linux/kernel/sched/wait.c
<<
>>
Prefs
   1/*
   2 * Generic waiting primitives.
   3 *
   4 * (C) 2004 Nadia Yvette Chambers, Oracle
   5 */
   6#include <linux/init.h>
   7#include <linux/export.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/wait.h>
  11#include <linux/hash.h>
  12#include <linux/kthread.h>
  13
  14void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key)
  15{
  16        spin_lock_init(&q->lock);
  17        lockdep_set_class_and_name(&q->lock, key, name);
  18        INIT_LIST_HEAD(&q->task_list);
  19}
  20
  21EXPORT_SYMBOL(__init_waitqueue_head);
  22
  23void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
  24{
  25        unsigned long flags;
  26
  27        wait->flags &= ~WQ_FLAG_EXCLUSIVE;
  28        spin_lock_irqsave(&q->lock, flags);
  29        __add_wait_queue(q, wait);
  30        spin_unlock_irqrestore(&q->lock, flags);
  31}
  32EXPORT_SYMBOL(add_wait_queue);
  33
  34void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
  35{
  36        unsigned long flags;
  37
  38        wait->flags |= WQ_FLAG_EXCLUSIVE;
  39        spin_lock_irqsave(&q->lock, flags);
  40        __add_wait_queue_tail(q, wait);
  41        spin_unlock_irqrestore(&q->lock, flags);
  42}
  43EXPORT_SYMBOL(add_wait_queue_exclusive);
  44
  45void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
  46{
  47        unsigned long flags;
  48
  49        spin_lock_irqsave(&q->lock, flags);
  50        __remove_wait_queue(q, wait);
  51        spin_unlock_irqrestore(&q->lock, flags);
  52}
  53EXPORT_SYMBOL(remove_wait_queue);
  54
  55
  56/*
  57 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  58 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  59 * number) then we wake all the non-exclusive tasks and one exclusive task.
  60 *
  61 * There are circumstances in which we can try to wake a task which has already
  62 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  63 * zero in this (rare) case, and we handle it by continuing to scan the queue.
  64 */
  65static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  66                        int nr_exclusive, int wake_flags, void *key)
  67{
  68        wait_queue_t *curr, *next;
  69
  70        list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  71                unsigned flags = curr->flags;
  72
  73                if (curr->func(curr, mode, wake_flags, key) &&
  74                                (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  75                        break;
  76        }
  77}
  78
  79/**
  80 * __wake_up - wake up threads blocked on a waitqueue.
  81 * @q: the waitqueue
  82 * @mode: which threads
  83 * @nr_exclusive: how many wake-one or wake-many threads to wake up
  84 * @key: is directly passed to the wakeup function
  85 *
  86 * It may be assumed that this function implies a write memory barrier before
  87 * changing the task state if and only if any tasks are woken up.
  88 */
  89void __wake_up(wait_queue_head_t *q, unsigned int mode,
  90                        int nr_exclusive, void *key)
  91{
  92        unsigned long flags;
  93
  94        spin_lock_irqsave(&q->lock, flags);
  95        __wake_up_common(q, mode, nr_exclusive, 0, key);
  96        spin_unlock_irqrestore(&q->lock, flags);
  97}
  98EXPORT_SYMBOL(__wake_up);
  99
 100/*
 101 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 102 */
 103void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
 104{
 105        __wake_up_common(q, mode, nr, 0, NULL);
 106}
 107EXPORT_SYMBOL_GPL(__wake_up_locked);
 108
 109void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
 110{
 111        __wake_up_common(q, mode, 1, 0, key);
 112}
 113EXPORT_SYMBOL_GPL(__wake_up_locked_key);
 114
 115/**
 116 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
 117 * @q: the waitqueue
 118 * @mode: which threads
 119 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 120 * @key: opaque value to be passed to wakeup targets
 121 *
 122 * The sync wakeup differs that the waker knows that it will schedule
 123 * away soon, so while the target thread will be woken up, it will not
 124 * be migrated to another CPU - ie. the two threads are 'synchronized'
 125 * with each other. This can prevent needless bouncing between CPUs.
 126 *
 127 * On UP it can prevent extra preemption.
 128 *
 129 * It may be assumed that this function implies a write memory barrier before
 130 * changing the task state if and only if any tasks are woken up.
 131 */
 132void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
 133                        int nr_exclusive, void *key)
 134{
 135        unsigned long flags;
 136        int wake_flags = 1; /* XXX WF_SYNC */
 137
 138        if (unlikely(!q))
 139                return;
 140
 141        if (unlikely(nr_exclusive != 1))
 142                wake_flags = 0;
 143
 144        spin_lock_irqsave(&q->lock, flags);
 145        __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
 146        spin_unlock_irqrestore(&q->lock, flags);
 147}
 148EXPORT_SYMBOL_GPL(__wake_up_sync_key);
 149
 150/*
 151 * __wake_up_sync - see __wake_up_sync_key()
 152 */
 153void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
 154{
 155        __wake_up_sync_key(q, mode, nr_exclusive, NULL);
 156}
 157EXPORT_SYMBOL_GPL(__wake_up_sync);      /* For internal use only */
 158
 159/*
 160 * Note: we use "set_current_state()" _after_ the wait-queue add,
 161 * because we need a memory barrier there on SMP, so that any
 162 * wake-function that tests for the wait-queue being active
 163 * will be guaranteed to see waitqueue addition _or_ subsequent
 164 * tests in this thread will see the wakeup having taken place.
 165 *
 166 * The spin_unlock() itself is semi-permeable and only protects
 167 * one way (it only protects stuff inside the critical region and
 168 * stops them from bleeding out - it would still allow subsequent
 169 * loads to move into the critical region).
 170 */
 171void
 172prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
 173{
 174        unsigned long flags;
 175
 176        wait->flags &= ~WQ_FLAG_EXCLUSIVE;
 177        spin_lock_irqsave(&q->lock, flags);
 178        if (list_empty(&wait->task_list))
 179                __add_wait_queue(q, wait);
 180        set_current_state(state);
 181        spin_unlock_irqrestore(&q->lock, flags);
 182}
 183EXPORT_SYMBOL(prepare_to_wait);
 184
 185void
 186prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
 187{
 188        unsigned long flags;
 189
 190        wait->flags |= WQ_FLAG_EXCLUSIVE;
 191        spin_lock_irqsave(&q->lock, flags);
 192        if (list_empty(&wait->task_list))
 193                __add_wait_queue_tail(q, wait);
 194        set_current_state(state);
 195        spin_unlock_irqrestore(&q->lock, flags);
 196}
 197EXPORT_SYMBOL(prepare_to_wait_exclusive);
 198
 199void init_wait_entry(wait_queue_t *wait, int flags)
 200{
 201        wait->flags = flags;
 202        wait->private = current;
 203        wait->func = autoremove_wake_function;
 204        INIT_LIST_HEAD(&wait->task_list);
 205}
 206EXPORT_SYMBOL(init_wait_entry);
 207
 208long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state)
 209{
 210        unsigned long flags;
 211        long ret = 0;
 212
 213        spin_lock_irqsave(&q->lock, flags);
 214        if (unlikely(signal_pending_state(state, current))) {
 215                /*
 216                 * Exclusive waiter must not fail if it was selected by wakeup,
 217                 * it should "consume" the condition we were waiting for.
 218                 *
 219                 * The caller will recheck the condition and return success if
 220                 * we were already woken up, we can not miss the event because
 221                 * wakeup locks/unlocks the same q->lock.
 222                 *
 223                 * But we need to ensure that set-condition + wakeup after that
 224                 * can't see us, it should wake up another exclusive waiter if
 225                 * we fail.
 226                 */
 227                list_del_init(&wait->task_list);
 228                ret = -ERESTARTSYS;
 229        } else {
 230                if (list_empty(&wait->task_list)) {
 231                        if (wait->flags & WQ_FLAG_EXCLUSIVE)
 232                                __add_wait_queue_tail(q, wait);
 233                        else
 234                                __add_wait_queue(q, wait);
 235                }
 236                set_current_state(state);
 237        }
 238        spin_unlock_irqrestore(&q->lock, flags);
 239
 240        return ret;
 241}
 242EXPORT_SYMBOL(prepare_to_wait_event);
 243
 244/**
 245 * finish_wait - clean up after waiting in a queue
 246 * @q: waitqueue waited on
 247 * @wait: wait descriptor
 248 *
 249 * Sets current thread back to running state and removes
 250 * the wait descriptor from the given waitqueue if still
 251 * queued.
 252 */
 253void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
 254{
 255        unsigned long flags;
 256
 257        __set_current_state(TASK_RUNNING);
 258        /*
 259         * We can check for list emptiness outside the lock
 260         * IFF:
 261         *  - we use the "careful" check that verifies both
 262         *    the next and prev pointers, so that there cannot
 263         *    be any half-pending updates in progress on other
 264         *    CPU's that we haven't seen yet (and that might
 265         *    still change the stack area.
 266         * and
 267         *  - all other users take the lock (ie we can only
 268         *    have _one_ other CPU that looks at or modifies
 269         *    the list).
 270         */
 271        if (!list_empty_careful(&wait->task_list)) {
 272                spin_lock_irqsave(&q->lock, flags);
 273                list_del_init(&wait->task_list);
 274                spin_unlock_irqrestore(&q->lock, flags);
 275        }
 276}
 277EXPORT_SYMBOL(finish_wait);
 278
 279int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
 280{
 281        int ret = default_wake_function(wait, mode, sync, key);
 282
 283        if (ret)
 284                list_del_init(&wait->task_list);
 285        return ret;
 286}
 287EXPORT_SYMBOL(autoremove_wake_function);
 288
 289static inline bool is_kthread_should_stop(void)
 290{
 291        return (current->flags & PF_KTHREAD) && kthread_should_stop();
 292}
 293
 294/*
 295 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
 296 *
 297 * add_wait_queue(&wq, &wait);
 298 * for (;;) {
 299 *     if (condition)
 300 *         break;
 301 *
 302 *     p->state = mode;                         condition = true;
 303 *     smp_mb(); // A                           smp_wmb(); // C
 304 *     if (!wait->flags & WQ_FLAG_WOKEN)        wait->flags |= WQ_FLAG_WOKEN;
 305 *         schedule()                           try_to_wake_up();
 306 *     p->state = TASK_RUNNING;             ~~~~~~~~~~~~~~~~~~
 307 *     wait->flags &= ~WQ_FLAG_WOKEN;           condition = true;
 308 *     smp_mb() // B                            smp_wmb(); // C
 309 *                                              wait->flags |= WQ_FLAG_WOKEN;
 310 * }
 311 * remove_wait_queue(&wq, &wait);
 312 *
 313 */
 314long wait_woken(wait_queue_t *wait, unsigned mode, long timeout)
 315{
 316        set_current_state(mode); /* A */
 317        /*
 318         * The above implies an smp_mb(), which matches with the smp_wmb() from
 319         * woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must
 320         * also observe all state before the wakeup.
 321         */
 322        if (!(wait->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop())
 323                timeout = schedule_timeout(timeout);
 324        __set_current_state(TASK_RUNNING);
 325
 326        /*
 327         * The below implies an smp_mb(), it too pairs with the smp_wmb() from
 328         * woken_wake_function() such that we must either observe the wait
 329         * condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss
 330         * an event.
 331         */
 332        smp_store_mb(wait->flags, wait->flags & ~WQ_FLAG_WOKEN); /* B */
 333
 334        return timeout;
 335}
 336EXPORT_SYMBOL(wait_woken);
 337
 338int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
 339{
 340        /*
 341         * Although this function is called under waitqueue lock, LOCK
 342         * doesn't imply write barrier and the users expects write
 343         * barrier semantics on wakeup functions.  The following
 344         * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
 345         * and is paired with smp_store_mb() in wait_woken().
 346         */
 347        smp_wmb(); /* C */
 348        wait->flags |= WQ_FLAG_WOKEN;
 349
 350        return default_wake_function(wait, mode, sync, key);
 351}
 352EXPORT_SYMBOL(woken_wake_function);
 353
 354int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
 355{
 356        struct wait_bit_key *key = arg;
 357        struct wait_bit_queue *wait_bit
 358                = container_of(wait, struct wait_bit_queue, wait);
 359
 360        if (wait_bit->key.flags != key->flags ||
 361                        wait_bit->key.bit_nr != key->bit_nr ||
 362                        test_bit(key->bit_nr, key->flags))
 363                return 0;
 364        else
 365                return autoremove_wake_function(wait, mode, sync, key);
 366}
 367EXPORT_SYMBOL(wake_bit_function);
 368
 369/*
 370 * To allow interruptible waiting and asynchronous (i.e. nonblocking)
 371 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
 372 * permitted return codes. Nonzero return codes halt waiting and return.
 373 */
 374int __sched
 375__wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
 376              wait_bit_action_f *action, unsigned mode)
 377{
 378        int ret = 0;
 379
 380        do {
 381                prepare_to_wait(wq, &q->wait, mode);
 382                if (test_bit(q->key.bit_nr, q->key.flags))
 383                        ret = (*action)(&q->key, mode);
 384        } while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
 385        finish_wait(wq, &q->wait);
 386        return ret;
 387}
 388EXPORT_SYMBOL(__wait_on_bit);
 389
 390int __sched out_of_line_wait_on_bit(void *word, int bit,
 391                                    wait_bit_action_f *action, unsigned mode)
 392{
 393        wait_queue_head_t *wq = bit_waitqueue(word, bit);
 394        DEFINE_WAIT_BIT(wait, word, bit);
 395
 396        return __wait_on_bit(wq, &wait, action, mode);
 397}
 398EXPORT_SYMBOL(out_of_line_wait_on_bit);
 399
 400int __sched out_of_line_wait_on_bit_timeout(
 401        void *word, int bit, wait_bit_action_f *action,
 402        unsigned mode, unsigned long timeout)
 403{
 404        wait_queue_head_t *wq = bit_waitqueue(word, bit);
 405        DEFINE_WAIT_BIT(wait, word, bit);
 406
 407        wait.key.timeout = jiffies + timeout;
 408        return __wait_on_bit(wq, &wait, action, mode);
 409}
 410EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout);
 411
 412int __sched
 413__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
 414                        wait_bit_action_f *action, unsigned mode)
 415{
 416        int ret = 0;
 417
 418        for (;;) {
 419                prepare_to_wait_exclusive(wq, &q->wait, mode);
 420                if (test_bit(q->key.bit_nr, q->key.flags)) {
 421                        ret = action(&q->key, mode);
 422                        /*
 423                         * See the comment in prepare_to_wait_event().
 424                         * finish_wait() does not necessarily takes wq->lock,
 425                         * but test_and_set_bit() implies mb() which pairs with
 426                         * smp_mb__after_atomic() before wake_up_page().
 427                         */
 428                        if (ret)
 429                                finish_wait(wq, &q->wait);
 430                }
 431                if (!test_and_set_bit(q->key.bit_nr, q->key.flags)) {
 432                        if (!ret)
 433                                finish_wait(wq, &q->wait);
 434                        return 0;
 435                } else if (ret) {
 436                        return ret;
 437                }
 438        }
 439}
 440EXPORT_SYMBOL(__wait_on_bit_lock);
 441
 442int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
 443                                         wait_bit_action_f *action, unsigned mode)
 444{
 445        wait_queue_head_t *wq = bit_waitqueue(word, bit);
 446        DEFINE_WAIT_BIT(wait, word, bit);
 447
 448        return __wait_on_bit_lock(wq, &wait, action, mode);
 449}
 450EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
 451
 452void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
 453{
 454        struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
 455        if (waitqueue_active(wq))
 456                __wake_up(wq, TASK_NORMAL, 1, &key);
 457}
 458EXPORT_SYMBOL(__wake_up_bit);
 459
 460/**
 461 * wake_up_bit - wake up a waiter on a bit
 462 * @word: the word being waited on, a kernel virtual address
 463 * @bit: the bit of the word being waited on
 464 *
 465 * There is a standard hashed waitqueue table for generic use. This
 466 * is the part of the hashtable's accessor API that wakes up waiters
 467 * on a bit. For instance, if one were to have waiters on a bitflag,
 468 * one would call wake_up_bit() after clearing the bit.
 469 *
 470 * In order for this to function properly, as it uses waitqueue_active()
 471 * internally, some kind of memory barrier must be done prior to calling
 472 * this. Typically, this will be smp_mb__after_atomic(), but in some
 473 * cases where bitflags are manipulated non-atomically under a lock, one
 474 * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
 475 * because spin_unlock() does not guarantee a memory barrier.
 476 */
 477void wake_up_bit(void *word, int bit)
 478{
 479        __wake_up_bit(bit_waitqueue(word, bit), word, bit);
 480}
 481EXPORT_SYMBOL(wake_up_bit);
 482
 483/*
 484 * Manipulate the atomic_t address to produce a better bit waitqueue table hash
 485 * index (we're keying off bit -1, but that would produce a horrible hash
 486 * value).
 487 */
 488static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p)
 489{
 490        if (BITS_PER_LONG == 64) {
 491                unsigned long q = (unsigned long)p;
 492                return bit_waitqueue((void *)(q & ~1), q & 1);
 493        }
 494        return bit_waitqueue(p, 0);
 495}
 496
 497static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync,
 498                                  void *arg)
 499{
 500        struct wait_bit_key *key = arg;
 501        struct wait_bit_queue *wait_bit
 502                = container_of(wait, struct wait_bit_queue, wait);
 503        atomic_t *val = key->flags;
 504
 505        if (wait_bit->key.flags != key->flags ||
 506            wait_bit->key.bit_nr != key->bit_nr ||
 507            atomic_read(val) != 0)
 508                return 0;
 509        return autoremove_wake_function(wait, mode, sync, key);
 510}
 511
 512/*
 513 * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
 514 * the actions of __wait_on_atomic_t() are permitted return codes.  Nonzero
 515 * return codes halt waiting and return.
 516 */
 517static __sched
 518int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q,
 519                       int (*action)(atomic_t *), unsigned mode)
 520{
 521        atomic_t *val;
 522        int ret = 0;
 523
 524        do {
 525                prepare_to_wait(wq, &q->wait, mode);
 526                val = q->key.flags;
 527                if (atomic_read(val) == 0)
 528                        break;
 529                ret = (*action)(val);
 530        } while (!ret && atomic_read(val) != 0);
 531        finish_wait(wq, &q->wait);
 532        return ret;
 533}
 534
 535#define DEFINE_WAIT_ATOMIC_T(name, p)                                   \
 536        struct wait_bit_queue name = {                                  \
 537                .key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p),              \
 538                .wait   = {                                             \
 539                        .private        = current,                      \
 540                        .func           = wake_atomic_t_function,       \
 541                        .task_list      =                               \
 542                                LIST_HEAD_INIT((name).wait.task_list),  \
 543                },                                                      \
 544        }
 545
 546__sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *),
 547                                         unsigned mode)
 548{
 549        wait_queue_head_t *wq = atomic_t_waitqueue(p);
 550        DEFINE_WAIT_ATOMIC_T(wait, p);
 551
 552        return __wait_on_atomic_t(wq, &wait, action, mode);
 553}
 554EXPORT_SYMBOL(out_of_line_wait_on_atomic_t);
 555
 556/**
 557 * wake_up_atomic_t - Wake up a waiter on a atomic_t
 558 * @p: The atomic_t being waited on, a kernel virtual address
 559 *
 560 * Wake up anyone waiting for the atomic_t to go to zero.
 561 *
 562 * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
 563 * check is done by the waiter's wake function, not the by the waker itself).
 564 */
 565void wake_up_atomic_t(atomic_t *p)
 566{
 567        __wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR);
 568}
 569EXPORT_SYMBOL(wake_up_atomic_t);
 570
 571__sched int bit_wait(struct wait_bit_key *word, int mode)
 572{
 573        schedule();
 574        if (signal_pending_state(mode, current))
 575                return -EINTR;
 576        return 0;
 577}
 578EXPORT_SYMBOL(bit_wait);
 579
 580__sched int bit_wait_io(struct wait_bit_key *word, int mode)
 581{
 582        io_schedule();
 583        if (signal_pending_state(mode, current))
 584                return -EINTR;
 585        return 0;
 586}
 587EXPORT_SYMBOL(bit_wait_io);
 588
 589__sched int bit_wait_timeout(struct wait_bit_key *word, int mode)
 590{
 591        unsigned long now = READ_ONCE(jiffies);
 592        if (time_after_eq(now, word->timeout))
 593                return -EAGAIN;
 594        schedule_timeout(word->timeout - now);
 595        if (signal_pending_state(mode, current))
 596                return -EINTR;
 597        return 0;
 598}
 599EXPORT_SYMBOL_GPL(bit_wait_timeout);
 600
 601__sched int bit_wait_io_timeout(struct wait_bit_key *word, int mode)
 602{
 603        unsigned long now = READ_ONCE(jiffies);
 604        if (time_after_eq(now, word->timeout))
 605                return -EAGAIN;
 606        io_schedule_timeout(word->timeout - now);
 607        if (signal_pending_state(mode, current))
 608                return -EINTR;
 609        return 0;
 610}
 611EXPORT_SYMBOL_GPL(bit_wait_io_timeout);
 612