linux/ipc/sem.c
<<
>>
Prefs
   1/*
   2 * linux/ipc/sem.c
   3 * Copyright (C) 1992 Krishna Balasubramanian
   4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
   5 *
   6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
   7 *
   8 * SMP-threaded, sysctl's added
   9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
  10 * Enforced range limit on SEM_UNDO
  11 * (c) 2001 Red Hat Inc
  12 * Lockless wakeup
  13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
  14 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
  15 * Further wakeup optimizations, documentation
  16 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
  17 *
  18 * support for audit of ipc object properties and permission changes
  19 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
  20 *
  21 * namespaces support
  22 * OpenVZ, SWsoft Inc.
  23 * Pavel Emelianov <xemul@openvz.org>
  24 *
  25 * Implementation notes: (May 2010)
  26 * This file implements System V semaphores.
  27 *
  28 * User space visible behavior:
  29 * - FIFO ordering for semop() operations (just FIFO, not starvation
  30 *   protection)
  31 * - multiple semaphore operations that alter the same semaphore in
  32 *   one semop() are handled.
  33 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
  34 *   SETALL calls.
  35 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
  36 * - undo adjustments at process exit are limited to 0..SEMVMX.
  37 * - namespace are supported.
  38 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
  39 *   to /proc/sys/kernel/sem.
  40 * - statistics about the usage are reported in /proc/sysvipc/sem.
  41 *
  42 * Internals:
  43 * - scalability:
  44 *   - all global variables are read-mostly.
  45 *   - semop() calls and semctl(RMID) are synchronized by RCU.
  46 *   - most operations do write operations (actually: spin_lock calls) to
  47 *     the per-semaphore array structure.
  48 *   Thus: Perfect SMP scaling between independent semaphore arrays.
  49 *         If multiple semaphores in one array are used, then cache line
  50 *         trashing on the semaphore array spinlock will limit the scaling.
  51 * - semncnt and semzcnt are calculated on demand in count_semcnt()
  52 * - the task that performs a successful semop() scans the list of all
  53 *   sleeping tasks and completes any pending operations that can be fulfilled.
  54 *   Semaphores are actively given to waiting tasks (necessary for FIFO).
  55 *   (see update_queue())
  56 * - To improve the scalability, the actual wake-up calls are performed after
  57 *   dropping all locks. (see wake_up_sem_queue_prepare())
  58 * - All work is done by the waker, the woken up task does not have to do
  59 *   anything - not even acquiring a lock or dropping a refcount.
  60 * - A woken up task may not even touch the semaphore array anymore, it may
  61 *   have been destroyed already by a semctl(RMID).
  62 * - UNDO values are stored in an array (one per process and per
  63 *   semaphore array, lazily allocated). For backwards compatibility, multiple
  64 *   modes for the UNDO variables are supported (per process, per thread)
  65 *   (see copy_semundo, CLONE_SYSVSEM)
  66 * - There are two lists of the pending operations: a per-array list
  67 *   and per-semaphore list (stored in the array). This allows to achieve FIFO
  68 *   ordering without always scanning all pending operations.
  69 *   The worst-case behavior is nevertheless O(N^2) for N wakeups.
  70 */
  71
  72#include <linux/slab.h>
  73#include <linux/spinlock.h>
  74#include <linux/init.h>
  75#include <linux/proc_fs.h>
  76#include <linux/time.h>
  77#include <linux/security.h>
  78#include <linux/syscalls.h>
  79#include <linux/audit.h>
  80#include <linux/capability.h>
  81#include <linux/seq_file.h>
  82#include <linux/rwsem.h>
  83#include <linux/nsproxy.h>
  84#include <linux/ipc_namespace.h>
  85
  86#include <linux/uaccess.h>
  87#include "util.h"
  88
  89/* One semaphore structure for each semaphore in the system. */
  90struct sem {
  91        int     semval;         /* current value */
  92        /*
  93         * PID of the process that last modified the semaphore. For
  94         * Linux, specifically these are:
  95         *  - semop
  96         *  - semctl, via SETVAL and SETALL.
  97         *  - at task exit when performing undo adjustments (see exit_sem).
  98         */
  99        int     sempid;
 100        spinlock_t      lock;   /* spinlock for fine-grained semtimedop */
 101        struct list_head pending_alter; /* pending single-sop operations */
 102                                        /* that alter the semaphore */
 103        struct list_head pending_const; /* pending single-sop operations */
 104                                        /* that do not alter the semaphore*/
 105        time_t  sem_otime;      /* candidate for sem_otime */
 106} ____cacheline_aligned_in_smp;
 107
 108/* One queue for each sleeping process in the system. */
 109struct sem_queue {
 110        struct list_head        list;    /* queue of pending operations */
 111        struct task_struct      *sleeper; /* this process */
 112        struct sem_undo         *undo;   /* undo structure */
 113        int                     pid;     /* process id of requesting process */
 114        int                     status;  /* completion status of operation */
 115        struct sembuf           *sops;   /* array of pending operations */
 116        struct sembuf           *blocking; /* the operation that blocked */
 117        int                     nsops;   /* number of operations */
 118        bool                    alter;   /* does *sops alter the array? */
 119        bool                    dupsop;  /* sops on more than one sem_num */
 120};
 121
 122/* Each task has a list of undo requests. They are executed automatically
 123 * when the process exits.
 124 */
 125struct sem_undo {
 126        struct list_head        list_proc;      /* per-process list: *
 127                                                 * all undos from one process
 128                                                 * rcu protected */
 129        struct rcu_head         rcu;            /* rcu struct for sem_undo */
 130        struct sem_undo_list    *ulp;           /* back ptr to sem_undo_list */
 131        struct list_head        list_id;        /* per semaphore array list:
 132                                                 * all undos for one array */
 133        int                     semid;          /* semaphore set identifier */
 134        short                   *semadj;        /* array of adjustments */
 135                                                /* one per semaphore */
 136};
 137
 138/* sem_undo_list controls shared access to the list of sem_undo structures
 139 * that may be shared among all a CLONE_SYSVSEM task group.
 140 */
 141struct sem_undo_list {
 142        atomic_t                refcnt;
 143        spinlock_t              lock;
 144        struct list_head        list_proc;
 145};
 146
 147
 148#define sem_ids(ns)     ((ns)->ids[IPC_SEM_IDS])
 149
 150#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
 151
 152static int newary(struct ipc_namespace *, struct ipc_params *);
 153static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
 154#ifdef CONFIG_PROC_FS
 155static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
 156#endif
 157
 158#define SEMMSL_FAST     256 /* 512 bytes on stack */
 159#define SEMOPM_FAST     64  /* ~ 372 bytes on stack */
 160
 161/*
 162 * Locking:
 163 * a) global sem_lock() for read/write
 164 *      sem_undo.id_next,
 165 *      sem_array.complex_count,
 166 *      sem_array.complex_mode
 167 *      sem_array.pending{_alter,_const},
 168 *      sem_array.sem_undo
 169 *
 170 * b) global or semaphore sem_lock() for read/write:
 171 *      sem_array.sem_base[i].pending_{const,alter}:
 172 *      sem_array.complex_mode (for read)
 173 *
 174 * c) special:
 175 *      sem_undo_list.list_proc:
 176 *      * undo_list->lock for write
 177 *      * rcu for read
 178 */
 179
 180#define sc_semmsl       sem_ctls[0]
 181#define sc_semmns       sem_ctls[1]
 182#define sc_semopm       sem_ctls[2]
 183#define sc_semmni       sem_ctls[3]
 184
 185void sem_init_ns(struct ipc_namespace *ns)
 186{
 187        ns->sc_semmsl = SEMMSL;
 188        ns->sc_semmns = SEMMNS;
 189        ns->sc_semopm = SEMOPM;
 190        ns->sc_semmni = SEMMNI;
 191        ns->used_sems = 0;
 192        ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
 193}
 194
 195#ifdef CONFIG_IPC_NS
 196void sem_exit_ns(struct ipc_namespace *ns)
 197{
 198        free_ipcs(ns, &sem_ids(ns), freeary);
 199        idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
 200}
 201#endif
 202
 203void __init sem_init(void)
 204{
 205        sem_init_ns(&init_ipc_ns);
 206        ipc_init_proc_interface("sysvipc/sem",
 207                                "       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n",
 208                                IPC_SEM_IDS, sysvipc_sem_proc_show);
 209}
 210
 211/**
 212 * unmerge_queues - unmerge queues, if possible.
 213 * @sma: semaphore array
 214 *
 215 * The function unmerges the wait queues if complex_count is 0.
 216 * It must be called prior to dropping the global semaphore array lock.
 217 */
 218static void unmerge_queues(struct sem_array *sma)
 219{
 220        struct sem_queue *q, *tq;
 221
 222        /* complex operations still around? */
 223        if (sma->complex_count)
 224                return;
 225        /*
 226         * We will switch back to simple mode.
 227         * Move all pending operation back into the per-semaphore
 228         * queues.
 229         */
 230        list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
 231                struct sem *curr;
 232                curr = &sma->sem_base[q->sops[0].sem_num];
 233
 234                list_add_tail(&q->list, &curr->pending_alter);
 235        }
 236        INIT_LIST_HEAD(&sma->pending_alter);
 237}
 238
 239/**
 240 * merge_queues - merge single semop queues into global queue
 241 * @sma: semaphore array
 242 *
 243 * This function merges all per-semaphore queues into the global queue.
 244 * It is necessary to achieve FIFO ordering for the pending single-sop
 245 * operations when a multi-semop operation must sleep.
 246 * Only the alter operations must be moved, the const operations can stay.
 247 */
 248static void merge_queues(struct sem_array *sma)
 249{
 250        int i;
 251        for (i = 0; i < sma->sem_nsems; i++) {
 252                struct sem *sem = sma->sem_base + i;
 253
 254                list_splice_init(&sem->pending_alter, &sma->pending_alter);
 255        }
 256}
 257
 258static void sem_rcu_free(struct rcu_head *head)
 259{
 260        struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
 261        struct sem_array *sma = ipc_rcu_to_struct(p);
 262
 263        security_sem_free(sma);
 264        ipc_rcu_free(head);
 265}
 266
 267/*
 268 * Enter the mode suitable for non-simple operations:
 269 * Caller must own sem_perm.lock.
 270 */
 271static void complexmode_enter(struct sem_array *sma)
 272{
 273        int i;
 274        struct sem *sem;
 275
 276        if (sma->complex_mode)  {
 277                /* We are already in complex_mode. Nothing to do */
 278                return;
 279        }
 280
 281        /* We need a full barrier after seting complex_mode:
 282         * The write to complex_mode must be visible
 283         * before we read the first sem->lock spinlock state.
 284         */
 285        smp_store_mb(sma->complex_mode, true);
 286
 287        for (i = 0; i < sma->sem_nsems; i++) {
 288                sem = sma->sem_base + i;
 289                spin_unlock_wait(&sem->lock);
 290        }
 291        /*
 292         * spin_unlock_wait() is not a memory barriers, it is only a
 293         * control barrier. The code must pair with spin_unlock(&sem->lock),
 294         * thus just the control barrier is insufficient.
 295         *
 296         * smp_rmb() is sufficient, as writes cannot pass the control barrier.
 297         */
 298        smp_rmb();
 299}
 300
 301/*
 302 * Try to leave the mode that disallows simple operations:
 303 * Caller must own sem_perm.lock.
 304 */
 305static void complexmode_tryleave(struct sem_array *sma)
 306{
 307        if (sma->complex_count)  {
 308                /* Complex ops are sleeping.
 309                 * We must stay in complex mode
 310                 */
 311                return;
 312        }
 313        /*
 314         * Immediately after setting complex_mode to false,
 315         * a simple op can start. Thus: all memory writes
 316         * performed by the current operation must be visible
 317         * before we set complex_mode to false.
 318         */
 319        smp_store_release(&sma->complex_mode, false);
 320}
 321
 322#define SEM_GLOBAL_LOCK (-1)
 323/*
 324 * If the request contains only one semaphore operation, and there are
 325 * no complex transactions pending, lock only the semaphore involved.
 326 * Otherwise, lock the entire semaphore array, since we either have
 327 * multiple semaphores in our own semops, or we need to look at
 328 * semaphores from other pending complex operations.
 329 */
 330static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
 331                              int nsops)
 332{
 333        struct sem *sem;
 334
 335        if (nsops != 1) {
 336                /* Complex operation - acquire a full lock */
 337                ipc_lock_object(&sma->sem_perm);
 338
 339                /* Prevent parallel simple ops */
 340                complexmode_enter(sma);
 341                return SEM_GLOBAL_LOCK;
 342        }
 343
 344        /*
 345         * Only one semaphore affected - try to optimize locking.
 346         * Optimized locking is possible if no complex operation
 347         * is either enqueued or processed right now.
 348         *
 349         * Both facts are tracked by complex_mode.
 350         */
 351        sem = sma->sem_base + sops->sem_num;
 352
 353        /*
 354         * Initial check for complex_mode. Just an optimization,
 355         * no locking, no memory barrier.
 356         */
 357        if (!sma->complex_mode) {
 358                /*
 359                 * It appears that no complex operation is around.
 360                 * Acquire the per-semaphore lock.
 361                 */
 362                spin_lock(&sem->lock);
 363
 364                /*
 365                 * See 51d7d5205d33
 366                 * ("powerpc: Add smp_mb() to arch_spin_is_locked()"):
 367                 * A full barrier is required: the write of sem->lock
 368                 * must be visible before the read is executed
 369                 */
 370                smp_mb();
 371
 372                if (!smp_load_acquire(&sma->complex_mode)) {
 373                        /* fast path successful! */
 374                        return sops->sem_num;
 375                }
 376                spin_unlock(&sem->lock);
 377        }
 378
 379        /* slow path: acquire the full lock */
 380        ipc_lock_object(&sma->sem_perm);
 381
 382        if (sma->complex_count == 0) {
 383                /* False alarm:
 384                 * There is no complex operation, thus we can switch
 385                 * back to the fast path.
 386                 */
 387                spin_lock(&sem->lock);
 388                ipc_unlock_object(&sma->sem_perm);
 389                return sops->sem_num;
 390        } else {
 391                /* Not a false alarm, thus complete the sequence for a
 392                 * full lock.
 393                 */
 394                complexmode_enter(sma);
 395                return SEM_GLOBAL_LOCK;
 396        }
 397}
 398
 399static inline void sem_unlock(struct sem_array *sma, int locknum)
 400{
 401        if (locknum == SEM_GLOBAL_LOCK) {
 402                unmerge_queues(sma);
 403                complexmode_tryleave(sma);
 404                ipc_unlock_object(&sma->sem_perm);
 405        } else {
 406                struct sem *sem = sma->sem_base + locknum;
 407                spin_unlock(&sem->lock);
 408        }
 409}
 410
 411/*
 412 * sem_lock_(check_) routines are called in the paths where the rwsem
 413 * is not held.
 414 *
 415 * The caller holds the RCU read lock.
 416 */
 417static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
 418{
 419        struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
 420
 421        if (IS_ERR(ipcp))
 422                return ERR_CAST(ipcp);
 423
 424        return container_of(ipcp, struct sem_array, sem_perm);
 425}
 426
 427static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
 428                                                        int id)
 429{
 430        struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
 431
 432        if (IS_ERR(ipcp))
 433                return ERR_CAST(ipcp);
 434
 435        return container_of(ipcp, struct sem_array, sem_perm);
 436}
 437
 438static inline void sem_lock_and_putref(struct sem_array *sma)
 439{
 440        sem_lock(sma, NULL, -1);
 441        ipc_rcu_putref(sma, sem_rcu_free);
 442}
 443
 444static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
 445{
 446        ipc_rmid(&sem_ids(ns), &s->sem_perm);
 447}
 448
 449/**
 450 * newary - Create a new semaphore set
 451 * @ns: namespace
 452 * @params: ptr to the structure that contains key, semflg and nsems
 453 *
 454 * Called with sem_ids.rwsem held (as a writer)
 455 */
 456static int newary(struct ipc_namespace *ns, struct ipc_params *params)
 457{
 458        int id;
 459        int retval;
 460        struct sem_array *sma;
 461        int size;
 462        key_t key = params->key;
 463        int nsems = params->u.nsems;
 464        int semflg = params->flg;
 465        int i;
 466
 467        if (!nsems)
 468                return -EINVAL;
 469        if (ns->used_sems + nsems > ns->sc_semmns)
 470                return -ENOSPC;
 471
 472        size = sizeof(*sma) + nsems * sizeof(struct sem);
 473        sma = ipc_rcu_alloc(size);
 474        if (!sma)
 475                return -ENOMEM;
 476
 477        memset(sma, 0, size);
 478
 479        sma->sem_perm.mode = (semflg & S_IRWXUGO);
 480        sma->sem_perm.key = key;
 481
 482        sma->sem_perm.security = NULL;
 483        retval = security_sem_alloc(sma);
 484        if (retval) {
 485                ipc_rcu_putref(sma, ipc_rcu_free);
 486                return retval;
 487        }
 488
 489        sma->sem_base = (struct sem *) &sma[1];
 490
 491        for (i = 0; i < nsems; i++) {
 492                INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
 493                INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
 494                spin_lock_init(&sma->sem_base[i].lock);
 495        }
 496
 497        sma->complex_count = 0;
 498        sma->complex_mode = true; /* dropped by sem_unlock below */
 499        INIT_LIST_HEAD(&sma->pending_alter);
 500        INIT_LIST_HEAD(&sma->pending_const);
 501        INIT_LIST_HEAD(&sma->list_id);
 502        sma->sem_nsems = nsems;
 503        sma->sem_ctime = get_seconds();
 504
 505        id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
 506        if (id < 0) {
 507                ipc_rcu_putref(sma, sem_rcu_free);
 508                return id;
 509        }
 510        ns->used_sems += nsems;
 511
 512        sem_unlock(sma, -1);
 513        rcu_read_unlock();
 514
 515        return sma->sem_perm.id;
 516}
 517
 518
 519/*
 520 * Called with sem_ids.rwsem and ipcp locked.
 521 */
 522static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
 523{
 524        struct sem_array *sma;
 525
 526        sma = container_of(ipcp, struct sem_array, sem_perm);
 527        return security_sem_associate(sma, semflg);
 528}
 529
 530/*
 531 * Called with sem_ids.rwsem and ipcp locked.
 532 */
 533static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
 534                                struct ipc_params *params)
 535{
 536        struct sem_array *sma;
 537
 538        sma = container_of(ipcp, struct sem_array, sem_perm);
 539        if (params->u.nsems > sma->sem_nsems)
 540                return -EINVAL;
 541
 542        return 0;
 543}
 544
 545SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
 546{
 547        struct ipc_namespace *ns;
 548        static const struct ipc_ops sem_ops = {
 549                .getnew = newary,
 550                .associate = sem_security,
 551                .more_checks = sem_more_checks,
 552        };
 553        struct ipc_params sem_params;
 554
 555        ns = current->nsproxy->ipc_ns;
 556
 557        if (nsems < 0 || nsems > ns->sc_semmsl)
 558                return -EINVAL;
 559
 560        sem_params.key = key;
 561        sem_params.flg = semflg;
 562        sem_params.u.nsems = nsems;
 563
 564        return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
 565}
 566
 567/**
 568 * perform_atomic_semop[_slow] - Attempt to perform semaphore
 569 *                               operations on a given array.
 570 * @sma: semaphore array
 571 * @q: struct sem_queue that describes the operation
 572 *
 573 * Caller blocking are as follows, based the value
 574 * indicated by the semaphore operation (sem_op):
 575 *
 576 *  (1) >0 never blocks.
 577 *  (2)  0 (wait-for-zero operation): semval is non-zero.
 578 *  (3) <0 attempting to decrement semval to a value smaller than zero.
 579 *
 580 * Returns 0 if the operation was possible.
 581 * Returns 1 if the operation is impossible, the caller must sleep.
 582 * Returns <0 for error codes.
 583 */
 584static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
 585{
 586        int result, sem_op, nsops, pid;
 587        struct sembuf *sop;
 588        struct sem *curr;
 589        struct sembuf *sops;
 590        struct sem_undo *un;
 591
 592        sops = q->sops;
 593        nsops = q->nsops;
 594        un = q->undo;
 595
 596        for (sop = sops; sop < sops + nsops; sop++) {
 597                curr = sma->sem_base + sop->sem_num;
 598                sem_op = sop->sem_op;
 599                result = curr->semval;
 600
 601                if (!sem_op && result)
 602                        goto would_block;
 603
 604                result += sem_op;
 605                if (result < 0)
 606                        goto would_block;
 607                if (result > SEMVMX)
 608                        goto out_of_range;
 609
 610                if (sop->sem_flg & SEM_UNDO) {
 611                        int undo = un->semadj[sop->sem_num] - sem_op;
 612                        /* Exceeding the undo range is an error. */
 613                        if (undo < (-SEMAEM - 1) || undo > SEMAEM)
 614                                goto out_of_range;
 615                        un->semadj[sop->sem_num] = undo;
 616                }
 617
 618                curr->semval = result;
 619        }
 620
 621        sop--;
 622        pid = q->pid;
 623        while (sop >= sops) {
 624                sma->sem_base[sop->sem_num].sempid = pid;
 625                sop--;
 626        }
 627
 628        return 0;
 629
 630out_of_range:
 631        result = -ERANGE;
 632        goto undo;
 633
 634would_block:
 635        q->blocking = sop;
 636
 637        if (sop->sem_flg & IPC_NOWAIT)
 638                result = -EAGAIN;
 639        else
 640                result = 1;
 641
 642undo:
 643        sop--;
 644        while (sop >= sops) {
 645                sem_op = sop->sem_op;
 646                sma->sem_base[sop->sem_num].semval -= sem_op;
 647                if (sop->sem_flg & SEM_UNDO)
 648                        un->semadj[sop->sem_num] += sem_op;
 649                sop--;
 650        }
 651
 652        return result;
 653}
 654
 655static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
 656{
 657        int result, sem_op, nsops;
 658        struct sembuf *sop;
 659        struct sem *curr;
 660        struct sembuf *sops;
 661        struct sem_undo *un;
 662
 663        sops = q->sops;
 664        nsops = q->nsops;
 665        un = q->undo;
 666
 667        if (unlikely(q->dupsop))
 668                return perform_atomic_semop_slow(sma, q);
 669
 670        /*
 671         * We scan the semaphore set twice, first to ensure that the entire
 672         * operation can succeed, therefore avoiding any pointless writes
 673         * to shared memory and having to undo such changes in order to block
 674         * until the operations can go through.
 675         */
 676        for (sop = sops; sop < sops + nsops; sop++) {
 677                curr = sma->sem_base + sop->sem_num;
 678                sem_op = sop->sem_op;
 679                result = curr->semval;
 680
 681                if (!sem_op && result)
 682                        goto would_block; /* wait-for-zero */
 683
 684                result += sem_op;
 685                if (result < 0)
 686                        goto would_block;
 687
 688                if (result > SEMVMX)
 689                        return -ERANGE;
 690
 691                if (sop->sem_flg & SEM_UNDO) {
 692                        int undo = un->semadj[sop->sem_num] - sem_op;
 693
 694                        /* Exceeding the undo range is an error. */
 695                        if (undo < (-SEMAEM - 1) || undo > SEMAEM)
 696                                return -ERANGE;
 697                }
 698        }
 699
 700        for (sop = sops; sop < sops + nsops; sop++) {
 701                curr = sma->sem_base + sop->sem_num;
 702                sem_op = sop->sem_op;
 703                result = curr->semval;
 704
 705                if (sop->sem_flg & SEM_UNDO) {
 706                        int undo = un->semadj[sop->sem_num] - sem_op;
 707
 708                        un->semadj[sop->sem_num] = undo;
 709                }
 710                curr->semval += sem_op;
 711                curr->sempid = q->pid;
 712        }
 713
 714        return 0;
 715
 716would_block:
 717        q->blocking = sop;
 718        return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
 719}
 720
 721static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
 722                                             struct wake_q_head *wake_q)
 723{
 724        wake_q_add(wake_q, q->sleeper);
 725        /*
 726         * Rely on the above implicit barrier, such that we can
 727         * ensure that we hold reference to the task before setting
 728         * q->status. Otherwise we could race with do_exit if the
 729         * task is awoken by an external event before calling
 730         * wake_up_process().
 731         */
 732        WRITE_ONCE(q->status, error);
 733}
 734
 735static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
 736{
 737        list_del(&q->list);
 738        if (q->nsops > 1)
 739                sma->complex_count--;
 740}
 741
 742/** check_restart(sma, q)
 743 * @sma: semaphore array
 744 * @q: the operation that just completed
 745 *
 746 * update_queue is O(N^2) when it restarts scanning the whole queue of
 747 * waiting operations. Therefore this function checks if the restart is
 748 * really necessary. It is called after a previously waiting operation
 749 * modified the array.
 750 * Note that wait-for-zero operations are handled without restart.
 751 */
 752static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
 753{
 754        /* pending complex alter operations are too difficult to analyse */
 755        if (!list_empty(&sma->pending_alter))
 756                return 1;
 757
 758        /* we were a sleeping complex operation. Too difficult */
 759        if (q->nsops > 1)
 760                return 1;
 761
 762        /* It is impossible that someone waits for the new value:
 763         * - complex operations always restart.
 764         * - wait-for-zero are handled seperately.
 765         * - q is a previously sleeping simple operation that
 766         *   altered the array. It must be a decrement, because
 767         *   simple increments never sleep.
 768         * - If there are older (higher priority) decrements
 769         *   in the queue, then they have observed the original
 770         *   semval value and couldn't proceed. The operation
 771         *   decremented to value - thus they won't proceed either.
 772         */
 773        return 0;
 774}
 775
 776/**
 777 * wake_const_ops - wake up non-alter tasks
 778 * @sma: semaphore array.
 779 * @semnum: semaphore that was modified.
 780 * @wake_q: lockless wake-queue head.
 781 *
 782 * wake_const_ops must be called after a semaphore in a semaphore array
 783 * was set to 0. If complex const operations are pending, wake_const_ops must
 784 * be called with semnum = -1, as well as with the number of each modified
 785 * semaphore.
 786 * The tasks that must be woken up are added to @wake_q. The return code
 787 * is stored in q->pid.
 788 * The function returns 1 if at least one operation was completed successfully.
 789 */
 790static int wake_const_ops(struct sem_array *sma, int semnum,
 791                          struct wake_q_head *wake_q)
 792{
 793        struct sem_queue *q, *tmp;
 794        struct list_head *pending_list;
 795        int semop_completed = 0;
 796
 797        if (semnum == -1)
 798                pending_list = &sma->pending_const;
 799        else
 800                pending_list = &sma->sem_base[semnum].pending_const;
 801
 802        list_for_each_entry_safe(q, tmp, pending_list, list) {
 803                int error = perform_atomic_semop(sma, q);
 804
 805                if (error > 0)
 806                        continue;
 807                /* operation completed, remove from queue & wakeup */
 808                unlink_queue(sma, q);
 809
 810                wake_up_sem_queue_prepare(q, error, wake_q);
 811                if (error == 0)
 812                        semop_completed = 1;
 813        }
 814
 815        return semop_completed;
 816}
 817
 818/**
 819 * do_smart_wakeup_zero - wakeup all wait for zero tasks
 820 * @sma: semaphore array
 821 * @sops: operations that were performed
 822 * @nsops: number of operations
 823 * @wake_q: lockless wake-queue head
 824 *
 825 * Checks all required queue for wait-for-zero operations, based
 826 * on the actual changes that were performed on the semaphore array.
 827 * The function returns 1 if at least one operation was completed successfully.
 828 */
 829static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
 830                                int nsops, struct wake_q_head *wake_q)
 831{
 832        int i;
 833        int semop_completed = 0;
 834        int got_zero = 0;
 835
 836        /* first: the per-semaphore queues, if known */
 837        if (sops) {
 838                for (i = 0; i < nsops; i++) {
 839                        int num = sops[i].sem_num;
 840
 841                        if (sma->sem_base[num].semval == 0) {
 842                                got_zero = 1;
 843                                semop_completed |= wake_const_ops(sma, num, wake_q);
 844                        }
 845                }
 846        } else {
 847                /*
 848                 * No sops means modified semaphores not known.
 849                 * Assume all were changed.
 850                 */
 851                for (i = 0; i < sma->sem_nsems; i++) {
 852                        if (sma->sem_base[i].semval == 0) {
 853                                got_zero = 1;
 854                                semop_completed |= wake_const_ops(sma, i, wake_q);
 855                        }
 856                }
 857        }
 858        /*
 859         * If one of the modified semaphores got 0,
 860         * then check the global queue, too.
 861         */
 862        if (got_zero)
 863                semop_completed |= wake_const_ops(sma, -1, wake_q);
 864
 865        return semop_completed;
 866}
 867
 868
 869/**
 870 * update_queue - look for tasks that can be completed.
 871 * @sma: semaphore array.
 872 * @semnum: semaphore that was modified.
 873 * @wake_q: lockless wake-queue head.
 874 *
 875 * update_queue must be called after a semaphore in a semaphore array
 876 * was modified. If multiple semaphores were modified, update_queue must
 877 * be called with semnum = -1, as well as with the number of each modified
 878 * semaphore.
 879 * The tasks that must be woken up are added to @wake_q. The return code
 880 * is stored in q->pid.
 881 * The function internally checks if const operations can now succeed.
 882 *
 883 * The function return 1 if at least one semop was completed successfully.
 884 */
 885static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
 886{
 887        struct sem_queue *q, *tmp;
 888        struct list_head *pending_list;
 889        int semop_completed = 0;
 890
 891        if (semnum == -1)
 892                pending_list = &sma->pending_alter;
 893        else
 894                pending_list = &sma->sem_base[semnum].pending_alter;
 895
 896again:
 897        list_for_each_entry_safe(q, tmp, pending_list, list) {
 898                int error, restart;
 899
 900                /* If we are scanning the single sop, per-semaphore list of
 901                 * one semaphore and that semaphore is 0, then it is not
 902                 * necessary to scan further: simple increments
 903                 * that affect only one entry succeed immediately and cannot
 904                 * be in the  per semaphore pending queue, and decrements
 905                 * cannot be successful if the value is already 0.
 906                 */
 907                if (semnum != -1 && sma->sem_base[semnum].semval == 0)
 908                        break;
 909
 910                error = perform_atomic_semop(sma, q);
 911
 912                /* Does q->sleeper still need to sleep? */
 913                if (error > 0)
 914                        continue;
 915
 916                unlink_queue(sma, q);
 917
 918                if (error) {
 919                        restart = 0;
 920                } else {
 921                        semop_completed = 1;
 922                        do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
 923                        restart = check_restart(sma, q);
 924                }
 925
 926                wake_up_sem_queue_prepare(q, error, wake_q);
 927                if (restart)
 928                        goto again;
 929        }
 930        return semop_completed;
 931}
 932
 933/**
 934 * set_semotime - set sem_otime
 935 * @sma: semaphore array
 936 * @sops: operations that modified the array, may be NULL
 937 *
 938 * sem_otime is replicated to avoid cache line trashing.
 939 * This function sets one instance to the current time.
 940 */
 941static void set_semotime(struct sem_array *sma, struct sembuf *sops)
 942{
 943        if (sops == NULL) {
 944                sma->sem_base[0].sem_otime = get_seconds();
 945        } else {
 946                sma->sem_base[sops[0].sem_num].sem_otime =
 947                                                        get_seconds();
 948        }
 949}
 950
 951/**
 952 * do_smart_update - optimized update_queue
 953 * @sma: semaphore array
 954 * @sops: operations that were performed
 955 * @nsops: number of operations
 956 * @otime: force setting otime
 957 * @wake_q: lockless wake-queue head
 958 *
 959 * do_smart_update() does the required calls to update_queue and wakeup_zero,
 960 * based on the actual changes that were performed on the semaphore array.
 961 * Note that the function does not do the actual wake-up: the caller is
 962 * responsible for calling wake_up_q().
 963 * It is safe to perform this call after dropping all locks.
 964 */
 965static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
 966                            int otime, struct wake_q_head *wake_q)
 967{
 968        int i;
 969
 970        otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
 971
 972        if (!list_empty(&sma->pending_alter)) {
 973                /* semaphore array uses the global queue - just process it. */
 974                otime |= update_queue(sma, -1, wake_q);
 975        } else {
 976                if (!sops) {
 977                        /*
 978                         * No sops, thus the modified semaphores are not
 979                         * known. Check all.
 980                         */
 981                        for (i = 0; i < sma->sem_nsems; i++)
 982                                otime |= update_queue(sma, i, wake_q);
 983                } else {
 984                        /*
 985                         * Check the semaphores that were increased:
 986                         * - No complex ops, thus all sleeping ops are
 987                         *   decrease.
 988                         * - if we decreased the value, then any sleeping
 989                         *   semaphore ops wont be able to run: If the
 990                         *   previous value was too small, then the new
 991                         *   value will be too small, too.
 992                         */
 993                        for (i = 0; i < nsops; i++) {
 994                                if (sops[i].sem_op > 0) {
 995                                        otime |= update_queue(sma,
 996                                                              sops[i].sem_num, wake_q);
 997                                }
 998                        }
 999                }
1000        }
1001        if (otime)
1002                set_semotime(sma, sops);
1003}
1004
1005/*
1006 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1007 */
1008static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1009                        bool count_zero)
1010{
1011        struct sembuf *sop = q->blocking;
1012
1013        /*
1014         * Linux always (since 0.99.10) reported a task as sleeping on all
1015         * semaphores. This violates SUS, therefore it was changed to the
1016         * standard compliant behavior.
1017         * Give the administrators a chance to notice that an application
1018         * might misbehave because it relies on the Linux behavior.
1019         */
1020        pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1021                        "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1022                        current->comm, task_pid_nr(current));
1023
1024        if (sop->sem_num != semnum)
1025                return 0;
1026
1027        if (count_zero && sop->sem_op == 0)
1028                return 1;
1029        if (!count_zero && sop->sem_op < 0)
1030                return 1;
1031
1032        return 0;
1033}
1034
1035/* The following counts are associated to each semaphore:
1036 *   semncnt        number of tasks waiting on semval being nonzero
1037 *   semzcnt        number of tasks waiting on semval being zero
1038 *
1039 * Per definition, a task waits only on the semaphore of the first semop
1040 * that cannot proceed, even if additional operation would block, too.
1041 */
1042static int count_semcnt(struct sem_array *sma, ushort semnum,
1043                        bool count_zero)
1044{
1045        struct list_head *l;
1046        struct sem_queue *q;
1047        int semcnt;
1048
1049        semcnt = 0;
1050        /* First: check the simple operations. They are easy to evaluate */
1051        if (count_zero)
1052                l = &sma->sem_base[semnum].pending_const;
1053        else
1054                l = &sma->sem_base[semnum].pending_alter;
1055
1056        list_for_each_entry(q, l, list) {
1057                /* all task on a per-semaphore list sleep on exactly
1058                 * that semaphore
1059                 */
1060                semcnt++;
1061        }
1062
1063        /* Then: check the complex operations. */
1064        list_for_each_entry(q, &sma->pending_alter, list) {
1065                semcnt += check_qop(sma, semnum, q, count_zero);
1066        }
1067        if (count_zero) {
1068                list_for_each_entry(q, &sma->pending_const, list) {
1069                        semcnt += check_qop(sma, semnum, q, count_zero);
1070                }
1071        }
1072        return semcnt;
1073}
1074
1075/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1076 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1077 * remains locked on exit.
1078 */
1079static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1080{
1081        struct sem_undo *un, *tu;
1082        struct sem_queue *q, *tq;
1083        struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1084        int i;
1085        DEFINE_WAKE_Q(wake_q);
1086
1087        /* Free the existing undo structures for this semaphore set.  */
1088        ipc_assert_locked_object(&sma->sem_perm);
1089        list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1090                list_del(&un->list_id);
1091                spin_lock(&un->ulp->lock);
1092                un->semid = -1;
1093                list_del_rcu(&un->list_proc);
1094                spin_unlock(&un->ulp->lock);
1095                kfree_rcu(un, rcu);
1096        }
1097
1098        /* Wake up all pending processes and let them fail with EIDRM. */
1099        list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1100                unlink_queue(sma, q);
1101                wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1102        }
1103
1104        list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1105                unlink_queue(sma, q);
1106                wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1107        }
1108        for (i = 0; i < sma->sem_nsems; i++) {
1109                struct sem *sem = sma->sem_base + i;
1110                list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1111                        unlink_queue(sma, q);
1112                        wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1113                }
1114                list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1115                        unlink_queue(sma, q);
1116                        wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1117                }
1118        }
1119
1120        /* Remove the semaphore set from the IDR */
1121        sem_rmid(ns, sma);
1122        sem_unlock(sma, -1);
1123        rcu_read_unlock();
1124
1125        wake_up_q(&wake_q);
1126        ns->used_sems -= sma->sem_nsems;
1127        ipc_rcu_putref(sma, sem_rcu_free);
1128}
1129
1130static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1131{
1132        switch (version) {
1133        case IPC_64:
1134                return copy_to_user(buf, in, sizeof(*in));
1135        case IPC_OLD:
1136            {
1137                struct semid_ds out;
1138
1139                memset(&out, 0, sizeof(out));
1140
1141                ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1142
1143                out.sem_otime   = in->sem_otime;
1144                out.sem_ctime   = in->sem_ctime;
1145                out.sem_nsems   = in->sem_nsems;
1146
1147                return copy_to_user(buf, &out, sizeof(out));
1148            }
1149        default:
1150                return -EINVAL;
1151        }
1152}
1153
1154static time_t get_semotime(struct sem_array *sma)
1155{
1156        int i;
1157        time_t res;
1158
1159        res = sma->sem_base[0].sem_otime;
1160        for (i = 1; i < sma->sem_nsems; i++) {
1161                time_t to = sma->sem_base[i].sem_otime;
1162
1163                if (to > res)
1164                        res = to;
1165        }
1166        return res;
1167}
1168
1169static int semctl_nolock(struct ipc_namespace *ns, int semid,
1170                         int cmd, int version, void __user *p)
1171{
1172        int err;
1173        struct sem_array *sma;
1174
1175        switch (cmd) {
1176        case IPC_INFO:
1177        case SEM_INFO:
1178        {
1179                struct seminfo seminfo;
1180                int max_id;
1181
1182                err = security_sem_semctl(NULL, cmd);
1183                if (err)
1184                        return err;
1185
1186                memset(&seminfo, 0, sizeof(seminfo));
1187                seminfo.semmni = ns->sc_semmni;
1188                seminfo.semmns = ns->sc_semmns;
1189                seminfo.semmsl = ns->sc_semmsl;
1190                seminfo.semopm = ns->sc_semopm;
1191                seminfo.semvmx = SEMVMX;
1192                seminfo.semmnu = SEMMNU;
1193                seminfo.semmap = SEMMAP;
1194                seminfo.semume = SEMUME;
1195                down_read(&sem_ids(ns).rwsem);
1196                if (cmd == SEM_INFO) {
1197                        seminfo.semusz = sem_ids(ns).in_use;
1198                        seminfo.semaem = ns->used_sems;
1199                } else {
1200                        seminfo.semusz = SEMUSZ;
1201                        seminfo.semaem = SEMAEM;
1202                }
1203                max_id = ipc_get_maxid(&sem_ids(ns));
1204                up_read(&sem_ids(ns).rwsem);
1205                if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1206                        return -EFAULT;
1207                return (max_id < 0) ? 0 : max_id;
1208        }
1209        case IPC_STAT:
1210        case SEM_STAT:
1211        {
1212                struct semid64_ds tbuf;
1213                int id = 0;
1214
1215                memset(&tbuf, 0, sizeof(tbuf));
1216
1217                rcu_read_lock();
1218                if (cmd == SEM_STAT) {
1219                        sma = sem_obtain_object(ns, semid);
1220                        if (IS_ERR(sma)) {
1221                                err = PTR_ERR(sma);
1222                                goto out_unlock;
1223                        }
1224                        id = sma->sem_perm.id;
1225                } else {
1226                        sma = sem_obtain_object_check(ns, semid);
1227                        if (IS_ERR(sma)) {
1228                                err = PTR_ERR(sma);
1229                                goto out_unlock;
1230                        }
1231                }
1232
1233                err = -EACCES;
1234                if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1235                        goto out_unlock;
1236
1237                err = security_sem_semctl(sma, cmd);
1238                if (err)
1239                        goto out_unlock;
1240
1241                kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1242                tbuf.sem_otime = get_semotime(sma);
1243                tbuf.sem_ctime = sma->sem_ctime;
1244                tbuf.sem_nsems = sma->sem_nsems;
1245                rcu_read_unlock();
1246                if (copy_semid_to_user(p, &tbuf, version))
1247                        return -EFAULT;
1248                return id;
1249        }
1250        default:
1251                return -EINVAL;
1252        }
1253out_unlock:
1254        rcu_read_unlock();
1255        return err;
1256}
1257
1258static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1259                unsigned long arg)
1260{
1261        struct sem_undo *un;
1262        struct sem_array *sma;
1263        struct sem *curr;
1264        int err, val;
1265        DEFINE_WAKE_Q(wake_q);
1266
1267#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1268        /* big-endian 64bit */
1269        val = arg >> 32;
1270#else
1271        /* 32bit or little-endian 64bit */
1272        val = arg;
1273#endif
1274
1275        if (val > SEMVMX || val < 0)
1276                return -ERANGE;
1277
1278        rcu_read_lock();
1279        sma = sem_obtain_object_check(ns, semid);
1280        if (IS_ERR(sma)) {
1281                rcu_read_unlock();
1282                return PTR_ERR(sma);
1283        }
1284
1285        if (semnum < 0 || semnum >= sma->sem_nsems) {
1286                rcu_read_unlock();
1287                return -EINVAL;
1288        }
1289
1290
1291        if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1292                rcu_read_unlock();
1293                return -EACCES;
1294        }
1295
1296        err = security_sem_semctl(sma, SETVAL);
1297        if (err) {
1298                rcu_read_unlock();
1299                return -EACCES;
1300        }
1301
1302        sem_lock(sma, NULL, -1);
1303
1304        if (!ipc_valid_object(&sma->sem_perm)) {
1305                sem_unlock(sma, -1);
1306                rcu_read_unlock();
1307                return -EIDRM;
1308        }
1309
1310        curr = &sma->sem_base[semnum];
1311
1312        ipc_assert_locked_object(&sma->sem_perm);
1313        list_for_each_entry(un, &sma->list_id, list_id)
1314                un->semadj[semnum] = 0;
1315
1316        curr->semval = val;
1317        curr->sempid = task_tgid_vnr(current);
1318        sma->sem_ctime = get_seconds();
1319        /* maybe some queued-up processes were waiting for this */
1320        do_smart_update(sma, NULL, 0, 0, &wake_q);
1321        sem_unlock(sma, -1);
1322        rcu_read_unlock();
1323        wake_up_q(&wake_q);
1324        return 0;
1325}
1326
1327static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1328                int cmd, void __user *p)
1329{
1330        struct sem_array *sma;
1331        struct sem *curr;
1332        int err, nsems;
1333        ushort fast_sem_io[SEMMSL_FAST];
1334        ushort *sem_io = fast_sem_io;
1335        DEFINE_WAKE_Q(wake_q);
1336
1337        rcu_read_lock();
1338        sma = sem_obtain_object_check(ns, semid);
1339        if (IS_ERR(sma)) {
1340                rcu_read_unlock();
1341                return PTR_ERR(sma);
1342        }
1343
1344        nsems = sma->sem_nsems;
1345
1346        err = -EACCES;
1347        if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1348                goto out_rcu_wakeup;
1349
1350        err = security_sem_semctl(sma, cmd);
1351        if (err)
1352                goto out_rcu_wakeup;
1353
1354        err = -EACCES;
1355        switch (cmd) {
1356        case GETALL:
1357        {
1358                ushort __user *array = p;
1359                int i;
1360
1361                sem_lock(sma, NULL, -1);
1362                if (!ipc_valid_object(&sma->sem_perm)) {
1363                        err = -EIDRM;
1364                        goto out_unlock;
1365                }
1366                if (nsems > SEMMSL_FAST) {
1367                        if (!ipc_rcu_getref(sma)) {
1368                                err = -EIDRM;
1369                                goto out_unlock;
1370                        }
1371                        sem_unlock(sma, -1);
1372                        rcu_read_unlock();
1373                        sem_io = ipc_alloc(sizeof(ushort)*nsems);
1374                        if (sem_io == NULL) {
1375                                ipc_rcu_putref(sma, sem_rcu_free);
1376                                return -ENOMEM;
1377                        }
1378
1379                        rcu_read_lock();
1380                        sem_lock_and_putref(sma);
1381                        if (!ipc_valid_object(&sma->sem_perm)) {
1382                                err = -EIDRM;
1383                                goto out_unlock;
1384                        }
1385                }
1386                for (i = 0; i < sma->sem_nsems; i++)
1387                        sem_io[i] = sma->sem_base[i].semval;
1388                sem_unlock(sma, -1);
1389                rcu_read_unlock();
1390                err = 0;
1391                if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1392                        err = -EFAULT;
1393                goto out_free;
1394        }
1395        case SETALL:
1396        {
1397                int i;
1398                struct sem_undo *un;
1399
1400                if (!ipc_rcu_getref(sma)) {
1401                        err = -EIDRM;
1402                        goto out_rcu_wakeup;
1403                }
1404                rcu_read_unlock();
1405
1406                if (nsems > SEMMSL_FAST) {
1407                        sem_io = ipc_alloc(sizeof(ushort)*nsems);
1408                        if (sem_io == NULL) {
1409                                ipc_rcu_putref(sma, sem_rcu_free);
1410                                return -ENOMEM;
1411                        }
1412                }
1413
1414                if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1415                        ipc_rcu_putref(sma, sem_rcu_free);
1416                        err = -EFAULT;
1417                        goto out_free;
1418                }
1419
1420                for (i = 0; i < nsems; i++) {
1421                        if (sem_io[i] > SEMVMX) {
1422                                ipc_rcu_putref(sma, sem_rcu_free);
1423                                err = -ERANGE;
1424                                goto out_free;
1425                        }
1426                }
1427                rcu_read_lock();
1428                sem_lock_and_putref(sma);
1429                if (!ipc_valid_object(&sma->sem_perm)) {
1430                        err = -EIDRM;
1431                        goto out_unlock;
1432                }
1433
1434                for (i = 0; i < nsems; i++) {
1435                        sma->sem_base[i].semval = sem_io[i];
1436                        sma->sem_base[i].sempid = task_tgid_vnr(current);
1437                }
1438
1439                ipc_assert_locked_object(&sma->sem_perm);
1440                list_for_each_entry(un, &sma->list_id, list_id) {
1441                        for (i = 0; i < nsems; i++)
1442                                un->semadj[i] = 0;
1443                }
1444                sma->sem_ctime = get_seconds();
1445                /* maybe some queued-up processes were waiting for this */
1446                do_smart_update(sma, NULL, 0, 0, &wake_q);
1447                err = 0;
1448                goto out_unlock;
1449        }
1450        /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1451        }
1452        err = -EINVAL;
1453        if (semnum < 0 || semnum >= nsems)
1454                goto out_rcu_wakeup;
1455
1456        sem_lock(sma, NULL, -1);
1457        if (!ipc_valid_object(&sma->sem_perm)) {
1458                err = -EIDRM;
1459                goto out_unlock;
1460        }
1461        curr = &sma->sem_base[semnum];
1462
1463        switch (cmd) {
1464        case GETVAL:
1465                err = curr->semval;
1466                goto out_unlock;
1467        case GETPID:
1468                err = curr->sempid;
1469                goto out_unlock;
1470        case GETNCNT:
1471                err = count_semcnt(sma, semnum, 0);
1472                goto out_unlock;
1473        case GETZCNT:
1474                err = count_semcnt(sma, semnum, 1);
1475                goto out_unlock;
1476        }
1477
1478out_unlock:
1479        sem_unlock(sma, -1);
1480out_rcu_wakeup:
1481        rcu_read_unlock();
1482        wake_up_q(&wake_q);
1483out_free:
1484        if (sem_io != fast_sem_io)
1485                ipc_free(sem_io);
1486        return err;
1487}
1488
1489static inline unsigned long
1490copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1491{
1492        switch (version) {
1493        case IPC_64:
1494                if (copy_from_user(out, buf, sizeof(*out)))
1495                        return -EFAULT;
1496                return 0;
1497        case IPC_OLD:
1498            {
1499                struct semid_ds tbuf_old;
1500
1501                if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1502                        return -EFAULT;
1503
1504                out->sem_perm.uid       = tbuf_old.sem_perm.uid;
1505                out->sem_perm.gid       = tbuf_old.sem_perm.gid;
1506                out->sem_perm.mode      = tbuf_old.sem_perm.mode;
1507
1508                return 0;
1509            }
1510        default:
1511                return -EINVAL;
1512        }
1513}
1514
1515/*
1516 * This function handles some semctl commands which require the rwsem
1517 * to be held in write mode.
1518 * NOTE: no locks must be held, the rwsem is taken inside this function.
1519 */
1520static int semctl_down(struct ipc_namespace *ns, int semid,
1521                       int cmd, int version, void __user *p)
1522{
1523        struct sem_array *sma;
1524        int err;
1525        struct semid64_ds semid64;
1526        struct kern_ipc_perm *ipcp;
1527
1528        if (cmd == IPC_SET) {
1529                if (copy_semid_from_user(&semid64, p, version))
1530                        return -EFAULT;
1531        }
1532
1533        down_write(&sem_ids(ns).rwsem);
1534        rcu_read_lock();
1535
1536        ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1537                                      &semid64.sem_perm, 0);
1538        if (IS_ERR(ipcp)) {
1539                err = PTR_ERR(ipcp);
1540                goto out_unlock1;
1541        }
1542
1543        sma = container_of(ipcp, struct sem_array, sem_perm);
1544
1545        err = security_sem_semctl(sma, cmd);
1546        if (err)
1547                goto out_unlock1;
1548
1549        switch (cmd) {
1550        case IPC_RMID:
1551                sem_lock(sma, NULL, -1);
1552                /* freeary unlocks the ipc object and rcu */
1553                freeary(ns, ipcp);
1554                goto out_up;
1555        case IPC_SET:
1556                sem_lock(sma, NULL, -1);
1557                err = ipc_update_perm(&semid64.sem_perm, ipcp);
1558                if (err)
1559                        goto out_unlock0;
1560                sma->sem_ctime = get_seconds();
1561                break;
1562        default:
1563                err = -EINVAL;
1564                goto out_unlock1;
1565        }
1566
1567out_unlock0:
1568        sem_unlock(sma, -1);
1569out_unlock1:
1570        rcu_read_unlock();
1571out_up:
1572        up_write(&sem_ids(ns).rwsem);
1573        return err;
1574}
1575
1576SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1577{
1578        int version;
1579        struct ipc_namespace *ns;
1580        void __user *p = (void __user *)arg;
1581
1582        if (semid < 0)
1583                return -EINVAL;
1584
1585        version = ipc_parse_version(&cmd);
1586        ns = current->nsproxy->ipc_ns;
1587
1588        switch (cmd) {
1589        case IPC_INFO:
1590        case SEM_INFO:
1591        case IPC_STAT:
1592        case SEM_STAT:
1593                return semctl_nolock(ns, semid, cmd, version, p);
1594        case GETALL:
1595        case GETVAL:
1596        case GETPID:
1597        case GETNCNT:
1598        case GETZCNT:
1599        case SETALL:
1600                return semctl_main(ns, semid, semnum, cmd, p);
1601        case SETVAL:
1602                return semctl_setval(ns, semid, semnum, arg);
1603        case IPC_RMID:
1604        case IPC_SET:
1605                return semctl_down(ns, semid, cmd, version, p);
1606        default:
1607                return -EINVAL;
1608        }
1609}
1610
1611/* If the task doesn't already have a undo_list, then allocate one
1612 * here.  We guarantee there is only one thread using this undo list,
1613 * and current is THE ONE
1614 *
1615 * If this allocation and assignment succeeds, but later
1616 * portions of this code fail, there is no need to free the sem_undo_list.
1617 * Just let it stay associated with the task, and it'll be freed later
1618 * at exit time.
1619 *
1620 * This can block, so callers must hold no locks.
1621 */
1622static inline int get_undo_list(struct sem_undo_list **undo_listp)
1623{
1624        struct sem_undo_list *undo_list;
1625
1626        undo_list = current->sysvsem.undo_list;
1627        if (!undo_list) {
1628                undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1629                if (undo_list == NULL)
1630                        return -ENOMEM;
1631                spin_lock_init(&undo_list->lock);
1632                atomic_set(&undo_list->refcnt, 1);
1633                INIT_LIST_HEAD(&undo_list->list_proc);
1634
1635                current->sysvsem.undo_list = undo_list;
1636        }
1637        *undo_listp = undo_list;
1638        return 0;
1639}
1640
1641static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1642{
1643        struct sem_undo *un;
1644
1645        list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1646                if (un->semid == semid)
1647                        return un;
1648        }
1649        return NULL;
1650}
1651
1652static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1653{
1654        struct sem_undo *un;
1655
1656        assert_spin_locked(&ulp->lock);
1657
1658        un = __lookup_undo(ulp, semid);
1659        if (un) {
1660                list_del_rcu(&un->list_proc);
1661                list_add_rcu(&un->list_proc, &ulp->list_proc);
1662        }
1663        return un;
1664}
1665
1666/**
1667 * find_alloc_undo - lookup (and if not present create) undo array
1668 * @ns: namespace
1669 * @semid: semaphore array id
1670 *
1671 * The function looks up (and if not present creates) the undo structure.
1672 * The size of the undo structure depends on the size of the semaphore
1673 * array, thus the alloc path is not that straightforward.
1674 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1675 * performs a rcu_read_lock().
1676 */
1677static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1678{
1679        struct sem_array *sma;
1680        struct sem_undo_list *ulp;
1681        struct sem_undo *un, *new;
1682        int nsems, error;
1683
1684        error = get_undo_list(&ulp);
1685        if (error)
1686                return ERR_PTR(error);
1687
1688        rcu_read_lock();
1689        spin_lock(&ulp->lock);
1690        un = lookup_undo(ulp, semid);
1691        spin_unlock(&ulp->lock);
1692        if (likely(un != NULL))
1693                goto out;
1694
1695        /* no undo structure around - allocate one. */
1696        /* step 1: figure out the size of the semaphore array */
1697        sma = sem_obtain_object_check(ns, semid);
1698        if (IS_ERR(sma)) {
1699                rcu_read_unlock();
1700                return ERR_CAST(sma);
1701        }
1702
1703        nsems = sma->sem_nsems;
1704        if (!ipc_rcu_getref(sma)) {
1705                rcu_read_unlock();
1706                un = ERR_PTR(-EIDRM);
1707                goto out;
1708        }
1709        rcu_read_unlock();
1710
1711        /* step 2: allocate new undo structure */
1712        new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1713        if (!new) {
1714                ipc_rcu_putref(sma, sem_rcu_free);
1715                return ERR_PTR(-ENOMEM);
1716        }
1717
1718        /* step 3: Acquire the lock on semaphore array */
1719        rcu_read_lock();
1720        sem_lock_and_putref(sma);
1721        if (!ipc_valid_object(&sma->sem_perm)) {
1722                sem_unlock(sma, -1);
1723                rcu_read_unlock();
1724                kfree(new);
1725                un = ERR_PTR(-EIDRM);
1726                goto out;
1727        }
1728        spin_lock(&ulp->lock);
1729
1730        /*
1731         * step 4: check for races: did someone else allocate the undo struct?
1732         */
1733        un = lookup_undo(ulp, semid);
1734        if (un) {
1735                kfree(new);
1736                goto success;
1737        }
1738        /* step 5: initialize & link new undo structure */
1739        new->semadj = (short *) &new[1];
1740        new->ulp = ulp;
1741        new->semid = semid;
1742        assert_spin_locked(&ulp->lock);
1743        list_add_rcu(&new->list_proc, &ulp->list_proc);
1744        ipc_assert_locked_object(&sma->sem_perm);
1745        list_add(&new->list_id, &sma->list_id);
1746        un = new;
1747
1748success:
1749        spin_unlock(&ulp->lock);
1750        sem_unlock(sma, -1);
1751out:
1752        return un;
1753}
1754
1755SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1756                unsigned, nsops, const struct timespec __user *, timeout)
1757{
1758        int error = -EINVAL;
1759        struct sem_array *sma;
1760        struct sembuf fast_sops[SEMOPM_FAST];
1761        struct sembuf *sops = fast_sops, *sop;
1762        struct sem_undo *un;
1763        int max, locknum;
1764        bool undos = false, alter = false, dupsop = false;
1765        struct sem_queue queue;
1766        unsigned long dup = 0, jiffies_left = 0;
1767        struct ipc_namespace *ns;
1768
1769        ns = current->nsproxy->ipc_ns;
1770
1771        if (nsops < 1 || semid < 0)
1772                return -EINVAL;
1773        if (nsops > ns->sc_semopm)
1774                return -E2BIG;
1775        if (nsops > SEMOPM_FAST) {
1776                sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1777                if (sops == NULL)
1778                        return -ENOMEM;
1779        }
1780
1781        if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1782                error =  -EFAULT;
1783                goto out_free;
1784        }
1785
1786        if (timeout) {
1787                struct timespec _timeout;
1788                if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1789                        error = -EFAULT;
1790                        goto out_free;
1791                }
1792                if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1793                        _timeout.tv_nsec >= 1000000000L) {
1794                        error = -EINVAL;
1795                        goto out_free;
1796                }
1797                jiffies_left = timespec_to_jiffies(&_timeout);
1798        }
1799
1800        max = 0;
1801        for (sop = sops; sop < sops + nsops; sop++) {
1802                unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1803
1804                if (sop->sem_num >= max)
1805                        max = sop->sem_num;
1806                if (sop->sem_flg & SEM_UNDO)
1807                        undos = true;
1808                if (dup & mask) {
1809                        /*
1810                         * There was a previous alter access that appears
1811                         * to have accessed the same semaphore, thus use
1812                         * the dupsop logic. "appears", because the detection
1813                         * can only check % BITS_PER_LONG.
1814                         */
1815                        dupsop = true;
1816                }
1817                if (sop->sem_op != 0) {
1818                        alter = true;
1819                        dup |= mask;
1820                }
1821        }
1822
1823        if (undos) {
1824                /* On success, find_alloc_undo takes the rcu_read_lock */
1825                un = find_alloc_undo(ns, semid);
1826                if (IS_ERR(un)) {
1827                        error = PTR_ERR(un);
1828                        goto out_free;
1829                }
1830        } else {
1831                un = NULL;
1832                rcu_read_lock();
1833        }
1834
1835        sma = sem_obtain_object_check(ns, semid);
1836        if (IS_ERR(sma)) {
1837                rcu_read_unlock();
1838                error = PTR_ERR(sma);
1839                goto out_free;
1840        }
1841
1842        error = -EFBIG;
1843        if (max >= sma->sem_nsems) {
1844                rcu_read_unlock();
1845                goto out_free;
1846        }
1847
1848        error = -EACCES;
1849        if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
1850                rcu_read_unlock();
1851                goto out_free;
1852        }
1853
1854        error = security_sem_semop(sma, sops, nsops, alter);
1855        if (error) {
1856                rcu_read_unlock();
1857                goto out_free;
1858        }
1859
1860        error = -EIDRM;
1861        locknum = sem_lock(sma, sops, nsops);
1862        /*
1863         * We eventually might perform the following check in a lockless
1864         * fashion, considering ipc_valid_object() locking constraints.
1865         * If nsops == 1 and there is no contention for sem_perm.lock, then
1866         * only a per-semaphore lock is held and it's OK to proceed with the
1867         * check below. More details on the fine grained locking scheme
1868         * entangled here and why it's RMID race safe on comments at sem_lock()
1869         */
1870        if (!ipc_valid_object(&sma->sem_perm))
1871                goto out_unlock_free;
1872        /*
1873         * semid identifiers are not unique - find_alloc_undo may have
1874         * allocated an undo structure, it was invalidated by an RMID
1875         * and now a new array with received the same id. Check and fail.
1876         * This case can be detected checking un->semid. The existence of
1877         * "un" itself is guaranteed by rcu.
1878         */
1879        if (un && un->semid == -1)
1880                goto out_unlock_free;
1881
1882        queue.sops = sops;
1883        queue.nsops = nsops;
1884        queue.undo = un;
1885        queue.pid = task_tgid_vnr(current);
1886        queue.alter = alter;
1887        queue.dupsop = dupsop;
1888
1889        error = perform_atomic_semop(sma, &queue);
1890        if (error == 0) { /* non-blocking succesfull path */
1891                DEFINE_WAKE_Q(wake_q);
1892
1893                /*
1894                 * If the operation was successful, then do
1895                 * the required updates.
1896                 */
1897                if (alter)
1898                        do_smart_update(sma, sops, nsops, 1, &wake_q);
1899                else
1900                        set_semotime(sma, sops);
1901
1902                sem_unlock(sma, locknum);
1903                rcu_read_unlock();
1904                wake_up_q(&wake_q);
1905
1906                goto out_free;
1907        }
1908        if (error < 0) /* non-blocking error path */
1909                goto out_unlock_free;
1910
1911        /*
1912         * We need to sleep on this operation, so we put the current
1913         * task into the pending queue and go to sleep.
1914         */
1915        if (nsops == 1) {
1916                struct sem *curr;
1917                curr = &sma->sem_base[sops->sem_num];
1918
1919                if (alter) {
1920                        if (sma->complex_count) {
1921                                list_add_tail(&queue.list,
1922                                                &sma->pending_alter);
1923                        } else {
1924
1925                                list_add_tail(&queue.list,
1926                                                &curr->pending_alter);
1927                        }
1928                } else {
1929                        list_add_tail(&queue.list, &curr->pending_const);
1930                }
1931        } else {
1932                if (!sma->complex_count)
1933                        merge_queues(sma);
1934
1935                if (alter)
1936                        list_add_tail(&queue.list, &sma->pending_alter);
1937                else
1938                        list_add_tail(&queue.list, &sma->pending_const);
1939
1940                sma->complex_count++;
1941        }
1942
1943        do {
1944                queue.status = -EINTR;
1945                queue.sleeper = current;
1946
1947                __set_current_state(TASK_INTERRUPTIBLE);
1948                sem_unlock(sma, locknum);
1949                rcu_read_unlock();
1950
1951                if (timeout)
1952                        jiffies_left = schedule_timeout(jiffies_left);
1953                else
1954                        schedule();
1955
1956                /*
1957                 * fastpath: the semop has completed, either successfully or
1958                 * not, from the syscall pov, is quite irrelevant to us at this
1959                 * point; we're done.
1960                 *
1961                 * We _do_ care, nonetheless, about being awoken by a signal or
1962                 * spuriously.  The queue.status is checked again in the
1963                 * slowpath (aka after taking sem_lock), such that we can detect
1964                 * scenarios where we were awakened externally, during the
1965                 * window between wake_q_add() and wake_up_q().
1966                 */
1967                error = READ_ONCE(queue.status);
1968                if (error != -EINTR) {
1969                        /*
1970                         * User space could assume that semop() is a memory
1971                         * barrier: Without the mb(), the cpu could
1972                         * speculatively read in userspace stale data that was
1973                         * overwritten by the previous owner of the semaphore.
1974                         */
1975                        smp_mb();
1976                        goto out_free;
1977                }
1978
1979                rcu_read_lock();
1980                locknum = sem_lock(sma, sops, nsops);
1981
1982                if (!ipc_valid_object(&sma->sem_perm))
1983                        goto out_unlock_free;
1984
1985                error = READ_ONCE(queue.status);
1986
1987                /*
1988                 * If queue.status != -EINTR we are woken up by another process.
1989                 * Leave without unlink_queue(), but with sem_unlock().
1990                 */
1991                if (error != -EINTR)
1992                        goto out_unlock_free;
1993
1994                /*
1995                 * If an interrupt occurred we have to clean up the queue.
1996                 */
1997                if (timeout && jiffies_left == 0)
1998                        error = -EAGAIN;
1999        } while (error == -EINTR && !signal_pending(current)); /* spurious */
2000
2001        unlink_queue(sma, &queue);
2002
2003out_unlock_free:
2004        sem_unlock(sma, locknum);
2005        rcu_read_unlock();
2006out_free:
2007        if (sops != fast_sops)
2008                kfree(sops);
2009        return error;
2010}
2011
2012SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2013                unsigned, nsops)
2014{
2015        return sys_semtimedop(semid, tsops, nsops, NULL);
2016}
2017
2018/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2019 * parent and child tasks.
2020 */
2021
2022int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2023{
2024        struct sem_undo_list *undo_list;
2025        int error;
2026
2027        if (clone_flags & CLONE_SYSVSEM) {
2028                error = get_undo_list(&undo_list);
2029                if (error)
2030                        return error;
2031                atomic_inc(&undo_list->refcnt);
2032                tsk->sysvsem.undo_list = undo_list;
2033        } else
2034                tsk->sysvsem.undo_list = NULL;
2035
2036        return 0;
2037}
2038
2039/*
2040 * add semadj values to semaphores, free undo structures.
2041 * undo structures are not freed when semaphore arrays are destroyed
2042 * so some of them may be out of date.
2043 * IMPLEMENTATION NOTE: There is some confusion over whether the
2044 * set of adjustments that needs to be done should be done in an atomic
2045 * manner or not. That is, if we are attempting to decrement the semval
2046 * should we queue up and wait until we can do so legally?
2047 * The original implementation attempted to do this (queue and wait).
2048 * The current implementation does not do so. The POSIX standard
2049 * and SVID should be consulted to determine what behavior is mandated.
2050 */
2051void exit_sem(struct task_struct *tsk)
2052{
2053        struct sem_undo_list *ulp;
2054
2055        ulp = tsk->sysvsem.undo_list;
2056        if (!ulp)
2057                return;
2058        tsk->sysvsem.undo_list = NULL;
2059
2060        if (!atomic_dec_and_test(&ulp->refcnt))
2061                return;
2062
2063        for (;;) {
2064                struct sem_array *sma;
2065                struct sem_undo *un;
2066                int semid, i;
2067                DEFINE_WAKE_Q(wake_q);
2068
2069                cond_resched();
2070
2071                rcu_read_lock();
2072                un = list_entry_rcu(ulp->list_proc.next,
2073                                    struct sem_undo, list_proc);
2074                if (&un->list_proc == &ulp->list_proc) {
2075                        /*
2076                         * We must wait for freeary() before freeing this ulp,
2077                         * in case we raced with last sem_undo. There is a small
2078                         * possibility where we exit while freeary() didn't
2079                         * finish unlocking sem_undo_list.
2080                         */
2081                        spin_unlock_wait(&ulp->lock);
2082                        rcu_read_unlock();
2083                        break;
2084                }
2085                spin_lock(&ulp->lock);
2086                semid = un->semid;
2087                spin_unlock(&ulp->lock);
2088
2089                /* exit_sem raced with IPC_RMID, nothing to do */
2090                if (semid == -1) {
2091                        rcu_read_unlock();
2092                        continue;
2093                }
2094
2095                sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2096                /* exit_sem raced with IPC_RMID, nothing to do */
2097                if (IS_ERR(sma)) {
2098                        rcu_read_unlock();
2099                        continue;
2100                }
2101
2102                sem_lock(sma, NULL, -1);
2103                /* exit_sem raced with IPC_RMID, nothing to do */
2104                if (!ipc_valid_object(&sma->sem_perm)) {
2105                        sem_unlock(sma, -1);
2106                        rcu_read_unlock();
2107                        continue;
2108                }
2109                un = __lookup_undo(ulp, semid);
2110                if (un == NULL) {
2111                        /* exit_sem raced with IPC_RMID+semget() that created
2112                         * exactly the same semid. Nothing to do.
2113                         */
2114                        sem_unlock(sma, -1);
2115                        rcu_read_unlock();
2116                        continue;
2117                }
2118
2119                /* remove un from the linked lists */
2120                ipc_assert_locked_object(&sma->sem_perm);
2121                list_del(&un->list_id);
2122
2123                /* we are the last process using this ulp, acquiring ulp->lock
2124                 * isn't required. Besides that, we are also protected against
2125                 * IPC_RMID as we hold sma->sem_perm lock now
2126                 */
2127                list_del_rcu(&un->list_proc);
2128
2129                /* perform adjustments registered in un */
2130                for (i = 0; i < sma->sem_nsems; i++) {
2131                        struct sem *semaphore = &sma->sem_base[i];
2132                        if (un->semadj[i]) {
2133                                semaphore->semval += un->semadj[i];
2134                                /*
2135                                 * Range checks of the new semaphore value,
2136                                 * not defined by sus:
2137                                 * - Some unices ignore the undo entirely
2138                                 *   (e.g. HP UX 11i 11.22, Tru64 V5.1)
2139                                 * - some cap the value (e.g. FreeBSD caps
2140                                 *   at 0, but doesn't enforce SEMVMX)
2141                                 *
2142                                 * Linux caps the semaphore value, both at 0
2143                                 * and at SEMVMX.
2144                                 *
2145                                 *      Manfred <manfred@colorfullife.com>
2146                                 */
2147                                if (semaphore->semval < 0)
2148                                        semaphore->semval = 0;
2149                                if (semaphore->semval > SEMVMX)
2150                                        semaphore->semval = SEMVMX;
2151                                semaphore->sempid = task_tgid_vnr(current);
2152                        }
2153                }
2154                /* maybe some queued-up processes were waiting for this */
2155                do_smart_update(sma, NULL, 0, 1, &wake_q);
2156                sem_unlock(sma, -1);
2157                rcu_read_unlock();
2158                wake_up_q(&wake_q);
2159
2160                kfree_rcu(un, rcu);
2161        }
2162        kfree(ulp);
2163}
2164
2165#ifdef CONFIG_PROC_FS
2166static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2167{
2168        struct user_namespace *user_ns = seq_user_ns(s);
2169        struct sem_array *sma = it;
2170        time_t sem_otime;
2171
2172        /*
2173         * The proc interface isn't aware of sem_lock(), it calls
2174         * ipc_lock_object() directly (in sysvipc_find_ipc).
2175         * In order to stay compatible with sem_lock(), we must
2176         * enter / leave complex_mode.
2177         */
2178        complexmode_enter(sma);
2179
2180        sem_otime = get_semotime(sma);
2181
2182        seq_printf(s,
2183                   "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2184                   sma->sem_perm.key,
2185                   sma->sem_perm.id,
2186                   sma->sem_perm.mode,
2187                   sma->sem_nsems,
2188                   from_kuid_munged(user_ns, sma->sem_perm.uid),
2189                   from_kgid_munged(user_ns, sma->sem_perm.gid),
2190                   from_kuid_munged(user_ns, sma->sem_perm.cuid),
2191                   from_kgid_munged(user_ns, sma->sem_perm.cgid),
2192                   sem_otime,
2193                   sma->sem_ctime);
2194
2195        complexmode_tryleave(sma);
2196
2197        return 0;
2198}
2199#endif
2200