1/* 2 * linux/cgroup-defs.h - basic definitions for cgroup 3 * 4 * This file provides basic type and interface. Include this file directly 5 * only if necessary to avoid cyclic dependencies. 6 */ 7#ifndef _LINUX_CGROUP_DEFS_H 8#define _LINUX_CGROUP_DEFS_H 9 10#include <linux/limits.h> 11#include <linux/list.h> 12#include <linux/idr.h> 13#include <linux/wait.h> 14#include <linux/mutex.h> 15#include <linux/rcupdate.h> 16#include <linux/percpu-refcount.h> 17#include <linux/percpu-rwsem.h> 18#include <linux/workqueue.h> 19#include <linux/bpf-cgroup.h> 20 21#ifdef CONFIG_CGROUPS 22 23struct cgroup; 24struct cgroup_root; 25struct cgroup_subsys; 26struct cgroup_taskset; 27struct kernfs_node; 28struct kernfs_ops; 29struct kernfs_open_file; 30struct seq_file; 31 32#define MAX_CGROUP_TYPE_NAMELEN 32 33#define MAX_CGROUP_ROOT_NAMELEN 64 34#define MAX_CFTYPE_NAME 64 35 36/* define the enumeration of all cgroup subsystems */ 37#define SUBSYS(_x) _x ## _cgrp_id, 38enum cgroup_subsys_id { 39#include <linux/cgroup_subsys.h> 40 CGROUP_SUBSYS_COUNT, 41}; 42#undef SUBSYS 43 44/* bits in struct cgroup_subsys_state flags field */ 45enum { 46 CSS_NO_REF = (1 << 0), /* no reference counting for this css */ 47 CSS_ONLINE = (1 << 1), /* between ->css_online() and ->css_offline() */ 48 CSS_RELEASED = (1 << 2), /* refcnt reached zero, released */ 49 CSS_VISIBLE = (1 << 3), /* css is visible to userland */ 50}; 51 52/* bits in struct cgroup flags field */ 53enum { 54 /* Control Group requires release notifications to userspace */ 55 CGRP_NOTIFY_ON_RELEASE, 56 /* 57 * Clone the parent's configuration when creating a new child 58 * cpuset cgroup. For historical reasons, this option can be 59 * specified at mount time and thus is implemented here. 60 */ 61 CGRP_CPUSET_CLONE_CHILDREN, 62}; 63 64/* cgroup_root->flags */ 65enum { 66 CGRP_ROOT_NOPREFIX = (1 << 1), /* mounted subsystems have no named prefix */ 67 CGRP_ROOT_XATTR = (1 << 2), /* supports extended attributes */ 68}; 69 70/* cftype->flags */ 71enum { 72 CFTYPE_ONLY_ON_ROOT = (1 << 0), /* only create on root cgrp */ 73 CFTYPE_NOT_ON_ROOT = (1 << 1), /* don't create on root cgrp */ 74 CFTYPE_NO_PREFIX = (1 << 3), /* (DON'T USE FOR NEW FILES) no subsys prefix */ 75 CFTYPE_WORLD_WRITABLE = (1 << 4), /* (DON'T USE FOR NEW FILES) S_IWUGO */ 76 77 /* internal flags, do not use outside cgroup core proper */ 78 __CFTYPE_ONLY_ON_DFL = (1 << 16), /* only on default hierarchy */ 79 __CFTYPE_NOT_ON_DFL = (1 << 17), /* not on default hierarchy */ 80}; 81 82/* 83 * cgroup_file is the handle for a file instance created in a cgroup which 84 * is used, for example, to generate file changed notifications. This can 85 * be obtained by setting cftype->file_offset. 86 */ 87struct cgroup_file { 88 /* do not access any fields from outside cgroup core */ 89 struct kernfs_node *kn; 90}; 91 92/* 93 * Per-subsystem/per-cgroup state maintained by the system. This is the 94 * fundamental structural building block that controllers deal with. 95 * 96 * Fields marked with "PI:" are public and immutable and may be accessed 97 * directly without synchronization. 98 */ 99struct cgroup_subsys_state { 100 /* PI: the cgroup that this css is attached to */ 101 struct cgroup *cgroup; 102 103 /* PI: the cgroup subsystem that this css is attached to */ 104 struct cgroup_subsys *ss; 105 106 /* reference count - access via css_[try]get() and css_put() */ 107 struct percpu_ref refcnt; 108 109 /* PI: the parent css */ 110 struct cgroup_subsys_state *parent; 111 112 /* siblings list anchored at the parent's ->children */ 113 struct list_head sibling; 114 struct list_head children; 115 116 /* 117 * PI: Subsys-unique ID. 0 is unused and root is always 1. The 118 * matching css can be looked up using css_from_id(). 119 */ 120 int id; 121 122 unsigned int flags; 123 124 /* 125 * Monotonically increasing unique serial number which defines a 126 * uniform order among all csses. It's guaranteed that all 127 * ->children lists are in the ascending order of ->serial_nr and 128 * used to allow interrupting and resuming iterations. 129 */ 130 u64 serial_nr; 131 132 /* 133 * Incremented by online self and children. Used to guarantee that 134 * parents are not offlined before their children. 135 */ 136 atomic_t online_cnt; 137 138 /* percpu_ref killing and RCU release */ 139 struct rcu_head rcu_head; 140 struct work_struct destroy_work; 141}; 142 143/* 144 * A css_set is a structure holding pointers to a set of 145 * cgroup_subsys_state objects. This saves space in the task struct 146 * object and speeds up fork()/exit(), since a single inc/dec and a 147 * list_add()/del() can bump the reference count on the entire cgroup 148 * set for a task. 149 */ 150struct css_set { 151 /* Reference count */ 152 atomic_t refcount; 153 154 /* 155 * List running through all cgroup groups in the same hash 156 * slot. Protected by css_set_lock 157 */ 158 struct hlist_node hlist; 159 160 /* 161 * Lists running through all tasks using this cgroup group. 162 * mg_tasks lists tasks which belong to this cset but are in the 163 * process of being migrated out or in. Protected by 164 * css_set_rwsem, but, during migration, once tasks are moved to 165 * mg_tasks, it can be read safely while holding cgroup_mutex. 166 */ 167 struct list_head tasks; 168 struct list_head mg_tasks; 169 170 /* 171 * List of cgrp_cset_links pointing at cgroups referenced from this 172 * css_set. Protected by css_set_lock. 173 */ 174 struct list_head cgrp_links; 175 176 /* the default cgroup associated with this css_set */ 177 struct cgroup *dfl_cgrp; 178 179 /* 180 * Set of subsystem states, one for each subsystem. This array is 181 * immutable after creation apart from the init_css_set during 182 * subsystem registration (at boot time). 183 */ 184 struct cgroup_subsys_state *subsys[CGROUP_SUBSYS_COUNT]; 185 186 /* 187 * List of csets participating in the on-going migration either as 188 * source or destination. Protected by cgroup_mutex. 189 */ 190 struct list_head mg_preload_node; 191 struct list_head mg_node; 192 193 /* 194 * If this cset is acting as the source of migration the following 195 * two fields are set. mg_src_cgrp and mg_dst_cgrp are 196 * respectively the source and destination cgroups of the on-going 197 * migration. mg_dst_cset is the destination cset the target tasks 198 * on this cset should be migrated to. Protected by cgroup_mutex. 199 */ 200 struct cgroup *mg_src_cgrp; 201 struct cgroup *mg_dst_cgrp; 202 struct css_set *mg_dst_cset; 203 204 /* 205 * On the default hierarhcy, ->subsys[ssid] may point to a css 206 * attached to an ancestor instead of the cgroup this css_set is 207 * associated with. The following node is anchored at 208 * ->subsys[ssid]->cgroup->e_csets[ssid] and provides a way to 209 * iterate through all css's attached to a given cgroup. 210 */ 211 struct list_head e_cset_node[CGROUP_SUBSYS_COUNT]; 212 213 /* all css_task_iters currently walking this cset */ 214 struct list_head task_iters; 215 216 /* dead and being drained, ignore for migration */ 217 bool dead; 218 219 /* For RCU-protected deletion */ 220 struct rcu_head rcu_head; 221}; 222 223struct cgroup { 224 /* self css with NULL ->ss, points back to this cgroup */ 225 struct cgroup_subsys_state self; 226 227 unsigned long flags; /* "unsigned long" so bitops work */ 228 229 /* 230 * idr allocated in-hierarchy ID. 231 * 232 * ID 0 is not used, the ID of the root cgroup is always 1, and a 233 * new cgroup will be assigned with a smallest available ID. 234 * 235 * Allocating/Removing ID must be protected by cgroup_mutex. 236 */ 237 int id; 238 239 /* 240 * The depth this cgroup is at. The root is at depth zero and each 241 * step down the hierarchy increments the level. This along with 242 * ancestor_ids[] can determine whether a given cgroup is a 243 * descendant of another without traversing the hierarchy. 244 */ 245 int level; 246 247 /* 248 * Each non-empty css_set associated with this cgroup contributes 249 * one to populated_cnt. All children with non-zero popuplated_cnt 250 * of their own contribute one. The count is zero iff there's no 251 * task in this cgroup or its subtree. 252 */ 253 int populated_cnt; 254 255 struct kernfs_node *kn; /* cgroup kernfs entry */ 256 struct cgroup_file procs_file; /* handle for "cgroup.procs" */ 257 struct cgroup_file events_file; /* handle for "cgroup.events" */ 258 259 /* 260 * The bitmask of subsystems enabled on the child cgroups. 261 * ->subtree_control is the one configured through 262 * "cgroup.subtree_control" while ->child_ss_mask is the effective 263 * one which may have more subsystems enabled. Controller knobs 264 * are made available iff it's enabled in ->subtree_control. 265 */ 266 u16 subtree_control; 267 u16 subtree_ss_mask; 268 u16 old_subtree_control; 269 u16 old_subtree_ss_mask; 270 271 /* Private pointers for each registered subsystem */ 272 struct cgroup_subsys_state __rcu *subsys[CGROUP_SUBSYS_COUNT]; 273 274 struct cgroup_root *root; 275 276 /* 277 * List of cgrp_cset_links pointing at css_sets with tasks in this 278 * cgroup. Protected by css_set_lock. 279 */ 280 struct list_head cset_links; 281 282 /* 283 * On the default hierarchy, a css_set for a cgroup with some 284 * susbsys disabled will point to css's which are associated with 285 * the closest ancestor which has the subsys enabled. The 286 * following lists all css_sets which point to this cgroup's css 287 * for the given subsystem. 288 */ 289 struct list_head e_csets[CGROUP_SUBSYS_COUNT]; 290 291 /* 292 * list of pidlists, up to two for each namespace (one for procs, one 293 * for tasks); created on demand. 294 */ 295 struct list_head pidlists; 296 struct mutex pidlist_mutex; 297 298 /* used to wait for offlining of csses */ 299 wait_queue_head_t offline_waitq; 300 301 /* used to schedule release agent */ 302 struct work_struct release_agent_work; 303 304 /* used to store eBPF programs */ 305 struct cgroup_bpf bpf; 306 307 /* ids of the ancestors at each level including self */ 308 int ancestor_ids[]; 309}; 310 311/* 312 * A cgroup_root represents the root of a cgroup hierarchy, and may be 313 * associated with a kernfs_root to form an active hierarchy. This is 314 * internal to cgroup core. Don't access directly from controllers. 315 */ 316struct cgroup_root { 317 struct kernfs_root *kf_root; 318 319 /* The bitmask of subsystems attached to this hierarchy */ 320 unsigned int subsys_mask; 321 322 /* Unique id for this hierarchy. */ 323 int hierarchy_id; 324 325 /* The root cgroup. Root is destroyed on its release. */ 326 struct cgroup cgrp; 327 328 /* for cgrp->ancestor_ids[0] */ 329 int cgrp_ancestor_id_storage; 330 331 /* Number of cgroups in the hierarchy, used only for /proc/cgroups */ 332 atomic_t nr_cgrps; 333 334 /* A list running through the active hierarchies */ 335 struct list_head root_list; 336 337 /* Hierarchy-specific flags */ 338 unsigned int flags; 339 340 /* IDs for cgroups in this hierarchy */ 341 struct idr cgroup_idr; 342 343 /* The path to use for release notifications. */ 344 char release_agent_path[PATH_MAX]; 345 346 /* The name for this hierarchy - may be empty */ 347 char name[MAX_CGROUP_ROOT_NAMELEN]; 348}; 349 350/* 351 * struct cftype: handler definitions for cgroup control files 352 * 353 * When reading/writing to a file: 354 * - the cgroup to use is file->f_path.dentry->d_parent->d_fsdata 355 * - the 'cftype' of the file is file->f_path.dentry->d_fsdata 356 */ 357struct cftype { 358 /* 359 * By convention, the name should begin with the name of the 360 * subsystem, followed by a period. Zero length string indicates 361 * end of cftype array. 362 */ 363 char name[MAX_CFTYPE_NAME]; 364 unsigned long private; 365 366 /* 367 * The maximum length of string, excluding trailing nul, that can 368 * be passed to write. If < PAGE_SIZE-1, PAGE_SIZE-1 is assumed. 369 */ 370 size_t max_write_len; 371 372 /* CFTYPE_* flags */ 373 unsigned int flags; 374 375 /* 376 * If non-zero, should contain the offset from the start of css to 377 * a struct cgroup_file field. cgroup will record the handle of 378 * the created file into it. The recorded handle can be used as 379 * long as the containing css remains accessible. 380 */ 381 unsigned int file_offset; 382 383 /* 384 * Fields used for internal bookkeeping. Initialized automatically 385 * during registration. 386 */ 387 struct cgroup_subsys *ss; /* NULL for cgroup core files */ 388 struct list_head node; /* anchored at ss->cfts */ 389 struct kernfs_ops *kf_ops; 390 391 /* 392 * read_u64() is a shortcut for the common case of returning a 393 * single integer. Use it in place of read() 394 */ 395 u64 (*read_u64)(struct cgroup_subsys_state *css, struct cftype *cft); 396 /* 397 * read_s64() is a signed version of read_u64() 398 */ 399 s64 (*read_s64)(struct cgroup_subsys_state *css, struct cftype *cft); 400 401 /* generic seq_file read interface */ 402 int (*seq_show)(struct seq_file *sf, void *v); 403 404 /* optional ops, implement all or none */ 405 void *(*seq_start)(struct seq_file *sf, loff_t *ppos); 406 void *(*seq_next)(struct seq_file *sf, void *v, loff_t *ppos); 407 void (*seq_stop)(struct seq_file *sf, void *v); 408 409 /* 410 * write_u64() is a shortcut for the common case of accepting 411 * a single integer (as parsed by simple_strtoull) from 412 * userspace. Use in place of write(); return 0 or error. 413 */ 414 int (*write_u64)(struct cgroup_subsys_state *css, struct cftype *cft, 415 u64 val); 416 /* 417 * write_s64() is a signed version of write_u64() 418 */ 419 int (*write_s64)(struct cgroup_subsys_state *css, struct cftype *cft, 420 s64 val); 421 422 /* 423 * write() is the generic write callback which maps directly to 424 * kernfs write operation and overrides all other operations. 425 * Maximum write size is determined by ->max_write_len. Use 426 * of_css/cft() to access the associated css and cft. 427 */ 428 ssize_t (*write)(struct kernfs_open_file *of, 429 char *buf, size_t nbytes, loff_t off); 430 431#ifdef CONFIG_DEBUG_LOCK_ALLOC 432 struct lock_class_key lockdep_key; 433#endif 434}; 435 436/* 437 * Control Group subsystem type. 438 * See Documentation/cgroups/cgroups.txt for details 439 */ 440struct cgroup_subsys { 441 struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state *parent_css); 442 int (*css_online)(struct cgroup_subsys_state *css); 443 void (*css_offline)(struct cgroup_subsys_state *css); 444 void (*css_released)(struct cgroup_subsys_state *css); 445 void (*css_free)(struct cgroup_subsys_state *css); 446 void (*css_reset)(struct cgroup_subsys_state *css); 447 448 int (*can_attach)(struct cgroup_taskset *tset); 449 void (*cancel_attach)(struct cgroup_taskset *tset); 450 void (*attach)(struct cgroup_taskset *tset); 451 void (*post_attach)(void); 452 int (*can_fork)(struct task_struct *task); 453 void (*cancel_fork)(struct task_struct *task); 454 void (*fork)(struct task_struct *task); 455 void (*exit)(struct task_struct *task); 456 void (*free)(struct task_struct *task); 457 void (*bind)(struct cgroup_subsys_state *root_css); 458 459 bool early_init:1; 460 461 /* 462 * If %true, the controller, on the default hierarchy, doesn't show 463 * up in "cgroup.controllers" or "cgroup.subtree_control", is 464 * implicitly enabled on all cgroups on the default hierarchy, and 465 * bypasses the "no internal process" constraint. This is for 466 * utility type controllers which is transparent to userland. 467 * 468 * An implicit controller can be stolen from the default hierarchy 469 * anytime and thus must be okay with offline csses from previous 470 * hierarchies coexisting with csses for the current one. 471 */ 472 bool implicit_on_dfl:1; 473 474 /* 475 * If %false, this subsystem is properly hierarchical - 476 * configuration, resource accounting and restriction on a parent 477 * cgroup cover those of its children. If %true, hierarchy support 478 * is broken in some ways - some subsystems ignore hierarchy 479 * completely while others are only implemented half-way. 480 * 481 * It's now disallowed to create nested cgroups if the subsystem is 482 * broken and cgroup core will emit a warning message on such 483 * cases. Eventually, all subsystems will be made properly 484 * hierarchical and this will go away. 485 */ 486 bool broken_hierarchy:1; 487 bool warned_broken_hierarchy:1; 488 489 /* the following two fields are initialized automtically during boot */ 490 int id; 491 const char *name; 492 493 /* optional, initialized automatically during boot if not set */ 494 const char *legacy_name; 495 496 /* link to parent, protected by cgroup_lock() */ 497 struct cgroup_root *root; 498 499 /* idr for css->id */ 500 struct idr css_idr; 501 502 /* 503 * List of cftypes. Each entry is the first entry of an array 504 * terminated by zero length name. 505 */ 506 struct list_head cfts; 507 508 /* 509 * Base cftypes which are automatically registered. The two can 510 * point to the same array. 511 */ 512 struct cftype *dfl_cftypes; /* for the default hierarchy */ 513 struct cftype *legacy_cftypes; /* for the legacy hierarchies */ 514 515 /* 516 * A subsystem may depend on other subsystems. When such subsystem 517 * is enabled on a cgroup, the depended-upon subsystems are enabled 518 * together if available. Subsystems enabled due to dependency are 519 * not visible to userland until explicitly enabled. The following 520 * specifies the mask of subsystems that this one depends on. 521 */ 522 unsigned int depends_on; 523}; 524 525extern struct percpu_rw_semaphore cgroup_threadgroup_rwsem; 526 527/** 528 * cgroup_threadgroup_change_begin - threadgroup exclusion for cgroups 529 * @tsk: target task 530 * 531 * Called from threadgroup_change_begin() and allows cgroup operations to 532 * synchronize against threadgroup changes using a percpu_rw_semaphore. 533 */ 534static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk) 535{ 536 percpu_down_read(&cgroup_threadgroup_rwsem); 537} 538 539/** 540 * cgroup_threadgroup_change_end - threadgroup exclusion for cgroups 541 * @tsk: target task 542 * 543 * Called from threadgroup_change_end(). Counterpart of 544 * cgroup_threadcgroup_change_begin(). 545 */ 546static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) 547{ 548 percpu_up_read(&cgroup_threadgroup_rwsem); 549} 550 551#else /* CONFIG_CGROUPS */ 552 553#define CGROUP_SUBSYS_COUNT 0 554 555static inline void cgroup_threadgroup_change_begin(struct task_struct *tsk) {} 556static inline void cgroup_threadgroup_change_end(struct task_struct *tsk) {} 557 558#endif /* CONFIG_CGROUPS */ 559 560#ifdef CONFIG_SOCK_CGROUP_DATA 561 562/* 563 * sock_cgroup_data is embedded at sock->sk_cgrp_data and contains 564 * per-socket cgroup information except for memcg association. 565 * 566 * On legacy hierarchies, net_prio and net_cls controllers directly set 567 * attributes on each sock which can then be tested by the network layer. 568 * On the default hierarchy, each sock is associated with the cgroup it was 569 * created in and the networking layer can match the cgroup directly. 570 * 571 * To avoid carrying all three cgroup related fields separately in sock, 572 * sock_cgroup_data overloads (prioidx, classid) and the cgroup pointer. 573 * On boot, sock_cgroup_data records the cgroup that the sock was created 574 * in so that cgroup2 matches can be made; however, once either net_prio or 575 * net_cls starts being used, the area is overriden to carry prioidx and/or 576 * classid. The two modes are distinguished by whether the lowest bit is 577 * set. Clear bit indicates cgroup pointer while set bit prioidx and 578 * classid. 579 * 580 * While userland may start using net_prio or net_cls at any time, once 581 * either is used, cgroup2 matching no longer works. There is no reason to 582 * mix the two and this is in line with how legacy and v2 compatibility is 583 * handled. On mode switch, cgroup references which are already being 584 * pointed to by socks may be leaked. While this can be remedied by adding 585 * synchronization around sock_cgroup_data, given that the number of leaked 586 * cgroups is bound and highly unlikely to be high, this seems to be the 587 * better trade-off. 588 */ 589struct sock_cgroup_data { 590 union { 591#ifdef __LITTLE_ENDIAN 592 struct { 593 u8 is_data; 594 u8 padding; 595 u16 prioidx; 596 u32 classid; 597 } __packed; 598#else 599 struct { 600 u32 classid; 601 u16 prioidx; 602 u8 padding; 603 u8 is_data; 604 } __packed; 605#endif 606 u64 val; 607 }; 608}; 609 610/* 611 * There's a theoretical window where the following accessors race with 612 * updaters and return part of the previous pointer as the prioidx or 613 * classid. Such races are short-lived and the result isn't critical. 614 */ 615static inline u16 sock_cgroup_prioidx(struct sock_cgroup_data *skcd) 616{ 617 /* fallback to 1 which is always the ID of the root cgroup */ 618 return (skcd->is_data & 1) ? skcd->prioidx : 1; 619} 620 621static inline u32 sock_cgroup_classid(struct sock_cgroup_data *skcd) 622{ 623 /* fallback to 0 which is the unconfigured default classid */ 624 return (skcd->is_data & 1) ? skcd->classid : 0; 625} 626 627/* 628 * If invoked concurrently, the updaters may clobber each other. The 629 * caller is responsible for synchronization. 630 */ 631static inline void sock_cgroup_set_prioidx(struct sock_cgroup_data *skcd, 632 u16 prioidx) 633{ 634 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }}; 635 636 if (sock_cgroup_prioidx(&skcd_buf) == prioidx) 637 return; 638 639 if (!(skcd_buf.is_data & 1)) { 640 skcd_buf.val = 0; 641 skcd_buf.is_data = 1; 642 } 643 644 skcd_buf.prioidx = prioidx; 645 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */ 646} 647 648static inline void sock_cgroup_set_classid(struct sock_cgroup_data *skcd, 649 u32 classid) 650{ 651 struct sock_cgroup_data skcd_buf = {{ .val = READ_ONCE(skcd->val) }}; 652 653 if (sock_cgroup_classid(&skcd_buf) == classid) 654 return; 655 656 if (!(skcd_buf.is_data & 1)) { 657 skcd_buf.val = 0; 658 skcd_buf.is_data = 1; 659 } 660 661 skcd_buf.classid = classid; 662 WRITE_ONCE(skcd->val, skcd_buf.val); /* see sock_cgroup_ptr() */ 663} 664 665#else /* CONFIG_SOCK_CGROUP_DATA */ 666 667struct sock_cgroup_data { 668}; 669 670#endif /* CONFIG_SOCK_CGROUP_DATA */ 671 672#endif /* _LINUX_CGROUP_DEFS_H */ 673