linux/kernel/kexec_file.c
<<
>>
Prefs
   1/*
   2 * kexec: kexec_file_load system call
   3 *
   4 * Copyright (C) 2014 Red Hat Inc.
   5 * Authors:
   6 *      Vivek Goyal <vgoyal@redhat.com>
   7 *
   8 * This source code is licensed under the GNU General Public License,
   9 * Version 2.  See the file COPYING for more details.
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#include <linux/capability.h>
  15#include <linux/mm.h>
  16#include <linux/file.h>
  17#include <linux/slab.h>
  18#include <linux/kexec.h>
  19#include <linux/mutex.h>
  20#include <linux/list.h>
  21#include <linux/fs.h>
  22#include <linux/ima.h>
  23#include <crypto/hash.h>
  24#include <crypto/sha.h>
  25#include <linux/syscalls.h>
  26#include <linux/vmalloc.h>
  27#include "kexec_internal.h"
  28
  29/*
  30 * Declare these symbols weak so that if architecture provides a purgatory,
  31 * these will be overridden.
  32 */
  33char __weak kexec_purgatory[0];
  34size_t __weak kexec_purgatory_size = 0;
  35
  36static int kexec_calculate_store_digests(struct kimage *image);
  37
  38/* Architectures can provide this probe function */
  39int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  40                                         unsigned long buf_len)
  41{
  42        return -ENOEXEC;
  43}
  44
  45void * __weak arch_kexec_kernel_image_load(struct kimage *image)
  46{
  47        return ERR_PTR(-ENOEXEC);
  48}
  49
  50int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
  51{
  52        return -EINVAL;
  53}
  54
  55#ifdef CONFIG_KEXEC_VERIFY_SIG
  56int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
  57                                        unsigned long buf_len)
  58{
  59        return -EKEYREJECTED;
  60}
  61#endif
  62
  63/* Apply relocations of type RELA */
  64int __weak
  65arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
  66                                 unsigned int relsec)
  67{
  68        pr_err("RELA relocation unsupported.\n");
  69        return -ENOEXEC;
  70}
  71
  72/* Apply relocations of type REL */
  73int __weak
  74arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
  75                             unsigned int relsec)
  76{
  77        pr_err("REL relocation unsupported.\n");
  78        return -ENOEXEC;
  79}
  80
  81/*
  82 * Free up memory used by kernel, initrd, and command line. This is temporary
  83 * memory allocation which is not needed any more after these buffers have
  84 * been loaded into separate segments and have been copied elsewhere.
  85 */
  86void kimage_file_post_load_cleanup(struct kimage *image)
  87{
  88        struct purgatory_info *pi = &image->purgatory_info;
  89
  90        vfree(image->kernel_buf);
  91        image->kernel_buf = NULL;
  92
  93        vfree(image->initrd_buf);
  94        image->initrd_buf = NULL;
  95
  96        kfree(image->cmdline_buf);
  97        image->cmdline_buf = NULL;
  98
  99        vfree(pi->purgatory_buf);
 100        pi->purgatory_buf = NULL;
 101
 102        vfree(pi->sechdrs);
 103        pi->sechdrs = NULL;
 104
 105        /* See if architecture has anything to cleanup post load */
 106        arch_kimage_file_post_load_cleanup(image);
 107
 108        /*
 109         * Above call should have called into bootloader to free up
 110         * any data stored in kimage->image_loader_data. It should
 111         * be ok now to free it up.
 112         */
 113        kfree(image->image_loader_data);
 114        image->image_loader_data = NULL;
 115}
 116
 117/*
 118 * In file mode list of segments is prepared by kernel. Copy relevant
 119 * data from user space, do error checking, prepare segment list
 120 */
 121static int
 122kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 123                             const char __user *cmdline_ptr,
 124                             unsigned long cmdline_len, unsigned flags)
 125{
 126        int ret = 0;
 127        void *ldata;
 128        loff_t size;
 129
 130        ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
 131                                       &size, INT_MAX, READING_KEXEC_IMAGE);
 132        if (ret)
 133                return ret;
 134        image->kernel_buf_len = size;
 135
 136        /* IMA needs to pass the measurement list to the next kernel. */
 137        ima_add_kexec_buffer(image);
 138
 139        /* Call arch image probe handlers */
 140        ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 141                                            image->kernel_buf_len);
 142        if (ret)
 143                goto out;
 144
 145#ifdef CONFIG_KEXEC_VERIFY_SIG
 146        ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 147                                           image->kernel_buf_len);
 148        if (ret) {
 149                pr_debug("kernel signature verification failed.\n");
 150                goto out;
 151        }
 152        pr_debug("kernel signature verification successful.\n");
 153#endif
 154        /* It is possible that there no initramfs is being loaded */
 155        if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 156                ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
 157                                               &size, INT_MAX,
 158                                               READING_KEXEC_INITRAMFS);
 159                if (ret)
 160                        goto out;
 161                image->initrd_buf_len = size;
 162        }
 163
 164        if (cmdline_len) {
 165                image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
 166                if (!image->cmdline_buf) {
 167                        ret = -ENOMEM;
 168                        goto out;
 169                }
 170
 171                ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
 172                                     cmdline_len);
 173                if (ret) {
 174                        ret = -EFAULT;
 175                        goto out;
 176                }
 177
 178                image->cmdline_buf_len = cmdline_len;
 179
 180                /* command line should be a string with last byte null */
 181                if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 182                        ret = -EINVAL;
 183                        goto out;
 184                }
 185        }
 186
 187        /* Call arch image load handlers */
 188        ldata = arch_kexec_kernel_image_load(image);
 189
 190        if (IS_ERR(ldata)) {
 191                ret = PTR_ERR(ldata);
 192                goto out;
 193        }
 194
 195        image->image_loader_data = ldata;
 196out:
 197        /* In case of error, free up all allocated memory in this function */
 198        if (ret)
 199                kimage_file_post_load_cleanup(image);
 200        return ret;
 201}
 202
 203static int
 204kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 205                       int initrd_fd, const char __user *cmdline_ptr,
 206                       unsigned long cmdline_len, unsigned long flags)
 207{
 208        int ret;
 209        struct kimage *image;
 210        bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 211
 212        image = do_kimage_alloc_init();
 213        if (!image)
 214                return -ENOMEM;
 215
 216        image->file_mode = 1;
 217
 218        if (kexec_on_panic) {
 219                /* Enable special crash kernel control page alloc policy. */
 220                image->control_page = crashk_res.start;
 221                image->type = KEXEC_TYPE_CRASH;
 222        }
 223
 224        ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 225                                           cmdline_ptr, cmdline_len, flags);
 226        if (ret)
 227                goto out_free_image;
 228
 229        ret = sanity_check_segment_list(image);
 230        if (ret)
 231                goto out_free_post_load_bufs;
 232
 233        ret = -ENOMEM;
 234        image->control_code_page = kimage_alloc_control_pages(image,
 235                                           get_order(KEXEC_CONTROL_PAGE_SIZE));
 236        if (!image->control_code_page) {
 237                pr_err("Could not allocate control_code_buffer\n");
 238                goto out_free_post_load_bufs;
 239        }
 240
 241        if (!kexec_on_panic) {
 242                image->swap_page = kimage_alloc_control_pages(image, 0);
 243                if (!image->swap_page) {
 244                        pr_err("Could not allocate swap buffer\n");
 245                        goto out_free_control_pages;
 246                }
 247        }
 248
 249        *rimage = image;
 250        return 0;
 251out_free_control_pages:
 252        kimage_free_page_list(&image->control_pages);
 253out_free_post_load_bufs:
 254        kimage_file_post_load_cleanup(image);
 255out_free_image:
 256        kfree(image);
 257        return ret;
 258}
 259
 260SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 261                unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 262                unsigned long, flags)
 263{
 264        int ret = 0, i;
 265        struct kimage **dest_image, *image;
 266
 267        /* We only trust the superuser with rebooting the system. */
 268        if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 269                return -EPERM;
 270
 271        /* Make sure we have a legal set of flags */
 272        if (flags != (flags & KEXEC_FILE_FLAGS))
 273                return -EINVAL;
 274
 275        image = NULL;
 276
 277        if (!mutex_trylock(&kexec_mutex))
 278                return -EBUSY;
 279
 280        dest_image = &kexec_image;
 281        if (flags & KEXEC_FILE_ON_CRASH) {
 282                dest_image = &kexec_crash_image;
 283                if (kexec_crash_image)
 284                        arch_kexec_unprotect_crashkres();
 285        }
 286
 287        if (flags & KEXEC_FILE_UNLOAD)
 288                goto exchange;
 289
 290        /*
 291         * In case of crash, new kernel gets loaded in reserved region. It is
 292         * same memory where old crash kernel might be loaded. Free any
 293         * current crash dump kernel before we corrupt it.
 294         */
 295        if (flags & KEXEC_FILE_ON_CRASH)
 296                kimage_free(xchg(&kexec_crash_image, NULL));
 297
 298        ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 299                                     cmdline_len, flags);
 300        if (ret)
 301                goto out;
 302
 303        ret = machine_kexec_prepare(image);
 304        if (ret)
 305                goto out;
 306
 307        ret = kexec_calculate_store_digests(image);
 308        if (ret)
 309                goto out;
 310
 311        for (i = 0; i < image->nr_segments; i++) {
 312                struct kexec_segment *ksegment;
 313
 314                ksegment = &image->segment[i];
 315                pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 316                         i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 317                         ksegment->memsz);
 318
 319                ret = kimage_load_segment(image, &image->segment[i]);
 320                if (ret)
 321                        goto out;
 322        }
 323
 324        kimage_terminate(image);
 325
 326        /*
 327         * Free up any temporary buffers allocated which are not needed
 328         * after image has been loaded
 329         */
 330        kimage_file_post_load_cleanup(image);
 331exchange:
 332        image = xchg(dest_image, image);
 333out:
 334        if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 335                arch_kexec_protect_crashkres();
 336
 337        mutex_unlock(&kexec_mutex);
 338        kimage_free(image);
 339        return ret;
 340}
 341
 342static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 343                                    struct kexec_buf *kbuf)
 344{
 345        struct kimage *image = kbuf->image;
 346        unsigned long temp_start, temp_end;
 347
 348        temp_end = min(end, kbuf->buf_max);
 349        temp_start = temp_end - kbuf->memsz;
 350
 351        do {
 352                /* align down start */
 353                temp_start = temp_start & (~(kbuf->buf_align - 1));
 354
 355                if (temp_start < start || temp_start < kbuf->buf_min)
 356                        return 0;
 357
 358                temp_end = temp_start + kbuf->memsz - 1;
 359
 360                /*
 361                 * Make sure this does not conflict with any of existing
 362                 * segments
 363                 */
 364                if (kimage_is_destination_range(image, temp_start, temp_end)) {
 365                        temp_start = temp_start - PAGE_SIZE;
 366                        continue;
 367                }
 368
 369                /* We found a suitable memory range */
 370                break;
 371        } while (1);
 372
 373        /* If we are here, we found a suitable memory range */
 374        kbuf->mem = temp_start;
 375
 376        /* Success, stop navigating through remaining System RAM ranges */
 377        return 1;
 378}
 379
 380static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 381                                     struct kexec_buf *kbuf)
 382{
 383        struct kimage *image = kbuf->image;
 384        unsigned long temp_start, temp_end;
 385
 386        temp_start = max(start, kbuf->buf_min);
 387
 388        do {
 389                temp_start = ALIGN(temp_start, kbuf->buf_align);
 390                temp_end = temp_start + kbuf->memsz - 1;
 391
 392                if (temp_end > end || temp_end > kbuf->buf_max)
 393                        return 0;
 394                /*
 395                 * Make sure this does not conflict with any of existing
 396                 * segments
 397                 */
 398                if (kimage_is_destination_range(image, temp_start, temp_end)) {
 399                        temp_start = temp_start + PAGE_SIZE;
 400                        continue;
 401                }
 402
 403                /* We found a suitable memory range */
 404                break;
 405        } while (1);
 406
 407        /* If we are here, we found a suitable memory range */
 408        kbuf->mem = temp_start;
 409
 410        /* Success, stop navigating through remaining System RAM ranges */
 411        return 1;
 412}
 413
 414static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
 415{
 416        struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 417        unsigned long sz = end - start + 1;
 418
 419        /* Returning 0 will take to next memory range */
 420        if (sz < kbuf->memsz)
 421                return 0;
 422
 423        if (end < kbuf->buf_min || start > kbuf->buf_max)
 424                return 0;
 425
 426        /*
 427         * Allocate memory top down with-in ram range. Otherwise bottom up
 428         * allocation.
 429         */
 430        if (kbuf->top_down)
 431                return locate_mem_hole_top_down(start, end, kbuf);
 432        return locate_mem_hole_bottom_up(start, end, kbuf);
 433}
 434
 435/**
 436 * arch_kexec_walk_mem - call func(data) on free memory regions
 437 * @kbuf:       Context info for the search. Also passed to @func.
 438 * @func:       Function to call for each memory region.
 439 *
 440 * Return: The memory walk will stop when func returns a non-zero value
 441 * and that value will be returned. If all free regions are visited without
 442 * func returning non-zero, then zero will be returned.
 443 */
 444int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
 445                               int (*func)(u64, u64, void *))
 446{
 447        if (kbuf->image->type == KEXEC_TYPE_CRASH)
 448                return walk_iomem_res_desc(crashk_res.desc,
 449                                           IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 450                                           crashk_res.start, crashk_res.end,
 451                                           kbuf, func);
 452        else
 453                return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 454}
 455
 456/**
 457 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 458 * @kbuf:       Parameters for the memory search.
 459 *
 460 * On success, kbuf->mem will have the start address of the memory region found.
 461 *
 462 * Return: 0 on success, negative errno on error.
 463 */
 464int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 465{
 466        int ret;
 467
 468        ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
 469
 470        return ret == 1 ? 0 : -EADDRNOTAVAIL;
 471}
 472
 473/**
 474 * kexec_add_buffer - place a buffer in a kexec segment
 475 * @kbuf:       Buffer contents and memory parameters.
 476 *
 477 * This function assumes that kexec_mutex is held.
 478 * On successful return, @kbuf->mem will have the physical address of
 479 * the buffer in memory.
 480 *
 481 * Return: 0 on success, negative errno on error.
 482 */
 483int kexec_add_buffer(struct kexec_buf *kbuf)
 484{
 485
 486        struct kexec_segment *ksegment;
 487        int ret;
 488
 489        /* Currently adding segment this way is allowed only in file mode */
 490        if (!kbuf->image->file_mode)
 491                return -EINVAL;
 492
 493        if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 494                return -EINVAL;
 495
 496        /*
 497         * Make sure we are not trying to add buffer after allocating
 498         * control pages. All segments need to be placed first before
 499         * any control pages are allocated. As control page allocation
 500         * logic goes through list of segments to make sure there are
 501         * no destination overlaps.
 502         */
 503        if (!list_empty(&kbuf->image->control_pages)) {
 504                WARN_ON(1);
 505                return -EINVAL;
 506        }
 507
 508        /* Ensure minimum alignment needed for segments. */
 509        kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 510        kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 511
 512        /* Walk the RAM ranges and allocate a suitable range for the buffer */
 513        ret = kexec_locate_mem_hole(kbuf);
 514        if (ret)
 515                return ret;
 516
 517        /* Found a suitable memory range */
 518        ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 519        ksegment->kbuf = kbuf->buffer;
 520        ksegment->bufsz = kbuf->bufsz;
 521        ksegment->mem = kbuf->mem;
 522        ksegment->memsz = kbuf->memsz;
 523        kbuf->image->nr_segments++;
 524        return 0;
 525}
 526
 527/* Calculate and store the digest of segments */
 528static int kexec_calculate_store_digests(struct kimage *image)
 529{
 530        struct crypto_shash *tfm;
 531        struct shash_desc *desc;
 532        int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 533        size_t desc_size, nullsz;
 534        char *digest;
 535        void *zero_buf;
 536        struct kexec_sha_region *sha_regions;
 537        struct purgatory_info *pi = &image->purgatory_info;
 538
 539        zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 540        zero_buf_sz = PAGE_SIZE;
 541
 542        tfm = crypto_alloc_shash("sha256", 0, 0);
 543        if (IS_ERR(tfm)) {
 544                ret = PTR_ERR(tfm);
 545                goto out;
 546        }
 547
 548        desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 549        desc = kzalloc(desc_size, GFP_KERNEL);
 550        if (!desc) {
 551                ret = -ENOMEM;
 552                goto out_free_tfm;
 553        }
 554
 555        sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 556        sha_regions = vzalloc(sha_region_sz);
 557        if (!sha_regions)
 558                goto out_free_desc;
 559
 560        desc->tfm   = tfm;
 561        desc->flags = 0;
 562
 563        ret = crypto_shash_init(desc);
 564        if (ret < 0)
 565                goto out_free_sha_regions;
 566
 567        digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 568        if (!digest) {
 569                ret = -ENOMEM;
 570                goto out_free_sha_regions;
 571        }
 572
 573        for (j = i = 0; i < image->nr_segments; i++) {
 574                struct kexec_segment *ksegment;
 575
 576                ksegment = &image->segment[i];
 577                /*
 578                 * Skip purgatory as it will be modified once we put digest
 579                 * info in purgatory.
 580                 */
 581                if (ksegment->kbuf == pi->purgatory_buf)
 582                        continue;
 583
 584                ret = crypto_shash_update(desc, ksegment->kbuf,
 585                                          ksegment->bufsz);
 586                if (ret)
 587                        break;
 588
 589                /*
 590                 * Assume rest of the buffer is filled with zero and
 591                 * update digest accordingly.
 592                 */
 593                nullsz = ksegment->memsz - ksegment->bufsz;
 594                while (nullsz) {
 595                        unsigned long bytes = nullsz;
 596
 597                        if (bytes > zero_buf_sz)
 598                                bytes = zero_buf_sz;
 599                        ret = crypto_shash_update(desc, zero_buf, bytes);
 600                        if (ret)
 601                                break;
 602                        nullsz -= bytes;
 603                }
 604
 605                if (ret)
 606                        break;
 607
 608                sha_regions[j].start = ksegment->mem;
 609                sha_regions[j].len = ksegment->memsz;
 610                j++;
 611        }
 612
 613        if (!ret) {
 614                ret = crypto_shash_final(desc, digest);
 615                if (ret)
 616                        goto out_free_digest;
 617                ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
 618                                                sha_regions, sha_region_sz, 0);
 619                if (ret)
 620                        goto out_free_digest;
 621
 622                ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
 623                                                digest, SHA256_DIGEST_SIZE, 0);
 624                if (ret)
 625                        goto out_free_digest;
 626        }
 627
 628out_free_digest:
 629        kfree(digest);
 630out_free_sha_regions:
 631        vfree(sha_regions);
 632out_free_desc:
 633        kfree(desc);
 634out_free_tfm:
 635        kfree(tfm);
 636out:
 637        return ret;
 638}
 639
 640/* Actually load purgatory. Lot of code taken from kexec-tools */
 641static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
 642                                  unsigned long max, int top_down)
 643{
 644        struct purgatory_info *pi = &image->purgatory_info;
 645        unsigned long align, bss_align, bss_sz, bss_pad;
 646        unsigned long entry, load_addr, curr_load_addr, bss_addr, offset;
 647        unsigned char *buf_addr, *src;
 648        int i, ret = 0, entry_sidx = -1;
 649        const Elf_Shdr *sechdrs_c;
 650        Elf_Shdr *sechdrs = NULL;
 651        struct kexec_buf kbuf = { .image = image, .bufsz = 0, .buf_align = 1,
 652                                  .buf_min = min, .buf_max = max,
 653                                  .top_down = top_down };
 654
 655        /*
 656         * sechdrs_c points to section headers in purgatory and are read
 657         * only. No modifications allowed.
 658         */
 659        sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
 660
 661        /*
 662         * We can not modify sechdrs_c[] and its fields. It is read only.
 663         * Copy it over to a local copy where one can store some temporary
 664         * data and free it at the end. We need to modify ->sh_addr and
 665         * ->sh_offset fields to keep track of permanent and temporary
 666         * locations of sections.
 667         */
 668        sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 669        if (!sechdrs)
 670                return -ENOMEM;
 671
 672        memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 673
 674        /*
 675         * We seem to have multiple copies of sections. First copy is which
 676         * is embedded in kernel in read only section. Some of these sections
 677         * will be copied to a temporary buffer and relocated. And these
 678         * sections will finally be copied to their final destination at
 679         * segment load time.
 680         *
 681         * Use ->sh_offset to reflect section address in memory. It will
 682         * point to original read only copy if section is not allocatable.
 683         * Otherwise it will point to temporary copy which will be relocated.
 684         *
 685         * Use ->sh_addr to contain final address of the section where it
 686         * will go during execution time.
 687         */
 688        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 689                if (sechdrs[i].sh_type == SHT_NOBITS)
 690                        continue;
 691
 692                sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
 693                                                sechdrs[i].sh_offset;
 694        }
 695
 696        /*
 697         * Identify entry point section and make entry relative to section
 698         * start.
 699         */
 700        entry = pi->ehdr->e_entry;
 701        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 702                if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 703                        continue;
 704
 705                if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
 706                        continue;
 707
 708                /* Make entry section relative */
 709                if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
 710                    ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
 711                     pi->ehdr->e_entry)) {
 712                        entry_sidx = i;
 713                        entry -= sechdrs[i].sh_addr;
 714                        break;
 715                }
 716        }
 717
 718        /* Determine how much memory is needed to load relocatable object. */
 719        bss_align = 1;
 720        bss_sz = 0;
 721
 722        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 723                if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 724                        continue;
 725
 726                align = sechdrs[i].sh_addralign;
 727                if (sechdrs[i].sh_type != SHT_NOBITS) {
 728                        if (kbuf.buf_align < align)
 729                                kbuf.buf_align = align;
 730                        kbuf.bufsz = ALIGN(kbuf.bufsz, align);
 731                        kbuf.bufsz += sechdrs[i].sh_size;
 732                } else {
 733                        /* bss section */
 734                        if (bss_align < align)
 735                                bss_align = align;
 736                        bss_sz = ALIGN(bss_sz, align);
 737                        bss_sz += sechdrs[i].sh_size;
 738                }
 739        }
 740
 741        /* Determine the bss padding required to align bss properly */
 742        bss_pad = 0;
 743        if (kbuf.bufsz & (bss_align - 1))
 744                bss_pad = bss_align - (kbuf.bufsz & (bss_align - 1));
 745
 746        kbuf.memsz = kbuf.bufsz + bss_pad + bss_sz;
 747
 748        /* Allocate buffer for purgatory */
 749        kbuf.buffer = vzalloc(kbuf.bufsz);
 750        if (!kbuf.buffer) {
 751                ret = -ENOMEM;
 752                goto out;
 753        }
 754
 755        if (kbuf.buf_align < bss_align)
 756                kbuf.buf_align = bss_align;
 757
 758        /* Add buffer to segment list */
 759        ret = kexec_add_buffer(&kbuf);
 760        if (ret)
 761                goto out;
 762        pi->purgatory_load_addr = kbuf.mem;
 763
 764        /* Load SHF_ALLOC sections */
 765        buf_addr = kbuf.buffer;
 766        load_addr = curr_load_addr = pi->purgatory_load_addr;
 767        bss_addr = load_addr + kbuf.bufsz + bss_pad;
 768
 769        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 770                if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 771                        continue;
 772
 773                align = sechdrs[i].sh_addralign;
 774                if (sechdrs[i].sh_type != SHT_NOBITS) {
 775                        curr_load_addr = ALIGN(curr_load_addr, align);
 776                        offset = curr_load_addr - load_addr;
 777                        /* We already modifed ->sh_offset to keep src addr */
 778                        src = (char *) sechdrs[i].sh_offset;
 779                        memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
 780
 781                        /* Store load address and source address of section */
 782                        sechdrs[i].sh_addr = curr_load_addr;
 783
 784                        /*
 785                         * This section got copied to temporary buffer. Update
 786                         * ->sh_offset accordingly.
 787                         */
 788                        sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
 789
 790                        /* Advance to the next address */
 791                        curr_load_addr += sechdrs[i].sh_size;
 792                } else {
 793                        bss_addr = ALIGN(bss_addr, align);
 794                        sechdrs[i].sh_addr = bss_addr;
 795                        bss_addr += sechdrs[i].sh_size;
 796                }
 797        }
 798
 799        /* Update entry point based on load address of text section */
 800        if (entry_sidx >= 0)
 801                entry += sechdrs[entry_sidx].sh_addr;
 802
 803        /* Make kernel jump to purgatory after shutdown */
 804        image->start = entry;
 805
 806        /* Used later to get/set symbol values */
 807        pi->sechdrs = sechdrs;
 808
 809        /*
 810         * Used later to identify which section is purgatory and skip it
 811         * from checksumming.
 812         */
 813        pi->purgatory_buf = kbuf.buffer;
 814        return ret;
 815out:
 816        vfree(sechdrs);
 817        vfree(kbuf.buffer);
 818        return ret;
 819}
 820
 821static int kexec_apply_relocations(struct kimage *image)
 822{
 823        int i, ret;
 824        struct purgatory_info *pi = &image->purgatory_info;
 825        Elf_Shdr *sechdrs = pi->sechdrs;
 826
 827        /* Apply relocations */
 828        for (i = 0; i < pi->ehdr->e_shnum; i++) {
 829                Elf_Shdr *section, *symtab;
 830
 831                if (sechdrs[i].sh_type != SHT_RELA &&
 832                    sechdrs[i].sh_type != SHT_REL)
 833                        continue;
 834
 835                /*
 836                 * For section of type SHT_RELA/SHT_REL,
 837                 * ->sh_link contains section header index of associated
 838                 * symbol table. And ->sh_info contains section header
 839                 * index of section to which relocations apply.
 840                 */
 841                if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
 842                    sechdrs[i].sh_link >= pi->ehdr->e_shnum)
 843                        return -ENOEXEC;
 844
 845                section = &sechdrs[sechdrs[i].sh_info];
 846                symtab = &sechdrs[sechdrs[i].sh_link];
 847
 848                if (!(section->sh_flags & SHF_ALLOC))
 849                        continue;
 850
 851                /*
 852                 * symtab->sh_link contain section header index of associated
 853                 * string table.
 854                 */
 855                if (symtab->sh_link >= pi->ehdr->e_shnum)
 856                        /* Invalid section number? */
 857                        continue;
 858
 859                /*
 860                 * Respective architecture needs to provide support for applying
 861                 * relocations of type SHT_RELA/SHT_REL.
 862                 */
 863                if (sechdrs[i].sh_type == SHT_RELA)
 864                        ret = arch_kexec_apply_relocations_add(pi->ehdr,
 865                                                               sechdrs, i);
 866                else if (sechdrs[i].sh_type == SHT_REL)
 867                        ret = arch_kexec_apply_relocations(pi->ehdr,
 868                                                           sechdrs, i);
 869                if (ret)
 870                        return ret;
 871        }
 872
 873        return 0;
 874}
 875
 876/* Load relocatable purgatory object and relocate it appropriately */
 877int kexec_load_purgatory(struct kimage *image, unsigned long min,
 878                         unsigned long max, int top_down,
 879                         unsigned long *load_addr)
 880{
 881        struct purgatory_info *pi = &image->purgatory_info;
 882        int ret;
 883
 884        if (kexec_purgatory_size <= 0)
 885                return -EINVAL;
 886
 887        if (kexec_purgatory_size < sizeof(Elf_Ehdr))
 888                return -ENOEXEC;
 889
 890        pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
 891
 892        if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
 893            || pi->ehdr->e_type != ET_REL
 894            || !elf_check_arch(pi->ehdr)
 895            || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
 896                return -ENOEXEC;
 897
 898        if (pi->ehdr->e_shoff >= kexec_purgatory_size
 899            || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
 900            kexec_purgatory_size - pi->ehdr->e_shoff))
 901                return -ENOEXEC;
 902
 903        ret = __kexec_load_purgatory(image, min, max, top_down);
 904        if (ret)
 905                return ret;
 906
 907        ret = kexec_apply_relocations(image);
 908        if (ret)
 909                goto out;
 910
 911        *load_addr = pi->purgatory_load_addr;
 912        return 0;
 913out:
 914        vfree(pi->sechdrs);
 915        pi->sechdrs = NULL;
 916
 917        vfree(pi->purgatory_buf);
 918        pi->purgatory_buf = NULL;
 919        return ret;
 920}
 921
 922static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
 923                                            const char *name)
 924{
 925        Elf_Sym *syms;
 926        Elf_Shdr *sechdrs;
 927        Elf_Ehdr *ehdr;
 928        int i, k;
 929        const char *strtab;
 930
 931        if (!pi->sechdrs || !pi->ehdr)
 932                return NULL;
 933
 934        sechdrs = pi->sechdrs;
 935        ehdr = pi->ehdr;
 936
 937        for (i = 0; i < ehdr->e_shnum; i++) {
 938                if (sechdrs[i].sh_type != SHT_SYMTAB)
 939                        continue;
 940
 941                if (sechdrs[i].sh_link >= ehdr->e_shnum)
 942                        /* Invalid strtab section number */
 943                        continue;
 944                strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
 945                syms = (Elf_Sym *)sechdrs[i].sh_offset;
 946
 947                /* Go through symbols for a match */
 948                for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
 949                        if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
 950                                continue;
 951
 952                        if (strcmp(strtab + syms[k].st_name, name) != 0)
 953                                continue;
 954
 955                        if (syms[k].st_shndx == SHN_UNDEF ||
 956                            syms[k].st_shndx >= ehdr->e_shnum) {
 957                                pr_debug("Symbol: %s has bad section index %d.\n",
 958                                                name, syms[k].st_shndx);
 959                                return NULL;
 960                        }
 961
 962                        /* Found the symbol we are looking for */
 963                        return &syms[k];
 964                }
 965        }
 966
 967        return NULL;
 968}
 969
 970void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
 971{
 972        struct purgatory_info *pi = &image->purgatory_info;
 973        Elf_Sym *sym;
 974        Elf_Shdr *sechdr;
 975
 976        sym = kexec_purgatory_find_symbol(pi, name);
 977        if (!sym)
 978                return ERR_PTR(-EINVAL);
 979
 980        sechdr = &pi->sechdrs[sym->st_shndx];
 981
 982        /*
 983         * Returns the address where symbol will finally be loaded after
 984         * kexec_load_segment()
 985         */
 986        return (void *)(sechdr->sh_addr + sym->st_value);
 987}
 988
 989/*
 990 * Get or set value of a symbol. If "get_value" is true, symbol value is
 991 * returned in buf otherwise symbol value is set based on value in buf.
 992 */
 993int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
 994                                   void *buf, unsigned int size, bool get_value)
 995{
 996        Elf_Sym *sym;
 997        Elf_Shdr *sechdrs;
 998        struct purgatory_info *pi = &image->purgatory_info;
 999        char *sym_buf;
1000
1001        sym = kexec_purgatory_find_symbol(pi, name);
1002        if (!sym)
1003                return -EINVAL;
1004
1005        if (sym->st_size != size) {
1006                pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1007                       name, (unsigned long)sym->st_size, size);
1008                return -EINVAL;
1009        }
1010
1011        sechdrs = pi->sechdrs;
1012
1013        if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1014                pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1015                       get_value ? "get" : "set");
1016                return -EINVAL;
1017        }
1018
1019        sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1020                                        sym->st_value;
1021
1022        if (get_value)
1023                memcpy((void *)buf, sym_buf, size);
1024        else
1025                memcpy((void *)sym_buf, buf, size);
1026
1027        return 0;
1028}
1029