leaf_keys(cur, block, key);
2065        else
2066                xfs_btree_get_node_keys(cur, block, key);
2067}
2068
2069/*
2070 * Decide if we need to update the parent keys of a btree block.  For
2071 * a standard btree this is only necessary if we're updating the first
2072 * record/key.  For an overlapping btree, we must always update the
2073 * keys because the highest key can be in any of the records or keys
2074 * in the block.
2075 */
2076static inline bool
2077xfs_btree_needs_key_update(
2078        struct xfs_btree_cur    *cur,
2079        int                     ptr)
2080{
2081        return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2082}
2083
2084/*
2085 * Update the low and high parent keys of the given level, progressing
2086 * towards the root.  If force_all is false, stop if the keys for a given
2087 * level do not need updating.
2088 */
2089STATIC int
2090__xfs_btree_updkeys(
2091        struct xfs_btree_cur    *cur,
2092        int                     level,
2093        struct xfs_btree_block  *block,
2094        struct xfs_buf          *bp0,
2095        bool                    force_all)
2096{
2097        union xfs_btree_key     key;    /* keys from current level */
2098        union xfs_btree_key     *lkey;  /* keys from the next level up */
2099        union xfs_btree_key     *hkey;
2100        union xfs_btree_key     *nlkey; /* keys from the next level up */
2101        union xfs_btree_key     *nhkey;
2102        struct xfs_buf          *bp;
2103        int                     ptr;
2104
2105        ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2106
2107        /* Exit if there aren't any parent levels to update. */
2108        if (level + 1 >= cur->bc_nlevels)
2109                return 0;
2110
2111        trace_xfs_btree_updkeys(cur, level, bp0);
2112
2113        lkey = &key;
2114        hkey = xfs_btree_high_key_from_key(cur, lkey);
2115        xfs_btree_get_keys(cur, block, lkey);
2116        for (level++; level < cur->bc_nlevels; level++) {
2117#ifdef DEBUG
2118                int             error;
2119#endif
2120                block = xfs_btree_get_block(cur, level, &bp);
2121                trace_xfs_btree_updkeys(cur, level, bp);
2122#ifdef DEBUG
2123                error = xfs_btree_check_block(cur, block, level, bp);
2124                if (error) {
2125                        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2126                        return error;
2127                }
2128#endif
2129                ptr = cur->bc_ptrs[level];
2130                nlkey = xfs_btree_key_addr(cur, ptr, block);
2131                nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2132                if (!force_all &&
2133                    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2134                      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2135                        break;
2136                xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2137                xfs_btree_log_keys(cur, bp, ptr, ptr);
2138                if (level + 1 >= cur->bc_nlevels)
2139                        break;
2140                xfs_btree_get_node_keys(cur, block, lkey);
2141        }
2142
2143        return 0;
2144}
2145
2146/* Update all the keys from some level in cursor back to the root. */
2147STATIC int
2148xfs_btree_updkeys_force(
2149        struct xfs_btree_cur    *cur,
2150        int                     level)
2151{
2152        struct xfs_buf          *bp;
2153        struct xfs_btree_block  *block;
2154
2155        block = xfs_btree_get_block(cur, level, &bp);
2156        return __xfs_btree_updkeys(cur, level, block, bp, true);
2157}
2158
2159/*
2160 * Update the parent keys of the given level, progressing towards the root.
2161 */
2162STATIC int
2163xfs_btree_update_keys(
2164        struct xfs_btree_cur    *cur,
2165        int                     level)
2166{
2167        struct xfs_btree_block  *block;
2168        struct xfs_buf          *bp;
2169        union xfs_btree_key     *kp;
2170        union xfs_btree_key     key;
2171        int                     ptr;
2172
2173        ASSERT(level >= 0);
2174
2175        block = xfs_btree_get_block(cur, level, &bp);
2176        if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2177                return __xfs_btree_updkeys(cur, level, block, bp, false);
2178
2179        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2180        XFS_BTREE_TRACE_ARGIK(cur, level, keyp);
2181
2182        /*
2183         * Go up the tree from this level toward the root.
2184         * At each level, update the key value to the value input.
2185         * Stop when we reach a level where the cursor isn't pointing
2186         * at the first entry in the block.
2187         */
2188        xfs_btree_get_keys(cur, block, &key);
2189        for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2190#ifdef DEBUG
2191                int             error;
2192#endif
2193                block = xfs_btree_get_block(cur, level, &bp);
2194#ifdef DEBUG
2195                error = xfs_btree_check_block(cur, block, level, bp);
2196                if (error) {
2197                        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2198                        return error;
2199                }
2200#endif
2201                ptr = cur->bc_ptrs[level];
2202                kp = xfs_btree_key_addr(cur, ptr, block);
2203                xfs_btree_copy_keys(cur, kp, &key, 1);
2204                xfs_btree_log_keys(cur, bp, ptr, ptr);
2205        }
2206
2207        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2208        return 0;
2209}
2210
2211/*
2212 * Update the record referred to by cur to the value in the
2213 * given record. This either works (return 0) or gets an
2214 * EFSCORRUPTED error.
2215 */
2216int
2217xfs_btree_update(
2218        struct xfs_btree_cur    *cur,
2219        union xfs_btree_rec     *rec)
2220{
2221        struct xfs_btree_block  *block;
2222        struct xfs_buf          *bp;
2223        int                     error;
2224        int                     ptr;
2225        union xfs_btree_rec     *rp;
2226
2227        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2228        XFS_BTREE_TRACE_ARGR(cur, rec);
2229
2230        /* Pick up the current block. */
2231        block = xfs_btree_get_block(cur, 0, &bp);
2232
2233#ifdef DEBUG
2234        error = xfs_btree_check_block(cur, block, 0, bp);
2235        if (error)
2236                goto error0;
2237#endif
2238        /* Get the address of the rec to be updated. */
2239        ptr = cur->bc_ptrs[0];
2240        rp = xfs_btree_rec_addr(cur, ptr, block);
2241
2242        /* Fill in the new contents and log them. */
2243        xfs_btree_copy_recs(cur, rp, rec, 1);
2244        xfs_btree_log_recs(cur, bp, ptr, ptr);
2245
2246        /*
2247         * If we are tracking the last record in the tree and
2248         * we are at the far right edge of the tree, update it.
2249         */
2250        if (xfs_btree_is_lastrec(cur, block, 0)) {
2251                cur->bc_ops->update_lastrec(cur, block, rec,
2252                                            ptr, LASTREC_UPDATE);
2253        }
2254
2255        /* Pass new key value up to our parent. */
2256        if (xfs_btree_needs_key_update(cur, ptr)) {
2257                error = xfs_btree_update_keys(cur, 0);
2258                if (error)
2259                        goto error0;
2260        }
2261
2262        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2263        return 0;
2264
2265error0:
2266        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2267        return error;
2268}
2269
2270/*
2271 * Move 1 record left from cur/level if possible.
2272 * Update cur to reflect the new path.
2273 */
2274STATIC int                                      /* error */
2275xfs_btree_lshift(
2276        struct xfs_btree_cur    *cur,
2277        int                     level,
2278        int                     *stat)          /* success/failure */
2279{
2280        struct xfs_buf          *lbp;           /* left buffer pointer */
2281        struct xfs_btree_block  *left;          /* left btree block */
2282        int                     lrecs;          /* left record count */
2283        struct xfs_buf          *rbp;           /* right buffer pointer */
2284        struct xfs_btree_block  *right;         /* right btree block */
2285        struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2286        int                     rrecs;          /* right record count */
2287        union xfs_btree_ptr     lptr;           /* left btree pointer */
2288        union xfs_btree_key     *rkp = NULL;    /* right btree key */
2289        union xfs_btree_ptr     *rpp = NULL;    /* right address pointer */
2290        union xfs_btree_rec     *rrp = NULL;    /* right record pointer */
2291        int                     error;          /* error return value */
2292        int                     i;
2293
2294        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2295        XFS_BTREE_TRACE_ARGI(cur, level);
2296
2297        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2298            level == cur->bc_nlevels - 1)
2299                goto out0;
2300
2301        /* Set up variables for this block as "right". */
2302        right = xfs_btree_get_block(cur, level, &rbp);
2303
2304#ifdef DEBUG
2305        error = xfs_btree_check_block(cur, right, level, rbp);
2306        if (error)
2307                goto error0;
2308#endif
2309
2310        /* If we've got no left sibling then we can't shift an entry left. */
2311        xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2312        if (xfs_btree_ptr_is_null(cur, &lptr))
2313                goto out0;
2314
2315        /*
2316         * If the cursor entry is the one that would be moved, don't
2317         * do it... it's too complicated.
2318         */
2319        if (cur->bc_ptrs[level] <= 1)
2320                goto out0;
2321
2322        /* Set up the left neighbor as "left". */
2323        error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2324        if (error)
2325                goto error0;
2326
2327        /* If it's full, it can't take another entry. */
2328        lrecs = xfs_btree_get_numrecs(left);
2329        if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2330                goto out0;
2331
2332        rrecs = xfs_btree_get_numrecs(right);
2333
2334        /*
2335         * We add one entry to the left side and remove one for the right side.
2336         * Account for it here, the changes will be updated on disk and logged
2337         * later.
2338         */
2339        lrecs++;
2340        rrecs--;
2341
2342        XFS_BTREE_STATS_INC(cur, lshift);
2343        XFS_BTREE_STATS_ADD(cur, moves, 1);
2344
2345        /*
2346         * If non-leaf, copy a key and a ptr to the left block.
2347         * Log the changes to the left block.
2348         */
2349        if (level > 0) {
2350                /* It's a non-leaf.  Move keys and pointers. */
2351                union xfs_btree_key     *lkp;   /* left btree key */
2352                union xfs_btree_ptr     *lpp;   /* left address pointer */
2353
2354                lkp = xfs_btree_key_addr(cur, lrecs, left);
2355                rkp = xfs_btree_key_addr(cur, 1, right);
2356
2357                lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2358                rpp = xfs_btree_ptr_addr(cur, 1, right);
2359#ifdef DEBUG
2360                error = xfs_btree_check_ptr(cur, rpp, 0, level);
2361                if (error)
2362                        goto error0;
2363#endif
2364                xfs_btree_copy_keys(cur, lkp, rkp, 1);
2365                xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2366
2367                xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2368                xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2369
2370                ASSERT(cur->bc_ops->keys_inorder(cur,
2371                        xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2372        } else {
2373                /* It's a leaf.  Move records.  */
2374                union xfs_btree_rec     *lrp;   /* left record pointer */
2375
2376                lrp = xfs_btree_rec_addr(cur, lrecs, left);
2377                rrp = xfs_btree_rec_addr(cur, 1, right);
2378
2379                xfs_btree_copy_recs(cur, lrp, rrp, 1);
2380                xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2381
2382                ASSERT(cur->bc_ops->recs_inorder(cur,
2383                        xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2384        }
2385
2386        xfs_btree_set_numrecs(left, lrecs);
2387        xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2388
2389        xfs_btree_set_numrecs(right, rrecs);
2390        xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2391
2392        /*
2393         * Slide the contents of right down one entry.
2394         */
2395        XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2396        if (level > 0) {
2397                /* It's a nonleaf. operate on keys and ptrs */
2398#ifdef DEBUG
2399                int                     i;              /* loop index */
2400
2401                for (i = 0; i < rrecs; i++) {
2402                        error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
2403                        if (error)
2404                                goto error0;
2405                }
2406#endif
2407                xfs_btree_shift_keys(cur,
2408                                xfs_btree_key_addr(cur, 2, right),
2409                                -1, rrecs);
2410                xfs_btree_shift_ptrs(cur,
2411                                xfs_btree_ptr_addr(cur, 2, right),
2412                                -1, rrecs);
2413
2414                xfs_btree_log_keys(cur, rbp, 1, rrecs);
2415                xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2416        } else {
2417                /* It's a leaf. operate on records */
2418                xfs_btree_shift_recs(cur,
2419                        xfs_btree_rec_addr(cur, 2, right),
2420                        -1, rrecs);
2421                xfs_btree_log_recs(cur, rbp, 1, rrecs);
2422        }
2423
2424        /*
2425         * Using a temporary cursor, update the parent key values of the
2426         * block on the left.
2427         */
2428        if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2429                error = xfs_btree_dup_cursor(cur, &tcur);
2430                if (error)
2431                        goto error0;
2432                i = xfs_btree_firstrec(tcur, level);
2433                XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2434
2435                error = xfs_btree_decrement(tcur, level, &i);
2436                if (error)
2437                        goto error1;
2438
2439                /* Update the parent high keys of the left block, if needed. */
2440                error = xfs_btree_update_keys(tcur, level);
2441                if (error)
2442                        goto error1;
2443
2444                xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2445        }
2446
2447        /* Update the parent keys of the right block. */
2448        error = xfs_btree_update_keys(cur, level);
2449        if (error)
2450                goto error0;
2451
2452        /* Slide the cursor value left one. */
2453        cur->bc_ptrs[level]--;
2454
2455        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2456        *stat = 1;
2457        return 0;
2458
2459out0:
2460        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2461        *stat = 0;
2462        return 0;
2463
2464error0:
2465        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2466        return error;
2467
2468error1:
2469        XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2470        xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2471        return error;
2472}
2473
2474/*
2475 * Move 1 record right from cur/level if possible.
2476 * Update cur to reflect the new path.
2477 */
2478STATIC int                                      /* error */
2479xfs_btree_rshift(
2480        struct xfs_btree_cur    *cur,
2481        int                     level,
2482        int                     *stat)          /* success/failure */
2483{
2484        struct xfs_buf          *lbp;           /* left buffer pointer */
2485        struct xfs_btree_block  *left;          /* left btree block */
2486        struct xfs_buf          *rbp;           /* right buffer pointer */
2487        struct xfs_btree_block  *right;         /* right btree block */
2488        struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2489        union xfs_btree_ptr     rptr;           /* right block pointer */
2490        union xfs_btree_key     *rkp;           /* right btree key */
2491        int                     rrecs;          /* right record count */
2492        int                     lrecs;          /* left record count */
2493        int                     error;          /* error return value */
2494        int                     i;              /* loop counter */
2495
2496        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2497        XFS_BTREE_TRACE_ARGI(cur, level);
2498
2499        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2500            (level == cur->bc_nlevels - 1))
2501                goto out0;
2502
2503        /* Set up variables for this block as "left". */
2504        left = xfs_btree_get_block(cur, level, &lbp);
2505
2506#ifdef DEBUG
2507        error = xfs_btree_check_block(cur, left, level, lbp);
2508        if (error)
2509                goto error0;
2510#endif
2511
2512        /* If we've got no right sibling then we can't shift an entry right. */
2513        xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2514        if (xfs_btree_ptr_is_null(cur, &rptr))
2515                goto out0;
2516
2517        /*
2518         * If the cursor entry is the one that would be moved, don't
2519         * do it... it's too complicated.
2520         */
2521        lrecs = xfs_btree_get_numrecs(left);
2522        if (cur->bc_ptrs[level] >= lrecs)
2523                goto out0;
2524
2525        /* Set up the right neighbor as "right". */
2526        error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2527        if (error)
2528                goto error0;
2529
2530        /* If it's full, it can't take another entry. */
2531        rrecs = xfs_btree_get_numrecs(right);
2532        if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2533                goto out0;
2534
2535        XFS_BTREE_STATS_INC(cur, rshift);
2536        XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2537
2538        /*
2539         * Make a hole at the start of the right neighbor block, then
2540         * copy the last left block entry to the hole.
2541         */
2542        if (level > 0) {
2543                /* It's a nonleaf. make a hole in the keys and ptrs */
2544                union xfs_btree_key     *lkp;
2545                union xfs_btree_ptr     *lpp;
2546                union xfs_btree_ptr     *rpp;
2547
2548                lkp = xfs_btree_key_addr(cur, lrecs, left);
2549                lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2550                rkp = xfs_btree_key_addr(cur, 1, right);
2551                rpp = xfs_btree_ptr_addr(cur, 1, right);
2552
2553#ifdef DEBUG
2554                for (i = rrecs - 1; i >= 0; i--) {
2555                        error = xfs_btree_check_ptr(cur, rpp, i, level);
2556                        if (error)
2557                                goto error0;
2558                }
2559#endif
2560
2561                xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2562                xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2563
2564#ifdef DEBUG
2565                error = xfs_btree_check_ptr(cur, lpp, 0, level);
2566                if (error)
2567                        goto error0;
2568#endif
2569
2570                /* Now put the new data in, and log it. */
2571                xfs_btree_copy_keys(cur, rkp, lkp, 1);
2572                xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2573
2574                xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2575                xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2576
2577                ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2578                        xfs_btree_key_addr(cur, 2, right)));
2579        } else {
2580                /* It's a leaf. make a hole in the records */
2581                union xfs_btree_rec     *lrp;
2582                union xfs_btree_rec     *rrp;
2583
2584                lrp = xfs_btree_rec_addr(cur, lrecs, left);
2585                rrp = xfs_btree_rec_addr(cur, 1, right);
2586
2587                xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2588
2589                /* Now put the new data in, and log it. */
2590                xfs_btree_copy_recs(cur, rrp, lrp, 1);
2591                xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2592        }
2593
2594        /*
2595         * Decrement and log left's numrecs, bump and log right's numrecs.
2596         */
2597        xfs_btree_set_numrecs(left, --lrecs);
2598        xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2599
2600        xfs_btree_set_numrecs(right, ++rrecs);
2601        xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2602
2603        /*
2604         * Using a temporary cursor, update the parent key values of the
2605         * block on the right.
2606         */
2607        error = xfs_btree_dup_cursor(cur, &tcur);
2608        if (error)
2609                goto error0;
2610        i = xfs_btree_lastrec(tcur, level);
2611        XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2612
2613        error = xfs_btree_increment(tcur, level, &i);
2614        if (error)
2615                goto error1;
2616
2617        /* Update the parent high keys of the left block, if needed. */
2618        if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2619                error = xfs_btree_update_keys(cur, level);
2620                if (error)
2621                        goto error1;
2622        }
2623
2624        /* Update the parent keys of the right block. */
2625        error = xfs_btree_update_keys(tcur, level);
2626        if (error)
2627                goto error1;
2628
2629        xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2630
2631        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2632        *stat = 1;
2633        return 0;
2634
2635out0:
2636        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2637        *stat = 0;
2638        return 0;
2639
2640error0:
2641        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2642        return error;
2643
2644error1:
2645        XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2646        xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2647        return error;
2648}
2649
2650/*
2651 * Split cur/level block in half.
2652 * Return new block number and the key to its first
2653 * record (to be inserted into parent).
2654 */
2655STATIC int                                      /* error */
2656__xfs_btree_split(
2657        struct xfs_btree_cur    *cur,
2658        int                     level,
2659        union xfs_btree_ptr     *ptrp,
2660        union xfs_btree_key     *key,
2661        struct xfs_btree_cur    **curp,
2662        int                     *stat)          /* success/failure */
2663{
2664        union xfs_btree_ptr     lptr;           /* left sibling block ptr */
2665        struct xfs_buf          *lbp;           /* left buffer pointer */
2666        struct xfs_btree_block  *left;          /* left btree block */
2667        union xfs_btree_ptr     rptr;           /* right sibling block ptr */
2668        struct xfs_buf          *rbp;           /* right buffer pointer */
2669        struct xfs_btree_block  *right;         /* right btree block */
2670        union xfs_btree_ptr     rrptr;          /* right-right sibling ptr */
2671        struct xfs_buf          *rrbp;          /* right-right buffer pointer */
2672        struct xfs_btree_block  *rrblock;       /* right-right btree block */
2673        int                     lrecs;
2674        int                     rrecs;
2675        int                     src_index;
2676        int                     error;          /* error return value */
2677#ifdef DEBUG
2678        int                     i;
2679#endif
2680
2681        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2682        XFS_BTREE_TRACE_ARGIPK(cur, level, *ptrp, key);
2683
2684        XFS_BTREE_STATS_INC(cur, split);
2685
2686        /* Set up left block (current one). */
2687        left = xfs_btree_get_block(cur, level, &lbp);
2688
2689#ifdef DEBUG
2690        error = xfs_btree_check_block(cur, left, level, lbp);
2691        if (error)
2692                goto error0;
2693#endif
2694
2695        xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2696
2697        /* Allocate the new block. If we can't do it, we're toast. Give up. */
2698        error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2699        if (error)
2700                goto error0;
2701        if (*stat == 0)
2702                goto out0;
2703        XFS_BTREE_STATS_INC(cur, alloc);
2704
2705        /* Set up the new block as "right". */
2706        error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2707        if (error)
2708                goto error0;
2709
2710        /* Fill in the btree header for the new right block. */
2711        xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2712
2713        /*
2714         * Split the entries between the old and the new block evenly.
2715         * Make sure that if there's an odd number of entries now, that
2716         * each new block will have the same number of entries.
2717         */
2718        lrecs = xfs_btree_get_numrecs(left);
2719        rrecs = lrecs / 2;
2720        if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2721                rrecs++;
2722        src_index = (lrecs - rrecs + 1);
2723
2724        XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2725
2726        /* Adjust numrecs for the later get_*_keys() calls. */
2727        lrecs -= rrecs;
2728        xfs_btree_set_numrecs(left, lrecs);
2729        xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2730
2731        /*
2732         * Copy btree block entries from the left block over to the
2733         * new block, the right. Update the right block and log the
2734         * changes.
2735         */
2736        if (level > 0) {
2737                /* It's a non-leaf.  Move keys and pointers. */
2738                union xfs_btree_key     *lkp;   /* left btree key */
2739                union xfs_btree_ptr     *lpp;   /* left address pointer */
2740                union xfs_btree_key     *rkp;   /* right btree key */
2741                union xfs_btree_ptr     *rpp;   /* right address pointer */
2742
2743                lkp = xfs_btree_key_addr(cur, src_index, left);
2744                lpp = xfs_btree_ptr_addr(cur, src_index, left);
2745                rkp = xfs_btree_key_addr(cur, 1, right);
2746                rpp = xfs_btree_ptr_addr(cur, 1, right);
2747
2748#ifdef DEBUG
2749                for (i = src_index; i < rrecs; i++) {
2750                        error = xfs_btree_check_ptr(cur, lpp, i, level);
2751                        if (error)
2752                                goto error0;
2753                }
2754#endif
2755
2756                /* Copy the keys & pointers to the new block. */
2757                xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2758                xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2759
2760                xfs_btree_log_keys(cur, rbp, 1, rrecs);
2761                xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2762
2763                /* Stash the keys of the new block for later insertion. */
2764                xfs_btree_get_node_keys(cur, right, key);
2765        } else {
2766                /* It's a leaf.  Move records.  */
2767                union xfs_btree_rec     *lrp;   /* left record pointer */
2768                union xfs_btree_rec     *rrp;   /* right record pointer */
2769
2770                lrp = xfs_btree_rec_addr(cur, src_index, left);
2771                rrp = xfs_btree_rec_addr(cur, 1, right);
2772
2773                /* Copy records to the new block. */
2774                xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2775                xfs_btree_log_recs(cur, rbp, 1, rrecs);
2776
2777                /* Stash the keys of the new block for later insertion. */
2778                xfs_btree_get_leaf_keys(cur, right, key);
2779        }
2780
2781        /*
2782         * Find the left block number by looking in the buffer.
2783         * Adjust sibling pointers.
2784         */
2785        xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2786        xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2787        xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2788        xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2789
2790        xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2791        xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2792
2793        /*
2794         * If there's a block to the new block's right, make that block
2795         * point back to right instead of to left.
2796         */
2797        if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2798                error = xfs_btree_read_buf_block(cur, &rrptr,
2799                                                        0, &rrblock, &rrbp);
2800                if (error)
2801                        goto error0;
2802                xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2803                xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2804        }
2805
2806        /* Update the parent high keys of the left block, if needed. */
2807        if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2808                error = xfs_btree_update_keys(cur, level);
2809                if (error)
2810                        goto error0;
2811        }
2812
2813        /*
2814         * If the cursor is really in the right block, move it there.
2815         * If it's just pointing past the last entry in left, then we'll
2816         * insert there, so don't change anything in that case.
2817         */
2818        if (cur->bc_ptrs[level] > lrecs + 1) {
2819                xfs_btree_setbuf(cur, level, rbp);
2820                cur->bc_ptrs[level] -= lrecs;
2821        }
2822        /*
2823         * If there are more levels, we'll need another cursor which refers
2824         * the right block, no matter where this cursor was.
2825         */
2826        if (level + 1 < cur->bc_nlevels) {
2827                error = xfs_btree_dup_cursor(cur, curp);
2828                if (error)
2829                        goto error0;
2830                (*curp)->bc_ptrs[level + 1]++;
2831        }
2832        *ptrp = rptr;
2833        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2834        *stat = 1;
2835        return 0;
2836out0:
2837        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2838        *stat = 0;
2839        return 0;
2840
2841error0:
2842        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2843        return error;
2844}
2845
2846struct xfs_btree_split_args {
2847        struct xfs_btree_cur    *cur;
2848        int                     level;
2849        union xfs_btree_ptr     *ptrp;
2850        union xfs_btree_key     *key;
2851        struct xfs_btree_cur    **curp;
2852        int                     *stat;          /* success/failure */
2853        int                     result;
2854        bool                    kswapd; /* allocation in kswapd context */
2855        struct completion       *done;
2856        struct work_struct      work;
2857};
2858
2859/*
2860 * Stack switching interfaces for allocation
2861 */
2862static void
2863xfs_btree_split_worker(
2864        struct work_struct      *work)
2865{
2866        struct xfs_btree_split_args     *args = container_of(work,
2867                                                struct xfs_btree_split_args, work);
2868        unsigned long           pflags;
2869        unsigned long           new_pflags = PF_FSTRANS;
2870
2871        /*
2872         * we are in a transaction context here, but may also be doing work
2873         * in kswapd context, and hence we may need to inherit that state
2874         * temporarily to ensure that we don't block waiting for memory reclaim
2875         * in any way.
2876         */
2877        if (args->kswapd)
2878                new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2879
2880        current_set_flags_nested(&pflags, new_pflags);
2881
2882        args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2883                                         args->key, args->curp, args->stat);
2884        complete(args->done);
2885
2886        current_restore_flags_nested(&pflags, new_pflags);
2887}
2888
2889/*
2890 * BMBT split requests often come in with little stack to work on. Push
2891 * them off to a worker thread so there is lots of stack to use. For the other
2892 * btree types, just call directly to avoid the context switch overhead here.
2893 */
2894STATIC int                                      /* error */
2895xfs_btree_split(
2896        struct xfs_btree_cur    *cur,
2897        int                     level,
2898        union xfs_btree_ptr     *ptrp,
2899        union xfs_btree_key     *key,
2900        struct xfs_btree_cur    **curp,
2901        int                     *stat)          /* success/failure */
2902{
2903        struct xfs_btree_split_args     args;
2904        DECLARE_COMPLETION_ONSTACK(done);
2905
2906        if (cur->bc_btnum != XFS_BTNUM_BMAP)
2907                return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2908
2909        args.cur = cur;
2910        args.level = level;
2911        args.ptrp = ptrp;
2912        args.key = key;
2913        args.curp = curp;
2914        args.stat = stat;
2915        args.done = &done;
2916        args.kswapd = current_is_kswapd();
2917        INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2918        queue_work(xfs_alloc_wq, &args.work);
2919        wait_for_completion(&done);
2920        destroy_work_on_stack(&args.work);
2921        return args.result;
2922}
2923
2924
2925/*
2926 * Copy the old inode root contents into a real block and make the
2927 * broot point to it.
2928 */
2929int                                             /* error */
2930xfs_btree_new_iroot(
2931        struct xfs_btree_cur    *cur,           /* btree cursor */
2932        int                     *logflags,      /* logging flags for inode */
2933        int                     *stat)          /* return status - 0 fail */
2934{
2935        struct xfs_buf          *cbp;           /* buffer for cblock */
2936        struct xfs_btree_block  *block;         /* btree block */
2937        struct xfs_btree_block  *cblock;        /* child btree block */
2938        union xfs_btree_key     *ckp;           /* child key pointer */
2939        union xfs_btree_ptr     *cpp;           /* child ptr pointer */
2940        union xfs_btree_key     *kp;            /* pointer to btree key */
2941        union xfs_btree_ptr     *pp;            /* pointer to block addr */
2942        union xfs_btree_ptr     nptr;           /* new block addr */
2943        int                     level;          /* btree level */
2944        int                     error;          /* error return code */
2945#ifdef DEBUG
2946        int                     i;              /* loop counter */
2947#endif
2948
2949        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2950        XFS_BTREE_STATS_INC(cur, newroot);
2951
2952        ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2953
2954        level = cur->bc_nlevels - 1;
2955
2956        block = xfs_btree_get_iroot(cur);
2957        pp = xfs_btree_ptr_addr(cur, 1, block);
2958
2959        /* Allocate the new block. If we can't do it, we're toast. Give up. */
2960        error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2961        if (error)
2962                goto error0;
2963        if (*stat == 0) {
2964                XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2965                return 0;
2966        }
2967        XFS_BTREE_STATS_INC(cur, alloc);
2968
2969        /* Copy the root into a real block. */
2970        error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
2971        if (error)
2972                goto error0;
2973
2974        /*
2975         * we can't just memcpy() the root in for CRC enabled btree blocks.
2976         * In that case have to also ensure the blkno remains correct
2977         */
2978        memcpy(cblock, block, xfs_btree_block_len(cur));
2979        if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2980                if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2981                        cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2982                else
2983                        cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2984        }
2985
2986        be16_add_cpu(&block->bb_level, 1);
2987        xfs_btree_set_numrecs(block, 1);
2988        cur->bc_nlevels++;
2989        cur->bc_ptrs[level + 1] = 1;
2990
2991        kp = xfs_btree_key_addr(cur, 1, block);
2992        ckp = xfs_btree_key_addr(cur, 1, cblock);
2993        xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2994
2995        cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2996#ifdef DEBUG
2997        for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2998                error = xfs_btree_check_ptr(cur, pp, i, level);
2999                if (error)
3000                        goto error0;
3001        }
3002#endif
3003        xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3004
3005#ifdef DEBUG
3006        error = xfs_btree_check_ptr(cur, &nptr, 0, level);
3007        if (error)
3008                goto error0;
3009#endif
3010        xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3011
3012        xfs_iroot_realloc(cur->bc_private.b.ip,
3013                          1 - xfs_btree_get_numrecs(cblock),
3014                          cur->bc_private.b.whichfork);
3015
3016        xfs_btree_setbuf(cur, level, cbp);
3017
3018        /*
3019         * Do all this logging at the end so that
3020         * the root is at the right level.
3021         */
3022        xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3023        xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3024        xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3025
3026        *logflags |=
3027                XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3028        *stat = 1;
3029        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3030        return 0;
3031error0:
3032        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3033        return error;
3034}
3035
3036/*
3037 * Allocate a new root block, fill it in.
3038 */
3039STATIC int                              /* error */
3040xfs_btree_new_root(
3041        struct xfs_btree_cur    *cur,   /* btree cursor */
3042        int                     *stat)  /* success/failure */
3043{
3044        struct xfs_btree_block  *block; /* one half of the old root block */
3045        struct xfs_buf          *bp;    /* buffer containing block */
3046        int                     error;  /* error return value */
3047        struct xfs_buf          *lbp;   /* left buffer pointer */
3048        struct xfs_btree_block  *left;  /* left btree block */
3049        struct xfs_buf          *nbp;   /* new (root) buffer */
3050        struct xfs_btree_block  *new;   /* new (root) btree block */
3051        int                     nptr;   /* new value for key index, 1 or 2 */
3052        struct xfs_buf          *rbp;   /* right buffer pointer */
3053        struct xfs_btree_block  *right; /* right btree block */
3054        union xfs_btree_ptr     rptr;
3055        union xfs_btree_ptr     lptr;
3056
3057        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3058        XFS_BTREE_STATS_INC(cur, newroot);
3059
3060        /* initialise our start point from the cursor */
3061        cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3062
3063        /* Allocate the new block. If we can't do it, we're toast. Give up. */
3064        error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3065        if (error)
3066                goto error0;
3067        if (*stat == 0)
3068                goto out0;
3069        XFS_BTREE_STATS_INC(cur, alloc);
3070
3071        /* Set up the new block. */
3072        error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3073        if (error)
3074                goto error0;
3075
3076        /* Set the root in the holding structure  increasing the level by 1. */
3077        cur->bc_ops->set_root(cur, &lptr, 1);
3078
3079        /*
3080         * At the previous root level there are now two blocks: the old root,
3081         * and the new block generated when it was split.  We don't know which
3082         * one the cursor is pointing at, so we set up variables "left" and
3083         * "right" for each case.
3084         */
3085        block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3086
3087#ifdef DEBUG
3088        error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3089        if (error)
3090                goto error0;
3091#endif
3092
3093        xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3094        if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3095                /* Our block is left, pick up the right block. */
3096                lbp = bp;
3097                xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3098                left = block;
3099                error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3100                if (error)
3101                        goto error0;
3102                bp = rbp;
3103                nptr = 1;
3104        } else {
3105                /* Our block is right, pick up the left block. */
3106                rbp = bp;
3107                xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3108                right = block;
3109                xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3110                error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3111                if (error)
3112                        goto error0;
3113                bp = lbp;
3114                nptr = 2;
3115        }
3116
3117        /* Fill in the new block's btree header and log it. */
3118        xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3119        xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3120        ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3121                        !xfs_btree_ptr_is_null(cur, &rptr));
3122
3123        /* Fill in the key data in the new root. */
3124        if (xfs_btree_get_level(left) > 0) {
3125                /*
3126                 * Get the keys for the left block's keys and put them directly
3127                 * in the parent block.  Do the same for the right block.
3128                 */
3129                xfs_btree_get_node_keys(cur, left,
3130                                xfs_btree_key_addr(cur, 1, new));
3131                xfs_btree_get_node_keys(cur, right,
3132                                xfs_btree_key_addr(cur, 2, new));
3133        } else {
3134                /*
3135                 * Get the keys for the left block's records and put them
3136                 * directly in the parent block.  Do the same for the right
3137                 * block.
3138                 */
3139                xfs_btree_get_leaf_keys(cur, left,
3140                        xfs_btree_key_addr(cur, 1, new));
3141                xfs_btree_get_leaf_keys(cur, right,
3142                        xfs_btree_key_addr(cur, 2, new));
3143        }
3144        xfs_btree_log_keys(cur, nbp, 1, 2);
3145
3146        /* Fill in the pointer data in the new root. */
3147        xfs_btree_copy_ptrs(cur,
3148                xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3149        xfs_btree_copy_ptrs(cur,
3150                xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3151        xfs_btree_log_ptrs(cur, nbp, 1, 2);
3152
3153        /* Fix up the cursor. */
3154        xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3155        cur->bc_ptrs[cur->bc_nlevels] = nptr;
3156        cur->bc_nlevels++;
3157        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3158        *stat = 1;
3159        return 0;
3160error0:
3161        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3162        return error;
3163out0:
3164        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3165        *stat = 0;
3166        return 0;
3167}
3168
3169STATIC int
3170xfs_btree_make_block_unfull(
3171        struct xfs_btree_cur    *cur,   /* btree cursor */
3172        int                     level,  /* btree level */
3173        int                     numrecs,/* # of recs in block */
3174        int                     *oindex,/* old tree index */
3175        int                     *index, /* new tree index */
3176        union xfs_btree_ptr     *nptr,  /* new btree ptr */
3177        struct xfs_btree_cur    **ncur, /* new btree cursor */
3178        union xfs_btree_key     *key,   /* key of new block */
3179        int                     *stat)
3180{
3181        int                     error = 0;
3182
3183        if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3184            level == cur->bc_nlevels - 1) {
3185                struct xfs_inode *ip = cur->bc_private.b.ip;
3186
3187                if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3188                        /* A root block that can be made bigger. */
3189                        xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3190                        *stat = 1;
3191                } else {
3192                        /* A root block that needs replacing */
3193                        int     logflags = 0;
3194
3195                        error = xfs_btree_new_iroot(cur, &logflags, stat);
3196                        if (error || *stat == 0)
3197                                return error;
3198
3199                        xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3200                }
3201
3202                return 0;
3203        }
3204
3205        /* First, try shifting an entry to the right neighbor. */
3206        error = xfs_btree_rshift(cur, level, stat);
3207        if (error || *stat)
3208                return error;
3209
3210        /* Next, try shifting an entry to the left neighbor. */
3211        error = xfs_btree_lshift(cur, level, stat);
3212        if (error)
3213                return error;
3214
3215        if (*stat) {
3216                *oindex = *index = cur->bc_ptrs[level];
3217                return 0;
3218        }
3219
3220        /*
3221         * Next, try splitting the current block in half.
3222         *
3223         * If this works we have to re-set our variables because we
3224         * could be in a different block now.
3225         */
3226        error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3227        if (error || *stat == 0)
3228                return error;
3229
3230
3231        *index = cur->bc_ptrs[level];
3232        return 0;
3233}
3234
3235/*
3236 * Insert one record/level.  Return information to the caller
3237 * allowing the next level up to proceed if necessary.
3238 */
3239STATIC int
3240xfs_btree_insrec(
3241        struct xfs_btree_cur    *cur,   /* btree cursor */
3242        int                     level,  /* level to insert record at */
3243        union xfs_btree_ptr     *ptrp,  /* i/o: block number inserted */
3244        union xfs_btree_rec     *rec,   /* record to insert */
3245        union xfs_btree_key     *key,   /* i/o: block key for ptrp */
3246        struct xfs_btree_cur    **curp, /* output: new cursor replacing cur */
3247        int                     *stat)  /* success/failure */
3248{
3249        struct xfs_btree_block  *block; /* btree block */
3250        struct xfs_buf          *bp;    /* buffer for block */
3251        union xfs_btree_ptr     nptr;   /* new block ptr */
3252        struct xfs_btree_cur    *ncur;  /* new btree cursor */
3253        union xfs_btree_key     nkey;   /* new block key */
3254        union xfs_btree_key     *lkey;
3255        int                     optr;   /* old key/record index */
3256        int                     ptr;    /* key/record index */
3257        int                     numrecs;/* number of records */
3258        int                     error;  /* error return value */
3259#ifdef DEBUG
3260        int                     i;
3261#endif
3262        xfs_daddr_t             old_bn;
3263
3264        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3265        XFS_BTREE_TRACE_ARGIPR(cur, level, *ptrp, &rec);
3266
3267        ncur = NULL;
3268        lkey = &nkey;
3269
3270        /*
3271         * If we have an external root pointer, and we've made it to the
3272         * root level, allocate a new root block and we're done.
3273         */
3274        if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3275            (level >= cur->bc_nlevels)) {
3276                error = xfs_btree_new_root(cur, stat);
3277                xfs_btree_set_ptr_null(cur, ptrp);
3278
3279                XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3280                return error;
3281        }
3282
3283        /* If we're off the left edge, return failure. */
3284        ptr = cur->bc_ptrs[level];
3285        if (ptr == 0) {
3286                XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3287                *stat = 0;
3288                return 0;
3289        }
3290
3291        optr = ptr;
3292
3293        XFS_BTREE_STATS_INC(cur, insrec);
3294
3295        /* Get pointers to the btree buffer and block. */
3296        block = xfs_btree_get_block(cur, level, &bp);
3297        old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3298        numrecs = xfs_btree_get_numrecs(block);
3299
3300#ifdef DEBUG
3301        error = xfs_btree_check_block(cur, block, level, bp);
3302        if (error)
3303                goto error0;
3304
3305        /* Check that the new entry is being inserted in the right place. */
3306        if (ptr <= numrecs) {
3307                if (level == 0) {
3308                        ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3309                                xfs_btree_rec_addr(cur, ptr, block)));
3310                } else {
3311                        ASSERT(cur->bc_ops->keys_inorder(cur, key,
3312                                xfs_btree_key_addr(cur, ptr, block)));
3313                }
3314        }
3315#endif
3316
3317        /*
3318         * If the block is full, we can't insert the new entry until we
3319         * make the block un-full.
3320         */
3321        xfs_btree_set_ptr_null(cur, &nptr);
3322        if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3323                error = xfs_btree_make_block_unfull(cur, level, numrecs,
3324                                        &optr, &ptr, &nptr, &ncur, lkey, stat);
3325                if (error || *stat == 0)
3326                        goto error0;
3327        }
3328
3329        /*
3330         * The current block may have changed if the block was
3331         * previously full and we have just made space in it.
3332         */
3333        block = xfs_btree_get_block(cur, level, &bp);
3334        numrecs = xfs_btree_get_numrecs(block);
3335
3336#ifdef DEBUG
3337        error = xfs_btree_check_block(cur, block, level, bp);
3338        if (error)
3339                return error;
3340#endif
3341
3342        /*
3343         * At this point we know there's room for our new entry in the block
3344         * we're pointing at.
3345         */
3346        XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3347
3348        if (level > 0) {
3349                /* It's a nonleaf. make a hole in the keys and ptrs */
3350                union xfs_btree_key     *kp;
3351                union xfs_btree_ptr     *pp;
3352
3353                kp = xfs_btree_key_addr(cur, ptr, block);
3354                pp = xfs_btree_ptr_addr(cur, ptr, block);
3355
3356#ifdef DEBUG
3357                for (i = numrecs - ptr; i >= 0; i--) {
3358                        error = xfs_btree_check_ptr(cur, pp, i, level);
3359                        if (error)
3360                                return error;
3361                }
3362#endif
3363
3364                xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3365                xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3366
3367#ifdef DEBUG
3368                error = xfs_btree_check_ptr(cur, ptrp, 0, level);
3369                if (error)
3370                        goto error0;
3371#endif
3372
3373                /* Now put the new data in, bump numrecs and log it. */
3374                xfs_btree_copy_keys(cur, kp, key, 1);
3375                xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3376                numrecs++;
3377                xfs_btree_set_numrecs(block, numrecs);
3378                xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3379                xfs_btree_log_keys(cur, bp, ptr, numrecs);
3380#ifdef DEBUG
3381                if (ptr < numrecs) {
3382                        ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3383                                xfs_btree_key_addr(cur, ptr + 1, block)));
3384                }
3385#endif
3386        } else {
3387                /* It's a leaf. make a hole in the records */
3388                union xfs_btree_rec             *rp;
3389
3390                rp = xfs_btree_rec_addr(cur, ptr, block);
3391
3392                xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3393
3394                /* Now put the new data in, bump numrecs and log it. */
3395                xfs_btree_copy_recs(cur, rp, rec, 1);
3396                xfs_btree_set_numrecs(block, ++numrecs);
3397                xfs_btree_log_recs(cur, bp, ptr, numrecs);
3398#ifdef DEBUG
3399                if (ptr < numrecs) {
3400                        ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3401                                xfs_btree_rec_addr(cur, ptr + 1, block)));
3402                }
3403#endif
3404        }
3405
3406        /* Log the new number of records in the btree header. */
3407        xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3408
3409        /*
3410         * If we just inserted into a new tree block, we have to
3411         * recalculate nkey here because nkey is out of date.
3412         *
3413         * Otherwise we're just updating an existing block (having shoved
3414         * some records into the new tree block), so use the regular key
3415         * update mechanism.
3416         */
3417        if (bp && bp->b_bn != old_bn) {
3418                xfs_btree_get_keys(cur, block, lkey);
3419        } else if (xfs_btree_needs_key_update(cur, optr)) {
3420                error = xfs_btree_update_keys(cur, level);
3421                if (error)
3422                        goto error0;
3423        }
3424
3425        /*
3426         * If we are tracking the last record in the tree and
3427         * we are at the far right edge of the tree, update it.
3428         */
3429        if (xfs_btree_is_lastrec(cur, block, level)) {
3430                cur->bc_ops->update_lastrec(cur, block, rec,
3431                                            ptr, LASTREC_INSREC);
3432        }
3433
3434        /*
3435         * Return the new block number, if any.
3436         * If there is one, give back a record value and a cursor too.
3437         */
3438        *ptrp = nptr;
3439        if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3440                xfs_btree_copy_keys(cur, key, lkey, 1);
3441                *curp = ncur;
3442        }
3443
3444        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3445        *stat = 1;
3446        return 0;
3447
3448error0:
3449        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3450        return error;
3451}
3452
3453/*
3454 * Insert the record at the point referenced by cur.
3455 *
3456 * A multi-level split of the tree on insert will invalidate the original
3457 * cursor.  All callers of this function should assume that the cursor is
3458 * no longer valid and revalidate it.
3459 */
3460int
3461xfs_btree_insert(
3462        struct xfs_btree_cur    *cur,
3463        int                     *stat)
3464{
3465        int                     error;  /* error return value */
3466        int                     i;      /* result value, 0 for failure */
3467        int                     level;  /* current level number in btree */
3468        union xfs_btree_ptr     nptr;   /* new block number (split result) */
3469        struct xfs_btree_cur    *ncur;  /* new cursor (split result) */
3470        struct xfs_btree_cur    *pcur;  /* previous level's cursor */
3471        union xfs_btree_key     bkey;   /* key of block to insert */
3472        union xfs_btree_key     *key;
3473        union xfs_btree_rec     rec;    /* record to insert */
3474
3475        level = 0;
3476        ncur = NULL;
3477        pcur = cur;
3478        key = &bkey;
3479
3480        xfs_btree_set_ptr_null(cur, &nptr);
3481
3482        /* Make a key out of the record data to be inserted, and save it. */
3483        cur->bc_ops->init_rec_from_cur(cur, &rec);
3484        cur->bc_ops->init_key_from_rec(key, &rec);
3485
3486        /*
3487         * Loop going up the tree, starting at the leaf level.
3488         * Stop when we don't get a split block, that must mean that
3489         * the insert is finished with this level.
3490         */
3491        do {
3492                /*
3493                 * Insert nrec/nptr into this level of the tree.
3494                 * Note if we fail, nptr will be null.
3495                 */
3496                error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3497                                &ncur, &i);
3498                if (error) {
3499                        if (pcur != cur)
3500                                xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3501                        goto error0;
3502                }
3503
3504                XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3505                level++;
3506
3507                /*
3508                 * See if the cursor we just used is trash.
3509                 * Can't trash the caller's cursor, but otherwise we should
3510                 * if ncur is a new cursor or we're about to be done.
3511                 */
3512                if (pcur != cur &&
3513                    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3514                        /* Save the state from the cursor before we trash it */
3515                        if (cur->bc_ops->update_cursor)
3516                                cur->bc_ops->update_cursor(pcur, cur);
3517                        cur->bc_nlevels = pcur->bc_nlevels;
3518                        xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3519                }
3520                /* If we got a new cursor, switch to it. */
3521                if (ncur) {
3522                        pcur = ncur;
3523                        ncur = NULL;
3524                }
3525        } while (!xfs_btree_ptr_is_null(cur, &nptr));
3526
3527        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3528        *stat = i;
3529        return 0;
3530error0:
3531        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3532        return error;
3533}
3534
3535/*
3536 * Try to merge a non-leaf block back into the inode root.
3537 *
3538 * Note: the killroot names comes from the fact that we're effectively
3539 * killing the old root block.  But because we can't just delete the
3540 * inode we have to copy the single block it was pointing to into the
3541 * inode.
3542 */
3543STATIC int
3544xfs_btree_kill_iroot(
3545        struct xfs_btree_cur    *cur)
3546{
3547        int                     whichfork = cur->bc_private.b.whichfork;
3548        struct xfs_inode        *ip = cur->bc_private.b.ip;
3549        struct xfs_ifork        *ifp = XFS_IFORK_PTR(ip, whichfork);
3550        struct xfs_btree_block  *block;
3551        struct xfs_btree_block  *cblock;
3552        union xfs_btree_key     *kp;
3553        union xfs_btree_key     *ckp;
3554        union xfs_btree_ptr     *pp;
3555        union xfs_btree_ptr     *cpp;
3556        struct xfs_buf          *cbp;
3557        int                     level;
3558        int                     index;
3559        int                     numrecs;
3560        int                     error;
3561#ifdef DEBUG
3562        union xfs_btree_ptr     ptr;
3563        int                     i;
3564#endif
3565
3566        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3567
3568        ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3569        ASSERT(cur->bc_nlevels > 1);
3570
3571        /*
3572         * Don't deal with the root block needs to be a leaf case.
3573         * We're just going to turn the thing back into extents anyway.
3574         */
3575        level = cur->bc_nlevels - 1;
3576        if (level == 1)
3577                goto out0;
3578
3579        /*
3580         * Give up if the root has multiple children.
3581         */
3582        block = xfs_btree_get_iroot(cur);
3583        if (xfs_btree_get_numrecs(block) != 1)
3584                goto out0;
3585
3586        cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3587        numrecs = xfs_btree_get_numrecs(cblock);
3588
3589        /*
3590         * Only do this if the next level will fit.
3591         * Then the data must be copied up to the inode,
3592         * instead of freeing the root you free the next level.
3593         */
3594        if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3595                goto out0;
3596
3597        XFS_BTREE_STATS_INC(cur, killroot);
3598
3599#ifdef DEBUG
3600        xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3601        ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3602        xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3603        ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3604#endif
3605
3606        index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3607        if (index) {
3608                xfs_iroot_realloc(cur->bc_private.b.ip, index,
3609                                  cur->bc_private.b.whichfork);
3610                block = ifp->if_broot;
3611        }
3612
3613        be16_add_cpu(&block->bb_numrecs, index);
3614        ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3615
3616        kp = xfs_btree_key_addr(cur, 1, block);
3617        ckp = xfs_btree_key_addr(cur, 1, cblock);
3618        xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3619
3620        pp = xfs_btree_ptr_addr(cur, 1, block);
3621        cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3622#ifdef DEBUG
3623        for (i = 0; i < numrecs; i++) {
3624                error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
3625                if (error) {
3626                        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3627                        return error;
3628                }
3629        }
3630#endif
3631        xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3632
3633        error = xfs_btree_free_block(cur, cbp);
3634        if (error) {
3635                XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3636                return error;
3637        }
3638
3639        cur->bc_bufs[level - 1] = NULL;
3640        be16_add_cpu(&block->bb_level, -1);
3641        xfs_trans_log_inode(cur->bc_tp, ip,
3642                XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3643        cur->bc_nlevels--;
3644out0:
3645        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3646        return 0;
3647}
3648
3649/*
3650 * Kill the current root node, and replace it with it's only child node.
3651 */
3652STATIC int
3653xfs_btree_kill_root(
3654        struct xfs_btree_cur    *cur,
3655        struct xfs_buf          *bp,
3656        int                     level,
3657        union xfs_btree_ptr     *newroot)
3658{
3659        int                     error;
3660
3661        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3662        XFS_BTREE_STATS_INC(cur, killroot);
3663
3664        /*
3665         * Update the root pointer, decreasing the level by 1 and then
3666         * free the old root.
3667         */
3668        cur->bc_ops->set_root(cur, newroot, -1);
3669
3670        error = xfs_btree_free_block(cur, bp);
3671        if (error) {
3672                XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3673                return error;
3674        }
3675
3676        cur->bc_bufs[level] = NULL;
3677        cur->bc_ra[level] = 0;
3678        cur->bc_nlevels--;
3679
3680        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3681        return 0;
3682}
3683
3684STATIC int
3685xfs_btree_dec_cursor(
3686        struct xfs_btree_cur    *cur,
3687        int                     level,
3688        int                     *stat)
3689{
3690        int                     error;
3691        int                     i;
3692
3693        if (level > 0) {
3694                error = xfs_btree_decrement(cur, level, &i);
3695                if (error)
3696                        return error;
3697        }
3698
3699        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3700        *stat = 1;
3701        return 0;
3702}
3703
3704/*
3705 * Single level of the btree record deletion routine.
3706 * Delete record pointed to by cur/level.
3707 * Remove the record from its block then rebalance the tree.
3708 * Return 0 for error, 1 for done, 2 to go on to the next level.
3709 */
3710STATIC int                                      /* error */
3711xfs_btree_delrec(
3712        struct xfs_btree_cur    *cur,           /* btree cursor */
3713        int                     level,          /* level removing record from */
3714        int                     *stat)          /* fail/done/go-on */
3715{
3716        struct xfs_btree_block  *block;         /* btree block */
3717        union xfs_btree_ptr     cptr;           /* current block ptr */
3718        struct xfs_buf          *bp;            /* buffer for block */
3719        int                     error;          /* error return value */
3720        int                     i;              /* loop counter */
3721        union xfs_btree_ptr     lptr;           /* left sibling block ptr */
3722        struct xfs_buf          *lbp;           /* left buffer pointer */
3723        struct xfs_btree_block  *left;          /* left btree block */
3724        int                     lrecs = 0;      /* left record count */
3725        int                     ptr;            /* key/record index */
3726        union xfs_btree_ptr     rptr;           /* right sibling block ptr */
3727        struct xfs_buf          *rbp;           /* right buffer pointer */
3728        struct xfs_btree_block  *right;         /* right btree block */
3729        struct xfs_btree_block  *rrblock;       /* right-right btree block */
3730        struct xfs_buf          *rrbp;          /* right-right buffer pointer */
3731        int                     rrecs = 0;      /* right record count */
3732        struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
3733        int                     numrecs;        /* temporary numrec count */
3734
3735        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3736        XFS_BTREE_TRACE_ARGI(cur, level);
3737
3738        tcur = NULL;
3739
3740        /* Get the index of the entry being deleted, check for nothing there. */
3741        ptr = cur->bc_ptrs[level];
3742        if (ptr == 0) {
3743                XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3744                *stat = 0;
3745                return 0;
3746        }
3747
3748        /* Get the buffer & block containing the record or key/ptr. */
3749        block = xfs_btree_get_block(cur, level, &bp);
3750        numrecs = xfs_btree_get_numrecs(block);
3751
3752#ifdef DEBUG
3753        error = xfs_btree_check_block(cur, block, level, bp);
3754        if (error)
3755                goto error0;
3756#endif
3757
3758        /* Fail if we're off the end of the block. */
3759        if (ptr > numrecs) {
3760                XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3761                *stat = 0;
3762                return 0;
3763        }
3764
3765        XFS_BTREE_STATS_INC(cur, delrec);
3766        XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3767
3768        /* Excise the entries being deleted. */
3769        if (level > 0) {
3770                /* It's a nonleaf. operate on keys and ptrs */
3771                union xfs_btree_key     *lkp;
3772                union xfs_btree_ptr     *lpp;
3773
3774                lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3775                lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3776
3777#ifdef DEBUG
3778                for (i = 0; i < numrecs - ptr; i++) {
3779                        error = xfs_btree_check_ptr(cur, lpp, i, level);
3780                        if (error)
3781                                goto error0;
3782                }
3783#endif
3784
3785                if (ptr < numrecs) {
3786                        xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3787                        xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3788                        xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3789                        xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3790                }
3791        } else {
3792                /* It's a leaf. operate on records */
3793                if (ptr < numrecs) {
3794                        xfs_btree_shift_recs(cur,
3795                                xfs_btree_rec_addr(cur, ptr + 1, block),
3796                                -1, numrecs - ptr);
3797                        xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3798                }
3799        }
3800
3801        /*
3802         * Decrement and log the number of entries in the block.
3803         */
3804        xfs_btree_set_numrecs(block, --numrecs);
3805        xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3806
3807        /*
3808         * If we are tracking the last record in the tree and
3809         * we are at the far right edge of the tree, update it.
3810         */
3811        if (xfs_btree_is_lastrec(cur, block, level)) {
3812                cur->bc_ops->update_lastrec(cur, block, NULL,
3813                                            ptr, LASTREC_DELREC);
3814        }
3815
3816        /*
3817         * We're at the root level.  First, shrink the root block in-memory.
3818         * Try to get rid of the next level down.  If we can't then there's
3819         * nothing left to do.
3820         */
3821        if (level == cur->bc_nlevels - 1) {
3822                if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3823                        xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3824                                          cur->bc_private.b.whichfork);
3825
3826                        error = xfs_btree_kill_iroot(cur);
3827                        if (error)
3828                                goto error0;
3829
3830                        error = xfs_btree_dec_cursor(cur, level, stat);
3831                        if (error)
3832                                goto error0;
3833                        *stat = 1;
3834                        return 0;
3835                }
3836
3837                /*
3838                 * If this is the root level, and there's only one entry left,
3839                 * and it's NOT the leaf level, then we can get rid of this
3840                 * level.
3841                 */
3842                if (numrecs == 1 && level > 0) {
3843                        union xfs_btree_ptr     *pp;
3844                        /*
3845                         * pp is still set to the first pointer in the block.
3846                         * Make it the new root of the btree.
3847                         */
3848                        pp = xfs_btree_ptr_addr(cur, 1, block);
3849                        error = xfs_btree_kill_root(cur, bp, level, pp);
3850                        if (error)
3851                                goto error0;
3852                } else if (level > 0) {
3853                        error = xfs_btree_dec_cursor(cur, level, stat);
3854                        if (error)
3855                                goto error0;
3856                }
3857                *stat = 1;
3858                return 0;
3859        }
3860
3861        /*
3862         * If we deleted the leftmost entry in the block, update the
3863         * key values above us in the tree.
3864         */
3865        if (xfs_btree_needs_key_update(cur, ptr)) {
3866                error = xfs_btree_update_keys(cur, level);
3867                if (error)
3868                        goto error0;
3869        }
3870
3871        /*
3872         * If the number of records remaining in the block is at least
3873         * the minimum, we're done.
3874         */
3875        if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3876                error = xfs_btree_dec_cursor(cur, level, stat);
3877                if (error)
3878                        goto error0;
3879                return 0;
3880        }
3881
3882        /*
3883         * Otherwise, we have to move some records around to keep the
3884         * tree balanced.  Look at the left and right sibling blocks to
3885         * see if we can re-balance by moving only one record.
3886         */
3887        xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3888        xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3889
3890        if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3891                /*
3892                 * One child of root, need to get a chance to copy its contents
3893                 * into the root and delete it. Can't go up to next level,
3894                 * there's nothing to delete there.
3895                 */
3896                if (xfs_btree_ptr_is_null(cur, &rptr) &&
3897                    xfs_btree_ptr_is_null(cur, &lptr) &&
3898                    level == cur->bc_nlevels - 2) {
3899                        error = xfs_btree_kill_iroot(cur);
3900                        if (!error)
3901                                error = xfs_btree_dec_cursor(cur, level, stat);
3902                        if (error)
3903                                goto error0;
3904                        return 0;
3905                }
3906        }
3907
3908        ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3909               !xfs_btree_ptr_is_null(cur, &lptr));
3910
3911        /*
3912         * Duplicate the cursor so our btree manipulations here won't
3913         * disrupt the next level up.
3914         */
3915        error = xfs_btree_dup_cursor(cur, &tcur);
3916        if (error)
3917                goto error0;
3918
3919        /*
3920         * If there's a right sibling, see if it's ok to shift an entry
3921         * out of it.
3922         */
3923        if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3924                /*
3925                 * Move the temp cursor to the last entry in the next block.
3926                 * Actually any entry but the first would suffice.
3927                 */
3928                i = xfs_btree_lastrec(tcur, level);
3929                XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3930
3931                error = xfs_btree_increment(tcur, level, &i);
3932                if (error)
3933                        goto error0;
3934                XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3935
3936                i = xfs_btree_lastrec(tcur, level);
3937                XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3938
3939                /* Grab a pointer to the block. */
3940                right = xfs_btree_get_block(tcur, level, &rbp);
3941#ifdef DEBUG
3942                error = xfs_btree_check_block(tcur, right, level, rbp);
3943                if (error)
3944                        goto error0;
3945#endif
3946                /* Grab the current block number, for future use. */
3947                xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3948
3949                /*
3950                 * If right block is full enough so that removing one entry
3951                 * won't make it too empty, and left-shifting an entry out
3952                 * of right to us works, we're done.
3953                 */
3954                if (xfs_btree_get_numrecs(right) - 1 >=
3955                    cur->bc_ops->get_minrecs(tcur, level)) {
3956                        error = xfs_btree_lshift(tcur, level, &i);
3957                        if (error)
3958                                goto error0;
3959                        if (i) {
3960                                ASSERT(xfs_btree_get_numrecs(block) >=
3961                                       cur->bc_ops->get_minrecs(tcur, level));
3962
3963                                xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3964                                tcur = NULL;
3965
3966                                error = xfs_btree_dec_cursor(cur, level, stat);
3967                                if (error)
3968                                        goto error0;
3969                                return 0;
3970                        }
3971                }
3972
3973                /*
3974                 * Otherwise, grab the number of records in right for
3975                 * future reference, and fix up the temp cursor to point
3976                 * to our block again (last record).
3977                 */
3978                rrecs = xfs_btree_get_numrecs(right);
3979                if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3980                        i = xfs_btree_firstrec(tcur, level);
3981                        XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3982
3983                        error = xfs_btree_decrement(tcur, level, &i);
3984                        if (error)
3985                                goto error0;
3986                        XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3987                }
3988        }
3989
3990        /*
3991         * If there's a left sibling, see if it's ok to shift an entry
3992         * out of it.
3993         */
3994        if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3995                /*
3996                 * Move the temp cursor to the first entry in the
3997                 * previous block.
3998                 */
3999                i = xfs_btree_firstrec(tcur, level);
4000                XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4001
4002                error = xfs_btree_decrement(tcur, level, &i);
4003                if (error)
4004                        goto error0;
4005                i = xfs_btree_firstrec(tcur, level);
4006                XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4007
4008                /* Grab a pointer to the block. */
4009                left = xfs_btree_get_block(tcur, level, &lbp);
4010#ifdef DEBUG
4011                error = xfs_btree_check_block(cur, left, level, lbp);
4012                if (error)
4013                        goto error0;
4014#endif
4015                /* Grab the current block number, for future use. */
4016                xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4017
4018                /*
4019                 * If left block is full enough so that removing one entry
4020                 * won't make it too empty, and right-shifting an entry out
4021                 * of left to us works, we're done.
4022                 */
4023                if (xfs_btree_get_numrecs(left) - 1 >=
4024                    cur->bc_ops->get_minrecs(tcur, level)) {
4025                        error = xfs_btree_rshift(tcur, level, &i);
4026                        if (error)
4027                                goto error0;
4028                        if (i) {
4029                                ASSERT(xfs_btree_get_numrecs(block) >=
4030                                       cur->bc_ops->get_minrecs(tcur, level));
4031                                xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4032                                tcur = NULL;
4033                                if (level == 0)
4034                                        cur->bc_ptrs[0]++;
4035                                XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4036                                *stat = 1;
4037                                return 0;
4038                        }
4039                }
4040
4041                /*
4042                 * Otherwise, grab the number of records in right for
4043                 * future reference.
4044                 */
4045                lrecs = xfs_btree_get_numrecs(left);
4046        }
4047
4048        /* Delete the temp cursor, we're done with it. */
4049        xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4050        tcur = NULL;
4051
4052        /* If here, we need to do a join to keep the tree balanced. */
4053        ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4054
4055        if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4056            lrecs + xfs_btree_get_numrecs(block) <=
4057                        cur->bc_ops->get_maxrecs(cur, level)) {
4058                /*
4059                 * Set "right" to be the starting block,
4060                 * "left" to be the left neighbor.
4061                 */
4062                rptr = cptr;
4063                right = block;
4064                rbp = bp;
4065                error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4066                if (error)
4067                        goto error0;
4068
4069        /*
4070         * If that won't work, see if we can join with the right neighbor block.
4071         */
4072        } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4073                   rrecs + xfs_btree_get_numrecs(block) <=
4074                        cur->bc_ops->get_maxrecs(cur, level)) {
4075                /*
4076                 * Set "left" to be the starting block,
4077                 * "right" to be the right neighbor.
4078                 */
4079                lptr = cptr;
4080                left = block;
4081                lbp = bp;
4082                error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4083                if (error)
4084                        goto error0;
4085
4086        /*
4087         * Otherwise, we can't fix the imbalance.
4088         * Just return.  This is probably a logic error, but it's not fatal.
4089         */
4090        } else {
4091                error = xfs_btree_dec_cursor(cur, level, stat);
4092                if (error)
4093                        goto error0;
4094                return 0;
4095        }
4096
4097        rrecs = xfs_btree_get_numrecs(right);
4098        lrecs = xfs_btree_get_numrecs(left);
4099
4100        /*
4101         * We're now going to join "left" and "right" by moving all the stuff
4102         * in "right" to "left" and deleting "right".
4103         */
4104        XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4105        if (level > 0) {
4106                /* It's a non-leaf.  Move keys and pointers. */
4107                union xfs_btree_key     *lkp;   /* left btree key */
4108                union xfs_btree_ptr     *lpp;   /* left address pointer */
4109                union xfs_btree_key     *rkp;   /* right btree key */
4110                union xfs_btree_ptr     *rpp;   /* right address pointer */
4111
4112                lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4113                lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4114                rkp = xfs_btree_key_addr(cur, 1, right);
4115                rpp = xfs_btree_ptr_addr(cur, 1, right);
4116#ifdef DEBUG
4117                for (i = 1; i < rrecs; i++) {
4118                        error = xfs_btree_check_ptr(cur, rpp, i, level);
4119                        if (error)
4120                                goto error0;
4121                }
4122#endif
4123                xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4124                xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4125
4126                xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4127                xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4128        } else {
4129                /* It's a leaf.  Move records.  */
4130                union xfs_btree_rec     *lrp;   /* left record pointer */
4131                union xfs_btree_rec     *rrp;   /* right record pointer */
4132
4133                lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4134                rrp = xfs_btree_rec_addr(cur, 1, right);
4135
4136                xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4137                xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4138        }
4139
4140        XFS_BTREE_STATS_INC(cur, join);
4141
4142        /*
4143         * Fix up the number of records and right block pointer in the
4144         * surviving block, and log it.
4145         */
4146        xfs_btree_set_numrecs(left, lrecs + rrecs);
4147        xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4148        xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4149        xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4150
4151        /* If there is a right sibling, point it to the remaining block. */
4152        xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4153        if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4154                error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4155                if (error)
4156                        goto error0;
4157                xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4158                xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4159        }
4160
4161        /* Free the deleted block. */
4162        error = xfs_btree_free_block(cur, rbp);
4163        if (error)
4164                goto error0;
4165
4166        /*
4167         * If we joined with the left neighbor, set the buffer in the
4168         * cursor to the left block, and fix up the index.
4169         */
4170        if (bp != lbp) {
4171                cur->bc_bufs[level] = lbp;
4172                cur->bc_ptrs[level] += lrecs;
4173                cur->bc_ra[level] = 0;
4174        }
4175        /*
4176         * If we joined with the right neighbor and there's a level above
4177         * us, increment the cursor at that level.
4178         */
4179        else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4180                   (level + 1 < cur->bc_nlevels)) {
4181                error = xfs_btree_increment(cur, level + 1, &i);
4182                if (error)
4183                        goto error0;
4184        }
4185
4186        /*
4187         * Readjust the ptr at this level if it's not a leaf, since it's
4188         * still pointing at the deletion point, which makes the cursor
4189         * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4190         * We can't use decrement because it would change the next level up.
4191         */
4192        if (level > 0)
4193                cur->bc_ptrs[level]--;
4194
4195        /*
4196         * We combined blocks, so we have to update the parent keys if the
4197         * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4198         * points to the old block so that the caller knows which record to
4199         * delete.  Therefore, the caller must be savvy enough to call updkeys
4200         * for us if we return stat == 2.  The other exit points from this
4201         * function don't require deletions further up the tree, so they can
4202         * call updkeys directly.
4203         */
4204
4205        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4206        /* Return value means the next level up has something to do. */
4207        *stat = 2;
4208        return 0;
4209
4210error0:
4211        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4212        if (tcur)
4213                xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4214        return error;
4215}
4216
4217/*
4218 * Delete the record pointed to by cur.
4219 * The cursor refers to the place where the record was (could be inserted)
4220 * when the operation returns.
4221 */
4222int                                     /* error */
4223xfs_btree_delete(
4224        struct xfs_btree_cur    *cur,
4225        int                     *stat)  /* success/failure */
4226{
4227        int                     error;  /* error return value */
4228        int                     level;
4229        int                     i;
4230        bool                    joined = false;
4231
4232        XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
4233
4234        /*
4235         * Go up the tree, starting at leaf level.
4236         *
4237         * If 2 is returned then a join was done; go to the next level.
4238         * Otherwise we are done.
4239         */
4240        for (level = 0, i = 2; i == 2; level++) {
4241                error = xfs_btree_delrec(cur, level, &i);
4242                if (error)
4243                        goto error0;
4244                if (i == 2)
4245                        joined = true;
4246        }
4247
4248        /*
4249         * If we combined blocks as part of deleting the record, delrec won't
4250         * have updated the parent high keys so we have to do that here.
4251         */
4252        if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4253                error = xfs_btree_updkeys_force(cur, 0);
4254                if (error)
4255                        goto error0;
4256        }
4257
4258        if (i == 0) {
4259                for (level = 1; level < cur->bc_nlevels; level++) {
4260                        if (cur->bc_ptrs[level] == 0) {
4261                                error = xfs_btree_decrement(cur, level, &i);
4262                                if (error)
4263                                        goto error0;
4264                                break;
4265                        }
4266                }
4267        }
4268
4269        XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4270        *stat = i;
4271        return 0;
4272error0:
4273        XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4274        return error;
4275}
4276
4277/*
4278 * Get the data from the pointed-to record.
4279 */
4280int                                     /* error */
4281xfs_btree_get_rec(
4282        struct xfs_btree_cur    *cur,   /* btree cursor */
4283        union xfs_btree_rec     **recp, /* output: btree record */
4284        int                     *stat)  /* output: success/failure */
4285{
4286        struct xfs_btree_block  *block; /* btree block */
4287        struct xfs_buf          *bp;    /* buffer pointer */
4288        int                     ptr;    /* record number */
4289#ifdef DEBUG
4290        int                     error;  /* error return value */
4291#endif
4292
4293        ptr = cur->bc_ptrs[0];
4294        block = xfs_btree_get_block(cur, 0, &bp);
4295
4296#ifdef DEBUG
4297        error = xfs_btree_check_block(cur, block, 0, bp);
4298        if (error)
4299                return error;
4300#endif
4301
4302        /*
4303         * Off the right end or left end, return failure.
4304         */
4305        if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4306                *stat = 0;
4307                return 0;
4308        }
4309
4310        /*
4311         * Point to the record and extract its data.
4312         */
4313        *recp = xfs_btree_rec_addr(cur, ptr, block);
4314        *stat = 1;
4315        return 0;
4316}
4317
4318/* Visit a block in a btree. */
4319STATIC int
4320xfs_btree_visit_block(
4321        struct xfs_btree_cur            *cur,
4322        int                             level,
4323        xfs_btree_visit_blocks_fn       fn,
4324        void                            *data)
4325{
4326        struct xfs_btree_block          *block;
4327        struct xfs_buf                  *bp;
4328        union xfs_btree_ptr             rptr;
4329        int                             error;
4330
4331        /* do right sibling readahead */
4332        xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4333        block = xfs_btree_get_block(cur, level, &bp);
4334
4335        /* process the block */
4336        error = fn(cur, level, data);
4337        if (error)
4338                return error;
4339
4340        /* now read rh sibling block for next iteration */
4341        xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4342        if (xfs_btree_ptr_is_null(cur, &rptr))
4343                return -ENOENT;
4344
4345        return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4346}
4347
4348
4349/* Visit every block in a btree. */
4350int
4351xfs_btree_visit_blocks(
4352        struct xfs_btree_cur            *cur,
4353        xfs_btree_visit_blocks_fn       fn,
4354        void                            *data)
4355{
4356        union xfs_btree_ptr             lptr;
4357        int                             level;
4358        struct xfs_btree_block          *block = NULL;
4359        int                             error = 0;
4360
4361        cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4362
4363        /* for each level */
4364        for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4365                /* grab the left hand block */
4366                error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4367                if (error)
4368                        return error;
4369
4370                /* readahead the left most block for the next level down */
4371                if (level > 0) {
4372                        union xfs_btree_ptr     *ptr;
4373
4374                        ptr = xfs_btree_ptr_addr(cur, 1, block);
4375                        xfs_btree_readahead_ptr(cur, ptr, 1);
4376
4377                        /* save for the next iteration of the loop */
4378                        lptr = *ptr;
4379                }
4380
4381                /* for each buffer in the level */
4382                do {
4383                        error = xfs_btree_visit_block(cur, level, fn, data);
4384                } while (!error);
4385
4386                if (error != -ENOENT)
4387                        return error;
4388        }
4389
4390        return 0;
4391}
4392
4393/*
4394 * Change the owner of a btree.
4395 *
4396 * The mechanism we use here is ordered buffer logging. Because we don't know
4397 * how many buffers were are going to need to modify, we don't really want to
4398 * have to make transaction reservations for the worst case of every buffer in a
4399 * full size btree as that may be more space that we can fit in the log....
4400 *
4401 * We do the btree walk in the most optimal manner possible - we have sibling
4402 * pointers so we can just walk all the blocks on each level from left to right
4403 * in a single pass, and then move to the next level and do the same. We can
4404 * also do readahead on the sibling pointers to get IO moving more quickly,
4405 * though for slow disks this is unlikely to make much difference to performance
4406 * as the amount of CPU work we have to do before moving to the next block is
4407 * relatively small.
4408 *
4409 * For each btree block that we load, modify the owner appropriately, set the
4410 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4411 * we mark the region we change dirty so that if the buffer is relogged in
4412 * a subsequent transaction the changes we make here as an ordered buffer are
4413 * correctly relogged in that transaction.  If we are in recovery context, then
4414 * just queue the modified buffer as delayed write buffer so the transaction
4415 * recovery completion writes the changes to disk.
4416 */
4417struct xfs_btree_block_change_owner_info {
4418        __uint64_t              new_owner;
4419        struct list_head        *buffer_list;
4420};
4421
4422static int
4423xfs_btree_block_change_owner(
4424        struct xfs_btree_cur    *cur,
4425        int                     level,
4426        void                    *data)
4427{
4428        struct xfs_btree_block_change_owner_info        *bbcoi = data;
4429        struct xfs_btree_block  *block;
4430        struct xfs_buf          *bp;
4431
4432        /* modify the owner */
4433        block = xfs_btree_get_block(cur, level, &bp);
4434        if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4435                block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4436        else
4437                block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4438
4439        /*
4440         * If the block is a root block hosted in an inode, we might not have a
4441         * buffer pointer here and we shouldn't attempt to log the change as the
4442         * information is already held in the inode and discarded when the root
4443         * block is formatted into the on-disk inode fork. We still change it,
4444         * though, so everything is consistent in memory.
4445         */
4446        if (bp) {
4447                if (cur->bc_tp) {
4448                        xfs_trans_ordered_buf(cur->bc_tp, bp);
4449                        xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4450                } else {
4451                        xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4452                }
4453        } else {
4454                ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4455                ASSERT(level == cur->bc_nlevels - 1);
4456        }
4457
4458        return 0;
4459}
4460
4461int
4462xfs_btree_change_owner(
4463        struct xfs_btree_cur    *cur,
4464        __uint64_t              new_owner,
4465        struct list_head        *buffer_list)
4466{
4467        struct xfs_btree_block_change_owner_info        bbcoi;
4468
4469        bbcoi.new_owner = new_owner;
4470        bbcoi.buffer_list = buffer_list;
4471
4472        return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4473                        &bbcoi);
4474}
4475
4476/**
4477 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4478 *                                    btree block
4479 *
4480 * @bp: buffer containing the btree block
4481 * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4482 * @pag_max_level: pointer to the per-ag max level field
4483 */
4484bool
4485xfs_btree_sblock_v5hdr_verify(
4486        struct xfs_buf          *bp)
4487{
4488        struct xfs_mount        *mp = bp->b_target->bt_mount;
4489        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4490        struct xfs_perag        *pag = bp->b_pag;
4491
4492        if (!xfs_sb_version_hascrc(&mp->m_sb))
4493                return false;
4494        if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4495                return false;
4496        if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4497                return false;
4498        if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4499                return false;
4500        return true;
4501}
4502
4503/**
4504 * xfs_btree_sblock_verify() -- verify a short-format btree block
4505 *
4506 * @bp: buffer containing the btree block
4507 * @max_recs: maximum records allowed in this btree node
4508 */
4509bool
4510xfs_btree_sblock_verify(
4511        struct xfs_buf          *bp,
4512        unsigned int            max_recs)
4513{
4514        struct xfs_mount        *mp = bp->b_target->bt_mount;
4515        struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4516
4517        /* numrecs verification */
4518        if (be16_to_cpu(block->bb_numrecs) > max_recs)
4519                return false;
4520
4521        /* sibling pointer verification */
4522        if (!block->bb_u.s.bb_leftsib ||
4523            (be32_to_cpu(block->bb_u.s.bb_leftsib) >= mp->m_sb.sb_agblocks &&
4524             block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK)))
4525                return false;
4526        if (!block->bb_u.s.bb_rightsib ||
4527            (be32_to_cpu(block->bb_u.s.bb_rightsib) >= mp->m_sb.sb_agblocks &&
4528             block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK)))
4529                return false;
4530
4531        return true;
4532}
4533
4534/*
4535 * Calculate the number of btree levels needed to store a given number of
4536 * records in a short-format btree.
4537 */
4538uint
4539xfs_btree_compute_maxlevels(
4540        struct xfs_mount        *mp,
4541        uint                    *limits,
4542        unsigned long           len)
4543{
4544        uint                    level;
4545        unsigned long           maxblocks;
4546
4547        maxblocks = (len + limits[0] - 1) / limits[0];
4548        for (level = 1; maxblocks > 1; level++)
4549                maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4550        return level;
4551}
4552
4553/*
4554 * Query a regular btree for all records overlapping a given interval.
4555 * Start with a LE lookup of the key of low_rec and return all records
4556 * until we find a record with a key greater than the key of high_rec.
4557 */
4558STATIC int
4559xfs_btree_simple_query_range(
4560        struct xfs_btree_cur            *cur,
4561        union xfs_btree_key             *low_key,
4562        union xfs_btree_key             *high_key,
4563        xfs_btree_query_range_fn        fn,
4564        void                            *priv)
4565{
4566        union xfs_btree_rec             *recp;
4567        union xfs_btree_key             rec_key;
4568        __int64_t                       diff;
4569        int                             stat;
4570        bool                            firstrec = true;
4571        int                             error;
4572
4573        ASSERT(cur->bc_ops->init_high_key_from_rec);
4574        ASSERT(cur->bc_ops->diff_two_keys);
4575
4576        /*
4577         * Find the leftmost record.  The btree cursor must be set
4578         * to the low record used to generate low_key.
4579         */
4580        stat = 0;
4581        error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4582        if (error)
4583                goto out;
4584
4585        /* Nothing?  See if there's anything to the right. */
4586        if (!stat) {
4587                error = xfs_btree_increment(cur, 0, &stat);
4588                if (error)
4589                        goto out;
4590        }
4591
4592        while (stat) {
4593                /* Find the record. */
4594                error = xfs_btree_get_rec(cur, &recp, &stat);
4595                if (error || !stat)
4596                        break;
4597
4598                /* Skip if high_key(rec) < low_key. */
4599                if (firstrec) {
4600                        cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4601                        firstrec = false;
4602                        diff = cur->bc_ops->diff_two_keys(cur, low_key,
4603                                        &rec_key);
4604                        if (diff > 0)
4605                                goto advloop;
4606                }
4607
4608                /* Stop if high_key < low_key(rec). */
4609                cur->bc_ops->init_key_from_rec(&rec_key, recp);
4610                diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4611                if (diff > 0)
4612                        break;
4613
4614                /* Callback */
4615                error = fn(cur, recp, priv);
4616                if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4617                        break;
4618
4619advloop:
4620                /* Move on to the next record. */
4621                error = xfs_btree_increment(cur, 0, &stat);
4622                if (error)
4623                        break;
4624        }
4625
4626out:
4627        return error;
4628}
4629
4630/*
4631 * Query an overlapped interval btree for all records overlapping a given
4632 * interval.  This function roughly follows the algorithm given in
4633 * "Interval Trees" of _Introduction to Algorithms_, which is section
4634 * 14.3 in the 2nd and 3rd editions.
4635 *
4636 * First, generate keys for the low and high records passed in.
4637 *
4638 * For any leaf node, generate the high and low keys for the record.
4639 * If the record keys overlap with the query low/high keys, pass the
4640 * record to the function iterator.
4641 *
4642 * For any internal node, compare the low and high keys of each
4643 * pointer against the query low/high keys.  If there's an overlap,
4644 * follow the pointer.
4645 *
4646 * As an optimization, we stop scanning a block when we find a low key
4647 * that is greater than the query's high key.
4648 */
4649STATIC int
4650xfs_btree_overlapped_query_range(
4651        struct xfs_btree_cur            *cur,
4652        union xfs_btree_key             *low_key,
4653        union xfs_btree_key             *high_key,
4654        xfs_btree_query_range_fn        fn,
4655        void                            *priv)
4656{
4657        union xfs_btree_ptr             ptr;
4658        union xfs_btree_ptr             *pp;
4659        union xfs_btree_key             rec_key;
4660        union xfs_btree_key             rec_hkey;
4661        union xfs_btree_key             *lkp;
4662        union xfs_btree_key             *hkp;
4663        union xfs_btree_rec             *recp;
4664        struct xfs_btree_block          *block;
4665        __int64_t                       ldiff;
4666        __int64_t                       hdiff;
4667        int                             level;
4668        struct xfs_buf                  *bp;
4669        int                             i;
4670        int                             error;
4671
4672        /* Load the root of the btree. */
4673        level = cur->bc_nlevels - 1;
4674        cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4675        error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4676        if (error)
4677                return error;
4678        xfs_btree_get_block(cur, level, &bp);
4679        trace_xfs_btree_overlapped_query_range(cur, level, bp);
4680#ifdef DEBUG
4681        error = xfs_btree_check_block(cur, block, level, bp);
4682        if (error)
4683                goto out;
4684#endif
4685        cur->bc_ptrs[level] = 1;
4686
4687        while (level < cur->bc_nlevels) {
4688                block = xfs_btree_get_block(cur, level, &bp);
4689
4690                /* End of node, pop back towards the root. */
4691                if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4692pop_up:
4693                        if (level < cur->bc_nlevels - 1)
4694                                cur->bc_ptrs[level + 1]++;
4695                        level++;
4696                        continue;
4697                }
4698
4699                if (level == 0) {
4700                        /* Handle a leaf node. */
4701                        recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4702
4703                        cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4704                        ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4705                                        low_key);
4706
4707                        cur->bc_ops->init_key_from_rec(&rec_key, recp);
4708                        hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4709                                        &rec_key);
4710
4711                        /*
4712                         * If (record's high key >= query's low key) and
4713                         *    (query's high key >= record's low key), then
4714                         * this record overlaps the query range; callback.
4715                         */
4716                        if (ldiff >= 0 && hdiff >= 0) {
4717                                error = fn(cur, recp, priv);
4718                                if (error < 0 ||
4719                                    error == XFS_BTREE_QUERY_RANGE_ABORT)
4720                                        break;
4721                        } else if (hdiff < 0) {
4722                                /* Record is larger than high key; pop. */
4723                                goto pop_up;
4724                        }
4725                        cur->bc_ptrs[level]++;
4726                        continue;
4727                }
4728
4729                /* Handle an internal node. */
4730                lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4731                hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4732                pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4733
4734                ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4735                hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4736
4737                /*
4738                 * If (pointer's high key >= query's low key) and
4739                 *    (query's high key >= pointer's low key), then
4740                 * this record overlaps the query range; follow pointer.
4741                 */
4742                if (ldiff >= 0 && hdiff >= 0) {
4743                        level--;
4744                        error = xfs_btree_lookup_get_block(cur, level, pp,
4745                                        &block);
4746                        if (error)
4747                                goto out;
4748                        xfs_btree_get_block(cur, level, &bp);
4749                        trace_xfs_btree_overlapped_query_range(cur, level, bp);
4750#ifdef DEBUG
4751                        error = xfs_btree_check_block(cur, block, level, bp);
4752                        if (error)
4753                                goto out;
4754#endif
4755                        cur->bc_ptrs[level] = 1;
4756                        continue;
4757                } else if (hdiff < 0) {
4758                        /* The low key is larger than the upper range; pop. */
4759                        goto pop_up;
4760                }
4761                cur->bc_ptrs[level]++;
4762        }
4763
4764out:
4765        /*
4766         * If we don't end this function with the cursor pointing at a record
4767         * block, a subsequent non-error cursor deletion will not release
4768         * node-level buffers, causing a buffer leak.  This is quite possible
4769         * with a zero-results range query, so release the buffers if we
4770         * failed to return any results.
4771         */
4772        if (cur->bc_bufs[0] == NULL) {
4773                for (i = 0; i < cur->bc_nlevels; i++) {
4774                        if (cur->bc_bufs[i]) {
4775                                xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4776                                cur->bc_bufs[i] = NULL;
4777                                cur->bc_ptrs[i] = 0;
4778                                cur->bc_ra[i] = 0;
4779                        }
4780                }
4781        }
4782
4783        return error;
4784}
4785
4786/*
4787 * Query a btree for all records overlapping a given interval of keys.  The
4788 * supplied function will be called with each record found; return one of the
4789 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4790 * code.  This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4791 * negative error code.
4792 */
4793int
4794xfs_btree_query_range(
4795        struct xfs_btree_cur            *cur,
4796        union xfs_btree_irec            *low_rec,
4797        union xfs_btree_irec            *high_rec,
4798        xfs_btree_query_range_fn        fn,
4799        void                            *priv)
4800{
4801        union xfs_btree_rec             rec;
4802        union xfs_btree_key             low_key;
4803        union xfs_btree_key             high_key;
4804
4805        /* Find the keys of both ends of the interval. */
4806        cur->bc_rec = *high_rec;
4807        cur->bc_ops->init_rec_from_cur(cur, &rec);
4808        cur->bc_ops->init_key_from_rec(&high_key, &rec);
4809
4810        cur->bc_rec = *low_rec;
4811        cur->bc_ops->init_rec_from_cur(cur, &rec);
4812        cur->bc_ops->init_key_from_rec(&low_key, &rec);
4813
4814        /* Enforce low key < high key. */
4815        if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4816                return -EINVAL;
4817
4818        if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4819                return xfs_btree_simple_query_range(cur, &low_key,
4820                                &high_key, fn, priv);
4821        return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4822                        fn, priv);
4823}
4824
4825/*
4826 * Calculate the number of blocks needed to store a given number of records
4827 * in a short-format (per-AG metadata) btree.
4828 */
4829xfs_extlen_t
4830xfs_btree_calc_size(
4831        struct xfs_mount        *mp,
4832        uint                    *limits,
4833        unsigned long long      len)
4834{
4835        int                     level;
4836        int                     maxrecs;
4837        xfs_extlen_t            rval;
4838
4839        maxrecs = limits[0];
4840        for (level = 0, rval = 0; len > 1; level++) {
4841                len += maxrecs - 1;
4842                do_div(len, maxrecs);
4843                maxrecs = limits[1];
4844                rval += len;
4845        }
4846        return rval;
4847}
4848
4849static int
4850xfs_btree_count_blocks_helper(
4851        struct xfs_btree_cur    *cur,
4852        int                     level,
4853        void                    *data)
4854{
4855        xfs_extlen_t            *blocks = data;
4856        (*blocks)++;
4857
4858        return 0;
4859}
4860
4861/* Count the blocks in a btree and return the result in *blocks. */
4862int
4863xfs_btree_count_blocks(
4864        struct xfs_btree_cur    *cur,
4865        xfs_extlen_t            *blocks)
4866{
4867        *blocks = 0;
4868        return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4869                        blocks);
4870}
4871