linux/include/linux/cgroup-defs.h
<<
>>
Prefs
   1/*
   2 * linux/cgroup-defs.h - basic definitions for cgroup
   3 *
   4 * This file provides basic type and interface.  Include this file directly
   5 * only if necessary to avoid cyclic dependencies.
   6 */
   7#ifndef _LINUX_CGROUP_DEFS_H
   8#define _LINUX_CGROUP_DEFS_H
   9
  10#include <linux/limits.h>
  11#include <linux/list.h>
  12#include <linux/idr.h>
  13#include <linux/wait.h>
  14#include <linux/mutex.h>
  15#include <linux/rcupdate.h>
  16#include <linux/percpu-refcount.h>
  17#include <linux/percpu-rwsem.h>
  18#include <linux/workqueue.h>
  19#include <linux/bpf-cgroup.h>
  20
  21#ifdef CONFIG_CGROUPS
  22
  23struct cgroup;
  24struct cgroup_root;
  25struct cgroup_subsys;
  26struct cgroup_taskset;
  27struct kernfs_node;
  28struct kernfs_ops;
  29struct kernfs_open_file;
  30struct seq_file;
  31
  32#define MAX_CGROUP_TYPE_NAMELEN 32
  33#define MAX_CGROUP_ROOT_NAMELEN 64
  34#define MAX_CFTYPE_NAME         64
  35
  36/* define the enumeration of all cgroup subsystems */
  37#define SUBSYS(_x) _x ## _cgrp_id,
  38enum cgroup_subsys_id {
  39#include <linux/cgroup_subsys.h>
  40        CGROUP_SUBSYS_COUNT,
  41};
  42#undef SUBSYS
  43
  44/* bits in struct cgroup_subsys_state flags field */
  45enum {
  46        CSS_NO_REF      = (1 << 0), /* no reference counting for this css */
  47        CSS_ONLINE      = (1 << 1), /* between ->css_online() and ->css_offline() */
  48        CSS_RELEASED    = (1 << 2), /* refcnt reached zero, released */
  49        CSS_VISIBLE     = (1 << 3), /* css is visible to userland */
  50};
  51
  52/* bits in struct cgroup flags field */
  53enum {
  54        /* Control Group requires release notifications to userspace */
  55        CGRP_NOTIFY_ON_RELEASE,
  56        /*
  57         * Clone the parent's configuration when creating a new child
  58         * cpuset cgroup.  For historical reasons, this option can be
  59         * specified at mount time and thus is implemented here.
  60         */
  61        CGRP_CPUSET_CLONE_CHILDREN,
  62};
  63
  64/* cgroup_root->flags */
  65enum {
  66        CGRP_ROOT_NOPREFIX      = (1 << 1), /* mounted subsystems have no named prefix */
  67        CGRP_ROOT_XATTR         = (1 << 2), /* supports extended attributes */
  68};
  69
  70/* cftype->flags */
  71enum {
  72        CFTYPE_ONLY_ON_ROOT     = (1 << 0),     /* only create on root cgrp */
  73        CFTYPE_NOT_ON_ROOT      = (1 << 1),     /* don't create on root cgrp */
  74        CFTYPE_NO_PREFIX        = (1 << 3),     /* (DON'T USE FOR NEW FILES) no subsys prefix */
  75        CFTYPE_WORLD_WRITABLE   = (1 << 4),     /* (DON'T USE FOR NEW FILES) S_IWUGO */
  76
  77        /* internal flags, do not use outside cgroup core proper */
  78        __CFTYPE_ONLY_ON_DFL    = (1 << 16),    /* only on default hierarchy */
  79        __CFTYPE_NOT_ON_DFL     = (1 << 17),    /* not on default hierarchy */
  80};
  81
  82/*
  83 * cgroup_file is the handle for a file instance created in a cgroup which
  84 * is used, for example, to generate file changed notifications.  This can
  85 * be obtained by setting cftype->file_offset.
  86 */
  87struct cgroup_file {
  88        /* do not access any fields from outside cgroup core */
  89        struct kernfs_node *kn;
  90};
  91
  92/*
  93 * Per-subsystem/per-cgroup state maintained by the system.  This is the
  94 * fundamental structural building block that controllers deal with.
  95 *
  96 * Fields marked with "PI:" are public and immutable and may be accessed
  97 * directly without synchronization.
  98 */
  99struct cgroup_subsys_state {
 100        /* PI: the cgroup that this css is attached to */
 101        struct cgroup *cgroup;
 102
 103        /* PI: the cgroup subsystem that this css is attached to */
 104        struct cgroup_subsys *ss;
 105
 106        /* reference count - access via css_[try]get() and css_put() */
 107        struct percpu_ref refcnt;
 108
 109        /* PI: the parent css */
 110        struct cgroup_subsys_state *parent;
 111
 112        /* siblings list anchored at the parent's ->children */
 113        struct list_head sibling;
 114        struct list_head children;
 115
 116        /*
 117         * PI: Subsys-unique ID.  0 is unused and root is always 1.  The
 118         * matching css can be looked up using css_from_id().
 119         */
 120        int id;
 121
 122        unsigned int flags;
 123
 124        /*
 125         * Monotonically increasing unique serial number which defines a
 126         * uniform order among all csses.  It's guaranteed that all
 127         * ->children lists are in the ascending order of ->serial_nr and
 128         * used to allow interrupting and resuming iterations.
 129         */
 130        u64 serial_nr;
 131
 132        /*
 133         * Incremented by online self and children.  Used to guarantee that
 134         * parents are not offlined before their children.
 135         */
 136        atomic_t online_cnt;
 137
 138        /* percpu_ref killing and RCU release */
 139        struct rcu_head rcu_head;
 140        struct work_struct destroy_work;
 141};
 142
 143/*
 144 * A css_set is a structure holding pointers to a set of
 145 * cgroup_subsys_state objects. This saves space in the task struct
 146 * object and speeds up fork()/exit(), since a single inc/dec and a
 147 * list_add()/del() can bump the reference count on the entire cgroup
 148 * set for a task.
 149 */
 150struct css_set {
 151        /* Reference count */
 152        atomic_t refcount;
 153
 154        /*
 155         * List running through all cgroup groups in the same hash
 156         * slot. Protected by css_set_lock
 157         */
 158        struct hlist_node hlist;
 159
 160        /*
 161         * Lists running through all tasks using this cgroup group.
 162         * mg_tasks lists tasks which belong to this cset but are in the
 163         * process of being migrated out or in.  Protected by
 164         * css_set_rwsem, but, during migration, once tasks are moved to
 165         * mg_tasks, it can be read safely while holding cgroup_mutex.
 166         */
 167        struct list_head tasks;
 168        struct list_head mg_tasks;
 169
 170        /*
 171         * List of cgrp_cset_links pointing at cgroups referenced from this
 172         * css_set.  Protected by css_set_lock.
 173         */
 174        struct list_head cgrp_links;
 175
 176        /* the default cgroup associated with this css_set */
 177        struct cgroup *dfl_cgrp;
 178
 179        /*
 180         * Set of subsystem states, one for each subsystem. This array is
 181         * immutable after creation apart from the init_css_set during
 182         * subsystem registration (at boot time).
 183         */
 184        struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT];
 185
 186        /*
 187         * List of csets participating in the on-going migration either as
 188         * source or destination.  Protected by cgroup_mutex.
 189         */
 190        struct list_head mg_preload_node;
 191        struct list_head mg_node;
 192
 193        /*
 194         * If this cset is acting as the source of migration the following
 195         * two fields are set.  mg_src_cgrp and mg_dst_cgrp are
 196         * respectively the source and destination cgroups of the on-going
 197         * migration.  mg_dst_cset is the destination cset the target tasks
 198         * on this cset should be migrated to.  Protected by cgroup_mutex.
 199         */
 200        struct cgroup *mg_src_cgrp;
 201        struct cgroup *mg_dst_cgrp;
 202        struct css_set *mg_dst_cset;
 203
 204        /*
 205         * On the default hierarhcy, ->subsys[ssid] may point to a css
 206         * attached to an ancestor instead of the cgroup this css_set is
 207         * associated with.  The following node is anchored at
 208         * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to
 209         * iterate through all css's attached to a given cgroup.
 210         */
 211        struct list_head e_cset_node[CGROUP_SUBSYS_COUNT];
 212
 213        /* all css_task_iters currently walking this cset */
 214        struct list_head task_iters;
 215
 216        /* dead and being drained, ignore for migration */
 217        bool dead;
 218
 219        /* For RCU-protected deletion */
 220        struct rcu_head rcu_head;
 221};
 222
 223struct cgroup {
 224        /* self css with NULL ->ss, points back to this cgroup */
 225        struct cgroup_subsys_state self;
 226
 227        unsigned long flags;            /* "unsigned long" so bitops work */
 228
 229        /*
 230         * idr allocated in-hierarchy ID.
 231         *
 232         * ID 0 is not used, the ID of the root cgroup is always 1, and a
 233         * new cgroup will be assigned with a smallest available ID.
 234         *
 235         * Allocating/Removing ID must be protected by cgroup_mutex.
 236         */
 237        int id;
 238
 239        /*
 240         * The depth this cgroup is at.  The root is at depth zero and each
 241         * step down the hierarchy increments the level.  This along with
 242         * ancestor_ids[] can determine whether a given cgroup is a
 243         * descendant of another without traversing the hierarchy.
 244         */
 245        int level;
 246
 247        /*
 248         * Each non-empty css_set associated with this cgroup contributes
 249         * one to populated_cnt.  All children with non-zero popuplated_cnt
 250         * of their own contribute one.  The count is zero iff there's no
 251         * task in this cgroup or its subtree.
 252         */
 253        int populated_cnt;
 254
 255        struct kernfs_node *kn;         /* cgroup kernfs entry */
 256        struct cgroup_file procs_file;  /* handle for "cgroup.procs" */
 257        struct cgroup_file events_file; /* handle for "cgroup.events" */
 258
 259        /*
 260         * The bitmask of subsystems enabled on the child cgroups.
 261         * ->subtree_control is the one configured through
 262         * "cgroup.subtree_control" while ->child_ss_mask is the effective
 263         * one which may have more subsystems enabled.  Controller knobs
 264         * are made available iff it's enabled in ->subtree_control.
 265         */
 266        u16 subtree_control;
 267        u16 subtree_ss_mask;
 268        u16 old_subtree_control;
 269        u16 old_subtree_ss_mask;
 270
 271        /* Private pointers for each registered subsystem */
 272        struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT];
 273
 274        struct cgroup_root *root;
 275
 276        /*
 277         * List of cgrp_cset_links pointing at css_sets with tasks in this
 278         * cgroup.  Protected by css_set_lock.
 279         */
 280        struct list_head cset_links;
 281
 282        /*
 283         * On the default hierarchy, a css_set for a cgroup with some
 284         * susbsys disabled will point to css's which are associated with
 285         * the closest ancestor which has the subsys enabled.  The
 286         * following lists all css_sets which point to this cgroup's css
 287         * for the given subsystem.
 288         */
 289        struct list_head e_csets[CGROUP_SUBSYS_COUNT];
 290
 291        /*
 292         * list of pidlists, up to two for each namespace (one for procs, one
 293         * for tasks); created on demand.
 294         */
 295        struct list_head pidlists;
 296        struct mutex pidlist_mutex;
 297
 298        /* used to wait for offlining of csses */
 299        wait_queue_head_t offline_waitq;
 300
 301        /* used to schedule release agent */
 302        struct work_struct release_agent_work;
 303
 304        /* used to store eBPF programs */
 305        struct cgroup_bpf bpf;
 306
 307        /* ids of the ancestors at each level including self */
 308        int ancestor_ids[];
 309};
 310
 311/*
 312 * A cgroup_root represents the root of a cgroup hierarchy, and may be
 313 * associated with a kernfs_root to form an active hierarchy.  This is
 314 * internal to cgroup core.  Don't access directly from controllers.
 315 */
 316struct cgroup_root {
 317        struct kernfs_root *kf_root;
 318
 319        /* The bitmask of subsystems attached to this hierarchy */
 320        unsigned int subsys_mask;
 321
 322        /* Unique id for this hierarchy. */
 323        int hierarchy_id;
 324
 325        /* The root cgroup.  Root is destroyed on its release. */
 326        struct cgroup cgrp;
 327
 328        /* for cgrp->ancestor_ids[0] */
 329        int cgrp_ancestor_id_storage;
 330
 331        /* Number of cgroups in the hierarchy, used only for /proc/cgroups */
 332        atomic_t nr_cgrps;
 333
 334        /* A list running through the active hierarchies */
 335        struct list_head root_list;
 336
 337        /* Hierarchy-specific flags */
 338        unsigned int flags;
 339
 340        /* IDs for cgroups in this hierarchy */
 341        struct idr cgroup_idr;
 342
 343        /* The path to use for release notifications. */
 344        char release_agent_path[PATH_MAX];
 345
 346        /* The name for this hierarchy - may be empty */
 347        char name[MAX_CGROUP_ROOT_NAMELEN];
 348};
 349
 350/*
 351 * struct cftype: handler definitions for cgroup control files
 352 *
 353 * When reading/writing to a file:
 354 *      - the cgroup to use is file->f_path.dentry->d_parent->d_fsdata
 355 *      - the 'cftype' of the file is file->f_path.dentry->d_fsdata
 356 */
 357struct cftype {
 358        /*
 359         * By convention, the name should begin with the name of the
 360         * subsystem, followed by a period.  Zero length string indicates
 361         * end of cftype array.
 362         */
 363        char name[MAX_CFTYPE_NAME];
 364        unsigned long private;
 365
 366        /*
 367         * The maximum length of string, excluding trailing nul, that can
 368         * be passed to write.  If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed.
 369         */
 370        size_t max_write_len;
 371
 372        /* CFTYPE_* flags */
 373        unsigned int flags;
 374
 375        /*
 376         * If non-zero, should contain the offset from the start of css to
 377         * a struct cgroup_file field.  cgroup will record the handle of
 378         * the created file into it.  The recorded handle can be used as
 379         * long as the containing css remains accessible.
 380         */
 381        unsigned int file_offset;
 382
 383        /*
 384         * Fields used for internal bookkeeping.  Initialized automatically
 385         * during registration.
 386         */
 387        struct cgroup_subsys *ss;       /* NULL for cgroup core files */
 388        struct list_head node;          /* anchored at ss->cfts */
 389        struct kernfs_ops *kf_ops;
 390
 391        /*
 392         * read_u64() is a shortcut for the common case of returning a
 393         * single integer. Use it in place of read()
 394         */
 395        u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft);
 396        /*
 397         * read_s64() is a signed version of read_u64()
 398         */
 399        s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft);
 400
 401        /* generic seq_file read interface */
 402        int (*seq_show)(struct seq_file *sf, void *v);
 403
 404        /* optional ops, implement all or none */
 405        void *(*seq_start)(struct seq_file *sf, loff_t *ppos);
 406        void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos);
 407        void (*seq_stop)(struct seq_file *sf, void *v);
 408
 409        /*
 410         * write_u64() is a shortcut for the common case of accepting
 411         * a single integer (as parsed by simple_strtoull) from
 412         * userspace. Use in place of write(); return 0 or error.
 413         */
 414        int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft,
 415                         u64 val);
 416        /*
 417         * write_s64() is a signed version of write_u64()
 418         */
 419        int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft,
 420                         s64 val);
 421
 422        /*
 423         * write() is the generic write callback which maps directly to
 424         * kernfs write operation and overrides all other operations.
 425         * Maximum write size is determined by ->max_write_len.  Use
 426         * of_css/cft() to access the associated css and cft.
 427         */
 428        ssize_t (*write)(struct kernfs_open_file *of,
 429                         char *buf, size_t nbytes, loff_t off);
 430
 431#ifdef CONFIG_DEBUG_LOCK_ALLOC
 432        struct lock_class_key   lockdep_key;
 433#endif
 434};
 435
 436/*
 437 * Control Group subsystem type.
 438 * See Documentation/cgroups/cgroups.txt for details
 439 */
 440struct cgroup_subsys {
 441        struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css);
 442        int (*css_online)(struct cgroup_subsys_state *css);
 443        void (*css_offline)(struct cgroup_subsys_state *css);
 444        void (*css_released)(struct cgroup_subsys_state *css);
 445        void (*css_free)(struct cgroup_subsys_state *css);
 446        void (*css_reset)(struct cgroup_subsys_state *css);
 447
 448        int (*can_attach)(struct cgroup_taskset *tset);
 449        void (*cancel_attach)(struct cgroup_taskset *tset);
 450        void (*attach)(struct cgroup_taskset *tset);
 451        void (*post_attach)(void);
 452        int (*can_fork)(struct task_struct *task);
 453        void (*cancel_fork)(struct task_struct *task);
 454        void (*fork)(struct task_struct *task);
 455        void (*exit)(struct task_struct *task);
 456        void (*free)(struct task_struct *task);
 457        void (*bind)(struct cgroup_subsys_state *root_css);
 458
 459        bool early_init:1;
 460
 461        /*
 462         * If %true, the controller, on the default hierarchy, doesn't show
 463         * up in "cgroup.controllers" or "cgroup.subtree_control", is
 464         * implicitly enabled on all cgroups on the default hierarchy, and
 465         * bypasses the "no internal process" constraint.  This is for
 466         * utility type controllers which is transparent to userland.
 467         *
 468         * An implicit controller can be stolen from the default hierarchy
 469         * anytime and thus must be okay with offline csses from previous
 470         * hierarchies coexisting with csses for the current one.
 471         */
 472        bool implicit_on_dfl:1;
 473
 474        /*
 475         * If %false, this subsystem is properly hierarchical -
 476         * configuration, resource accounting and restriction on a parent
 477         * cgroup cover those of its children.  If %true, hierarchy support
 478         * is broken in some ways - some subsystems ignore hierarchy
 479         * completely while others are only implemented half-way.
 480         *
 481         * It's now disallowed to create nested cgroups if the subsystem is
 482         * broken and cgroup core will emit a warning message on such
 483         * cases.  Eventually, all subsystems will be made properly
 484         * hierarchical and this will go away.
 485         */
 486        bool broken_hierarchy:1;
 487        bool warned_broken_hierarchy:1;
 488
 489        /* the following two fields are initialized automtically during boot */
 490        int id;
 491        const char *name;
 492
 493        /* optional, initialized automatically during boot if not set */
 494        const char *legacy_name;
 495
 496        /* link to parent, protected by cgroup_lock() */
 497        struct cgroup_root *root;
 498
 499        /* idr for css->id */
 500        struct idr css_idr;
 501
 502        /*
 503         * List of cftypes.  Each entry is the first entry of an array
 504         * terminated by zero length name.
 505         */
 506        struct list_head cfts;
 507
 508        /*
 509         * Base cftypes which are automatically registered.  The two can
 510         * point to the same array.
 511         */
 512        struct cftype *dfl_cftypes;     /* for the default hierarchy */
 513        struct cftype *legacy_cftypes;  /* for the legacy hierarchies */
 514
 515        /*
 516         * A subsystem may depend on other subsystems.  When such subsystem
 517         * is enabled on a cgroup, the depended-upon subsystems are enabled
 518         * together if available.  Subsystems enabled due to dependency are
 519         * not visible to userland until explicitly enabled.  The following
 520         * specifies the mask of subsystems that this one depends on.
 521         */
 522        unsigned int depends_on;
 523};
 524
 525extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
 526
 527/**
 528 * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups
 529 * @tsk: target task
 530 *
 531 * Called from threadgroup_change_begin() and allows cgroup operations to
 532 * synchronize against threadgroup changes using a percpu_rw_semaphore.
 533 */
 534static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk)
 535{
 536        percpu_down_read(&cgroup_threadgroup_rwsem);
 537}
 538
 539/**
 540 * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups
 541 * @tsk: target task
 542 *
 543 * Called from threadgroup_change_end().  Counterpart of
 544 * cgroup_threadcgroup_change_begin().
 545 */
 546static inline void cgroup_threadgroup_change_end(struct task_struct *tsk)
 547{
 548        percpu_up_read(&cgroup_threadgroup_rwsem);
 549}
 550
 551#else   /* CONFIG_CGROUPS */
 552
 553#define CGROUP_SUBSYS_COUNT 0
 554
 555static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk) {}
 556static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {}
 557
 558#endif  /* CONFIG_CGROUPS */
 559
 560#ifdef CONFIG_SOCK_CGROUP_DATA
 561
 562/*
 563 * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains
 564 * per-socket cgroup information except for memcg association.
 565 *
 566 * On legacy hierarchies, net_prio and net_cls controllers directly set
 567 * attributes on each sock which can then be tested by the network layer.
 568 * On the default hierarchy, each sock is associated with the cgroup it was
 569 * created in and the networking layer can match the cgroup directly.
 570 *
 571 * To avoid carrying all three cgroup related fields separately in sock,
 572 * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer.
 573 * On boot, sock_cgroup_data records the cgroup that the sock was created
 574 * in so that cgroup2 matches can be made; however, once either net_prio or
 575 * net_cls starts being used, the area is overriden to carry prioidx and/or
 576 * classid.  The two modes are distinguished by whether the lowest bit is
 577 * set.  Clear bit indicates cgroup pointer while set bit prioidx and
 578 * classid.
 579 *
 580 * While userland may start using net_prio or net_cls at any time, once
 581 * either is used, cgroup2 matching no longer works.  There is no reason to
 582 * mix the two and this is in line with how legacy and v2 compatibility is
 583 * handled.  On mode switch, cgroup references which are already being
 584 * pointed to by socks may be leaked.  While this can be remedied by adding
 585 * synchronization around sock_cgroup_data, given that the number of leaked
 586 * cgroups is bound and highly unlikely to be high, this seems to be the
 587 * better trade-off.
 588 */
 589struct sock_cgroup_data {
 590        union {
 591#ifdef __LITTLE_ENDIAN
 592                struct {
 593                        u8      is_data;
 594                        u8      padding;
 595                        u16     prioidx;
 596                        u32     classid;
 597                } __packed;
 598#else
 599                struct {
 600                        u32     classid;
 601                        u16     prioidx;
 602                        u8      padding;
 603                        u8      is_data;
 604                } __packed;
 605#endif
 606                u64             val;
 607        };
 608};
 609
 610/*
 611 * There's a theoretical window where the following accessors race with
 612 * updaters and return part of the previous pointer as the prioidx or
 613 * classid.  Such races are short-lived and the result isn't critical.
 614 */
 615static inline u16 sock_cgroup_prioidx(struct sock_cgroup_data *skcd)
 616{
 617        /* fallback to 1 which is always the ID of the root cgroup */
 618        return (skcd->is_data & 1) ? skcd->prioidx : 1;
 619}
 620
 621static inline u32 sock_cgroup_classid(struct sock_cgroup_data *skcd)
 622{
 623        /* fallback to 0 which is the unconfigured default classid */
 624        return (skcd->is_data & 1) ? skcd->classid : 0;
 625}
 626
 627/*
 628 * If invoked concurrently, the updaters may clobber each other.  The
 629 * caller is responsible for synchronization.
 630 */
 631static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd,
 632                                           u16 prioidx)
 633{
 634        struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
 635
 636        if (sock_cgroup_prioidx(&skcd_buf) == prioidx)
 637                return;
 638
 639        if (!(skcd_buf.is_data & 1)) {
 640                skcd_buf.val = 0;
 641                skcd_buf.is_data = 1;
 642        }
 643
 644        skcd_buf.prioidx = prioidx;
 645        WRITE_ONCE(skcd->val, skcd_buf.val);    /* see sock_cgroup_ptr() */
 646}
 647
 648static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd,
 649                                           u32 classid)
 650{
 651        struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }};
 652
 653        if (sock_cgroup_classid(&skcd_buf) == classid)
 654                return;
 655
 656        if (!(skcd_buf.is_data & 1)) {
 657                skcd_buf.val = 0;
 658                skcd_buf.is_data = 1;
 659        }
 660
 661        skcd_buf.classid = classid;
 662        WRITE_ONCE(skcd->val, skcd_buf.val);    /* see sock_cgroup_ptr() */
 663}
 664
 665#else   /* CONFIG_SOCK_CGROUP_DATA */
 666
 667struct sock_cgroup_data {
 668};
 669
 670#endif  /* CONFIG_SOCK_CGROUP_DATA */
 671
 672#endif  /* _LINUX_CGROUP_DEFS_H */
 673