linux/include/linux/vmw_vmci_defs.h
<<
>>
Prefs
   1/*
   2 * VMware VMCI Driver
   3 *
   4 * Copyright (C) 2012 VMware, Inc. All rights reserved.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the
   8 * Free Software Foundation version 2 and no later version.
   9 *
  10 * This program is distributed in the hope that it will be useful, but
  11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  12 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13 * for more details.
  14 */
  15
  16#ifndef _VMW_VMCI_DEF_H_
  17#define _VMW_VMCI_DEF_H_
  18
  19#include <linux/atomic.h>
  20
  21/* Register offsets. */
  22#define VMCI_STATUS_ADDR      0x00
  23#define VMCI_CONTROL_ADDR     0x04
  24#define VMCI_ICR_ADDR         0x08
  25#define VMCI_IMR_ADDR         0x0c
  26#define VMCI_DATA_OUT_ADDR    0x10
  27#define VMCI_DATA_IN_ADDR     0x14
  28#define VMCI_CAPS_ADDR        0x18
  29#define VMCI_RESULT_LOW_ADDR  0x1c
  30#define VMCI_RESULT_HIGH_ADDR 0x20
  31
  32/* Max number of devices. */
  33#define VMCI_MAX_DEVICES 1
  34
  35/* Status register bits. */
  36#define VMCI_STATUS_INT_ON     0x1
  37
  38/* Control register bits. */
  39#define VMCI_CONTROL_RESET        0x1
  40#define VMCI_CONTROL_INT_ENABLE   0x2
  41#define VMCI_CONTROL_INT_DISABLE  0x4
  42
  43/* Capabilities register bits. */
  44#define VMCI_CAPS_HYPERCALL     0x1
  45#define VMCI_CAPS_GUESTCALL     0x2
  46#define VMCI_CAPS_DATAGRAM      0x4
  47#define VMCI_CAPS_NOTIFICATIONS 0x8
  48
  49/* Interrupt Cause register bits. */
  50#define VMCI_ICR_DATAGRAM      0x1
  51#define VMCI_ICR_NOTIFICATION  0x2
  52
  53/* Interrupt Mask register bits. */
  54#define VMCI_IMR_DATAGRAM      0x1
  55#define VMCI_IMR_NOTIFICATION  0x2
  56
  57/* Interrupt type. */
  58enum {
  59        VMCI_INTR_TYPE_INTX = 0,
  60        VMCI_INTR_TYPE_MSI = 1,
  61        VMCI_INTR_TYPE_MSIX = 2,
  62};
  63
  64/* Maximum MSI/MSI-X interrupt vectors in the device. */
  65#define VMCI_MAX_INTRS 2
  66
  67/*
  68 * Supported interrupt vectors.  There is one for each ICR value above,
  69 * but here they indicate the position in the vector array/message ID.
  70 */
  71enum {
  72        VMCI_INTR_DATAGRAM = 0,
  73        VMCI_INTR_NOTIFICATION = 1,
  74};
  75
  76/*
  77 * A single VMCI device has an upper limit of 128MB on the amount of
  78 * memory that can be used for queue pairs.
  79 */
  80#define VMCI_MAX_GUEST_QP_MEMORY (128 * 1024 * 1024)
  81
  82/*
  83 * Queues with pre-mapped data pages must be small, so that we don't pin
  84 * too much kernel memory (especially on vmkernel).  We limit a queuepair to
  85 * 32 KB, or 16 KB per queue for symmetrical pairs.
  86 */
  87#define VMCI_MAX_PINNED_QP_MEMORY (32 * 1024)
  88
  89/*
  90 * We have a fixed set of resource IDs available in the VMX.
  91 * This allows us to have a very simple implementation since we statically
  92 * know how many will create datagram handles. If a new caller arrives and
  93 * we have run out of slots we can manually increment the maximum size of
  94 * available resource IDs.
  95 *
  96 * VMCI reserved hypervisor datagram resource IDs.
  97 */
  98enum {
  99        VMCI_RESOURCES_QUERY = 0,
 100        VMCI_GET_CONTEXT_ID = 1,
 101        VMCI_SET_NOTIFY_BITMAP = 2,
 102        VMCI_DOORBELL_LINK = 3,
 103        VMCI_DOORBELL_UNLINK = 4,
 104        VMCI_DOORBELL_NOTIFY = 5,
 105        /*
 106         * VMCI_DATAGRAM_REQUEST_MAP and VMCI_DATAGRAM_REMOVE_MAP are
 107         * obsoleted by the removal of VM to VM communication.
 108         */
 109        VMCI_DATAGRAM_REQUEST_MAP = 6,
 110        VMCI_DATAGRAM_REMOVE_MAP = 7,
 111        VMCI_EVENT_SUBSCRIBE = 8,
 112        VMCI_EVENT_UNSUBSCRIBE = 9,
 113        VMCI_QUEUEPAIR_ALLOC = 10,
 114        VMCI_QUEUEPAIR_DETACH = 11,
 115
 116        /*
 117         * VMCI_VSOCK_VMX_LOOKUP was assigned to 12 for Fusion 3.0/3.1,
 118         * WS 7.0/7.1 and ESX 4.1
 119         */
 120        VMCI_HGFS_TRANSPORT = 13,
 121        VMCI_UNITY_PBRPC_REGISTER = 14,
 122        VMCI_RPC_PRIVILEGED = 15,
 123        VMCI_RPC_UNPRIVILEGED = 16,
 124        VMCI_RESOURCE_MAX = 17,
 125};
 126
 127/*
 128 * struct vmci_handle - Ownership information structure
 129 * @context:    The VMX context ID.
 130 * @resource:   The resource ID (used for locating in resource hash).
 131 *
 132 * The vmci_handle structure is used to track resources used within
 133 * vmw_vmci.
 134 */
 135struct vmci_handle {
 136        u32 context;
 137        u32 resource;
 138};
 139
 140#define vmci_make_handle(_cid, _rid) \
 141        (struct vmci_handle){ .context = _cid, .resource = _rid }
 142
 143static inline bool vmci_handle_is_equal(struct vmci_handle h1,
 144                                        struct vmci_handle h2)
 145{
 146        return h1.context == h2.context && h1.resource == h2.resource;
 147}
 148
 149#define VMCI_INVALID_ID ~0
 150static const struct vmci_handle VMCI_INVALID_HANDLE = {
 151        .context = VMCI_INVALID_ID,
 152        .resource = VMCI_INVALID_ID
 153};
 154
 155static inline bool vmci_handle_is_invalid(struct vmci_handle h)
 156{
 157        return vmci_handle_is_equal(h, VMCI_INVALID_HANDLE);
 158}
 159
 160/*
 161 * The below defines can be used to send anonymous requests.
 162 * This also indicates that no response is expected.
 163 */
 164#define VMCI_ANON_SRC_CONTEXT_ID   VMCI_INVALID_ID
 165#define VMCI_ANON_SRC_RESOURCE_ID  VMCI_INVALID_ID
 166static const struct vmci_handle VMCI_ANON_SRC_HANDLE = {
 167        .context = VMCI_ANON_SRC_CONTEXT_ID,
 168        .resource = VMCI_ANON_SRC_RESOURCE_ID
 169};
 170
 171/* The lowest 16 context ids are reserved for internal use. */
 172#define VMCI_RESERVED_CID_LIMIT ((u32) 16)
 173
 174/*
 175 * Hypervisor context id, used for calling into hypervisor
 176 * supplied services from the VM.
 177 */
 178#define VMCI_HYPERVISOR_CONTEXT_ID 0
 179
 180/*
 181 * Well-known context id, a logical context that contains a set of
 182 * well-known services. This context ID is now obsolete.
 183 */
 184#define VMCI_WELL_KNOWN_CONTEXT_ID 1
 185
 186/*
 187 * Context ID used by host endpoints.
 188 */
 189#define VMCI_HOST_CONTEXT_ID  2
 190
 191#define VMCI_CONTEXT_IS_VM(_cid) (VMCI_INVALID_ID != (_cid) &&          \
 192                                  (_cid) > VMCI_HOST_CONTEXT_ID)
 193
 194/*
 195 * The VMCI_CONTEXT_RESOURCE_ID is used together with vmci_make_handle to make
 196 * handles that refer to a specific context.
 197 */
 198#define VMCI_CONTEXT_RESOURCE_ID 0
 199
 200/*
 201 * VMCI error codes.
 202 */
 203enum {
 204        VMCI_SUCCESS_QUEUEPAIR_ATTACH   = 5,
 205        VMCI_SUCCESS_QUEUEPAIR_CREATE   = 4,
 206        VMCI_SUCCESS_LAST_DETACH        = 3,
 207        VMCI_SUCCESS_ACCESS_GRANTED     = 2,
 208        VMCI_SUCCESS_ENTRY_DEAD         = 1,
 209        VMCI_SUCCESS                     = 0,
 210        VMCI_ERROR_INVALID_RESOURCE      = (-1),
 211        VMCI_ERROR_INVALID_ARGS          = (-2),
 212        VMCI_ERROR_NO_MEM                = (-3),
 213        VMCI_ERROR_DATAGRAM_FAILED       = (-4),
 214        VMCI_ERROR_MORE_DATA             = (-5),
 215        VMCI_ERROR_NO_MORE_DATAGRAMS     = (-6),
 216        VMCI_ERROR_NO_ACCESS             = (-7),
 217        VMCI_ERROR_NO_HANDLE             = (-8),
 218        VMCI_ERROR_DUPLICATE_ENTRY       = (-9),
 219        VMCI_ERROR_DST_UNREACHABLE       = (-10),
 220        VMCI_ERROR_PAYLOAD_TOO_LARGE     = (-11),
 221        VMCI_ERROR_INVALID_PRIV          = (-12),
 222        VMCI_ERROR_GENERIC               = (-13),
 223        VMCI_ERROR_PAGE_ALREADY_SHARED   = (-14),
 224        VMCI_ERROR_CANNOT_SHARE_PAGE     = (-15),
 225        VMCI_ERROR_CANNOT_UNSHARE_PAGE   = (-16),
 226        VMCI_ERROR_NO_PROCESS            = (-17),
 227        VMCI_ERROR_NO_DATAGRAM           = (-18),
 228        VMCI_ERROR_NO_RESOURCES          = (-19),
 229        VMCI_ERROR_UNAVAILABLE           = (-20),
 230        VMCI_ERROR_NOT_FOUND             = (-21),
 231        VMCI_ERROR_ALREADY_EXISTS        = (-22),
 232        VMCI_ERROR_NOT_PAGE_ALIGNED      = (-23),
 233        VMCI_ERROR_INVALID_SIZE          = (-24),
 234        VMCI_ERROR_REGION_ALREADY_SHARED = (-25),
 235        VMCI_ERROR_TIMEOUT               = (-26),
 236        VMCI_ERROR_DATAGRAM_INCOMPLETE   = (-27),
 237        VMCI_ERROR_INCORRECT_IRQL        = (-28),
 238        VMCI_ERROR_EVENT_UNKNOWN         = (-29),
 239        VMCI_ERROR_OBSOLETE              = (-30),
 240        VMCI_ERROR_QUEUEPAIR_MISMATCH    = (-31),
 241        VMCI_ERROR_QUEUEPAIR_NOTSET      = (-32),
 242        VMCI_ERROR_QUEUEPAIR_NOTOWNER    = (-33),
 243        VMCI_ERROR_QUEUEPAIR_NOTATTACHED = (-34),
 244        VMCI_ERROR_QUEUEPAIR_NOSPACE     = (-35),
 245        VMCI_ERROR_QUEUEPAIR_NODATA      = (-36),
 246        VMCI_ERROR_BUSMEM_INVALIDATION   = (-37),
 247        VMCI_ERROR_MODULE_NOT_LOADED     = (-38),
 248        VMCI_ERROR_DEVICE_NOT_FOUND      = (-39),
 249        VMCI_ERROR_QUEUEPAIR_NOT_READY   = (-40),
 250        VMCI_ERROR_WOULD_BLOCK           = (-41),
 251
 252        /* VMCI clients should return error code within this range */
 253        VMCI_ERROR_CLIENT_MIN            = (-500),
 254        VMCI_ERROR_CLIENT_MAX            = (-550),
 255
 256        /* Internal error codes. */
 257        VMCI_SHAREDMEM_ERROR_BAD_CONTEXT = (-1000),
 258};
 259
 260/* VMCI reserved events. */
 261enum {
 262        /* Only applicable to guest endpoints */
 263        VMCI_EVENT_CTX_ID_UPDATE  = 0,
 264
 265        /* Applicable to guest and host */
 266        VMCI_EVENT_CTX_REMOVED    = 1,
 267
 268        /* Only applicable to guest endpoints */
 269        VMCI_EVENT_QP_RESUMED     = 2,
 270
 271        /* Applicable to guest and host */
 272        VMCI_EVENT_QP_PEER_ATTACH = 3,
 273
 274        /* Applicable to guest and host */
 275        VMCI_EVENT_QP_PEER_DETACH = 4,
 276
 277        /*
 278         * Applicable to VMX and vmk.  On vmk,
 279         * this event has the Context payload type.
 280         */
 281        VMCI_EVENT_MEM_ACCESS_ON  = 5,
 282
 283        /*
 284         * Applicable to VMX and vmk.  Same as
 285         * above for the payload type.
 286         */
 287        VMCI_EVENT_MEM_ACCESS_OFF = 6,
 288        VMCI_EVENT_MAX            = 7,
 289};
 290
 291/*
 292 * Of the above events, a few are reserved for use in the VMX, and
 293 * other endpoints (guest and host kernel) should not use them. For
 294 * the rest of the events, we allow both host and guest endpoints to
 295 * subscribe to them, to maintain the same API for host and guest
 296 * endpoints.
 297 */
 298#define VMCI_EVENT_VALID_VMX(_event) ((_event) == VMCI_EVENT_MEM_ACCESS_ON || \
 299                                      (_event) == VMCI_EVENT_MEM_ACCESS_OFF)
 300
 301#define VMCI_EVENT_VALID(_event) ((_event) < VMCI_EVENT_MAX &&          \
 302                                  !VMCI_EVENT_VALID_VMX(_event))
 303
 304/* Reserved guest datagram resource ids. */
 305#define VMCI_EVENT_HANDLER 0
 306
 307/*
 308 * VMCI coarse-grained privileges (per context or host
 309 * process/endpoint. An entity with the restricted flag is only
 310 * allowed to interact with the hypervisor and trusted entities.
 311 */
 312enum {
 313        VMCI_NO_PRIVILEGE_FLAGS = 0,
 314        VMCI_PRIVILEGE_FLAG_RESTRICTED = 1,
 315        VMCI_PRIVILEGE_FLAG_TRUSTED = 2,
 316        VMCI_PRIVILEGE_ALL_FLAGS = (VMCI_PRIVILEGE_FLAG_RESTRICTED |
 317                                    VMCI_PRIVILEGE_FLAG_TRUSTED),
 318        VMCI_DEFAULT_PROC_PRIVILEGE_FLAGS = VMCI_NO_PRIVILEGE_FLAGS,
 319        VMCI_LEAST_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_RESTRICTED,
 320        VMCI_MAX_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_TRUSTED,
 321};
 322
 323/* 0 through VMCI_RESERVED_RESOURCE_ID_MAX are reserved. */
 324#define VMCI_RESERVED_RESOURCE_ID_MAX 1023
 325
 326/*
 327 * Driver version.
 328 *
 329 * Increment major version when you make an incompatible change.
 330 * Compatibility goes both ways (old driver with new executable
 331 * as well as new driver with old executable).
 332 */
 333
 334/* Never change VMCI_VERSION_SHIFT_WIDTH */
 335#define VMCI_VERSION_SHIFT_WIDTH 16
 336#define VMCI_MAKE_VERSION(_major, _minor)                       \
 337        ((_major) << VMCI_VERSION_SHIFT_WIDTH | (u16) (_minor))
 338
 339#define VMCI_VERSION_MAJOR(v)  ((u32) (v) >> VMCI_VERSION_SHIFT_WIDTH)
 340#define VMCI_VERSION_MINOR(v)  ((u16) (v))
 341
 342/*
 343 * VMCI_VERSION is always the current version.  Subsequently listed
 344 * versions are ways of detecting previous versions of the connecting
 345 * application (i.e., VMX).
 346 *
 347 * VMCI_VERSION_NOVMVM: This version removed support for VM to VM
 348 * communication.
 349 *
 350 * VMCI_VERSION_NOTIFY: This version introduced doorbell notification
 351 * support.
 352 *
 353 * VMCI_VERSION_HOSTQP: This version introduced host end point support
 354 * for hosted products.
 355 *
 356 * VMCI_VERSION_PREHOSTQP: This is the version prior to the adoption of
 357 * support for host end-points.
 358 *
 359 * VMCI_VERSION_PREVERS2: This fictional version number is intended to
 360 * represent the version of a VMX which doesn't call into the driver
 361 * with ioctl VERSION2 and thus doesn't establish its version with the
 362 * driver.
 363 */
 364
 365#define VMCI_VERSION                VMCI_VERSION_NOVMVM
 366#define VMCI_VERSION_NOVMVM         VMCI_MAKE_VERSION(11, 0)
 367#define VMCI_VERSION_NOTIFY         VMCI_MAKE_VERSION(10, 0)
 368#define VMCI_VERSION_HOSTQP         VMCI_MAKE_VERSION(9, 0)
 369#define VMCI_VERSION_PREHOSTQP      VMCI_MAKE_VERSION(8, 0)
 370#define VMCI_VERSION_PREVERS2       VMCI_MAKE_VERSION(1, 0)
 371
 372#define VMCI_SOCKETS_MAKE_VERSION(_p)                                   \
 373        ((((_p)[0] & 0xFF) << 24) | (((_p)[1] & 0xFF) << 16) | ((_p)[2]))
 374
 375/*
 376 * The VMCI IOCTLs.  We use identity code 7, as noted in ioctl-number.h, and
 377 * we start at sequence 9f.  This gives us the same values that our shipping
 378 * products use, starting at 1951, provided we leave out the direction and
 379 * structure size.  Note that VMMon occupies the block following us, starting
 380 * at 2001.
 381 */
 382#define IOCTL_VMCI_VERSION                      _IO(7, 0x9f)    /* 1951 */
 383#define IOCTL_VMCI_INIT_CONTEXT                 _IO(7, 0xa0)
 384#define IOCTL_VMCI_QUEUEPAIR_SETVA              _IO(7, 0xa4)
 385#define IOCTL_VMCI_NOTIFY_RESOURCE              _IO(7, 0xa5)
 386#define IOCTL_VMCI_NOTIFICATIONS_RECEIVE        _IO(7, 0xa6)
 387#define IOCTL_VMCI_VERSION2                     _IO(7, 0xa7)
 388#define IOCTL_VMCI_QUEUEPAIR_ALLOC              _IO(7, 0xa8)
 389#define IOCTL_VMCI_QUEUEPAIR_SETPAGEFILE        _IO(7, 0xa9)
 390#define IOCTL_VMCI_QUEUEPAIR_DETACH             _IO(7, 0xaa)
 391#define IOCTL_VMCI_DATAGRAM_SEND                _IO(7, 0xab)
 392#define IOCTL_VMCI_DATAGRAM_RECEIVE             _IO(7, 0xac)
 393#define IOCTL_VMCI_CTX_ADD_NOTIFICATION         _IO(7, 0xaf)
 394#define IOCTL_VMCI_CTX_REMOVE_NOTIFICATION      _IO(7, 0xb0)
 395#define IOCTL_VMCI_CTX_GET_CPT_STATE            _IO(7, 0xb1)
 396#define IOCTL_VMCI_CTX_SET_CPT_STATE            _IO(7, 0xb2)
 397#define IOCTL_VMCI_GET_CONTEXT_ID               _IO(7, 0xb3)
 398#define IOCTL_VMCI_SOCKETS_VERSION              _IO(7, 0xb4)
 399#define IOCTL_VMCI_SOCKETS_GET_AF_VALUE         _IO(7, 0xb8)
 400#define IOCTL_VMCI_SOCKETS_GET_LOCAL_CID        _IO(7, 0xb9)
 401#define IOCTL_VMCI_SET_NOTIFY                   _IO(7, 0xcb)    /* 1995 */
 402/*IOCTL_VMMON_START                             _IO(7, 0xd1)*/  /* 2001 */
 403
 404/*
 405 * struct vmci_queue_header - VMCI Queue Header information.
 406 *
 407 * A Queue cannot stand by itself as designed.  Each Queue's header
 408 * contains a pointer into itself (the producer_tail) and into its peer
 409 * (consumer_head).  The reason for the separation is one of
 410 * accessibility: Each end-point can modify two things: where the next
 411 * location to enqueue is within its produce_q (producer_tail); and
 412 * where the next dequeue location is in its consume_q (consumer_head).
 413 *
 414 * An end-point cannot modify the pointers of its peer (guest to
 415 * guest; NOTE that in the host both queue headers are mapped r/w).
 416 * But, each end-point needs read access to both Queue header
 417 * structures in order to determine how much space is used (or left)
 418 * in the Queue.  This is because for an end-point to know how full
 419 * its produce_q is, it needs to use the consumer_head that points into
 420 * the produce_q but -that- consumer_head is in the Queue header for
 421 * that end-points consume_q.
 422 *
 423 * Thoroughly confused?  Sorry.
 424 *
 425 * producer_tail: the point to enqueue new entrants.  When you approach
 426 * a line in a store, for example, you walk up to the tail.
 427 *
 428 * consumer_head: the point in the queue from which the next element is
 429 * dequeued.  In other words, who is next in line is he who is at the
 430 * head of the line.
 431 *
 432 * Also, producer_tail points to an empty byte in the Queue, whereas
 433 * consumer_head points to a valid byte of data (unless producer_tail ==
 434 * consumer_head in which case consumer_head does not point to a valid
 435 * byte of data).
 436 *
 437 * For a queue of buffer 'size' bytes, the tail and head pointers will be in
 438 * the range [0, size-1].
 439 *
 440 * If produce_q_header->producer_tail == consume_q_header->consumer_head
 441 * then the produce_q is empty.
 442 */
 443struct vmci_queue_header {
 444        /* All fields are 64bit and aligned. */
 445        struct vmci_handle handle;      /* Identifier. */
 446        atomic64_t producer_tail;       /* Offset in this queue. */
 447        atomic64_t consumer_head;       /* Offset in peer queue. */
 448};
 449
 450/*
 451 * struct vmci_datagram - Base struct for vmci datagrams.
 452 * @dst:        A vmci_handle that tracks the destination of the datagram.
 453 * @src:        A vmci_handle that tracks the source of the datagram.
 454 * @payload_size:       The size of the payload.
 455 *
 456 * vmci_datagram structs are used when sending vmci datagrams.  They include
 457 * the necessary source and destination information to properly route
 458 * the information along with the size of the package.
 459 */
 460struct vmci_datagram {
 461        struct vmci_handle dst;
 462        struct vmci_handle src;
 463        u64 payload_size;
 464};
 465
 466/*
 467 * Second flag is for creating a well-known handle instead of a per context
 468 * handle.  Next flag is for deferring datagram delivery, so that the
 469 * datagram callback is invoked in a delayed context (not interrupt context).
 470 */
 471#define VMCI_FLAG_DG_NONE          0
 472#define VMCI_FLAG_WELLKNOWN_DG_HND 0x1
 473#define VMCI_FLAG_ANYCID_DG_HND    0x2
 474#define VMCI_FLAG_DG_DELAYED_CB    0x4
 475
 476/*
 477 * Maximum supported size of a VMCI datagram for routable datagrams.
 478 * Datagrams going to the hypervisor are allowed to be larger.
 479 */
 480#define VMCI_MAX_DG_SIZE (17 * 4096)
 481#define VMCI_MAX_DG_PAYLOAD_SIZE (VMCI_MAX_DG_SIZE - \
 482                                  sizeof(struct vmci_datagram))
 483#define VMCI_DG_PAYLOAD(_dg) (void *)((char *)(_dg) +                   \
 484                                      sizeof(struct vmci_datagram))
 485#define VMCI_DG_HEADERSIZE sizeof(struct vmci_datagram)
 486#define VMCI_DG_SIZE(_dg) (VMCI_DG_HEADERSIZE + (size_t)(_dg)->payload_size)
 487#define VMCI_DG_SIZE_ALIGNED(_dg) ((VMCI_DG_SIZE(_dg) + 7) & (~((size_t) 0x7)))
 488#define VMCI_MAX_DATAGRAM_QUEUE_SIZE (VMCI_MAX_DG_SIZE * 2)
 489
 490struct vmci_event_payload_qp {
 491        struct vmci_handle handle;  /* queue_pair handle. */
 492        u32 peer_id;                /* Context id of attaching/detaching VM. */
 493        u32 _pad;
 494};
 495
 496/* Flags for VMCI queue_pair API. */
 497enum {
 498        /* Fail alloc if QP not created by peer. */
 499        VMCI_QPFLAG_ATTACH_ONLY = 1 << 0,
 500
 501        /* Only allow attaches from local context. */
 502        VMCI_QPFLAG_LOCAL = 1 << 1,
 503
 504        /* Host won't block when guest is quiesced. */
 505        VMCI_QPFLAG_NONBLOCK = 1 << 2,
 506
 507        /* Pin data pages in ESX.  Used with NONBLOCK */
 508        VMCI_QPFLAG_PINNED = 1 << 3,
 509
 510        /* Update the following flag when adding new flags. */
 511        VMCI_QP_ALL_FLAGS = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QPFLAG_LOCAL |
 512                             VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED),
 513
 514        /* Convenience flags */
 515        VMCI_QP_ASYMM = (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED),
 516        VMCI_QP_ASYMM_PEER = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QP_ASYMM),
 517};
 518
 519/*
 520 * We allow at least 1024 more event datagrams from the hypervisor past the
 521 * normally allowed datagrams pending for a given context.  We define this
 522 * limit on event datagrams from the hypervisor to guard against DoS attack
 523 * from a malicious VM which could repeatedly attach to and detach from a queue
 524 * pair, causing events to be queued at the destination VM.  However, the rate
 525 * at which such events can be generated is small since it requires a VM exit
 526 * and handling of queue pair attach/detach call at the hypervisor.  Event
 527 * datagrams may be queued up at the destination VM if it has interrupts
 528 * disabled or if it is not draining events for some other reason.  1024
 529 * datagrams is a grossly conservative estimate of the time for which
 530 * interrupts may be disabled in the destination VM, but at the same time does
 531 * not exacerbate the memory pressure problem on the host by much (size of each
 532 * event datagram is small).
 533 */
 534#define VMCI_MAX_DATAGRAM_AND_EVENT_QUEUE_SIZE                          \
 535        (VMCI_MAX_DATAGRAM_QUEUE_SIZE +                                 \
 536         1024 * (sizeof(struct vmci_datagram) +                         \
 537                 sizeof(struct vmci_event_data_max)))
 538
 539/*
 540 * Struct used for querying, via VMCI_RESOURCES_QUERY, the availability of
 541 * hypervisor resources.  Struct size is 16 bytes. All fields in struct are
 542 * aligned to their natural alignment.
 543 */
 544struct vmci_resource_query_hdr {
 545        struct vmci_datagram hdr;
 546        u32 num_resources;
 547        u32 _padding;
 548};
 549
 550/*
 551 * Convenience struct for negotiating vectors. Must match layout of
 552 * VMCIResourceQueryHdr minus the struct vmci_datagram header.
 553 */
 554struct vmci_resource_query_msg {
 555        u32 num_resources;
 556        u32 _padding;
 557        u32 resources[1];
 558};
 559
 560/*
 561 * The maximum number of resources that can be queried using
 562 * VMCI_RESOURCE_QUERY is 31, as the result is encoded in the lower 31
 563 * bits of a positive return value. Negative values are reserved for
 564 * errors.
 565 */
 566#define VMCI_RESOURCE_QUERY_MAX_NUM 31
 567
 568/* Maximum size for the VMCI_RESOURCE_QUERY request. */
 569#define VMCI_RESOURCE_QUERY_MAX_SIZE                            \
 570        (sizeof(struct vmci_resource_query_hdr) +               \
 571         sizeof(u32) * VMCI_RESOURCE_QUERY_MAX_NUM)
 572
 573/*
 574 * Struct used for setting the notification bitmap.  All fields in
 575 * struct are aligned to their natural alignment.
 576 */
 577struct vmci_notify_bm_set_msg {
 578        struct vmci_datagram hdr;
 579        u32 bitmap_ppn;
 580        u32 _pad;
 581};
 582
 583/*
 584 * Struct used for linking a doorbell handle with an index in the
 585 * notify bitmap. All fields in struct are aligned to their natural
 586 * alignment.
 587 */
 588struct vmci_doorbell_link_msg {
 589        struct vmci_datagram hdr;
 590        struct vmci_handle handle;
 591        u64 notify_idx;
 592};
 593
 594/*
 595 * Struct used for unlinking a doorbell handle from an index in the
 596 * notify bitmap. All fields in struct are aligned to their natural
 597 * alignment.
 598 */
 599struct vmci_doorbell_unlink_msg {
 600        struct vmci_datagram hdr;
 601        struct vmci_handle handle;
 602};
 603
 604/*
 605 * Struct used for generating a notification on a doorbell handle. All
 606 * fields in struct are aligned to their natural alignment.
 607 */
 608struct vmci_doorbell_notify_msg {
 609        struct vmci_datagram hdr;
 610        struct vmci_handle handle;
 611};
 612
 613/*
 614 * This struct is used to contain data for events.  Size of this struct is a
 615 * multiple of 8 bytes, and all fields are aligned to their natural alignment.
 616 */
 617struct vmci_event_data {
 618        u32 event;              /* 4 bytes. */
 619        u32 _pad;
 620        /* Event payload is put here. */
 621};
 622
 623/*
 624 * Define the different VMCI_EVENT payload data types here.  All structs must
 625 * be a multiple of 8 bytes, and fields must be aligned to their natural
 626 * alignment.
 627 */
 628struct vmci_event_payld_ctx {
 629        u32 context_id; /* 4 bytes. */
 630        u32 _pad;
 631};
 632
 633struct vmci_event_payld_qp {
 634        struct vmci_handle handle;  /* queue_pair handle. */
 635        u32 peer_id;        /* Context id of attaching/detaching VM. */
 636        u32 _pad;
 637};
 638
 639/*
 640 * We define the following struct to get the size of the maximum event
 641 * data the hypervisor may send to the guest.  If adding a new event
 642 * payload type above, add it to the following struct too (inside the
 643 * union).
 644 */
 645struct vmci_event_data_max {
 646        struct vmci_event_data event_data;
 647        union {
 648                struct vmci_event_payld_ctx context_payload;
 649                struct vmci_event_payld_qp qp_payload;
 650        } ev_data_payload;
 651};
 652
 653/*
 654 * Struct used for VMCI_EVENT_SUBSCRIBE/UNSUBSCRIBE and
 655 * VMCI_EVENT_HANDLER messages.  Struct size is 32 bytes.  All fields
 656 * in struct are aligned to their natural alignment.
 657 */
 658struct vmci_event_msg {
 659        struct vmci_datagram hdr;
 660
 661        /* Has event type and payload. */
 662        struct vmci_event_data event_data;
 663
 664        /* Payload gets put here. */
 665};
 666
 667/* Event with context payload. */
 668struct vmci_event_ctx {
 669        struct vmci_event_msg msg;
 670        struct vmci_event_payld_ctx payload;
 671};
 672
 673/* Event with QP payload. */
 674struct vmci_event_qp {
 675        struct vmci_event_msg msg;
 676        struct vmci_event_payld_qp payload;
 677};
 678
 679/*
 680 * Structs used for queue_pair alloc and detach messages.  We align fields of
 681 * these structs to 64bit boundaries.
 682 */
 683struct vmci_qp_alloc_msg {
 684        struct vmci_datagram hdr;
 685        struct vmci_handle handle;
 686        u32 peer;
 687        u32 flags;
 688        u64 produce_size;
 689        u64 consume_size;
 690        u64 num_ppns;
 691
 692        /* List of PPNs placed here. */
 693};
 694
 695struct vmci_qp_detach_msg {
 696        struct vmci_datagram hdr;
 697        struct vmci_handle handle;
 698};
 699
 700/* VMCI Doorbell API. */
 701#define VMCI_FLAG_DELAYED_CB 0x01
 702
 703typedef void (*vmci_callback) (void *client_data);
 704
 705/*
 706 * struct vmci_qp - A vmw_vmci queue pair handle.
 707 *
 708 * This structure is used as a handle to a queue pair created by
 709 * VMCI.  It is intentionally left opaque to clients.
 710 */
 711struct vmci_qp;
 712
 713/* Callback needed for correctly waiting on events. */
 714typedef int (*vmci_datagram_recv_cb) (void *client_data,
 715                                      struct vmci_datagram *msg);
 716
 717/* VMCI Event API. */
 718typedef void (*vmci_event_cb) (u32 sub_id, const struct vmci_event_data *ed,
 719                               void *client_data);
 720
 721/*
 722 * We use the following inline function to access the payload data
 723 * associated with an event data.
 724 */
 725static inline const void *
 726vmci_event_data_const_payload(const struct vmci_event_data *ev_data)
 727{
 728        return (const char *)ev_data + sizeof(*ev_data);
 729}
 730
 731static inline void *vmci_event_data_payload(struct vmci_event_data *ev_data)
 732{
 733        return (void *)vmci_event_data_const_payload(ev_data);
 734}
 735
 736/*
 737 * Helper to read a value from a head or tail pointer. For X86_32, the
 738 * pointer is treated as a 32bit value, since the pointer value
 739 * never exceeds a 32bit value in this case. Also, doing an
 740 * atomic64_read on X86_32 uniprocessor systems may be implemented
 741 * as a non locked cmpxchg8b, that may end up overwriting updates done
 742 * by the VMCI device to the memory location. On 32bit SMP, the lock
 743 * prefix will be used, so correctness isn't an issue, but using a
 744 * 64bit operation still adds unnecessary overhead.
 745 */
 746static inline u64 vmci_q_read_pointer(atomic64_t *var)
 747{
 748#if defined(CONFIG_X86_32)
 749        return atomic_read((atomic_t *)var);
 750#else
 751        return atomic64_read(var);
 752#endif
 753}
 754
 755/*
 756 * Helper to set the value of a head or tail pointer. For X86_32, the
 757 * pointer is treated as a 32bit value, since the pointer value
 758 * never exceeds a 32bit value in this case. On 32bit SMP, using a
 759 * locked cmpxchg8b adds unnecessary overhead.
 760 */
 761static inline void vmci_q_set_pointer(atomic64_t *var,
 762                                      u64 new_val)
 763{
 764#if defined(CONFIG_X86_32)
 765        return atomic_set((atomic_t *)var, (u32)new_val);
 766#else
 767        return atomic64_set(var, new_val);
 768#endif
 769}
 770
 771/*
 772 * Helper to add a given offset to a head or tail pointer. Wraps the
 773 * value of the pointer around the max size of the queue.
 774 */
 775static inline void vmci_qp_add_pointer(atomic64_t *var,
 776                                       size_t add,
 777                                       u64 size)
 778{
 779        u64 new_val = vmci_q_read_pointer(var);
 780
 781        if (new_val >= size - add)
 782                new_val -= size;
 783
 784        new_val += add;
 785
 786        vmci_q_set_pointer(var, new_val);
 787}
 788
 789/*
 790 * Helper routine to get the Producer Tail from the supplied queue.
 791 */
 792static inline u64
 793vmci_q_header_producer_tail(const struct vmci_queue_header *q_header)
 794{
 795        struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header;
 796        return vmci_q_read_pointer(&qh->producer_tail);
 797}
 798
 799/*
 800 * Helper routine to get the Consumer Head from the supplied queue.
 801 */
 802static inline u64
 803vmci_q_header_consumer_head(const struct vmci_queue_header *q_header)
 804{
 805        struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header;
 806        return vmci_q_read_pointer(&qh->consumer_head);
 807}
 808
 809/*
 810 * Helper routine to increment the Producer Tail.  Fundamentally,
 811 * vmci_qp_add_pointer() is used to manipulate the tail itself.
 812 */
 813static inline void
 814vmci_q_header_add_producer_tail(struct vmci_queue_header *q_header,
 815                                size_t add,
 816                                u64 queue_size)
 817{
 818        vmci_qp_add_pointer(&q_header->producer_tail, add, queue_size);
 819}
 820
 821/*
 822 * Helper routine to increment the Consumer Head.  Fundamentally,
 823 * vmci_qp_add_pointer() is used to manipulate the head itself.
 824 */
 825static inline void
 826vmci_q_header_add_consumer_head(struct vmci_queue_header *q_header,
 827                                size_t add,
 828                                u64 queue_size)
 829{
 830        vmci_qp_add_pointer(&q_header->consumer_head, add, queue_size);
 831}
 832
 833/*
 834 * Helper routine for getting the head and the tail pointer for a queue.
 835 * Both the VMCIQueues are needed to get both the pointers for one queue.
 836 */
 837static inline void
 838vmci_q_header_get_pointers(const struct vmci_queue_header *produce_q_header,
 839                           const struct vmci_queue_header *consume_q_header,
 840                           u64 *producer_tail,
 841                           u64 *consumer_head)
 842{
 843        if (producer_tail)
 844                *producer_tail = vmci_q_header_producer_tail(produce_q_header);
 845
 846        if (consumer_head)
 847                *consumer_head = vmci_q_header_consumer_head(consume_q_header);
 848}
 849
 850static inline void vmci_q_header_init(struct vmci_queue_header *q_header,
 851                                      const struct vmci_handle handle)
 852{
 853        q_header->handle = handle;
 854        atomic64_set(&q_header->producer_tail, 0);
 855        atomic64_set(&q_header->consumer_head, 0);
 856}
 857
 858/*
 859 * Finds available free space in a produce queue to enqueue more
 860 * data or reports an error if queue pair corruption is detected.
 861 */
 862static s64
 863vmci_q_header_free_space(const struct vmci_queue_header *produce_q_header,
 864                         const struct vmci_queue_header *consume_q_header,
 865                         const u64 produce_q_size)
 866{
 867        u64 tail;
 868        u64 head;
 869        u64 free_space;
 870
 871        tail = vmci_q_header_producer_tail(produce_q_header);
 872        head = vmci_q_header_consumer_head(consume_q_header);
 873
 874        if (tail >= produce_q_size || head >= produce_q_size)
 875                return VMCI_ERROR_INVALID_SIZE;
 876
 877        /*
 878         * Deduct 1 to avoid tail becoming equal to head which causes
 879         * ambiguity. If head and tail are equal it means that the
 880         * queue is empty.
 881         */
 882        if (tail >= head)
 883                free_space = produce_q_size - (tail - head) - 1;
 884        else
 885                free_space = head - tail - 1;
 886
 887        return free_space;
 888}
 889
 890/*
 891 * vmci_q_header_free_space() does all the heavy lifting of
 892 * determing the number of free bytes in a Queue.  This routine,
 893 * then subtracts that size from the full size of the Queue so
 894 * the caller knows how many bytes are ready to be dequeued.
 895 * Results:
 896 * On success, available data size in bytes (up to MAX_INT64).
 897 * On failure, appropriate error code.
 898 */
 899static inline s64
 900vmci_q_header_buf_ready(const struct vmci_queue_header *consume_q_header,
 901                        const struct vmci_queue_header *produce_q_header,
 902                        const u64 consume_q_size)
 903{
 904        s64 free_space;
 905
 906        free_space = vmci_q_header_free_space(consume_q_header,
 907                                              produce_q_header, consume_q_size);
 908        if (free_space < VMCI_SUCCESS)
 909                return free_space;
 910
 911        return consume_q_size - free_space - 1;
 912}
 913
 914
 915#endif /* _VMW_VMCI_DEF_H_ */
 916