linux/include/rdma/ib_verbs.h
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
   3 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
   4 * Copyright (c) 2004 Intel Corporation.  All rights reserved.
   5 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
   6 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
   7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
   8 * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
   9 *
  10 * This software is available to you under a choice of one of two
  11 * licenses.  You may choose to be licensed under the terms of the GNU
  12 * General Public License (GPL) Version 2, available from the file
  13 * COPYING in the main directory of this source tree, or the
  14 * OpenIB.org BSD license below:
  15 *
  16 *     Redistribution and use in source and binary forms, with or
  17 *     without modification, are permitted provided that the following
  18 *     conditions are met:
  19 *
  20 *      - Redistributions of source code must retain the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer.
  23 *
  24 *      - Redistributions in binary form must reproduce the above
  25 *        copyright notice, this list of conditions and the following
  26 *        disclaimer in the documentation and/or other materials
  27 *        provided with the distribution.
  28 *
  29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36 * SOFTWARE.
  37 */
  38
  39#if !defined(IB_VERBS_H)
  40#define IB_VERBS_H
  41
  42#include <linux/types.h>
  43#include <linux/device.h>
  44#include <linux/mm.h>
  45#include <linux/dma-mapping.h>
  46#include <linux/kref.h>
  47#include <linux/list.h>
  48#include <linux/rwsem.h>
  49#include <linux/scatterlist.h>
  50#include <linux/workqueue.h>
  51#include <linux/socket.h>
  52#include <linux/irq_poll.h>
  53#include <uapi/linux/if_ether.h>
  54#include <net/ipv6.h>
  55#include <net/ip.h>
  56#include <linux/string.h>
  57#include <linux/slab.h>
  58
  59#include <linux/if_link.h>
  60#include <linux/atomic.h>
  61#include <linux/mmu_notifier.h>
  62#include <linux/uaccess.h>
  63
  64extern struct workqueue_struct *ib_wq;
  65extern struct workqueue_struct *ib_comp_wq;
  66
  67union ib_gid {
  68        u8      raw[16];
  69        struct {
  70                __be64  subnet_prefix;
  71                __be64  interface_id;
  72        } global;
  73};
  74
  75extern union ib_gid zgid;
  76
  77enum ib_gid_type {
  78        /* If link layer is Ethernet, this is RoCE V1 */
  79        IB_GID_TYPE_IB        = 0,
  80        IB_GID_TYPE_ROCE      = 0,
  81        IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
  82        IB_GID_TYPE_SIZE
  83};
  84
  85#define ROCE_V2_UDP_DPORT      4791
  86struct ib_gid_attr {
  87        enum ib_gid_type        gid_type;
  88        struct net_device       *ndev;
  89};
  90
  91enum rdma_node_type {
  92        /* IB values map to NodeInfo:NodeType. */
  93        RDMA_NODE_IB_CA         = 1,
  94        RDMA_NODE_IB_SWITCH,
  95        RDMA_NODE_IB_ROUTER,
  96        RDMA_NODE_RNIC,
  97        RDMA_NODE_USNIC,
  98        RDMA_NODE_USNIC_UDP,
  99};
 100
 101enum {
 102        /* set the local administered indication */
 103        IB_SA_WELL_KNOWN_GUID   = BIT_ULL(57) | 2,
 104};
 105
 106enum rdma_transport_type {
 107        RDMA_TRANSPORT_IB,
 108        RDMA_TRANSPORT_IWARP,
 109        RDMA_TRANSPORT_USNIC,
 110        RDMA_TRANSPORT_USNIC_UDP
 111};
 112
 113enum rdma_protocol_type {
 114        RDMA_PROTOCOL_IB,
 115        RDMA_PROTOCOL_IBOE,
 116        RDMA_PROTOCOL_IWARP,
 117        RDMA_PROTOCOL_USNIC_UDP
 118};
 119
 120__attribute_const__ enum rdma_transport_type
 121rdma_node_get_transport(enum rdma_node_type node_type);
 122
 123enum rdma_network_type {
 124        RDMA_NETWORK_IB,
 125        RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
 126        RDMA_NETWORK_IPV4,
 127        RDMA_NETWORK_IPV6
 128};
 129
 130static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
 131{
 132        if (network_type == RDMA_NETWORK_IPV4 ||
 133            network_type == RDMA_NETWORK_IPV6)
 134                return IB_GID_TYPE_ROCE_UDP_ENCAP;
 135
 136        /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
 137        return IB_GID_TYPE_IB;
 138}
 139
 140static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
 141                                                            union ib_gid *gid)
 142{
 143        if (gid_type == IB_GID_TYPE_IB)
 144                return RDMA_NETWORK_IB;
 145
 146        if (ipv6_addr_v4mapped((struct in6_addr *)gid))
 147                return RDMA_NETWORK_IPV4;
 148        else
 149                return RDMA_NETWORK_IPV6;
 150}
 151
 152enum rdma_link_layer {
 153        IB_LINK_LAYER_UNSPECIFIED,
 154        IB_LINK_LAYER_INFINIBAND,
 155        IB_LINK_LAYER_ETHERNET,
 156};
 157
 158enum ib_device_cap_flags {
 159        IB_DEVICE_RESIZE_MAX_WR                 = (1 << 0),
 160        IB_DEVICE_BAD_PKEY_CNTR                 = (1 << 1),
 161        IB_DEVICE_BAD_QKEY_CNTR                 = (1 << 2),
 162        IB_DEVICE_RAW_MULTI                     = (1 << 3),
 163        IB_DEVICE_AUTO_PATH_MIG                 = (1 << 4),
 164        IB_DEVICE_CHANGE_PHY_PORT               = (1 << 5),
 165        IB_DEVICE_UD_AV_PORT_ENFORCE            = (1 << 6),
 166        IB_DEVICE_CURR_QP_STATE_MOD             = (1 << 7),
 167        IB_DEVICE_SHUTDOWN_PORT                 = (1 << 8),
 168        IB_DEVICE_INIT_TYPE                     = (1 << 9),
 169        IB_DEVICE_PORT_ACTIVE_EVENT             = (1 << 10),
 170        IB_DEVICE_SYS_IMAGE_GUID                = (1 << 11),
 171        IB_DEVICE_RC_RNR_NAK_GEN                = (1 << 12),
 172        IB_DEVICE_SRQ_RESIZE                    = (1 << 13),
 173        IB_DEVICE_N_NOTIFY_CQ                   = (1 << 14),
 174
 175        /*
 176         * This device supports a per-device lkey or stag that can be
 177         * used without performing a memory registration for the local
 178         * memory.  Note that ULPs should never check this flag, but
 179         * instead of use the local_dma_lkey flag in the ib_pd structure,
 180         * which will always contain a usable lkey.
 181         */
 182        IB_DEVICE_LOCAL_DMA_LKEY                = (1 << 15),
 183        IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16),
 184        IB_DEVICE_MEM_WINDOW                    = (1 << 17),
 185        /*
 186         * Devices should set IB_DEVICE_UD_IP_SUM if they support
 187         * insertion of UDP and TCP checksum on outgoing UD IPoIB
 188         * messages and can verify the validity of checksum for
 189         * incoming messages.  Setting this flag implies that the
 190         * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
 191         */
 192        IB_DEVICE_UD_IP_CSUM                    = (1 << 18),
 193        IB_DEVICE_UD_TSO                        = (1 << 19),
 194        IB_DEVICE_XRC                           = (1 << 20),
 195
 196        /*
 197         * This device supports the IB "base memory management extension",
 198         * which includes support for fast registrations (IB_WR_REG_MR,
 199         * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
 200         * also be set by any iWarp device which must support FRs to comply
 201         * to the iWarp verbs spec.  iWarp devices also support the
 202         * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
 203         * stag.
 204         */
 205        IB_DEVICE_MEM_MGT_EXTENSIONS            = (1 << 21),
 206        IB_DEVICE_BLOCK_MULTICAST_LOOPBACK      = (1 << 22),
 207        IB_DEVICE_MEM_WINDOW_TYPE_2A            = (1 << 23),
 208        IB_DEVICE_MEM_WINDOW_TYPE_2B            = (1 << 24),
 209        IB_DEVICE_RC_IP_CSUM                    = (1 << 25),
 210        IB_DEVICE_RAW_IP_CSUM                   = (1 << 26),
 211        /*
 212         * Devices should set IB_DEVICE_CROSS_CHANNEL if they
 213         * support execution of WQEs that involve synchronization
 214         * of I/O operations with single completion queue managed
 215         * by hardware.
 216         */
 217        IB_DEVICE_CROSS_CHANNEL         = (1 << 27),
 218        IB_DEVICE_MANAGED_FLOW_STEERING         = (1 << 29),
 219        IB_DEVICE_SIGNATURE_HANDOVER            = (1 << 30),
 220        IB_DEVICE_ON_DEMAND_PAGING              = (1ULL << 31),
 221        IB_DEVICE_SG_GAPS_REG                   = (1ULL << 32),
 222        IB_DEVICE_VIRTUAL_FUNCTION              = (1ULL << 33),
 223        IB_DEVICE_RAW_SCATTER_FCS               = (1ULL << 34),
 224};
 225
 226enum ib_signature_prot_cap {
 227        IB_PROT_T10DIF_TYPE_1 = 1,
 228        IB_PROT_T10DIF_TYPE_2 = 1 << 1,
 229        IB_PROT_T10DIF_TYPE_3 = 1 << 2,
 230};
 231
 232enum ib_signature_guard_cap {
 233        IB_GUARD_T10DIF_CRC     = 1,
 234        IB_GUARD_T10DIF_CSUM    = 1 << 1,
 235};
 236
 237enum ib_atomic_cap {
 238        IB_ATOMIC_NONE,
 239        IB_ATOMIC_HCA,
 240        IB_ATOMIC_GLOB
 241};
 242
 243enum ib_odp_general_cap_bits {
 244        IB_ODP_SUPPORT = 1 << 0,
 245};
 246
 247enum ib_odp_transport_cap_bits {
 248        IB_ODP_SUPPORT_SEND     = 1 << 0,
 249        IB_ODP_SUPPORT_RECV     = 1 << 1,
 250        IB_ODP_SUPPORT_WRITE    = 1 << 2,
 251        IB_ODP_SUPPORT_READ     = 1 << 3,
 252        IB_ODP_SUPPORT_ATOMIC   = 1 << 4,
 253};
 254
 255struct ib_odp_caps {
 256        uint64_t general_caps;
 257        struct {
 258                uint32_t  rc_odp_caps;
 259                uint32_t  uc_odp_caps;
 260                uint32_t  ud_odp_caps;
 261        } per_transport_caps;
 262};
 263
 264struct ib_rss_caps {
 265        /* Corresponding bit will be set if qp type from
 266         * 'enum ib_qp_type' is supported, e.g.
 267         * supported_qpts |= 1 << IB_QPT_UD
 268         */
 269        u32 supported_qpts;
 270        u32 max_rwq_indirection_tables;
 271        u32 max_rwq_indirection_table_size;
 272};
 273
 274enum ib_cq_creation_flags {
 275        IB_CQ_FLAGS_TIMESTAMP_COMPLETION   = 1 << 0,
 276        IB_CQ_FLAGS_IGNORE_OVERRUN         = 1 << 1,
 277};
 278
 279struct ib_cq_init_attr {
 280        unsigned int    cqe;
 281        int             comp_vector;
 282        u32             flags;
 283};
 284
 285struct ib_device_attr {
 286        u64                     fw_ver;
 287        __be64                  sys_image_guid;
 288        u64                     max_mr_size;
 289        u64                     page_size_cap;
 290        u32                     vendor_id;
 291        u32                     vendor_part_id;
 292        u32                     hw_ver;
 293        int                     max_qp;
 294        int                     max_qp_wr;
 295        u64                     device_cap_flags;
 296        int                     max_sge;
 297        int                     max_sge_rd;
 298        int                     max_cq;
 299        int                     max_cqe;
 300        int                     max_mr;
 301        int                     max_pd;
 302        int                     max_qp_rd_atom;
 303        int                     max_ee_rd_atom;
 304        int                     max_res_rd_atom;
 305        int                     max_qp_init_rd_atom;
 306        int                     max_ee_init_rd_atom;
 307        enum ib_atomic_cap      atomic_cap;
 308        enum ib_atomic_cap      masked_atomic_cap;
 309        int                     max_ee;
 310        int                     max_rdd;
 311        int                     max_mw;
 312        int                     max_raw_ipv6_qp;
 313        int                     max_raw_ethy_qp;
 314        int                     max_mcast_grp;
 315        int                     max_mcast_qp_attach;
 316        int                     max_total_mcast_qp_attach;
 317        int                     max_ah;
 318        int                     max_fmr;
 319        int                     max_map_per_fmr;
 320        int                     max_srq;
 321        int                     max_srq_wr;
 322        int                     max_srq_sge;
 323        unsigned int            max_fast_reg_page_list_len;
 324        u16                     max_pkeys;
 325        u8                      local_ca_ack_delay;
 326        int                     sig_prot_cap;
 327        int                     sig_guard_cap;
 328        struct ib_odp_caps      odp_caps;
 329        uint64_t                timestamp_mask;
 330        uint64_t                hca_core_clock; /* in KHZ */
 331        struct ib_rss_caps      rss_caps;
 332        u32                     max_wq_type_rq;
 333};
 334
 335enum ib_mtu {
 336        IB_MTU_256  = 1,
 337        IB_MTU_512  = 2,
 338        IB_MTU_1024 = 3,
 339        IB_MTU_2048 = 4,
 340        IB_MTU_4096 = 5
 341};
 342
 343static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
 344{
 345        switch (mtu) {
 346        case IB_MTU_256:  return  256;
 347        case IB_MTU_512:  return  512;
 348        case IB_MTU_1024: return 1024;
 349        case IB_MTU_2048: return 2048;
 350        case IB_MTU_4096: return 4096;
 351        default:          return -1;
 352        }
 353}
 354
 355static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
 356{
 357        if (mtu >= 4096)
 358                return IB_MTU_4096;
 359        else if (mtu >= 2048)
 360                return IB_MTU_2048;
 361        else if (mtu >= 1024)
 362                return IB_MTU_1024;
 363        else if (mtu >= 512)
 364                return IB_MTU_512;
 365        else
 366                return IB_MTU_256;
 367}
 368
 369enum ib_port_state {
 370        IB_PORT_NOP             = 0,
 371        IB_PORT_DOWN            = 1,
 372        IB_PORT_INIT            = 2,
 373        IB_PORT_ARMED           = 3,
 374        IB_PORT_ACTIVE          = 4,
 375        IB_PORT_ACTIVE_DEFER    = 5
 376};
 377
 378enum ib_port_cap_flags {
 379        IB_PORT_SM                              = 1 <<  1,
 380        IB_PORT_NOTICE_SUP                      = 1 <<  2,
 381        IB_PORT_TRAP_SUP                        = 1 <<  3,
 382        IB_PORT_OPT_IPD_SUP                     = 1 <<  4,
 383        IB_PORT_AUTO_MIGR_SUP                   = 1 <<  5,
 384        IB_PORT_SL_MAP_SUP                      = 1 <<  6,
 385        IB_PORT_MKEY_NVRAM                      = 1 <<  7,
 386        IB_PORT_PKEY_NVRAM                      = 1 <<  8,
 387        IB_PORT_LED_INFO_SUP                    = 1 <<  9,
 388        IB_PORT_SM_DISABLED                     = 1 << 10,
 389        IB_PORT_SYS_IMAGE_GUID_SUP              = 1 << 11,
 390        IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP       = 1 << 12,
 391        IB_PORT_EXTENDED_SPEEDS_SUP             = 1 << 14,
 392        IB_PORT_CM_SUP                          = 1 << 16,
 393        IB_PORT_SNMP_TUNNEL_SUP                 = 1 << 17,
 394        IB_PORT_REINIT_SUP                      = 1 << 18,
 395        IB_PORT_DEVICE_MGMT_SUP                 = 1 << 19,
 396        IB_PORT_VENDOR_CLASS_SUP                = 1 << 20,
 397        IB_PORT_DR_NOTICE_SUP                   = 1 << 21,
 398        IB_PORT_CAP_MASK_NOTICE_SUP             = 1 << 22,
 399        IB_PORT_BOOT_MGMT_SUP                   = 1 << 23,
 400        IB_PORT_LINK_LATENCY_SUP                = 1 << 24,
 401        IB_PORT_CLIENT_REG_SUP                  = 1 << 25,
 402        IB_PORT_IP_BASED_GIDS                   = 1 << 26,
 403};
 404
 405enum ib_port_width {
 406        IB_WIDTH_1X     = 1,
 407        IB_WIDTH_4X     = 2,
 408        IB_WIDTH_8X     = 4,
 409        IB_WIDTH_12X    = 8
 410};
 411
 412static inline int ib_width_enum_to_int(enum ib_port_width width)
 413{
 414        switch (width) {
 415        case IB_WIDTH_1X:  return  1;
 416        case IB_WIDTH_4X:  return  4;
 417        case IB_WIDTH_8X:  return  8;
 418        case IB_WIDTH_12X: return 12;
 419        default:          return -1;
 420        }
 421}
 422
 423enum ib_port_speed {
 424        IB_SPEED_SDR    = 1,
 425        IB_SPEED_DDR    = 2,
 426        IB_SPEED_QDR    = 4,
 427        IB_SPEED_FDR10  = 8,
 428        IB_SPEED_FDR    = 16,
 429        IB_SPEED_EDR    = 32
 430};
 431
 432/**
 433 * struct rdma_hw_stats
 434 * @timestamp - Used by the core code to track when the last update was
 435 * @lifespan - Used by the core code to determine how old the counters
 436 *   should be before being updated again.  Stored in jiffies, defaults
 437 *   to 10 milliseconds, drivers can override the default be specifying
 438 *   their own value during their allocation routine.
 439 * @name - Array of pointers to static names used for the counters in
 440 *   directory.
 441 * @num_counters - How many hardware counters there are.  If name is
 442 *   shorter than this number, a kernel oops will result.  Driver authors
 443 *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
 444 *   in their code to prevent this.
 445 * @value - Array of u64 counters that are accessed by the sysfs code and
 446 *   filled in by the drivers get_stats routine
 447 */
 448struct rdma_hw_stats {
 449        unsigned long   timestamp;
 450        unsigned long   lifespan;
 451        const char * const *names;
 452        int             num_counters;
 453        u64             value[];
 454};
 455
 456#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
 457/**
 458 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
 459 *   for drivers.
 460 * @names - Array of static const char *
 461 * @num_counters - How many elements in array
 462 * @lifespan - How many milliseconds between updates
 463 */
 464static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
 465                const char * const *names, int num_counters,
 466                unsigned long lifespan)
 467{
 468        struct rdma_hw_stats *stats;
 469
 470        stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
 471                        GFP_KERNEL);
 472        if (!stats)
 473                return NULL;
 474        stats->names = names;
 475        stats->num_counters = num_counters;
 476        stats->lifespan = msecs_to_jiffies(lifespan);
 477
 478        return stats;
 479}
 480
 481
 482/* Define bits for the various functionality this port needs to be supported by
 483 * the core.
 484 */
 485/* Management                           0x00000FFF */
 486#define RDMA_CORE_CAP_IB_MAD            0x00000001
 487#define RDMA_CORE_CAP_IB_SMI            0x00000002
 488#define RDMA_CORE_CAP_IB_CM             0x00000004
 489#define RDMA_CORE_CAP_IW_CM             0x00000008
 490#define RDMA_CORE_CAP_IB_SA             0x00000010
 491#define RDMA_CORE_CAP_OPA_MAD           0x00000020
 492
 493/* Address format                       0x000FF000 */
 494#define RDMA_CORE_CAP_AF_IB             0x00001000
 495#define RDMA_CORE_CAP_ETH_AH            0x00002000
 496
 497/* Protocol                             0xFFF00000 */
 498#define RDMA_CORE_CAP_PROT_IB           0x00100000
 499#define RDMA_CORE_CAP_PROT_ROCE         0x00200000
 500#define RDMA_CORE_CAP_PROT_IWARP        0x00400000
 501#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
 502
 503#define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
 504                                        | RDMA_CORE_CAP_IB_MAD \
 505                                        | RDMA_CORE_CAP_IB_SMI \
 506                                        | RDMA_CORE_CAP_IB_CM  \
 507                                        | RDMA_CORE_CAP_IB_SA  \
 508                                        | RDMA_CORE_CAP_AF_IB)
 509#define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
 510                                        | RDMA_CORE_CAP_IB_MAD  \
 511                                        | RDMA_CORE_CAP_IB_CM   \
 512                                        | RDMA_CORE_CAP_AF_IB   \
 513                                        | RDMA_CORE_CAP_ETH_AH)
 514#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP                       \
 515                                        (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
 516                                        | RDMA_CORE_CAP_IB_MAD  \
 517                                        | RDMA_CORE_CAP_IB_CM   \
 518                                        | RDMA_CORE_CAP_AF_IB   \
 519                                        | RDMA_CORE_CAP_ETH_AH)
 520#define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
 521                                        | RDMA_CORE_CAP_IW_CM)
 522#define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
 523                                        | RDMA_CORE_CAP_OPA_MAD)
 524
 525struct ib_port_attr {
 526        u64                     subnet_prefix;
 527        enum ib_port_state      state;
 528        enum ib_mtu             max_mtu;
 529        enum ib_mtu             active_mtu;
 530        int                     gid_tbl_len;
 531        u32                     port_cap_flags;
 532        u32                     max_msg_sz;
 533        u32                     bad_pkey_cntr;
 534        u32                     qkey_viol_cntr;
 535        u16                     pkey_tbl_len;
 536        u16                     lid;
 537        u16                     sm_lid;
 538        u8                      lmc;
 539        u8                      max_vl_num;
 540        u8                      sm_sl;
 541        u8                      subnet_timeout;
 542        u8                      init_type_reply;
 543        u8                      active_width;
 544        u8                      active_speed;
 545        u8                      phys_state;
 546        bool                    grh_required;
 547};
 548
 549enum ib_device_modify_flags {
 550        IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
 551        IB_DEVICE_MODIFY_NODE_DESC      = 1 << 1
 552};
 553
 554#define IB_DEVICE_NODE_DESC_MAX 64
 555
 556struct ib_device_modify {
 557        u64     sys_image_guid;
 558        char    node_desc[IB_DEVICE_NODE_DESC_MAX];
 559};
 560
 561enum ib_port_modify_flags {
 562        IB_PORT_SHUTDOWN                = 1,
 563        IB_PORT_INIT_TYPE               = (1<<2),
 564        IB_PORT_RESET_QKEY_CNTR         = (1<<3)
 565};
 566
 567struct ib_port_modify {
 568        u32     set_port_cap_mask;
 569        u32     clr_port_cap_mask;
 570        u8      init_type;
 571};
 572
 573enum ib_event_type {
 574        IB_EVENT_CQ_ERR,
 575        IB_EVENT_QP_FATAL,
 576        IB_EVENT_QP_REQ_ERR,
 577        IB_EVENT_QP_ACCESS_ERR,
 578        IB_EVENT_COMM_EST,
 579        IB_EVENT_SQ_DRAINED,
 580        IB_EVENT_PATH_MIG,
 581        IB_EVENT_PATH_MIG_ERR,
 582        IB_EVENT_DEVICE_FATAL,
 583        IB_EVENT_PORT_ACTIVE,
 584        IB_EVENT_PORT_ERR,
 585        IB_EVENT_LID_CHANGE,
 586        IB_EVENT_PKEY_CHANGE,
 587        IB_EVENT_SM_CHANGE,
 588        IB_EVENT_SRQ_ERR,
 589        IB_EVENT_SRQ_LIMIT_REACHED,
 590        IB_EVENT_QP_LAST_WQE_REACHED,
 591        IB_EVENT_CLIENT_REREGISTER,
 592        IB_EVENT_GID_CHANGE,
 593        IB_EVENT_WQ_FATAL,
 594};
 595
 596const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
 597
 598struct ib_event {
 599        struct ib_device        *device;
 600        union {
 601                struct ib_cq    *cq;
 602                struct ib_qp    *qp;
 603                struct ib_srq   *srq;
 604                struct ib_wq    *wq;
 605                u8              port_num;
 606        } element;
 607        enum ib_event_type      event;
 608};
 609
 610struct ib_event_handler {
 611        struct ib_device *device;
 612        void            (*handler)(struct ib_event_handler *, struct ib_event *);
 613        struct list_head  list;
 614};
 615
 616#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)          \
 617        do {                                                    \
 618                (_ptr)->device  = _device;                      \
 619                (_ptr)->handler = _handler;                     \
 620                INIT_LIST_HEAD(&(_ptr)->list);                  \
 621        } while (0)
 622
 623struct ib_global_route {
 624        union ib_gid    dgid;
 625        u32             flow_label;
 626        u8              sgid_index;
 627        u8              hop_limit;
 628        u8              traffic_class;
 629};
 630
 631struct ib_grh {
 632        __be32          version_tclass_flow;
 633        __be16          paylen;
 634        u8              next_hdr;
 635        u8              hop_limit;
 636        union ib_gid    sgid;
 637        union ib_gid    dgid;
 638};
 639
 640union rdma_network_hdr {
 641        struct ib_grh ibgrh;
 642        struct {
 643                /* The IB spec states that if it's IPv4, the header
 644                 * is located in the last 20 bytes of the header.
 645                 */
 646                u8              reserved[20];
 647                struct iphdr    roce4grh;
 648        };
 649};
 650
 651enum {
 652        IB_MULTICAST_QPN = 0xffffff
 653};
 654
 655#define IB_LID_PERMISSIVE       cpu_to_be16(0xFFFF)
 656#define IB_MULTICAST_LID_BASE   cpu_to_be16(0xC000)
 657
 658enum ib_ah_flags {
 659        IB_AH_GRH       = 1
 660};
 661
 662enum ib_rate {
 663        IB_RATE_PORT_CURRENT = 0,
 664        IB_RATE_2_5_GBPS = 2,
 665        IB_RATE_5_GBPS   = 5,
 666        IB_RATE_10_GBPS  = 3,
 667        IB_RATE_20_GBPS  = 6,
 668        IB_RATE_30_GBPS  = 4,
 669        IB_RATE_40_GBPS  = 7,
 670        IB_RATE_60_GBPS  = 8,
 671        IB_RATE_80_GBPS  = 9,
 672        IB_RATE_120_GBPS = 10,
 673        IB_RATE_14_GBPS  = 11,
 674        IB_RATE_56_GBPS  = 12,
 675        IB_RATE_112_GBPS = 13,
 676        IB_RATE_168_GBPS = 14,
 677        IB_RATE_25_GBPS  = 15,
 678        IB_RATE_100_GBPS = 16,
 679        IB_RATE_200_GBPS = 17,
 680        IB_RATE_300_GBPS = 18
 681};
 682
 683/**
 684 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
 685 * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
 686 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
 687 * @rate: rate to convert.
 688 */
 689__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
 690
 691/**
 692 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
 693 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
 694 * @rate: rate to convert.
 695 */
 696__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
 697
 698
 699/**
 700 * enum ib_mr_type - memory region type
 701 * @IB_MR_TYPE_MEM_REG:       memory region that is used for
 702 *                            normal registration
 703 * @IB_MR_TYPE_SIGNATURE:     memory region that is used for
 704 *                            signature operations (data-integrity
 705 *                            capable regions)
 706 * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
 707 *                            register any arbitrary sg lists (without
 708 *                            the normal mr constraints - see
 709 *                            ib_map_mr_sg)
 710 */
 711enum ib_mr_type {
 712        IB_MR_TYPE_MEM_REG,
 713        IB_MR_TYPE_SIGNATURE,
 714        IB_MR_TYPE_SG_GAPS,
 715};
 716
 717/**
 718 * Signature types
 719 * IB_SIG_TYPE_NONE: Unprotected.
 720 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
 721 */
 722enum ib_signature_type {
 723        IB_SIG_TYPE_NONE,
 724        IB_SIG_TYPE_T10_DIF,
 725};
 726
 727/**
 728 * Signature T10-DIF block-guard types
 729 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
 730 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
 731 */
 732enum ib_t10_dif_bg_type {
 733        IB_T10DIF_CRC,
 734        IB_T10DIF_CSUM
 735};
 736
 737/**
 738 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
 739 *     domain.
 740 * @bg_type: T10-DIF block guard type (CRC|CSUM)
 741 * @pi_interval: protection information interval.
 742 * @bg: seed of guard computation.
 743 * @app_tag: application tag of guard block
 744 * @ref_tag: initial guard block reference tag.
 745 * @ref_remap: Indicate wethear the reftag increments each block
 746 * @app_escape: Indicate to skip block check if apptag=0xffff
 747 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
 748 * @apptag_check_mask: check bitmask of application tag.
 749 */
 750struct ib_t10_dif_domain {
 751        enum ib_t10_dif_bg_type bg_type;
 752        u16                     pi_interval;
 753        u16                     bg;
 754        u16                     app_tag;
 755        u32                     ref_tag;
 756        bool                    ref_remap;
 757        bool                    app_escape;
 758        bool                    ref_escape;
 759        u16                     apptag_check_mask;
 760};
 761
 762/**
 763 * struct ib_sig_domain - Parameters for signature domain
 764 * @sig_type: specific signauture type
 765 * @sig: union of all signature domain attributes that may
 766 *     be used to set domain layout.
 767 */
 768struct ib_sig_domain {
 769        enum ib_signature_type sig_type;
 770        union {
 771                struct ib_t10_dif_domain dif;
 772        } sig;
 773};
 774
 775/**
 776 * struct ib_sig_attrs - Parameters for signature handover operation
 777 * @check_mask: bitmask for signature byte check (8 bytes)
 778 * @mem: memory domain layout desciptor.
 779 * @wire: wire domain layout desciptor.
 780 */
 781struct ib_sig_attrs {
 782        u8                      check_mask;
 783        struct ib_sig_domain    mem;
 784        struct ib_sig_domain    wire;
 785};
 786
 787enum ib_sig_err_type {
 788        IB_SIG_BAD_GUARD,
 789        IB_SIG_BAD_REFTAG,
 790        IB_SIG_BAD_APPTAG,
 791};
 792
 793/**
 794 * struct ib_sig_err - signature error descriptor
 795 */
 796struct ib_sig_err {
 797        enum ib_sig_err_type    err_type;
 798        u32                     expected;
 799        u32                     actual;
 800        u64                     sig_err_offset;
 801        u32                     key;
 802};
 803
 804enum ib_mr_status_check {
 805        IB_MR_CHECK_SIG_STATUS = 1,
 806};
 807
 808/**
 809 * struct ib_mr_status - Memory region status container
 810 *
 811 * @fail_status: Bitmask of MR checks status. For each
 812 *     failed check a corresponding status bit is set.
 813 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
 814 *     failure.
 815 */
 816struct ib_mr_status {
 817        u32                 fail_status;
 818        struct ib_sig_err   sig_err;
 819};
 820
 821/**
 822 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
 823 * enum.
 824 * @mult: multiple to convert.
 825 */
 826__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
 827
 828struct ib_ah_attr {
 829        struct ib_global_route  grh;
 830        u16                     dlid;
 831        u8                      sl;
 832        u8                      src_path_bits;
 833        u8                      static_rate;
 834        u8                      ah_flags;
 835        u8                      port_num;
 836        u8                      dmac[ETH_ALEN];
 837};
 838
 839enum ib_wc_status {
 840        IB_WC_SUCCESS,
 841        IB_WC_LOC_LEN_ERR,
 842        IB_WC_LOC_QP_OP_ERR,
 843        IB_WC_LOC_EEC_OP_ERR,
 844        IB_WC_LOC_PROT_ERR,
 845        IB_WC_WR_FLUSH_ERR,
 846        IB_WC_MW_BIND_ERR,
 847        IB_WC_BAD_RESP_ERR,
 848        IB_WC_LOC_ACCESS_ERR,
 849        IB_WC_REM_INV_REQ_ERR,
 850        IB_WC_REM_ACCESS_ERR,
 851        IB_WC_REM_OP_ERR,
 852        IB_WC_RETRY_EXC_ERR,
 853        IB_WC_RNR_RETRY_EXC_ERR,
 854        IB_WC_LOC_RDD_VIOL_ERR,
 855        IB_WC_REM_INV_RD_REQ_ERR,
 856        IB_WC_REM_ABORT_ERR,
 857        IB_WC_INV_EECN_ERR,
 858        IB_WC_INV_EEC_STATE_ERR,
 859        IB_WC_FATAL_ERR,
 860        IB_WC_RESP_TIMEOUT_ERR,
 861        IB_WC_GENERAL_ERR
 862};
 863
 864const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
 865
 866enum ib_wc_opcode {
 867        IB_WC_SEND,
 868        IB_WC_RDMA_WRITE,
 869        IB_WC_RDMA_READ,
 870        IB_WC_COMP_SWAP,
 871        IB_WC_FETCH_ADD,
 872        IB_WC_LSO,
 873        IB_WC_LOCAL_INV,
 874        IB_WC_REG_MR,
 875        IB_WC_MASKED_COMP_SWAP,
 876        IB_WC_MASKED_FETCH_ADD,
 877/*
 878 * Set value of IB_WC_RECV so consumers can test if a completion is a
 879 * receive by testing (opcode & IB_WC_RECV).
 880 */
 881        IB_WC_RECV                      = 1 << 7,
 882        IB_WC_RECV_RDMA_WITH_IMM
 883};
 884
 885enum ib_wc_flags {
 886        IB_WC_GRH               = 1,
 887        IB_WC_WITH_IMM          = (1<<1),
 888        IB_WC_WITH_INVALIDATE   = (1<<2),
 889        IB_WC_IP_CSUM_OK        = (1<<3),
 890        IB_WC_WITH_SMAC         = (1<<4),
 891        IB_WC_WITH_VLAN         = (1<<5),
 892        IB_WC_WITH_NETWORK_HDR_TYPE     = (1<<6),
 893};
 894
 895struct ib_wc {
 896        union {
 897                u64             wr_id;
 898                struct ib_cqe   *wr_cqe;
 899        };
 900        enum ib_wc_status       status;
 901        enum ib_wc_opcode       opcode;
 902        u32                     vendor_err;
 903        u32                     byte_len;
 904        struct ib_qp           *qp;
 905        union {
 906                __be32          imm_data;
 907                u32             invalidate_rkey;
 908        } ex;
 909        u32                     src_qp;
 910        int                     wc_flags;
 911        u16                     pkey_index;
 912        u16                     slid;
 913        u8                      sl;
 914        u8                      dlid_path_bits;
 915        u8                      port_num;       /* valid only for DR SMPs on switches */
 916        u8                      smac[ETH_ALEN];
 917        u16                     vlan_id;
 918        u8                      network_hdr_type;
 919};
 920
 921enum ib_cq_notify_flags {
 922        IB_CQ_SOLICITED                 = 1 << 0,
 923        IB_CQ_NEXT_COMP                 = 1 << 1,
 924        IB_CQ_SOLICITED_MASK            = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
 925        IB_CQ_REPORT_MISSED_EVENTS      = 1 << 2,
 926};
 927
 928enum ib_srq_type {
 929        IB_SRQT_BASIC,
 930        IB_SRQT_XRC
 931};
 932
 933enum ib_srq_attr_mask {
 934        IB_SRQ_MAX_WR   = 1 << 0,
 935        IB_SRQ_LIMIT    = 1 << 1,
 936};
 937
 938struct ib_srq_attr {
 939        u32     max_wr;
 940        u32     max_sge;
 941        u32     srq_limit;
 942};
 943
 944struct ib_srq_init_attr {
 945        void                  (*event_handler)(struct ib_event *, void *);
 946        void                   *srq_context;
 947        struct ib_srq_attr      attr;
 948        enum ib_srq_type        srq_type;
 949
 950        union {
 951                struct {
 952                        struct ib_xrcd *xrcd;
 953                        struct ib_cq   *cq;
 954                } xrc;
 955        } ext;
 956};
 957
 958struct ib_qp_cap {
 959        u32     max_send_wr;
 960        u32     max_recv_wr;
 961        u32     max_send_sge;
 962        u32     max_recv_sge;
 963        u32     max_inline_data;
 964
 965        /*
 966         * Maximum number of rdma_rw_ctx structures in flight at a time.
 967         * ib_create_qp() will calculate the right amount of neededed WRs
 968         * and MRs based on this.
 969         */
 970        u32     max_rdma_ctxs;
 971};
 972
 973enum ib_sig_type {
 974        IB_SIGNAL_ALL_WR,
 975        IB_SIGNAL_REQ_WR
 976};
 977
 978enum ib_qp_type {
 979        /*
 980         * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
 981         * here (and in that order) since the MAD layer uses them as
 982         * indices into a 2-entry table.
 983         */
 984        IB_QPT_SMI,
 985        IB_QPT_GSI,
 986
 987        IB_QPT_RC,
 988        IB_QPT_UC,
 989        IB_QPT_UD,
 990        IB_QPT_RAW_IPV6,
 991        IB_QPT_RAW_ETHERTYPE,
 992        IB_QPT_RAW_PACKET = 8,
 993        IB_QPT_XRC_INI = 9,
 994        IB_QPT_XRC_TGT,
 995        IB_QPT_MAX,
 996        /* Reserve a range for qp types internal to the low level driver.
 997         * These qp types will not be visible at the IB core layer, so the
 998         * IB_QPT_MAX usages should not be affected in the core layer
 999         */
1000        IB_QPT_RESERVED1 = 0x1000,
1001        IB_QPT_RESERVED2,
1002        IB_QPT_RESERVED3,
1003        IB_QPT_RESERVED4,
1004        IB_QPT_RESERVED5,
1005        IB_QPT_RESERVED6,
1006        IB_QPT_RESERVED7,
1007        IB_QPT_RESERVED8,
1008        IB_QPT_RESERVED9,
1009        IB_QPT_RESERVED10,
1010};
1011
1012enum ib_qp_create_flags {
1013        IB_QP_CREATE_IPOIB_UD_LSO               = 1 << 0,
1014        IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK   = 1 << 1,
1015        IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1016        IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1017        IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1018        IB_QP_CREATE_NETIF_QP                   = 1 << 5,
1019        IB_QP_CREATE_SIGNATURE_EN               = 1 << 6,
1020        IB_QP_CREATE_USE_GFP_NOIO               = 1 << 7,
1021        IB_QP_CREATE_SCATTER_FCS                = 1 << 8,
1022        /* reserve bits 26-31 for low level drivers' internal use */
1023        IB_QP_CREATE_RESERVED_START             = 1 << 26,
1024        IB_QP_CREATE_RESERVED_END               = 1 << 31,
1025};
1026
1027/*
1028 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1029 * callback to destroy the passed in QP.
1030 */
1031
1032struct ib_qp_init_attr {
1033        void                  (*event_handler)(struct ib_event *, void *);
1034        void                   *qp_context;
1035        struct ib_cq           *send_cq;
1036        struct ib_cq           *recv_cq;
1037        struct ib_srq          *srq;
1038        struct ib_xrcd         *xrcd;     /* XRC TGT QPs only */
1039        struct ib_qp_cap        cap;
1040        enum ib_sig_type        sq_sig_type;
1041        enum ib_qp_type         qp_type;
1042        enum ib_qp_create_flags create_flags;
1043
1044        /*
1045         * Only needed for special QP types, or when using the RW API.
1046         */
1047        u8                      port_num;
1048        struct ib_rwq_ind_table *rwq_ind_tbl;
1049};
1050
1051struct ib_qp_open_attr {
1052        void                  (*event_handler)(struct ib_event *, void *);
1053        void                   *qp_context;
1054        u32                     qp_num;
1055        enum ib_qp_type         qp_type;
1056};
1057
1058enum ib_rnr_timeout {
1059        IB_RNR_TIMER_655_36 =  0,
1060        IB_RNR_TIMER_000_01 =  1,
1061        IB_RNR_TIMER_000_02 =  2,
1062        IB_RNR_TIMER_000_03 =  3,
1063        IB_RNR_TIMER_000_04 =  4,
1064        IB_RNR_TIMER_000_06 =  5,
1065        IB_RNR_TIMER_000_08 =  6,
1066        IB_RNR_TIMER_000_12 =  7,
1067        IB_RNR_TIMER_000_16 =  8,
1068        IB_RNR_TIMER_000_24 =  9,
1069        IB_RNR_TIMER_000_32 = 10,
1070        IB_RNR_TIMER_000_48 = 11,
1071        IB_RNR_TIMER_000_64 = 12,
1072        IB_RNR_TIMER_000_96 = 13,
1073        IB_RNR_TIMER_001_28 = 14,
1074        IB_RNR_TIMER_001_92 = 15,
1075        IB_RNR_TIMER_002_56 = 16,
1076        IB_RNR_TIMER_003_84 = 17,
1077        IB_RNR_TIMER_005_12 = 18,
1078        IB_RNR_TIMER_007_68 = 19,
1079        IB_RNR_TIMER_010_24 = 20,
1080        IB_RNR_TIMER_015_36 = 21,
1081        IB_RNR_TIMER_020_48 = 22,
1082        IB_RNR_TIMER_030_72 = 23,
1083        IB_RNR_TIMER_040_96 = 24,
1084        IB_RNR_TIMER_061_44 = 25,
1085        IB_RNR_TIMER_081_92 = 26,
1086        IB_RNR_TIMER_122_88 = 27,
1087        IB_RNR_TIMER_163_84 = 28,
1088        IB_RNR_TIMER_245_76 = 29,
1089        IB_RNR_TIMER_327_68 = 30,
1090        IB_RNR_TIMER_491_52 = 31
1091};
1092
1093enum ib_qp_attr_mask {
1094        IB_QP_STATE                     = 1,
1095        IB_QP_CUR_STATE                 = (1<<1),
1096        IB_QP_EN_SQD_ASYNC_NOTIFY       = (1<<2),
1097        IB_QP_ACCESS_FLAGS              = (1<<3),
1098        IB_QP_PKEY_INDEX                = (1<<4),
1099        IB_QP_PORT                      = (1<<5),
1100        IB_QP_QKEY                      = (1<<6),
1101        IB_QP_AV                        = (1<<7),
1102        IB_QP_PATH_MTU                  = (1<<8),
1103        IB_QP_TIMEOUT                   = (1<<9),
1104        IB_QP_RETRY_CNT                 = (1<<10),
1105        IB_QP_RNR_RETRY                 = (1<<11),
1106        IB_QP_RQ_PSN                    = (1<<12),
1107        IB_QP_MAX_QP_RD_ATOMIC          = (1<<13),
1108        IB_QP_ALT_PATH                  = (1<<14),
1109        IB_QP_MIN_RNR_TIMER             = (1<<15),
1110        IB_QP_SQ_PSN                    = (1<<16),
1111        IB_QP_MAX_DEST_RD_ATOMIC        = (1<<17),
1112        IB_QP_PATH_MIG_STATE            = (1<<18),
1113        IB_QP_CAP                       = (1<<19),
1114        IB_QP_DEST_QPN                  = (1<<20),
1115        IB_QP_RESERVED1                 = (1<<21),
1116        IB_QP_RESERVED2                 = (1<<22),
1117        IB_QP_RESERVED3                 = (1<<23),
1118        IB_QP_RESERVED4                 = (1<<24),
1119        IB_QP_RATE_LIMIT                = (1<<25),
1120};
1121
1122enum ib_qp_state {
1123        IB_QPS_RESET,
1124        IB_QPS_INIT,
1125        IB_QPS_RTR,
1126        IB_QPS_RTS,
1127        IB_QPS_SQD,
1128        IB_QPS_SQE,
1129        IB_QPS_ERR
1130};
1131
1132enum ib_mig_state {
1133        IB_MIG_MIGRATED,
1134        IB_MIG_REARM,
1135        IB_MIG_ARMED
1136};
1137
1138enum ib_mw_type {
1139        IB_MW_TYPE_1 = 1,
1140        IB_MW_TYPE_2 = 2
1141};
1142
1143struct ib_qp_attr {
1144        enum ib_qp_state        qp_state;
1145        enum ib_qp_state        cur_qp_state;
1146        enum ib_mtu             path_mtu;
1147        enum ib_mig_state       path_mig_state;
1148        u32                     qkey;
1149        u32                     rq_psn;
1150        u32                     sq_psn;
1151        u32                     dest_qp_num;
1152        int                     qp_access_flags;
1153        struct ib_qp_cap        cap;
1154        struct ib_ah_attr       ah_attr;
1155        struct ib_ah_attr       alt_ah_attr;
1156        u16                     pkey_index;
1157        u16                     alt_pkey_index;
1158        u8                      en_sqd_async_notify;
1159        u8                      sq_draining;
1160        u8                      max_rd_atomic;
1161        u8                      max_dest_rd_atomic;
1162        u8                      min_rnr_timer;
1163        u8                      port_num;
1164        u8                      timeout;
1165        u8                      retry_cnt;
1166        u8                      rnr_retry;
1167        u8                      alt_port_num;
1168        u8                      alt_timeout;
1169        u32                     rate_limit;
1170};
1171
1172enum ib_wr_opcode {
1173        IB_WR_RDMA_WRITE,
1174        IB_WR_RDMA_WRITE_WITH_IMM,
1175        IB_WR_SEND,
1176        IB_WR_SEND_WITH_IMM,
1177        IB_WR_RDMA_READ,
1178        IB_WR_ATOMIC_CMP_AND_SWP,
1179        IB_WR_ATOMIC_FETCH_AND_ADD,
1180        IB_WR_LSO,
1181        IB_WR_SEND_WITH_INV,
1182        IB_WR_RDMA_READ_WITH_INV,
1183        IB_WR_LOCAL_INV,
1184        IB_WR_REG_MR,
1185        IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1186        IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1187        IB_WR_REG_SIG_MR,
1188        /* reserve values for low level drivers' internal use.
1189         * These values will not be used at all in the ib core layer.
1190         */
1191        IB_WR_RESERVED1 = 0xf0,
1192        IB_WR_RESERVED2,
1193        IB_WR_RESERVED3,
1194        IB_WR_RESERVED4,
1195        IB_WR_RESERVED5,
1196        IB_WR_RESERVED6,
1197        IB_WR_RESERVED7,
1198        IB_WR_RESERVED8,
1199        IB_WR_RESERVED9,
1200        IB_WR_RESERVED10,
1201};
1202
1203enum ib_send_flags {
1204        IB_SEND_FENCE           = 1,
1205        IB_SEND_SIGNALED        = (1<<1),
1206        IB_SEND_SOLICITED       = (1<<2),
1207        IB_SEND_INLINE          = (1<<3),
1208        IB_SEND_IP_CSUM         = (1<<4),
1209
1210        /* reserve bits 26-31 for low level drivers' internal use */
1211        IB_SEND_RESERVED_START  = (1 << 26),
1212        IB_SEND_RESERVED_END    = (1 << 31),
1213};
1214
1215struct ib_sge {
1216        u64     addr;
1217        u32     length;
1218        u32     lkey;
1219};
1220
1221struct ib_cqe {
1222        void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1223};
1224
1225struct ib_send_wr {
1226        struct ib_send_wr      *next;
1227        union {
1228                u64             wr_id;
1229                struct ib_cqe   *wr_cqe;
1230        };
1231        struct ib_sge          *sg_list;
1232        int                     num_sge;
1233        enum ib_wr_opcode       opcode;
1234        int                     send_flags;
1235        union {
1236                __be32          imm_data;
1237                u32             invalidate_rkey;
1238        } ex;
1239};
1240
1241struct ib_rdma_wr {
1242        struct ib_send_wr       wr;
1243        u64                     remote_addr;
1244        u32                     rkey;
1245};
1246
1247static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1248{
1249        return container_of(wr, struct ib_rdma_wr, wr);
1250}
1251
1252struct ib_atomic_wr {
1253        struct ib_send_wr       wr;
1254        u64                     remote_addr;
1255        u64                     compare_add;
1256        u64                     swap;
1257        u64                     compare_add_mask;
1258        u64                     swap_mask;
1259        u32                     rkey;
1260};
1261
1262static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1263{
1264        return container_of(wr, struct ib_atomic_wr, wr);
1265}
1266
1267struct ib_ud_wr {
1268        struct ib_send_wr       wr;
1269        struct ib_ah            *ah;
1270        void                    *header;
1271        int                     hlen;
1272        int                     mss;
1273        u32                     remote_qpn;
1274        u32                     remote_qkey;
1275        u16                     pkey_index; /* valid for GSI only */
1276        u8                      port_num;   /* valid for DR SMPs on switch only */
1277};
1278
1279static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1280{
1281        return container_of(wr, struct ib_ud_wr, wr);
1282}
1283
1284struct ib_reg_wr {
1285        struct ib_send_wr       wr;
1286        struct ib_mr            *mr;
1287        u32                     key;
1288        int                     access;
1289};
1290
1291static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1292{
1293        return container_of(wr, struct ib_reg_wr, wr);
1294}
1295
1296struct ib_sig_handover_wr {
1297        struct ib_send_wr       wr;
1298        struct ib_sig_attrs    *sig_attrs;
1299        struct ib_mr           *sig_mr;
1300        int                     access_flags;
1301        struct ib_sge          *prot;
1302};
1303
1304static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1305{
1306        return container_of(wr, struct ib_sig_handover_wr, wr);
1307}
1308
1309struct ib_recv_wr {
1310        struct ib_recv_wr      *next;
1311        union {
1312                u64             wr_id;
1313                struct ib_cqe   *wr_cqe;
1314        };
1315        struct ib_sge          *sg_list;
1316        int                     num_sge;
1317};
1318
1319enum ib_access_flags {
1320        IB_ACCESS_LOCAL_WRITE   = 1,
1321        IB_ACCESS_REMOTE_WRITE  = (1<<1),
1322        IB_ACCESS_REMOTE_READ   = (1<<2),
1323        IB_ACCESS_REMOTE_ATOMIC = (1<<3),
1324        IB_ACCESS_MW_BIND       = (1<<4),
1325        IB_ZERO_BASED           = (1<<5),
1326        IB_ACCESS_ON_DEMAND     = (1<<6),
1327};
1328
1329/*
1330 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1331 * are hidden here instead of a uapi header!
1332 */
1333enum ib_mr_rereg_flags {
1334        IB_MR_REREG_TRANS       = 1,
1335        IB_MR_REREG_PD          = (1<<1),
1336        IB_MR_REREG_ACCESS      = (1<<2),
1337        IB_MR_REREG_SUPPORTED   = ((IB_MR_REREG_ACCESS << 1) - 1)
1338};
1339
1340struct ib_fmr_attr {
1341        int     max_pages;
1342        int     max_maps;
1343        u8      page_shift;
1344};
1345
1346struct ib_umem;
1347
1348struct ib_ucontext {
1349        struct ib_device       *device;
1350        struct list_head        pd_list;
1351        struct list_head        mr_list;
1352        struct list_head        mw_list;
1353        struct list_head        cq_list;
1354        struct list_head        qp_list;
1355        struct list_head        srq_list;
1356        struct list_head        ah_list;
1357        struct list_head        xrcd_list;
1358        struct list_head        rule_list;
1359        struct list_head        wq_list;
1360        struct list_head        rwq_ind_tbl_list;
1361        int                     closing;
1362
1363        struct pid             *tgid;
1364#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1365        struct rb_root      umem_tree;
1366        /*
1367         * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1368         * mmu notifiers registration.
1369         */
1370        struct rw_semaphore     umem_rwsem;
1371        void (*invalidate_range)(struct ib_umem *umem,
1372                                 unsigned long start, unsigned long end);
1373
1374        struct mmu_notifier     mn;
1375        atomic_t                notifier_count;
1376        /* A list of umems that don't have private mmu notifier counters yet. */
1377        struct list_head        no_private_counters;
1378        int                     odp_mrs_count;
1379#endif
1380};
1381
1382struct ib_uobject {
1383        u64                     user_handle;    /* handle given to us by userspace */
1384        struct ib_ucontext     *context;        /* associated user context */
1385        void                   *object;         /* containing object */
1386        struct list_head        list;           /* link to context's list */
1387        int                     id;             /* index into kernel idr */
1388        struct kref             ref;
1389        struct rw_semaphore     mutex;          /* protects .live */
1390        struct rcu_head         rcu;            /* kfree_rcu() overhead */
1391        int                     live;
1392};
1393
1394struct ib_udata {
1395        const void __user *inbuf;
1396        void __user *outbuf;
1397        size_t       inlen;
1398        size_t       outlen;
1399};
1400
1401struct ib_pd {
1402        u32                     local_dma_lkey;
1403        u32                     flags;
1404        struct ib_device       *device;
1405        struct ib_uobject      *uobject;
1406        atomic_t                usecnt; /* count all resources */
1407
1408        u32                     unsafe_global_rkey;
1409
1410        /*
1411         * Implementation details of the RDMA core, don't use in drivers:
1412         */
1413        struct ib_mr           *__internal_mr;
1414};
1415
1416struct ib_xrcd {
1417        struct ib_device       *device;
1418        atomic_t                usecnt; /* count all exposed resources */
1419        struct inode           *inode;
1420
1421        struct mutex            tgt_qp_mutex;
1422        struct list_head        tgt_qp_list;
1423};
1424
1425struct ib_ah {
1426        struct ib_device        *device;
1427        struct ib_pd            *pd;
1428        struct ib_uobject       *uobject;
1429};
1430
1431typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1432
1433enum ib_poll_context {
1434        IB_POLL_DIRECT,         /* caller context, no hw completions */
1435        IB_POLL_SOFTIRQ,        /* poll from softirq context */
1436        IB_POLL_WORKQUEUE,      /* poll from workqueue */
1437};
1438
1439struct ib_cq {
1440        struct ib_device       *device;
1441        struct ib_uobject      *uobject;
1442        ib_comp_handler         comp_handler;
1443        void                  (*event_handler)(struct ib_event *, void *);
1444        void                   *cq_context;
1445        int                     cqe;
1446        atomic_t                usecnt; /* count number of work queues */
1447        enum ib_poll_context    poll_ctx;
1448        struct ib_wc            *wc;
1449        union {
1450                struct irq_poll         iop;
1451                struct work_struct      work;
1452        };
1453};
1454
1455struct ib_srq {
1456        struct ib_device       *device;
1457        struct ib_pd           *pd;
1458        struct ib_uobject      *uobject;
1459        void                  (*event_handler)(struct ib_event *, void *);
1460        void                   *srq_context;
1461        enum ib_srq_type        srq_type;
1462        atomic_t                usecnt;
1463
1464        union {
1465                struct {
1466                        struct ib_xrcd *xrcd;
1467                        struct ib_cq   *cq;
1468                        u32             srq_num;
1469                } xrc;
1470        } ext;
1471};
1472
1473enum ib_wq_type {
1474        IB_WQT_RQ
1475};
1476
1477enum ib_wq_state {
1478        IB_WQS_RESET,
1479        IB_WQS_RDY,
1480        IB_WQS_ERR
1481};
1482
1483struct ib_wq {
1484        struct ib_device       *device;
1485        struct ib_uobject      *uobject;
1486        void                *wq_context;
1487        void                (*event_handler)(struct ib_event *, void *);
1488        struct ib_pd           *pd;
1489        struct ib_cq           *cq;
1490        u32             wq_num;
1491        enum ib_wq_state       state;
1492        enum ib_wq_type wq_type;
1493        atomic_t                usecnt;
1494};
1495
1496struct ib_wq_init_attr {
1497        void                   *wq_context;
1498        enum ib_wq_type wq_type;
1499        u32             max_wr;
1500        u32             max_sge;
1501        struct  ib_cq          *cq;
1502        void                (*event_handler)(struct ib_event *, void *);
1503};
1504
1505enum ib_wq_attr_mask {
1506        IB_WQ_STATE     = 1 << 0,
1507        IB_WQ_CUR_STATE = 1 << 1,
1508};
1509
1510struct ib_wq_attr {
1511        enum    ib_wq_state     wq_state;
1512        enum    ib_wq_state     curr_wq_state;
1513};
1514
1515struct ib_rwq_ind_table {
1516        struct ib_device        *device;
1517        struct ib_uobject      *uobject;
1518        atomic_t                usecnt;
1519        u32             ind_tbl_num;
1520        u32             log_ind_tbl_size;
1521        struct ib_wq    **ind_tbl;
1522};
1523
1524struct ib_rwq_ind_table_init_attr {
1525        u32             log_ind_tbl_size;
1526        /* Each entry is a pointer to Receive Work Queue */
1527        struct ib_wq    **ind_tbl;
1528};
1529
1530/*
1531 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1532 * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1533 */
1534struct ib_qp {
1535        struct ib_device       *device;
1536        struct ib_pd           *pd;
1537        struct ib_cq           *send_cq;
1538        struct ib_cq           *recv_cq;
1539        spinlock_t              mr_lock;
1540        int                     mrs_used;
1541        struct list_head        rdma_mrs;
1542        struct list_head        sig_mrs;
1543        struct ib_srq          *srq;
1544        struct ib_xrcd         *xrcd; /* XRC TGT QPs only */
1545        struct list_head        xrcd_list;
1546
1547        /* count times opened, mcast attaches, flow attaches */
1548        atomic_t                usecnt;
1549        struct list_head        open_list;
1550        struct ib_qp           *real_qp;
1551        struct ib_uobject      *uobject;
1552        void                  (*event_handler)(struct ib_event *, void *);
1553        void                   *qp_context;
1554        u32                     qp_num;
1555        u32                     max_write_sge;
1556        u32                     max_read_sge;
1557        enum ib_qp_type         qp_type;
1558        struct ib_rwq_ind_table *rwq_ind_tbl;
1559};
1560
1561struct ib_mr {
1562        struct ib_device  *device;
1563        struct ib_pd      *pd;
1564        u32                lkey;
1565        u32                rkey;
1566        u64                iova;
1567        u32                length;
1568        unsigned int       page_size;
1569        bool               need_inval;
1570        union {
1571                struct ib_uobject       *uobject;       /* user */
1572                struct list_head        qp_entry;       /* FR */
1573        };
1574};
1575
1576struct ib_mw {
1577        struct ib_device        *device;
1578        struct ib_pd            *pd;
1579        struct ib_uobject       *uobject;
1580        u32                     rkey;
1581        enum ib_mw_type         type;
1582};
1583
1584struct ib_fmr {
1585        struct ib_device        *device;
1586        struct ib_pd            *pd;
1587        struct list_head        list;
1588        u32                     lkey;
1589        u32                     rkey;
1590};
1591
1592/* Supported steering options */
1593enum ib_flow_attr_type {
1594        /* steering according to rule specifications */
1595        IB_FLOW_ATTR_NORMAL             = 0x0,
1596        /* default unicast and multicast rule -
1597         * receive all Eth traffic which isn't steered to any QP
1598         */
1599        IB_FLOW_ATTR_ALL_DEFAULT        = 0x1,
1600        /* default multicast rule -
1601         * receive all Eth multicast traffic which isn't steered to any QP
1602         */
1603        IB_FLOW_ATTR_MC_DEFAULT         = 0x2,
1604        /* sniffer rule - receive all port traffic */
1605        IB_FLOW_ATTR_SNIFFER            = 0x3
1606};
1607
1608/* Supported steering header types */
1609enum ib_flow_spec_type {
1610        /* L2 headers*/
1611        IB_FLOW_SPEC_ETH                = 0x20,
1612        IB_FLOW_SPEC_IB                 = 0x22,
1613        /* L3 header*/
1614        IB_FLOW_SPEC_IPV4               = 0x30,
1615        IB_FLOW_SPEC_IPV6               = 0x31,
1616        /* L4 headers*/
1617        IB_FLOW_SPEC_TCP                = 0x40,
1618        IB_FLOW_SPEC_UDP                = 0x41,
1619        IB_FLOW_SPEC_VXLAN_TUNNEL       = 0x50,
1620        IB_FLOW_SPEC_INNER              = 0x100,
1621};
1622#define IB_FLOW_SPEC_LAYER_MASK 0xF0
1623#define IB_FLOW_SPEC_SUPPORT_LAYERS 8
1624
1625/* Flow steering rule priority is set according to it's domain.
1626 * Lower domain value means higher priority.
1627 */
1628enum ib_flow_domain {
1629        IB_FLOW_DOMAIN_USER,
1630        IB_FLOW_DOMAIN_ETHTOOL,
1631        IB_FLOW_DOMAIN_RFS,
1632        IB_FLOW_DOMAIN_NIC,
1633        IB_FLOW_DOMAIN_NUM /* Must be last */
1634};
1635
1636enum ib_flow_flags {
1637        IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1638        IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 2  /* Must be last */
1639};
1640
1641struct ib_flow_eth_filter {
1642        u8      dst_mac[6];
1643        u8      src_mac[6];
1644        __be16  ether_type;
1645        __be16  vlan_tag;
1646        /* Must be last */
1647        u8      real_sz[0];
1648};
1649
1650struct ib_flow_spec_eth {
1651        u32                       type;
1652        u16                       size;
1653        struct ib_flow_eth_filter val;
1654        struct ib_flow_eth_filter mask;
1655};
1656
1657struct ib_flow_ib_filter {
1658        __be16 dlid;
1659        __u8   sl;
1660        /* Must be last */
1661        u8      real_sz[0];
1662};
1663
1664struct ib_flow_spec_ib {
1665        u32                      type;
1666        u16                      size;
1667        struct ib_flow_ib_filter val;
1668        struct ib_flow_ib_filter mask;
1669};
1670
1671/* IPv4 header flags */
1672enum ib_ipv4_flags {
1673        IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1674        IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1675                                    last have this flag set */
1676};
1677
1678struct ib_flow_ipv4_filter {
1679        __be32  src_ip;
1680        __be32  dst_ip;
1681        u8      proto;
1682        u8      tos;
1683        u8      ttl;
1684        u8      flags;
1685        /* Must be last */
1686        u8      real_sz[0];
1687};
1688
1689struct ib_flow_spec_ipv4 {
1690        u32                        type;
1691        u16                        size;
1692        struct ib_flow_ipv4_filter val;
1693        struct ib_flow_ipv4_filter mask;
1694};
1695
1696struct ib_flow_ipv6_filter {
1697        u8      src_ip[16];
1698        u8      dst_ip[16];
1699        __be32  flow_label;
1700        u8      next_hdr;
1701        u8      traffic_class;
1702        u8      hop_limit;
1703        /* Must be last */
1704        u8      real_sz[0];
1705};
1706
1707struct ib_flow_spec_ipv6 {
1708        u32                        type;
1709        u16                        size;
1710        struct ib_flow_ipv6_filter val;
1711        struct ib_flow_ipv6_filter mask;
1712};
1713
1714struct ib_flow_tcp_udp_filter {
1715        __be16  dst_port;
1716        __be16  src_port;
1717        /* Must be last */
1718        u8      real_sz[0];
1719};
1720
1721struct ib_flow_spec_tcp_udp {
1722        u32                           type;
1723        u16                           size;
1724        struct ib_flow_tcp_udp_filter val;
1725        struct ib_flow_tcp_udp_filter mask;
1726};
1727
1728struct ib_flow_tunnel_filter {
1729        __be32  tunnel_id;
1730        u8      real_sz[0];
1731};
1732
1733/* ib_flow_spec_tunnel describes the Vxlan tunnel
1734 * the tunnel_id from val has the vni value
1735 */
1736struct ib_flow_spec_tunnel {
1737        u32                           type;
1738        u16                           size;
1739        struct ib_flow_tunnel_filter  val;
1740        struct ib_flow_tunnel_filter  mask;
1741};
1742
1743union ib_flow_spec {
1744        struct {
1745                u32                     type;
1746                u16                     size;
1747        };
1748        struct ib_flow_spec_eth         eth;
1749        struct ib_flow_spec_ib          ib;
1750        struct ib_flow_spec_ipv4        ipv4;
1751        struct ib_flow_spec_tcp_udp     tcp_udp;
1752        struct ib_flow_spec_ipv6        ipv6;
1753        struct ib_flow_spec_tunnel      tunnel;
1754};
1755
1756struct ib_flow_attr {
1757        enum ib_flow_attr_type type;
1758        u16          size;
1759        u16          priority;
1760        u32          flags;
1761        u8           num_of_specs;
1762        u8           port;
1763        /* Following are the optional layers according to user request
1764         * struct ib_flow_spec_xxx
1765         * struct ib_flow_spec_yyy
1766         */
1767};
1768
1769struct ib_flow {
1770        struct ib_qp            *qp;
1771        struct ib_uobject       *uobject;
1772};
1773
1774struct ib_mad_hdr;
1775struct ib_grh;
1776
1777enum ib_process_mad_flags {
1778        IB_MAD_IGNORE_MKEY      = 1,
1779        IB_MAD_IGNORE_BKEY      = 2,
1780        IB_MAD_IGNORE_ALL       = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1781};
1782
1783enum ib_mad_result {
1784        IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
1785        IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
1786        IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
1787        IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
1788};
1789
1790#define IB_DEVICE_NAME_MAX 64
1791
1792struct ib_cache {
1793        rwlock_t                lock;
1794        struct ib_event_handler event_handler;
1795        struct ib_pkey_cache  **pkey_cache;
1796        struct ib_gid_table   **gid_cache;
1797        u8                     *lmc_cache;
1798};
1799
1800struct ib_dma_mapping_ops {
1801        int             (*mapping_error)(struct ib_device *dev,
1802                                         u64 dma_addr);
1803        u64             (*map_single)(struct ib_device *dev,
1804                                      void *ptr, size_t size,
1805                                      enum dma_data_direction direction);
1806        void            (*unmap_single)(struct ib_device *dev,
1807                                        u64 addr, size_t size,
1808                                        enum dma_data_direction direction);
1809        u64             (*map_page)(struct ib_device *dev,
1810                                    struct page *page, unsigned long offset,
1811                                    size_t size,
1812                                    enum dma_data_direction direction);
1813        void            (*unmap_page)(struct ib_device *dev,
1814                                      u64 addr, size_t size,
1815                                      enum dma_data_direction direction);
1816        int             (*map_sg)(struct ib_device *dev,
1817                                  struct scatterlist *sg, int nents,
1818                                  enum dma_data_direction direction);
1819        void            (*unmap_sg)(struct ib_device *dev,
1820                                    struct scatterlist *sg, int nents,
1821                                    enum dma_data_direction direction);
1822        int             (*map_sg_attrs)(struct ib_device *dev,
1823                                        struct scatterlist *sg, int nents,
1824                                        enum dma_data_direction direction,
1825                                        unsigned long attrs);
1826        void            (*unmap_sg_attrs)(struct ib_device *dev,
1827                                          struct scatterlist *sg, int nents,
1828                                          enum dma_data_direction direction,
1829                                          unsigned long attrs);
1830        void            (*sync_single_for_cpu)(struct ib_device *dev,
1831                                               u64 dma_handle,
1832                                               size_t size,
1833                                               enum dma_data_direction dir);
1834        void            (*sync_single_for_device)(struct ib_device *dev,
1835                                                  u64 dma_handle,
1836                                                  size_t size,
1837                                                  enum dma_data_direction dir);
1838        void            *(*alloc_coherent)(struct ib_device *dev,
1839                                           size_t size,
1840                                           u64 *dma_handle,
1841                                           gfp_t flag);
1842        void            (*free_coherent)(struct ib_device *dev,
1843                                         size_t size, void *cpu_addr,
1844                                         u64 dma_handle);
1845};
1846
1847struct iw_cm_verbs;
1848
1849struct ib_port_immutable {
1850        int                           pkey_tbl_len;
1851        int                           gid_tbl_len;
1852        u32                           core_cap_flags;
1853        u32                           max_mad_size;
1854};
1855
1856struct ib_device {
1857        struct device                *dma_device;
1858
1859        char                          name[IB_DEVICE_NAME_MAX];
1860
1861        struct list_head              event_handler_list;
1862        spinlock_t                    event_handler_lock;
1863
1864        spinlock_t                    client_data_lock;
1865        struct list_head              core_list;
1866        /* Access to the client_data_list is protected by the client_data_lock
1867         * spinlock and the lists_rwsem read-write semaphore */
1868        struct list_head              client_data_list;
1869
1870        struct ib_cache               cache;
1871        /**
1872         * port_immutable is indexed by port number
1873         */
1874        struct ib_port_immutable     *port_immutable;
1875
1876        int                           num_comp_vectors;
1877
1878        struct iw_cm_verbs           *iwcm;
1879
1880        /**
1881         * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
1882         *   driver initialized data.  The struct is kfree()'ed by the sysfs
1883         *   core when the device is removed.  A lifespan of -1 in the return
1884         *   struct tells the core to set a default lifespan.
1885         */
1886        struct rdma_hw_stats      *(*alloc_hw_stats)(struct ib_device *device,
1887                                                     u8 port_num);
1888        /**
1889         * get_hw_stats - Fill in the counter value(s) in the stats struct.
1890         * @index - The index in the value array we wish to have updated, or
1891         *   num_counters if we want all stats updated
1892         * Return codes -
1893         *   < 0 - Error, no counters updated
1894         *   index - Updated the single counter pointed to by index
1895         *   num_counters - Updated all counters (will reset the timestamp
1896         *     and prevent further calls for lifespan milliseconds)
1897         * Drivers are allowed to update all counters in leiu of just the
1898         *   one given in index at their option
1899         */
1900        int                        (*get_hw_stats)(struct ib_device *device,
1901                                                   struct rdma_hw_stats *stats,
1902                                                   u8 port, int index);
1903        int                        (*query_device)(struct ib_device *device,
1904                                                   struct ib_device_attr *device_attr,
1905                                                   struct ib_udata *udata);
1906        int                        (*query_port)(struct ib_device *device,
1907                                                 u8 port_num,
1908                                                 struct ib_port_attr *port_attr);
1909        enum rdma_link_layer       (*get_link_layer)(struct ib_device *device,
1910                                                     u8 port_num);
1911        /* When calling get_netdev, the HW vendor's driver should return the
1912         * net device of device @device at port @port_num or NULL if such
1913         * a net device doesn't exist. The vendor driver should call dev_hold
1914         * on this net device. The HW vendor's device driver must guarantee
1915         * that this function returns NULL before the net device reaches
1916         * NETDEV_UNREGISTER_FINAL state.
1917         */
1918        struct net_device         *(*get_netdev)(struct ib_device *device,
1919                                                 u8 port_num);
1920        int                        (*query_gid)(struct ib_device *device,
1921                                                u8 port_num, int index,
1922                                                union ib_gid *gid);
1923        /* When calling add_gid, the HW vendor's driver should
1924         * add the gid of device @device at gid index @index of
1925         * port @port_num to be @gid. Meta-info of that gid (for example,
1926         * the network device related to this gid is available
1927         * at @attr. @context allows the HW vendor driver to store extra
1928         * information together with a GID entry. The HW vendor may allocate
1929         * memory to contain this information and store it in @context when a
1930         * new GID entry is written to. Params are consistent until the next
1931         * call of add_gid or delete_gid. The function should return 0 on
1932         * success or error otherwise. The function could be called
1933         * concurrently for different ports. This function is only called
1934         * when roce_gid_table is used.
1935         */
1936        int                        (*add_gid)(struct ib_device *device,
1937                                              u8 port_num,
1938                                              unsigned int index,
1939                                              const union ib_gid *gid,
1940                                              const struct ib_gid_attr *attr,
1941                                              void **context);
1942        /* When calling del_gid, the HW vendor's driver should delete the
1943         * gid of device @device at gid index @index of port @port_num.
1944         * Upon the deletion of a GID entry, the HW vendor must free any
1945         * allocated memory. The caller will clear @context afterwards.
1946         * This function is only called when roce_gid_table is used.
1947         */
1948        int                        (*del_gid)(struct ib_device *device,
1949                                              u8 port_num,
1950                                              unsigned int index,
1951                                              void **context);
1952        int                        (*query_pkey)(struct ib_device *device,
1953                                                 u8 port_num, u16 index, u16 *pkey);
1954        int                        (*modify_device)(struct ib_device *device,
1955                                                    int device_modify_mask,
1956                                                    struct ib_device_modify *device_modify);
1957        int                        (*modify_port)(struct ib_device *device,
1958                                                  u8 port_num, int port_modify_mask,
1959                                                  struct ib_port_modify *port_modify);
1960        struct ib_ucontext *       (*alloc_ucontext)(struct ib_device *device,
1961                                                     struct ib_udata *udata);
1962        int                        (*dealloc_ucontext)(struct ib_ucontext *context);
1963        int                        (*mmap)(struct ib_ucontext *context,
1964                                           struct vm_area_struct *vma);
1965        struct ib_pd *             (*alloc_pd)(struct ib_device *device,
1966                                               struct ib_ucontext *context,
1967                                               struct ib_udata *udata);
1968        int                        (*dealloc_pd)(struct ib_pd *pd);
1969        struct ib_ah *             (*create_ah)(struct ib_pd *pd,
1970                                                struct ib_ah_attr *ah_attr,
1971                                                struct ib_udata *udata);
1972        int                        (*modify_ah)(struct ib_ah *ah,
1973                                                struct ib_ah_attr *ah_attr);
1974        int                        (*query_ah)(struct ib_ah *ah,
1975                                               struct ib_ah_attr *ah_attr);
1976        int                        (*destroy_ah)(struct ib_ah *ah);
1977        struct ib_srq *            (*create_srq)(struct ib_pd *pd,
1978                                                 struct ib_srq_init_attr *srq_init_attr,
1979                                                 struct ib_udata *udata);
1980        int                        (*modify_srq)(struct ib_srq *srq,
1981                                                 struct ib_srq_attr *srq_attr,
1982                                                 enum ib_srq_attr_mask srq_attr_mask,
1983                                                 struct ib_udata *udata);
1984        int                        (*query_srq)(struct ib_srq *srq,
1985                                                struct ib_srq_attr *srq_attr);
1986        int                        (*destroy_srq)(struct ib_srq *srq);
1987        int                        (*post_srq_recv)(struct ib_srq *srq,
1988                                                    struct ib_recv_wr *recv_wr,
1989                                                    struct ib_recv_wr **bad_recv_wr);
1990        struct ib_qp *             (*create_qp)(struct ib_pd *pd,
1991                                                struct ib_qp_init_attr *qp_init_attr,
1992                                                struct ib_udata *udata);
1993        int                        (*modify_qp)(struct ib_qp *qp,
1994                                                struct ib_qp_attr *qp_attr,
1995                                                int qp_attr_mask,
1996                                                struct ib_udata *udata);
1997        int                        (*query_qp)(struct ib_qp *qp,
1998                                               struct ib_qp_attr *qp_attr,
1999                                               int qp_attr_mask,
2000                                               struct ib_qp_init_attr *qp_init_attr);
2001        int                        (*destroy_qp)(struct ib_qp *qp);
2002        int                        (*post_send)(struct ib_qp *qp,
2003                                                struct ib_send_wr *send_wr,
2004                                                struct ib_send_wr **bad_send_wr);
2005        int                        (*post_recv)(struct ib_qp *qp,
2006                                                struct ib_recv_wr *recv_wr,
2007                                                struct ib_recv_wr **bad_recv_wr);
2008        struct ib_cq *             (*create_cq)(struct ib_device *device,
2009                                                const struct ib_cq_init_attr *attr,
2010                                                struct ib_ucontext *context,
2011                                                struct ib_udata *udata);
2012        int                        (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2013                                                u16 cq_period);
2014        int                        (*destroy_cq)(struct ib_cq *cq);
2015        int                        (*resize_cq)(struct ib_cq *cq, int cqe,
2016                                                struct ib_udata *udata);
2017        int                        (*poll_cq)(struct ib_cq *cq, int num_entries,
2018                                              struct ib_wc *wc);
2019        int                        (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2020        int                        (*req_notify_cq)(struct ib_cq *cq,
2021                                                    enum ib_cq_notify_flags flags);
2022        int                        (*req_ncomp_notif)(struct ib_cq *cq,
2023                                                      int wc_cnt);
2024        struct ib_mr *             (*get_dma_mr)(struct ib_pd *pd,
2025                                                 int mr_access_flags);
2026        struct ib_mr *             (*reg_user_mr)(struct ib_pd *pd,
2027                                                  u64 start, u64 length,
2028                                                  u64 virt_addr,
2029                                                  int mr_access_flags,
2030                                                  struct ib_udata *udata);
2031        int                        (*rereg_user_mr)(struct ib_mr *mr,
2032                                                    int flags,
2033                                                    u64 start, u64 length,
2034                                                    u64 virt_addr,
2035                                                    int mr_access_flags,
2036                                                    struct ib_pd *pd,
2037                                                    struct ib_udata *udata);
2038        int                        (*dereg_mr)(struct ib_mr *mr);
2039        struct ib_mr *             (*alloc_mr)(struct ib_pd *pd,
2040                                               enum ib_mr_type mr_type,
2041                                               u32 max_num_sg);
2042        int                        (*map_mr_sg)(struct ib_mr *mr,
2043                                                struct scatterlist *sg,
2044                                                int sg_nents,
2045                                                unsigned int *sg_offset);
2046        struct ib_mw *             (*alloc_mw)(struct ib_pd *pd,
2047                                               enum ib_mw_type type,
2048                                               struct ib_udata *udata);
2049        int                        (*dealloc_mw)(struct ib_mw *mw);
2050        struct ib_fmr *            (*alloc_fmr)(struct ib_pd *pd,
2051                                                int mr_access_flags,
2052                                                struct ib_fmr_attr *fmr_attr);
2053        int                        (*map_phys_fmr)(struct ib_fmr *fmr,
2054                                                   u64 *page_list, int list_len,
2055                                                   u64 iova);
2056        int                        (*unmap_fmr)(struct list_head *fmr_list);
2057        int                        (*dealloc_fmr)(struct ib_fmr *fmr);
2058        int                        (*attach_mcast)(struct ib_qp *qp,
2059                                                   union ib_gid *gid,
2060                                                   u16 lid);
2061        int                        (*detach_mcast)(struct ib_qp *qp,
2062                                                   union ib_gid *gid,
2063                                                   u16 lid);
2064        int                        (*process_mad)(struct ib_device *device,
2065                                                  int process_mad_flags,
2066                                                  u8 port_num,
2067                                                  const struct ib_wc *in_wc,
2068                                                  const struct ib_grh *in_grh,
2069                                                  const struct ib_mad_hdr *in_mad,
2070                                                  size_t in_mad_size,
2071                                                  struct ib_mad_hdr *out_mad,
2072                                                  size_t *out_mad_size,
2073                                                  u16 *out_mad_pkey_index);
2074        struct ib_xrcd *           (*alloc_xrcd)(struct ib_device *device,
2075                                                 struct ib_ucontext *ucontext,
2076                                                 struct ib_udata *udata);
2077        int                        (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2078        struct ib_flow *           (*create_flow)(struct ib_qp *qp,
2079                                                  struct ib_flow_attr
2080                                                  *flow_attr,
2081                                                  int domain);
2082        int                        (*destroy_flow)(struct ib_flow *flow_id);
2083        int                        (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2084                                                      struct ib_mr_status *mr_status);
2085        void                       (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2086        void                       (*drain_rq)(struct ib_qp *qp);
2087        void                       (*drain_sq)(struct ib_qp *qp);
2088        int                        (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2089                                                        int state);
2090        int                        (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2091                                                   struct ifla_vf_info *ivf);
2092        int                        (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2093                                                   struct ifla_vf_stats *stats);
2094        int                        (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2095                                                  int type);
2096        struct ib_wq *             (*create_wq)(struct ib_pd *pd,
2097                                                struct ib_wq_init_attr *init_attr,
2098                                                struct ib_udata *udata);
2099        int                        (*destroy_wq)(struct ib_wq *wq);
2100        int                        (*modify_wq)(struct ib_wq *wq,
2101                                                struct ib_wq_attr *attr,
2102                                                u32 wq_attr_mask,
2103                                                struct ib_udata *udata);
2104        struct ib_rwq_ind_table *  (*create_rwq_ind_table)(struct ib_device *device,
2105                                                           struct ib_rwq_ind_table_init_attr *init_attr,
2106                                                           struct ib_udata *udata);
2107        int                        (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2108        struct ib_dma_mapping_ops   *dma_ops;
2109
2110        struct module               *owner;
2111        struct device                dev;
2112        struct kobject               *ports_parent;
2113        struct list_head             port_list;
2114
2115        enum {
2116                IB_DEV_UNINITIALIZED,
2117                IB_DEV_REGISTERED,
2118                IB_DEV_UNREGISTERED
2119        }                            reg_state;
2120
2121        int                          uverbs_abi_ver;
2122        u64                          uverbs_cmd_mask;
2123        u64                          uverbs_ex_cmd_mask;
2124
2125        char                         node_desc[IB_DEVICE_NODE_DESC_MAX];
2126        __be64                       node_guid;
2127        u32                          local_dma_lkey;
2128        u16                          is_switch:1;
2129        u8                           node_type;
2130        u8                           phys_port_cnt;
2131        struct ib_device_attr        attrs;
2132        struct attribute_group       *hw_stats_ag;
2133        struct rdma_hw_stats         *hw_stats;
2134
2135        /**
2136         * The following mandatory functions are used only at device
2137         * registration.  Keep functions such as these at the end of this
2138         * structure to avoid cache line misses when accessing struct ib_device
2139         * in fast paths.
2140         */
2141        int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2142        void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len);
2143};
2144
2145struct ib_client {
2146        char  *name;
2147        void (*add)   (struct ib_device *);
2148        void (*remove)(struct ib_device *, void *client_data);
2149
2150        /* Returns the net_dev belonging to this ib_client and matching the
2151         * given parameters.
2152         * @dev:         An RDMA device that the net_dev use for communication.
2153         * @port:        A physical port number on the RDMA device.
2154         * @pkey:        P_Key that the net_dev uses if applicable.
2155         * @gid:         A GID that the net_dev uses to communicate.
2156         * @addr:        An IP address the net_dev is configured with.
2157         * @client_data: The device's client data set by ib_set_client_data().
2158         *
2159         * An ib_client that implements a net_dev on top of RDMA devices
2160         * (such as IP over IB) should implement this callback, allowing the
2161         * rdma_cm module to find the right net_dev for a given request.
2162         *
2163         * The caller is responsible for calling dev_put on the returned
2164         * netdev. */
2165        struct net_device *(*get_net_dev_by_params)(
2166                        struct ib_device *dev,
2167                        u8 port,
2168                        u16 pkey,
2169                        const union ib_gid *gid,
2170                        const struct sockaddr *addr,
2171                        void *client_data);
2172        struct list_head list;
2173};
2174
2175struct ib_device *ib_alloc_device(size_t size);
2176void ib_dealloc_device(struct ib_device *device);
2177
2178void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len);
2179
2180int ib_register_device(struct ib_device *device,
2181                       int (*port_callback)(struct ib_device *,
2182                                            u8, struct kobject *));
2183void ib_unregister_device(struct ib_device *device);
2184
2185int ib_register_client   (struct ib_client *client);
2186void ib_unregister_client(struct ib_client *client);
2187
2188void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2189void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2190                         void *data);
2191
2192static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2193{
2194        return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2195}
2196
2197static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2198{
2199        return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2200}
2201
2202static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2203                                       size_t offset,
2204                                       size_t len)
2205{
2206        const void __user *p = udata->inbuf + offset;
2207        bool ret;
2208        u8 *buf;
2209
2210        if (len > USHRT_MAX)
2211                return false;
2212
2213        buf = memdup_user(p, len);
2214        if (IS_ERR(buf))
2215                return false;
2216
2217        ret = !memchr_inv(buf, 0, len);
2218        kfree(buf);
2219        return ret;
2220}
2221
2222/**
2223 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2224 * contains all required attributes and no attributes not allowed for
2225 * the given QP state transition.
2226 * @cur_state: Current QP state
2227 * @next_state: Next QP state
2228 * @type: QP type
2229 * @mask: Mask of supplied QP attributes
2230 * @ll : link layer of port
2231 *
2232 * This function is a helper function that a low-level driver's
2233 * modify_qp method can use to validate the consumer's input.  It
2234 * checks that cur_state and next_state are valid QP states, that a
2235 * transition from cur_state to next_state is allowed by the IB spec,
2236 * and that the attribute mask supplied is allowed for the transition.
2237 */
2238int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2239                       enum ib_qp_type type, enum ib_qp_attr_mask mask,
2240                       enum rdma_link_layer ll);
2241
2242int ib_register_event_handler  (struct ib_event_handler *event_handler);
2243int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2244void ib_dispatch_event(struct ib_event *event);
2245
2246int ib_query_port(struct ib_device *device,
2247                  u8 port_num, struct ib_port_attr *port_attr);
2248
2249enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2250                                               u8 port_num);
2251
2252/**
2253 * rdma_cap_ib_switch - Check if the device is IB switch
2254 * @device: Device to check
2255 *
2256 * Device driver is responsible for setting is_switch bit on
2257 * in ib_device structure at init time.
2258 *
2259 * Return: true if the device is IB switch.
2260 */
2261static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2262{
2263        return device->is_switch;
2264}
2265
2266/**
2267 * rdma_start_port - Return the first valid port number for the device
2268 * specified
2269 *
2270 * @device: Device to be checked
2271 *
2272 * Return start port number
2273 */
2274static inline u8 rdma_start_port(const struct ib_device *device)
2275{
2276        return rdma_cap_ib_switch(device) ? 0 : 1;
2277}
2278
2279/**
2280 * rdma_end_port - Return the last valid port number for the device
2281 * specified
2282 *
2283 * @device: Device to be checked
2284 *
2285 * Return last port number
2286 */
2287static inline u8 rdma_end_port(const struct ib_device *device)
2288{
2289        return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2290}
2291
2292static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2293{
2294        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2295}
2296
2297static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2298{
2299        return device->port_immutable[port_num].core_cap_flags &
2300                (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2301}
2302
2303static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2304{
2305        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2306}
2307
2308static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2309{
2310        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2311}
2312
2313static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2314{
2315        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2316}
2317
2318static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2319{
2320        return rdma_protocol_ib(device, port_num) ||
2321                rdma_protocol_roce(device, port_num);
2322}
2323
2324/**
2325 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2326 * Management Datagrams.
2327 * @device: Device to check
2328 * @port_num: Port number to check
2329 *
2330 * Management Datagrams (MAD) are a required part of the InfiniBand
2331 * specification and are supported on all InfiniBand devices.  A slightly
2332 * extended version are also supported on OPA interfaces.
2333 *
2334 * Return: true if the port supports sending/receiving of MAD packets.
2335 */
2336static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2337{
2338        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2339}
2340
2341/**
2342 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2343 * Management Datagrams.
2344 * @device: Device to check
2345 * @port_num: Port number to check
2346 *
2347 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2348 * datagrams with their own versions.  These OPA MADs share many but not all of
2349 * the characteristics of InfiniBand MADs.
2350 *
2351 * OPA MADs differ in the following ways:
2352 *
2353 *    1) MADs are variable size up to 2K
2354 *       IBTA defined MADs remain fixed at 256 bytes
2355 *    2) OPA SMPs must carry valid PKeys
2356 *    3) OPA SMP packets are a different format
2357 *
2358 * Return: true if the port supports OPA MAD packet formats.
2359 */
2360static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2361{
2362        return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2363                == RDMA_CORE_CAP_OPA_MAD;
2364}
2365
2366/**
2367 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2368 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2369 * @device: Device to check
2370 * @port_num: Port number to check
2371 *
2372 * Each InfiniBand node is required to provide a Subnet Management Agent
2373 * that the subnet manager can access.  Prior to the fabric being fully
2374 * configured by the subnet manager, the SMA is accessed via a well known
2375 * interface called the Subnet Management Interface (SMI).  This interface
2376 * uses directed route packets to communicate with the SM to get around the
2377 * chicken and egg problem of the SM needing to know what's on the fabric
2378 * in order to configure the fabric, and needing to configure the fabric in
2379 * order to send packets to the devices on the fabric.  These directed
2380 * route packets do not need the fabric fully configured in order to reach
2381 * their destination.  The SMI is the only method allowed to send
2382 * directed route packets on an InfiniBand fabric.
2383 *
2384 * Return: true if the port provides an SMI.
2385 */
2386static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2387{
2388        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2389}
2390
2391/**
2392 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2393 * Communication Manager.
2394 * @device: Device to check
2395 * @port_num: Port number to check
2396 *
2397 * The InfiniBand Communication Manager is one of many pre-defined General
2398 * Service Agents (GSA) that are accessed via the General Service
2399 * Interface (GSI).  It's role is to facilitate establishment of connections
2400 * between nodes as well as other management related tasks for established
2401 * connections.
2402 *
2403 * Return: true if the port supports an IB CM (this does not guarantee that
2404 * a CM is actually running however).
2405 */
2406static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2407{
2408        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2409}
2410
2411/**
2412 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2413 * Communication Manager.
2414 * @device: Device to check
2415 * @port_num: Port number to check
2416 *
2417 * Similar to above, but specific to iWARP connections which have a different
2418 * managment protocol than InfiniBand.
2419 *
2420 * Return: true if the port supports an iWARP CM (this does not guarantee that
2421 * a CM is actually running however).
2422 */
2423static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2424{
2425        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2426}
2427
2428/**
2429 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2430 * Subnet Administration.
2431 * @device: Device to check
2432 * @port_num: Port number to check
2433 *
2434 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2435 * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
2436 * fabrics, devices should resolve routes to other hosts by contacting the
2437 * SA to query the proper route.
2438 *
2439 * Return: true if the port should act as a client to the fabric Subnet
2440 * Administration interface.  This does not imply that the SA service is
2441 * running locally.
2442 */
2443static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2444{
2445        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2446}
2447
2448/**
2449 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2450 * Multicast.
2451 * @device: Device to check
2452 * @port_num: Port number to check
2453 *
2454 * InfiniBand multicast registration is more complex than normal IPv4 or
2455 * IPv6 multicast registration.  Each Host Channel Adapter must register
2456 * with the Subnet Manager when it wishes to join a multicast group.  It
2457 * should do so only once regardless of how many queue pairs it subscribes
2458 * to this group.  And it should leave the group only after all queue pairs
2459 * attached to the group have been detached.
2460 *
2461 * Return: true if the port must undertake the additional adminstrative
2462 * overhead of registering/unregistering with the SM and tracking of the
2463 * total number of queue pairs attached to the multicast group.
2464 */
2465static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2466{
2467        return rdma_cap_ib_sa(device, port_num);
2468}
2469
2470/**
2471 * rdma_cap_af_ib - Check if the port of device has the capability
2472 * Native Infiniband Address.
2473 * @device: Device to check
2474 * @port_num: Port number to check
2475 *
2476 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2477 * GID.  RoCE uses a different mechanism, but still generates a GID via
2478 * a prescribed mechanism and port specific data.
2479 *
2480 * Return: true if the port uses a GID address to identify devices on the
2481 * network.
2482 */
2483static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
2484{
2485        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
2486}
2487
2488/**
2489 * rdma_cap_eth_ah - Check if the port of device has the capability
2490 * Ethernet Address Handle.
2491 * @device: Device to check
2492 * @port_num: Port number to check
2493 *
2494 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2495 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2496 * port.  Normally, packet headers are generated by the sending host
2497 * adapter, but when sending connectionless datagrams, we must manually
2498 * inject the proper headers for the fabric we are communicating over.
2499 *
2500 * Return: true if we are running as a RoCE port and must force the
2501 * addition of a Global Route Header built from our Ethernet Address
2502 * Handle into our header list for connectionless packets.
2503 */
2504static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
2505{
2506        return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
2507}
2508
2509/**
2510 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2511 *
2512 * @device: Device
2513 * @port_num: Port number
2514 *
2515 * This MAD size includes the MAD headers and MAD payload.  No other headers
2516 * are included.
2517 *
2518 * Return the max MAD size required by the Port.  Will return 0 if the port
2519 * does not support MADs
2520 */
2521static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2522{
2523        return device->port_immutable[port_num].max_mad_size;
2524}
2525
2526/**
2527 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2528 * @device: Device to check
2529 * @port_num: Port number to check
2530 *
2531 * RoCE GID table mechanism manages the various GIDs for a device.
2532 *
2533 * NOTE: if allocating the port's GID table has failed, this call will still
2534 * return true, but any RoCE GID table API will fail.
2535 *
2536 * Return: true if the port uses RoCE GID table mechanism in order to manage
2537 * its GIDs.
2538 */
2539static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2540                                           u8 port_num)
2541{
2542        return rdma_protocol_roce(device, port_num) &&
2543                device->add_gid && device->del_gid;
2544}
2545
2546/*
2547 * Check if the device supports READ W/ INVALIDATE.
2548 */
2549static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2550{
2551        /*
2552         * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
2553         * has support for it yet.
2554         */
2555        return rdma_protocol_iwarp(dev, port_num);
2556}
2557
2558int ib_query_gid(struct ib_device *device,
2559                 u8 port_num, int index, union ib_gid *gid,
2560                 struct ib_gid_attr *attr);
2561
2562int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2563                         int state);
2564int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2565                     struct ifla_vf_info *info);
2566int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2567                    struct ifla_vf_stats *stats);
2568int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2569                   int type);
2570
2571int ib_query_pkey(struct ib_device *device,
2572                  u8 port_num, u16 index, u16 *pkey);
2573
2574int ib_modify_device(struct ib_device *device,
2575                     int device_modify_mask,
2576                     struct ib_device_modify *device_modify);
2577
2578int ib_modify_port(struct ib_device *device,
2579                   u8 port_num, int port_modify_mask,
2580                   struct ib_port_modify *port_modify);
2581
2582int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2583                enum ib_gid_type gid_type, struct net_device *ndev,
2584                u8 *port_num, u16 *index);
2585
2586int ib_find_pkey(struct ib_device *device,
2587                 u8 port_num, u16 pkey, u16 *index);
2588
2589enum ib_pd_flags {
2590        /*
2591         * Create a memory registration for all memory in the system and place
2592         * the rkey for it into pd->unsafe_global_rkey.  This can be used by
2593         * ULPs to avoid the overhead of dynamic MRs.
2594         *
2595         * This flag is generally considered unsafe and must only be used in
2596         * extremly trusted environments.  Every use of it will log a warning
2597         * in the kernel log.
2598         */
2599        IB_PD_UNSAFE_GLOBAL_RKEY        = 0x01,
2600};
2601
2602struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2603                const char *caller);
2604#define ib_alloc_pd(device, flags) \
2605        __ib_alloc_pd((device), (flags), __func__)
2606void ib_dealloc_pd(struct ib_pd *pd);
2607
2608/**
2609 * ib_create_ah - Creates an address handle for the given address vector.
2610 * @pd: The protection domain associated with the address handle.
2611 * @ah_attr: The attributes of the address vector.
2612 *
2613 * The address handle is used to reference a local or global destination
2614 * in all UD QP post sends.
2615 */
2616struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2617
2618/**
2619 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
2620 *   work completion.
2621 * @hdr: the L3 header to parse
2622 * @net_type: type of header to parse
2623 * @sgid: place to store source gid
2624 * @dgid: place to store destination gid
2625 */
2626int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
2627                              enum rdma_network_type net_type,
2628                              union ib_gid *sgid, union ib_gid *dgid);
2629
2630/**
2631 * ib_get_rdma_header_version - Get the header version
2632 * @hdr: the L3 header to parse
2633 */
2634int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
2635
2636/**
2637 * ib_init_ah_from_wc - Initializes address handle attributes from a
2638 *   work completion.
2639 * @device: Device on which the received message arrived.
2640 * @port_num: Port on which the received message arrived.
2641 * @wc: Work completion associated with the received message.
2642 * @grh: References the received global route header.  This parameter is
2643 *   ignored unless the work completion indicates that the GRH is valid.
2644 * @ah_attr: Returned attributes that can be used when creating an address
2645 *   handle for replying to the message.
2646 */
2647int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2648                       const struct ib_wc *wc, const struct ib_grh *grh,
2649                       struct ib_ah_attr *ah_attr);
2650
2651/**
2652 * ib_create_ah_from_wc - Creates an address handle associated with the
2653 *   sender of the specified work completion.
2654 * @pd: The protection domain associated with the address handle.
2655 * @wc: Work completion information associated with a received message.
2656 * @grh: References the received global route header.  This parameter is
2657 *   ignored unless the work completion indicates that the GRH is valid.
2658 * @port_num: The outbound port number to associate with the address.
2659 *
2660 * The address handle is used to reference a local or global destination
2661 * in all UD QP post sends.
2662 */
2663struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2664                                   const struct ib_grh *grh, u8 port_num);
2665
2666/**
2667 * ib_modify_ah - Modifies the address vector associated with an address
2668 *   handle.
2669 * @ah: The address handle to modify.
2670 * @ah_attr: The new address vector attributes to associate with the
2671 *   address handle.
2672 */
2673int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2674
2675/**
2676 * ib_query_ah - Queries the address vector associated with an address
2677 *   handle.
2678 * @ah: The address handle to query.
2679 * @ah_attr: The address vector attributes associated with the address
2680 *   handle.
2681 */
2682int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2683
2684/**
2685 * ib_destroy_ah - Destroys an address handle.
2686 * @ah: The address handle to destroy.
2687 */
2688int ib_destroy_ah(struct ib_ah *ah);
2689
2690/**
2691 * ib_create_srq - Creates a SRQ associated with the specified protection
2692 *   domain.
2693 * @pd: The protection domain associated with the SRQ.
2694 * @srq_init_attr: A list of initial attributes required to create the
2695 *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
2696 *   the actual capabilities of the created SRQ.
2697 *
2698 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2699 * requested size of the SRQ, and set to the actual values allocated
2700 * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
2701 * will always be at least as large as the requested values.
2702 */
2703struct ib_srq *ib_create_srq(struct ib_pd *pd,
2704                             struct ib_srq_init_attr *srq_init_attr);
2705
2706/**
2707 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2708 * @srq: The SRQ to modify.
2709 * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
2710 *   the current values of selected SRQ attributes are returned.
2711 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2712 *   are being modified.
2713 *
2714 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2715 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2716 * the number of receives queued drops below the limit.
2717 */
2718int ib_modify_srq(struct ib_srq *srq,
2719                  struct ib_srq_attr *srq_attr,
2720                  enum ib_srq_attr_mask srq_attr_mask);
2721
2722/**
2723 * ib_query_srq - Returns the attribute list and current values for the
2724 *   specified SRQ.
2725 * @srq: The SRQ to query.
2726 * @srq_attr: The attributes of the specified SRQ.
2727 */
2728int ib_query_srq(struct ib_srq *srq,
2729                 struct ib_srq_attr *srq_attr);
2730
2731/**
2732 * ib_destroy_srq - Destroys the specified SRQ.
2733 * @srq: The SRQ to destroy.
2734 */
2735int ib_destroy_srq(struct ib_srq *srq);
2736
2737/**
2738 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2739 * @srq: The SRQ to post the work request on.
2740 * @recv_wr: A list of work requests to post on the receive queue.
2741 * @bad_recv_wr: On an immediate failure, this parameter will reference
2742 *   the work request that failed to be posted on the QP.
2743 */
2744static inline int ib_post_srq_recv(struct ib_srq *srq,
2745                                   struct ib_recv_wr *recv_wr,
2746                                   struct ib_recv_wr **bad_recv_wr)
2747{
2748        return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2749}
2750
2751/**
2752 * ib_create_qp - Creates a QP associated with the specified protection
2753 *   domain.
2754 * @pd: The protection domain associated with the QP.
2755 * @qp_init_attr: A list of initial attributes required to create the
2756 *   QP.  If QP creation succeeds, then the attributes are updated to
2757 *   the actual capabilities of the created QP.
2758 */
2759struct ib_qp *ib_create_qp(struct ib_pd *pd,
2760                           struct ib_qp_init_attr *qp_init_attr);
2761
2762/**
2763 * ib_modify_qp - Modifies the attributes for the specified QP and then
2764 *   transitions the QP to the given state.
2765 * @qp: The QP to modify.
2766 * @qp_attr: On input, specifies the QP attributes to modify.  On output,
2767 *   the current values of selected QP attributes are returned.
2768 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2769 *   are being modified.
2770 */
2771int ib_modify_qp(struct ib_qp *qp,
2772                 struct ib_qp_attr *qp_attr,
2773                 int qp_attr_mask);
2774
2775/**
2776 * ib_query_qp - Returns the attribute list and current values for the
2777 *   specified QP.
2778 * @qp: The QP to query.
2779 * @qp_attr: The attributes of the specified QP.
2780 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2781 * @qp_init_attr: Additional attributes of the selected QP.
2782 *
2783 * The qp_attr_mask may be used to limit the query to gathering only the
2784 * selected attributes.
2785 */
2786int ib_query_qp(struct ib_qp *qp,
2787                struct ib_qp_attr *qp_attr,
2788                int qp_attr_mask,
2789                struct ib_qp_init_attr *qp_init_attr);
2790
2791/**
2792 * ib_destroy_qp - Destroys the specified QP.
2793 * @qp: The QP to destroy.
2794 */
2795int ib_destroy_qp(struct ib_qp *qp);
2796
2797/**
2798 * ib_open_qp - Obtain a reference to an existing sharable QP.
2799 * @xrcd - XRC domain
2800 * @qp_open_attr: Attributes identifying the QP to open.
2801 *
2802 * Returns a reference to a sharable QP.
2803 */
2804struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2805                         struct ib_qp_open_attr *qp_open_attr);
2806
2807/**
2808 * ib_close_qp - Release an external reference to a QP.
2809 * @qp: The QP handle to release
2810 *
2811 * The opened QP handle is released by the caller.  The underlying
2812 * shared QP is not destroyed until all internal references are released.
2813 */
2814int ib_close_qp(struct ib_qp *qp);
2815
2816/**
2817 * ib_post_send - Posts a list of work requests to the send queue of
2818 *   the specified QP.
2819 * @qp: The QP to post the work request on.
2820 * @send_wr: A list of work requests to post on the send queue.
2821 * @bad_send_wr: On an immediate failure, this parameter will reference
2822 *   the work request that failed to be posted on the QP.
2823 *
2824 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2825 * error is returned, the QP state shall not be affected,
2826 * ib_post_send() will return an immediate error after queueing any
2827 * earlier work requests in the list.
2828 */
2829static inline int ib_post_send(struct ib_qp *qp,
2830                               struct ib_send_wr *send_wr,
2831                               struct ib_send_wr **bad_send_wr)
2832{
2833        return qp->device->post_send(qp, send_wr, bad_send_wr);
2834}
2835
2836/**
2837 * ib_post_recv - Posts a list of work requests to the receive queue of
2838 *   the specified QP.
2839 * @qp: The QP to post the work request on.
2840 * @recv_wr: A list of work requests to post on the receive queue.
2841 * @bad_recv_wr: On an immediate failure, this parameter will reference
2842 *   the work request that failed to be posted on the QP.
2843 */
2844static inline int ib_post_recv(struct ib_qp *qp,
2845                               struct ib_recv_wr *recv_wr,
2846                               struct ib_recv_wr **bad_recv_wr)
2847{
2848        return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2849}
2850
2851struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2852                int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2853void ib_free_cq(struct ib_cq *cq);
2854int ib_process_cq_direct(struct ib_cq *cq, int budget);
2855
2856/**
2857 * ib_create_cq - Creates a CQ on the specified device.
2858 * @device: The device on which to create the CQ.
2859 * @comp_handler: A user-specified callback that is invoked when a
2860 *   completion event occurs on the CQ.
2861 * @event_handler: A user-specified callback that is invoked when an
2862 *   asynchronous event not associated with a completion occurs on the CQ.
2863 * @cq_context: Context associated with the CQ returned to the user via
2864 *   the associated completion and event handlers.
2865 * @cq_attr: The attributes the CQ should be created upon.
2866 *
2867 * Users can examine the cq structure to determine the actual CQ size.
2868 */
2869struct ib_cq *ib_create_cq(struct ib_device *device,
2870                           ib_comp_handler comp_handler,
2871                           void (*event_handler)(struct ib_event *, void *),
2872                           void *cq_context,
2873                           const struct ib_cq_init_attr *cq_attr);
2874
2875/**
2876 * ib_resize_cq - Modifies the capacity of the CQ.
2877 * @cq: The CQ to resize.
2878 * @cqe: The minimum size of the CQ.
2879 *
2880 * Users can examine the cq structure to determine the actual CQ size.
2881 */
2882int ib_resize_cq(struct ib_cq *cq, int cqe);
2883
2884/**
2885 * ib_modify_cq - Modifies moderation params of the CQ
2886 * @cq: The CQ to modify.
2887 * @cq_count: number of CQEs that will trigger an event
2888 * @cq_period: max period of time in usec before triggering an event
2889 *
2890 */
2891int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2892
2893/**
2894 * ib_destroy_cq - Destroys the specified CQ.
2895 * @cq: The CQ to destroy.
2896 */
2897int ib_destroy_cq(struct ib_cq *cq);
2898
2899/**
2900 * ib_poll_cq - poll a CQ for completion(s)
2901 * @cq:the CQ being polled
2902 * @num_entries:maximum number of completions to return
2903 * @wc:array of at least @num_entries &struct ib_wc where completions
2904 *   will be returned
2905 *
2906 * Poll a CQ for (possibly multiple) completions.  If the return value
2907 * is < 0, an error occurred.  If the return value is >= 0, it is the
2908 * number of completions returned.  If the return value is
2909 * non-negative and < num_entries, then the CQ was emptied.
2910 */
2911static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2912                             struct ib_wc *wc)
2913{
2914        return cq->device->poll_cq(cq, num_entries, wc);
2915}
2916
2917/**
2918 * ib_peek_cq - Returns the number of unreaped completions currently
2919 *   on the specified CQ.
2920 * @cq: The CQ to peek.
2921 * @wc_cnt: A minimum number of unreaped completions to check for.
2922 *
2923 * If the number of unreaped completions is greater than or equal to wc_cnt,
2924 * this function returns wc_cnt, otherwise, it returns the actual number of
2925 * unreaped completions.
2926 */
2927int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2928
2929/**
2930 * ib_req_notify_cq - Request completion notification on a CQ.
2931 * @cq: The CQ to generate an event for.
2932 * @flags:
2933 *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2934 *   to request an event on the next solicited event or next work
2935 *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2936 *   may also be |ed in to request a hint about missed events, as
2937 *   described below.
2938 *
2939 * Return Value:
2940 *    < 0 means an error occurred while requesting notification
2941 *   == 0 means notification was requested successfully, and if
2942 *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2943 *        were missed and it is safe to wait for another event.  In
2944 *        this case is it guaranteed that any work completions added
2945 *        to the CQ since the last CQ poll will trigger a completion
2946 *        notification event.
2947 *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2948 *        in.  It means that the consumer must poll the CQ again to
2949 *        make sure it is empty to avoid missing an event because of a
2950 *        race between requesting notification and an entry being
2951 *        added to the CQ.  This return value means it is possible
2952 *        (but not guaranteed) that a work completion has been added
2953 *        to the CQ since the last poll without triggering a
2954 *        completion notification event.
2955 */
2956static inline int ib_req_notify_cq(struct ib_cq *cq,
2957                                   enum ib_cq_notify_flags flags)
2958{
2959        return cq->device->req_notify_cq(cq, flags);
2960}
2961
2962/**
2963 * ib_req_ncomp_notif - Request completion notification when there are
2964 *   at least the specified number of unreaped completions on the CQ.
2965 * @cq: The CQ to generate an event for.
2966 * @wc_cnt: The number of unreaped completions that should be on the
2967 *   CQ before an event is generated.
2968 */
2969static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2970{
2971        return cq->device->req_ncomp_notif ?
2972                cq->device->req_ncomp_notif(cq, wc_cnt) :
2973                -ENOSYS;
2974}
2975
2976/**
2977 * ib_dma_mapping_error - check a DMA addr for error
2978 * @dev: The device for which the dma_addr was created
2979 * @dma_addr: The DMA address to check
2980 */
2981static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2982{
2983        if (dev->dma_ops)
2984                return dev->dma_ops->mapping_error(dev, dma_addr);
2985        return dma_mapping_error(dev->dma_device, dma_addr);
2986}
2987
2988/**
2989 * ib_dma_map_single - Map a kernel virtual address to DMA address
2990 * @dev: The device for which the dma_addr is to be created
2991 * @cpu_addr: The kernel virtual address
2992 * @size: The size of the region in bytes
2993 * @direction: The direction of the DMA
2994 */
2995static inline u64 ib_dma_map_single(struct ib_device *dev,
2996                                    void *cpu_addr, size_t size,
2997                                    enum dma_data_direction direction)
2998{
2999        if (dev->dma_ops)
3000                return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
3001        return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3002}
3003
3004/**
3005 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3006 * @dev: The device for which the DMA address was created
3007 * @addr: The DMA address
3008 * @size: The size of the region in bytes
3009 * @direction: The direction of the DMA
3010 */
3011static inline void ib_dma_unmap_single(struct ib_device *dev,
3012                                       u64 addr, size_t size,
3013                                       enum dma_data_direction direction)
3014{
3015        if (dev->dma_ops)
3016                dev->dma_ops->unmap_single(dev, addr, size, direction);
3017        else
3018                dma_unmap_single(dev->dma_device, addr, size, direction);
3019}
3020
3021static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
3022                                          void *cpu_addr, size_t size,
3023                                          enum dma_data_direction direction,
3024                                          unsigned long dma_attrs)
3025{
3026        return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
3027                                    direction, dma_attrs);
3028}
3029
3030static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
3031                                             u64 addr, size_t size,
3032                                             enum dma_data_direction direction,
3033                                             unsigned long dma_attrs)
3034{
3035        return dma_unmap_single_attrs(dev->dma_device, addr, size,
3036                                      direction, dma_attrs);
3037}
3038
3039/**
3040 * ib_dma_map_page - Map a physical page to DMA address
3041 * @dev: The device for which the dma_addr is to be created
3042 * @page: The page to be mapped
3043 * @offset: The offset within the page
3044 * @size: The size of the region in bytes
3045 * @direction: The direction of the DMA
3046 */
3047static inline u64 ib_dma_map_page(struct ib_device *dev,
3048                                  struct page *page,
3049                                  unsigned long offset,
3050                                  size_t size,
3051                                         enum dma_data_direction direction)
3052{
3053        if (dev->dma_ops)
3054                return dev->dma_ops->map_page(dev, page, offset, size, direction);
3055        return dma_map_page(dev->dma_device, page, offset, size, direction);
3056}
3057
3058/**
3059 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3060 * @dev: The device for which the DMA address was created
3061 * @addr: The DMA address
3062 * @size: The size of the region in bytes
3063 * @direction: The direction of the DMA
3064 */
3065static inline void ib_dma_unmap_page(struct ib_device *dev,
3066                                     u64 addr, size_t size,
3067                                     enum dma_data_direction direction)
3068{
3069        if (dev->dma_ops)
3070                dev->dma_ops->unmap_page(dev, addr, size, direction);
3071        else
3072                dma_unmap_page(dev->dma_device, addr, size, direction);
3073}
3074
3075/**
3076 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3077 * @dev: The device for which the DMA addresses are to be created
3078 * @sg: The array of scatter/gather entries
3079 * @nents: The number of scatter/gather entries
3080 * @direction: The direction of the DMA
3081 */
3082static inline int ib_dma_map_sg(struct ib_device *dev,
3083                                struct scatterlist *sg, int nents,
3084                                enum dma_data_direction direction)
3085{
3086        if (dev->dma_ops)
3087                return dev->dma_ops->map_sg(dev, sg, nents, direction);
3088        return dma_map_sg(dev->dma_device, sg, nents, direction);
3089}
3090
3091/**
3092 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3093 * @dev: The device for which the DMA addresses were created
3094 * @sg: The array of scatter/gather entries
3095 * @nents: The number of scatter/gather entries
3096 * @direction: The direction of the DMA
3097 */
3098static inline void ib_dma_unmap_sg(struct ib_device *dev,
3099                                   struct scatterlist *sg, int nents,
3100                                   enum dma_data_direction direction)
3101{
3102        if (dev->dma_ops)
3103                dev->dma_ops->unmap_sg(dev, sg, nents, direction);
3104        else
3105                dma_unmap_sg(dev->dma_device, sg, nents, direction);
3106}
3107
3108static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3109                                      struct scatterlist *sg, int nents,
3110                                      enum dma_data_direction direction,
3111                                      unsigned long dma_attrs)
3112{
3113        if (dev->dma_ops)
3114                return dev->dma_ops->map_sg_attrs(dev, sg, nents, direction,
3115                                                  dma_attrs);
3116        else
3117                return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3118                                        dma_attrs);
3119}
3120
3121static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3122                                         struct scatterlist *sg, int nents,
3123                                         enum dma_data_direction direction,
3124                                         unsigned long dma_attrs)
3125{
3126        if (dev->dma_ops)
3127                return dev->dma_ops->unmap_sg_attrs(dev, sg, nents, direction,
3128                                                  dma_attrs);
3129        else
3130                dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
3131                                   dma_attrs);
3132}
3133/**
3134 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3135 * @dev: The device for which the DMA addresses were created
3136 * @sg: The scatter/gather entry
3137 *
3138 * Note: this function is obsolete. To do: change all occurrences of
3139 * ib_sg_dma_address() into sg_dma_address().
3140 */
3141static inline u64 ib_sg_dma_address(struct ib_device *dev,
3142                                    struct scatterlist *sg)
3143{
3144        return sg_dma_address(sg);
3145}
3146
3147/**
3148 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3149 * @dev: The device for which the DMA addresses were created
3150 * @sg: The scatter/gather entry
3151 *
3152 * Note: this function is obsolete. To do: change all occurrences of
3153 * ib_sg_dma_len() into sg_dma_len().
3154 */
3155static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3156                                         struct scatterlist *sg)
3157{
3158        return sg_dma_len(sg);
3159}
3160
3161/**
3162 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3163 * @dev: The device for which the DMA address was created
3164 * @addr: The DMA address
3165 * @size: The size of the region in bytes
3166 * @dir: The direction of the DMA
3167 */
3168static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3169                                              u64 addr,
3170                                              size_t size,
3171                                              enum dma_data_direction dir)
3172{
3173        if (dev->dma_ops)
3174                dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
3175        else
3176                dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3177}
3178
3179/**
3180 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3181 * @dev: The device for which the DMA address was created
3182 * @addr: The DMA address
3183 * @size: The size of the region in bytes
3184 * @dir: The direction of the DMA
3185 */
3186static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3187                                                 u64 addr,
3188                                                 size_t size,
3189                                                 enum dma_data_direction dir)
3190{
3191        if (dev->dma_ops)
3192                dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
3193        else
3194                dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3195}
3196
3197/**
3198 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3199 * @dev: The device for which the DMA address is requested
3200 * @size: The size of the region to allocate in bytes
3201 * @dma_handle: A pointer for returning the DMA address of the region
3202 * @flag: memory allocator flags
3203 */
3204static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3205                                           size_t size,
3206                                           u64 *dma_handle,
3207                                           gfp_t flag)
3208{
3209        if (dev->dma_ops)
3210                return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
3211        else {
3212                dma_addr_t handle;
3213                void *ret;
3214
3215                ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
3216                *dma_handle = handle;
3217                return ret;
3218        }
3219}
3220
3221/**
3222 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3223 * @dev: The device for which the DMA addresses were allocated
3224 * @size: The size of the region
3225 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3226 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3227 */
3228static inline void ib_dma_free_coherent(struct ib_device *dev,
3229                                        size_t size, void *cpu_addr,
3230                                        u64 dma_handle)
3231{
3232        if (dev->dma_ops)
3233                dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
3234        else
3235                dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3236}
3237
3238/**
3239 * ib_dereg_mr - Deregisters a memory region and removes it from the
3240 *   HCA translation table.
3241 * @mr: The memory region to deregister.
3242 *
3243 * This function can fail, if the memory region has memory windows bound to it.
3244 */
3245int ib_dereg_mr(struct ib_mr *mr);
3246
3247struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3248                          enum ib_mr_type mr_type,
3249                          u32 max_num_sg);
3250
3251/**
3252 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3253 *   R_Key and L_Key.
3254 * @mr - struct ib_mr pointer to be updated.
3255 * @newkey - new key to be used.
3256 */
3257static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3258{
3259        mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3260        mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3261}
3262
3263/**
3264 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3265 * for calculating a new rkey for type 2 memory windows.
3266 * @rkey - the rkey to increment.
3267 */
3268static inline u32 ib_inc_rkey(u32 rkey)
3269{
3270        const u32 mask = 0x000000ff;
3271        return ((rkey + 1) & mask) | (rkey & ~mask);
3272}
3273
3274/**
3275 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3276 * @pd: The protection domain associated with the unmapped region.
3277 * @mr_access_flags: Specifies the memory access rights.
3278 * @fmr_attr: Attributes of the unmapped region.
3279 *
3280 * A fast memory region must be mapped before it can be used as part of
3281 * a work request.
3282 */
3283struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3284                            int mr_access_flags,
3285                            struct ib_fmr_attr *fmr_attr);
3286
3287/**
3288 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3289 * @fmr: The fast memory region to associate with the pages.
3290 * @page_list: An array of physical pages to map to the fast memory region.
3291 * @list_len: The number of pages in page_list.
3292 * @iova: The I/O virtual address to use with the mapped region.
3293 */
3294static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3295                                  u64 *page_list, int list_len,
3296                                  u64 iova)
3297{
3298        return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3299}
3300
3301/**
3302 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3303 * @fmr_list: A linked list of fast memory regions to unmap.
3304 */
3305int ib_unmap_fmr(struct list_head *fmr_list);
3306
3307/**
3308 * ib_dealloc_fmr - Deallocates a fast memory region.
3309 * @fmr: The fast memory region to deallocate.
3310 */
3311int ib_dealloc_fmr(struct ib_fmr *fmr);
3312
3313/**
3314 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3315 * @qp: QP to attach to the multicast group.  The QP must be type
3316 *   IB_QPT_UD.
3317 * @gid: Multicast group GID.
3318 * @lid: Multicast group LID in host byte order.
3319 *
3320 * In order to send and receive multicast packets, subnet
3321 * administration must have created the multicast group and configured
3322 * the fabric appropriately.  The port associated with the specified
3323 * QP must also be a member of the multicast group.
3324 */
3325int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3326
3327/**
3328 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3329 * @qp: QP to detach from the multicast group.
3330 * @gid: Multicast group GID.
3331 * @lid: Multicast group LID in host byte order.
3332 */
3333int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3334
3335/**
3336 * ib_alloc_xrcd - Allocates an XRC domain.
3337 * @device: The device on which to allocate the XRC domain.
3338 */
3339struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3340
3341/**
3342 * ib_dealloc_xrcd - Deallocates an XRC domain.
3343 * @xrcd: The XRC domain to deallocate.
3344 */
3345int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3346
3347struct ib_flow *ib_create_flow(struct ib_qp *qp,
3348                               struct ib_flow_attr *flow_attr, int domain);
3349int ib_destroy_flow(struct ib_flow *flow_id);
3350
3351static inline int ib_check_mr_access(int flags)
3352{
3353        /*
3354         * Local write permission is required if remote write or
3355         * remote atomic permission is also requested.
3356         */
3357        if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3358            !(flags & IB_ACCESS_LOCAL_WRITE))
3359                return -EINVAL;
3360
3361        return 0;
3362}
3363
3364/**
3365 * ib_check_mr_status: lightweight check of MR status.
3366 *     This routine may provide status checks on a selected
3367 *     ib_mr. first use is for signature status check.
3368 *
3369 * @mr: A memory region.
3370 * @check_mask: Bitmask of which checks to perform from
3371 *     ib_mr_status_check enumeration.
3372 * @mr_status: The container of relevant status checks.
3373 *     failed checks will be indicated in the status bitmask
3374 *     and the relevant info shall be in the error item.
3375 */
3376int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3377                       struct ib_mr_status *mr_status);
3378
3379struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3380                                            u16 pkey, const union ib_gid *gid,
3381                                            const struct sockaddr *addr);
3382struct ib_wq *ib_create_wq(struct ib_pd *pd,
3383                           struct ib_wq_init_attr *init_attr);
3384int ib_destroy_wq(struct ib_wq *wq);
3385int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3386                 u32 wq_attr_mask);
3387struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3388                                                 struct ib_rwq_ind_table_init_attr*
3389                                                 wq_ind_table_init_attr);
3390int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3391
3392int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3393                 unsigned int *sg_offset, unsigned int page_size);
3394
3395static inline int
3396ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3397                  unsigned int *sg_offset, unsigned int page_size)
3398{
3399        int n;
3400
3401        n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3402        mr->iova = 0;
3403
3404        return n;
3405}
3406
3407int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3408                unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3409
3410void ib_drain_rq(struct ib_qp *qp);
3411void ib_drain_sq(struct ib_qp *qp);
3412void ib_drain_qp(struct ib_qp *qp);
3413
3414int ib_resolve_eth_dmac(struct ib_device *device,
3415                        struct ib_ah_attr *ah_attr);
3416#endif /* IB_VERBS_H */
3417