linux/kernel/time/timer.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/timer.c
   3 *
   4 *  Kernel internal timers
   5 *
   6 *  Copyright (C) 1991, 1992  Linus Torvalds
   7 *
   8 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
   9 *
  10 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
  11 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
  12 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  13 *              serialize accesses to xtime/lost_ticks).
  14 *                              Copyright (C) 1998  Andrea Arcangeli
  15 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
  16 *  2002-05-31  Move sys_sysinfo here and make its locking sane, Robert Love
  17 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
  18 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
  19 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  20 */
  21
  22#include <linux/kernel_stat.h>
  23#include <linux/export.h>
  24#include <linux/interrupt.h>
  25#include <linux/percpu.h>
  26#include <linux/init.h>
  27#include <linux/mm.h>
  28#include <linux/swap.h>
  29#include <linux/pid_namespace.h>
  30#include <linux/notifier.h>
  31#include <linux/thread_info.h>
  32#include <linux/time.h>
  33#include <linux/jiffies.h>
  34#include <linux/posix-timers.h>
  35#include <linux/cpu.h>
  36#include <linux/syscalls.h>
  37#include <linux/delay.h>
  38#include <linux/tick.h>
  39#include <linux/kallsyms.h>
  40#include <linux/irq_work.h>
  41#include <linux/sched.h>
  42#include <linux/sched/sysctl.h>
  43#include <linux/slab.h>
  44#include <linux/compat.h>
  45
  46#include <linux/uaccess.h>
  47#include <asm/unistd.h>
  48#include <asm/div64.h>
  49#include <asm/timex.h>
  50#include <asm/io.h>
  51
  52#include "tick-internal.h"
  53
  54#define CREATE_TRACE_POINTS
  55#include <trace/events/timer.h>
  56
  57__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  58
  59EXPORT_SYMBOL(jiffies_64);
  60
  61/*
  62 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
  63 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
  64 * level has a different granularity.
  65 *
  66 * The level granularity is:            LVL_CLK_DIV ^ lvl
  67 * The level clock frequency is:        HZ / (LVL_CLK_DIV ^ level)
  68 *
  69 * The array level of a newly armed timer depends on the relative expiry
  70 * time. The farther the expiry time is away the higher the array level and
  71 * therefor the granularity becomes.
  72 *
  73 * Contrary to the original timer wheel implementation, which aims for 'exact'
  74 * expiry of the timers, this implementation removes the need for recascading
  75 * the timers into the lower array levels. The previous 'classic' timer wheel
  76 * implementation of the kernel already violated the 'exact' expiry by adding
  77 * slack to the expiry time to provide batched expiration. The granularity
  78 * levels provide implicit batching.
  79 *
  80 * This is an optimization of the original timer wheel implementation for the
  81 * majority of the timer wheel use cases: timeouts. The vast majority of
  82 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
  83 * the timeout expires it indicates that normal operation is disturbed, so it
  84 * does not matter much whether the timeout comes with a slight delay.
  85 *
  86 * The only exception to this are networking timers with a small expiry
  87 * time. They rely on the granularity. Those fit into the first wheel level,
  88 * which has HZ granularity.
  89 *
  90 * We don't have cascading anymore. timers with a expiry time above the
  91 * capacity of the last wheel level are force expired at the maximum timeout
  92 * value of the last wheel level. From data sampling we know that the maximum
  93 * value observed is 5 days (network connection tracking), so this should not
  94 * be an issue.
  95 *
  96 * The currently chosen array constants values are a good compromise between
  97 * array size and granularity.
  98 *
  99 * This results in the following granularity and range levels:
 100 *
 101 * HZ 1000 steps
 102 * Level Offset  Granularity            Range
 103 *  0      0         1 ms                0 ms -         63 ms
 104 *  1     64         8 ms               64 ms -        511 ms
 105 *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
 106 *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
 107 *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
 108 *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
 109 *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
 110 *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
 111 *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
 112 *
 113 * HZ  300
 114 * Level Offset  Granularity            Range
 115 *  0      0         3 ms                0 ms -        210 ms
 116 *  1     64        26 ms              213 ms -       1703 ms (213ms - ~1s)
 117 *  2    128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
 118 *  3    192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
 119 *  4    256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
 120 *  5    320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
 121 *  6    384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
 122 *  7    448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
 123 *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
 124 *
 125 * HZ  250
 126 * Level Offset  Granularity            Range
 127 *  0      0         4 ms                0 ms -        255 ms
 128 *  1     64        32 ms              256 ms -       2047 ms (256ms - ~2s)
 129 *  2    128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
 130 *  3    192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
 131 *  4    256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
 132 *  5    320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
 133 *  6    384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
 134 *  7    448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
 135 *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
 136 *
 137 * HZ  100
 138 * Level Offset  Granularity            Range
 139 *  0      0         10 ms               0 ms -        630 ms
 140 *  1     64         80 ms             640 ms -       5110 ms (640ms - ~5s)
 141 *  2    128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
 142 *  3    192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
 143 *  4    256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
 144 *  5    320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
 145 *  6    384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
 146 *  7    448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
 147 */
 148
 149/* Clock divisor for the next level */
 150#define LVL_CLK_SHIFT   3
 151#define LVL_CLK_DIV     (1UL << LVL_CLK_SHIFT)
 152#define LVL_CLK_MASK    (LVL_CLK_DIV - 1)
 153#define LVL_SHIFT(n)    ((n) * LVL_CLK_SHIFT)
 154#define LVL_GRAN(n)     (1UL << LVL_SHIFT(n))
 155
 156/*
 157 * The time start value for each level to select the bucket at enqueue
 158 * time.
 159 */
 160#define LVL_START(n)    ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
 161
 162/* Size of each clock level */
 163#define LVL_BITS        6
 164#define LVL_SIZE        (1UL << LVL_BITS)
 165#define LVL_MASK        (LVL_SIZE - 1)
 166#define LVL_OFFS(n)     ((n) * LVL_SIZE)
 167
 168/* Level depth */
 169#if HZ > 100
 170# define LVL_DEPTH      9
 171# else
 172# define LVL_DEPTH      8
 173#endif
 174
 175/* The cutoff (max. capacity of the wheel) */
 176#define WHEEL_TIMEOUT_CUTOFF    (LVL_START(LVL_DEPTH))
 177#define WHEEL_TIMEOUT_MAX       (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
 178
 179/*
 180 * The resulting wheel size. If NOHZ is configured we allocate two
 181 * wheels so we have a separate storage for the deferrable timers.
 182 */
 183#define WHEEL_SIZE      (LVL_SIZE * LVL_DEPTH)
 184
 185#ifdef CONFIG_NO_HZ_COMMON
 186# define NR_BASES       2
 187# define BASE_STD       0
 188# define BASE_DEF       1
 189#else
 190# define NR_BASES       1
 191# define BASE_STD       0
 192# define BASE_DEF       0
 193#endif
 194
 195struct timer_base {
 196        spinlock_t              lock;
 197        struct timer_list       *running_timer;
 198        unsigned long           clk;
 199        unsigned long           next_expiry;
 200        unsigned int            cpu;
 201        bool                    migration_enabled;
 202        bool                    nohz_active;
 203        bool                    is_idle;
 204        DECLARE_BITMAP(pending_map, WHEEL_SIZE);
 205        struct hlist_head       vectors[WHEEL_SIZE];
 206} ____cacheline_aligned;
 207
 208static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
 209
 210#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 211unsigned int sysctl_timer_migration = 1;
 212
 213void timers_update_migration(bool update_nohz)
 214{
 215        bool on = sysctl_timer_migration && tick_nohz_active;
 216        unsigned int cpu;
 217
 218        /* Avoid the loop, if nothing to update */
 219        if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
 220                return;
 221
 222        for_each_possible_cpu(cpu) {
 223                per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
 224                per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
 225                per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
 226                if (!update_nohz)
 227                        continue;
 228                per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
 229                per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
 230                per_cpu(hrtimer_bases.nohz_active, cpu) = true;
 231        }
 232}
 233
 234int timer_migration_handler(struct ctl_table *table, int write,
 235                            void __user *buffer, size_t *lenp,
 236                            loff_t *ppos)
 237{
 238        static DEFINE_MUTEX(mutex);
 239        int ret;
 240
 241        mutex_lock(&mutex);
 242        ret = proc_dointvec(table, write, buffer, lenp, ppos);
 243        if (!ret && write)
 244                timers_update_migration(false);
 245        mutex_unlock(&mutex);
 246        return ret;
 247}
 248#endif
 249
 250static unsigned long round_jiffies_common(unsigned long j, int cpu,
 251                bool force_up)
 252{
 253        int rem;
 254        unsigned long original = j;
 255
 256        /*
 257         * We don't want all cpus firing their timers at once hitting the
 258         * same lock or cachelines, so we skew each extra cpu with an extra
 259         * 3 jiffies. This 3 jiffies came originally from the mm/ code which
 260         * already did this.
 261         * The skew is done by adding 3*cpunr, then round, then subtract this
 262         * extra offset again.
 263         */
 264        j += cpu * 3;
 265
 266        rem = j % HZ;
 267
 268        /*
 269         * If the target jiffie is just after a whole second (which can happen
 270         * due to delays of the timer irq, long irq off times etc etc) then
 271         * we should round down to the whole second, not up. Use 1/4th second
 272         * as cutoff for this rounding as an extreme upper bound for this.
 273         * But never round down if @force_up is set.
 274         */
 275        if (rem < HZ/4 && !force_up) /* round down */
 276                j = j - rem;
 277        else /* round up */
 278                j = j - rem + HZ;
 279
 280        /* now that we have rounded, subtract the extra skew again */
 281        j -= cpu * 3;
 282
 283        /*
 284         * Make sure j is still in the future. Otherwise return the
 285         * unmodified value.
 286         */
 287        return time_is_after_jiffies(j) ? j : original;
 288}
 289
 290/**
 291 * __round_jiffies - function to round jiffies to a full second
 292 * @j: the time in (absolute) jiffies that should be rounded
 293 * @cpu: the processor number on which the timeout will happen
 294 *
 295 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 296 * up or down to (approximately) full seconds. This is useful for timers
 297 * for which the exact time they fire does not matter too much, as long as
 298 * they fire approximately every X seconds.
 299 *
 300 * By rounding these timers to whole seconds, all such timers will fire
 301 * at the same time, rather than at various times spread out. The goal
 302 * of this is to have the CPU wake up less, which saves power.
 303 *
 304 * The exact rounding is skewed for each processor to avoid all
 305 * processors firing at the exact same time, which could lead
 306 * to lock contention or spurious cache line bouncing.
 307 *
 308 * The return value is the rounded version of the @j parameter.
 309 */
 310unsigned long __round_jiffies(unsigned long j, int cpu)
 311{
 312        return round_jiffies_common(j, cpu, false);
 313}
 314EXPORT_SYMBOL_GPL(__round_jiffies);
 315
 316/**
 317 * __round_jiffies_relative - function to round jiffies to a full second
 318 * @j: the time in (relative) jiffies that should be rounded
 319 * @cpu: the processor number on which the timeout will happen
 320 *
 321 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 322 * up or down to (approximately) full seconds. This is useful for timers
 323 * for which the exact time they fire does not matter too much, as long as
 324 * they fire approximately every X seconds.
 325 *
 326 * By rounding these timers to whole seconds, all such timers will fire
 327 * at the same time, rather than at various times spread out. The goal
 328 * of this is to have the CPU wake up less, which saves power.
 329 *
 330 * The exact rounding is skewed for each processor to avoid all
 331 * processors firing at the exact same time, which could lead
 332 * to lock contention or spurious cache line bouncing.
 333 *
 334 * The return value is the rounded version of the @j parameter.
 335 */
 336unsigned long __round_jiffies_relative(unsigned long j, int cpu)
 337{
 338        unsigned long j0 = jiffies;
 339
 340        /* Use j0 because jiffies might change while we run */
 341        return round_jiffies_common(j + j0, cpu, false) - j0;
 342}
 343EXPORT_SYMBOL_GPL(__round_jiffies_relative);
 344
 345/**
 346 * round_jiffies - function to round jiffies to a full second
 347 * @j: the time in (absolute) jiffies that should be rounded
 348 *
 349 * round_jiffies() rounds an absolute time in the future (in jiffies)
 350 * up or down to (approximately) full seconds. This is useful for timers
 351 * for which the exact time they fire does not matter too much, as long as
 352 * they fire approximately every X seconds.
 353 *
 354 * By rounding these timers to whole seconds, all such timers will fire
 355 * at the same time, rather than at various times spread out. The goal
 356 * of this is to have the CPU wake up less, which saves power.
 357 *
 358 * The return value is the rounded version of the @j parameter.
 359 */
 360unsigned long round_jiffies(unsigned long j)
 361{
 362        return round_jiffies_common(j, raw_smp_processor_id(), false);
 363}
 364EXPORT_SYMBOL_GPL(round_jiffies);
 365
 366/**
 367 * round_jiffies_relative - function to round jiffies to a full second
 368 * @j: the time in (relative) jiffies that should be rounded
 369 *
 370 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 371 * up or down to (approximately) full seconds. This is useful for timers
 372 * for which the exact time they fire does not matter too much, as long as
 373 * they fire approximately every X seconds.
 374 *
 375 * By rounding these timers to whole seconds, all such timers will fire
 376 * at the same time, rather than at various times spread out. The goal
 377 * of this is to have the CPU wake up less, which saves power.
 378 *
 379 * The return value is the rounded version of the @j parameter.
 380 */
 381unsigned long round_jiffies_relative(unsigned long j)
 382{
 383        return __round_jiffies_relative(j, raw_smp_processor_id());
 384}
 385EXPORT_SYMBOL_GPL(round_jiffies_relative);
 386
 387/**
 388 * __round_jiffies_up - function to round jiffies up to a full second
 389 * @j: the time in (absolute) jiffies that should be rounded
 390 * @cpu: the processor number on which the timeout will happen
 391 *
 392 * This is the same as __round_jiffies() except that it will never
 393 * round down.  This is useful for timeouts for which the exact time
 394 * of firing does not matter too much, as long as they don't fire too
 395 * early.
 396 */
 397unsigned long __round_jiffies_up(unsigned long j, int cpu)
 398{
 399        return round_jiffies_common(j, cpu, true);
 400}
 401EXPORT_SYMBOL_GPL(__round_jiffies_up);
 402
 403/**
 404 * __round_jiffies_up_relative - function to round jiffies up to a full second
 405 * @j: the time in (relative) jiffies that should be rounded
 406 * @cpu: the processor number on which the timeout will happen
 407 *
 408 * This is the same as __round_jiffies_relative() except that it will never
 409 * round down.  This is useful for timeouts for which the exact time
 410 * of firing does not matter too much, as long as they don't fire too
 411 * early.
 412 */
 413unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
 414{
 415        unsigned long j0 = jiffies;
 416
 417        /* Use j0 because jiffies might change while we run */
 418        return round_jiffies_common(j + j0, cpu, true) - j0;
 419}
 420EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
 421
 422/**
 423 * round_jiffies_up - function to round jiffies up to a full second
 424 * @j: the time in (absolute) jiffies that should be rounded
 425 *
 426 * This is the same as round_jiffies() except that it will never
 427 * round down.  This is useful for timeouts for which the exact time
 428 * of firing does not matter too much, as long as they don't fire too
 429 * early.
 430 */
 431unsigned long round_jiffies_up(unsigned long j)
 432{
 433        return round_jiffies_common(j, raw_smp_processor_id(), true);
 434}
 435EXPORT_SYMBOL_GPL(round_jiffies_up);
 436
 437/**
 438 * round_jiffies_up_relative - function to round jiffies up to a full second
 439 * @j: the time in (relative) jiffies that should be rounded
 440 *
 441 * This is the same as round_jiffies_relative() except that it will never
 442 * round down.  This is useful for timeouts for which the exact time
 443 * of firing does not matter too much, as long as they don't fire too
 444 * early.
 445 */
 446unsigned long round_jiffies_up_relative(unsigned long j)
 447{
 448        return __round_jiffies_up_relative(j, raw_smp_processor_id());
 449}
 450EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
 451
 452
 453static inline unsigned int timer_get_idx(struct timer_list *timer)
 454{
 455        return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
 456}
 457
 458static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
 459{
 460        timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
 461                        idx << TIMER_ARRAYSHIFT;
 462}
 463
 464/*
 465 * Helper function to calculate the array index for a given expiry
 466 * time.
 467 */
 468static inline unsigned calc_index(unsigned expires, unsigned lvl)
 469{
 470        expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
 471        return LVL_OFFS(lvl) + (expires & LVL_MASK);
 472}
 473
 474static int calc_wheel_index(unsigned long expires, unsigned long clk)
 475{
 476        unsigned long delta = expires - clk;
 477        unsigned int idx;
 478
 479        if (delta < LVL_START(1)) {
 480                idx = calc_index(expires, 0);
 481        } else if (delta < LVL_START(2)) {
 482                idx = calc_index(expires, 1);
 483        } else if (delta < LVL_START(3)) {
 484                idx = calc_index(expires, 2);
 485        } else if (delta < LVL_START(4)) {
 486                idx = calc_index(expires, 3);
 487        } else if (delta < LVL_START(5)) {
 488                idx = calc_index(expires, 4);
 489        } else if (delta < LVL_START(6)) {
 490                idx = calc_index(expires, 5);
 491        } else if (delta < LVL_START(7)) {
 492                idx = calc_index(expires, 6);
 493        } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
 494                idx = calc_index(expires, 7);
 495        } else if ((long) delta < 0) {
 496                idx = clk & LVL_MASK;
 497        } else {
 498                /*
 499                 * Force expire obscene large timeouts to expire at the
 500                 * capacity limit of the wheel.
 501                 */
 502                if (expires >= WHEEL_TIMEOUT_CUTOFF)
 503                        expires = WHEEL_TIMEOUT_MAX;
 504
 505                idx = calc_index(expires, LVL_DEPTH - 1);
 506        }
 507        return idx;
 508}
 509
 510/*
 511 * Enqueue the timer into the hash bucket, mark it pending in
 512 * the bitmap and store the index in the timer flags.
 513 */
 514static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
 515                          unsigned int idx)
 516{
 517        hlist_add_head(&timer->entry, base->vectors + idx);
 518        __set_bit(idx, base->pending_map);
 519        timer_set_idx(timer, idx);
 520}
 521
 522static void
 523__internal_add_timer(struct timer_base *base, struct timer_list *timer)
 524{
 525        unsigned int idx;
 526
 527        idx = calc_wheel_index(timer->expires, base->clk);
 528        enqueue_timer(base, timer, idx);
 529}
 530
 531static void
 532trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
 533{
 534        if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
 535                return;
 536
 537        /*
 538         * TODO: This wants some optimizing similar to the code below, but we
 539         * will do that when we switch from push to pull for deferrable timers.
 540         */
 541        if (timer->flags & TIMER_DEFERRABLE) {
 542                if (tick_nohz_full_cpu(base->cpu))
 543                        wake_up_nohz_cpu(base->cpu);
 544                return;
 545        }
 546
 547        /*
 548         * We might have to IPI the remote CPU if the base is idle and the
 549         * timer is not deferrable. If the other CPU is on the way to idle
 550         * then it can't set base->is_idle as we hold the base lock:
 551         */
 552        if (!base->is_idle)
 553                return;
 554
 555        /* Check whether this is the new first expiring timer: */
 556        if (time_after_eq(timer->expires, base->next_expiry))
 557                return;
 558
 559        /*
 560         * Set the next expiry time and kick the CPU so it can reevaluate the
 561         * wheel:
 562         */
 563        base->next_expiry = timer->expires;
 564                wake_up_nohz_cpu(base->cpu);
 565}
 566
 567static void
 568internal_add_timer(struct timer_base *base, struct timer_list *timer)
 569{
 570        __internal_add_timer(base, timer);
 571        trigger_dyntick_cpu(base, timer);
 572}
 573
 574#ifdef CONFIG_TIMER_STATS
 575void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
 576{
 577        if (timer->start_site)
 578                return;
 579
 580        timer->start_site = addr;
 581        memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
 582        timer->start_pid = current->pid;
 583}
 584
 585static void timer_stats_account_timer(struct timer_list *timer)
 586{
 587        void *site;
 588
 589        /*
 590         * start_site can be concurrently reset by
 591         * timer_stats_timer_clear_start_info()
 592         */
 593        site = READ_ONCE(timer->start_site);
 594        if (likely(!site))
 595                return;
 596
 597        timer_stats_update_stats(timer, timer->start_pid, site,
 598                                 timer->function, timer->start_comm,
 599                                 timer->flags);
 600}
 601
 602#else
 603static void timer_stats_account_timer(struct timer_list *timer) {}
 604#endif
 605
 606#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 607
 608static struct debug_obj_descr timer_debug_descr;
 609
 610static void *timer_debug_hint(void *addr)
 611{
 612        return ((struct timer_list *) addr)->function;
 613}
 614
 615static bool timer_is_static_object(void *addr)
 616{
 617        struct timer_list *timer = addr;
 618
 619        return (timer->entry.pprev == NULL &&
 620                timer->entry.next == TIMER_ENTRY_STATIC);
 621}
 622
 623/*
 624 * fixup_init is called when:
 625 * - an active object is initialized
 626 */
 627static bool timer_fixup_init(void *addr, enum debug_obj_state state)
 628{
 629        struct timer_list *timer = addr;
 630
 631        switch (state) {
 632        case ODEBUG_STATE_ACTIVE:
 633                del_timer_sync(timer);
 634                debug_object_init(timer, &timer_debug_descr);
 635                return true;
 636        default:
 637                return false;
 638        }
 639}
 640
 641/* Stub timer callback for improperly used timers. */
 642static void stub_timer(unsigned long data)
 643{
 644        WARN_ON(1);
 645}
 646
 647/*
 648 * fixup_activate is called when:
 649 * - an active object is activated
 650 * - an unknown non-static object is activated
 651 */
 652static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
 653{
 654        struct timer_list *timer = addr;
 655
 656        switch (state) {
 657        case ODEBUG_STATE_NOTAVAILABLE:
 658                setup_timer(timer, stub_timer, 0);
 659                return true;
 660
 661        case ODEBUG_STATE_ACTIVE:
 662                WARN_ON(1);
 663
 664        default:
 665                return false;
 666        }
 667}
 668
 669/*
 670 * fixup_free is called when:
 671 * - an active object is freed
 672 */
 673static bool timer_fixup_free(void *addr, enum debug_obj_state state)
 674{
 675        struct timer_list *timer = addr;
 676
 677        switch (state) {
 678        case ODEBUG_STATE_ACTIVE:
 679                del_timer_sync(timer);
 680                debug_object_free(timer, &timer_debug_descr);
 681                return true;
 682        default:
 683                return false;
 684        }
 685}
 686
 687/*
 688 * fixup_assert_init is called when:
 689 * - an untracked/uninit-ed object is found
 690 */
 691static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
 692{
 693        struct timer_list *timer = addr;
 694
 695        switch (state) {
 696        case ODEBUG_STATE_NOTAVAILABLE:
 697                setup_timer(timer, stub_timer, 0);
 698                return true;
 699        default:
 700                return false;
 701        }
 702}
 703
 704static struct debug_obj_descr timer_debug_descr = {
 705        .name                   = "timer_list",
 706        .debug_hint             = timer_debug_hint,
 707        .is_static_object       = timer_is_static_object,
 708        .fixup_init             = timer_fixup_init,
 709        .fixup_activate         = timer_fixup_activate,
 710        .fixup_free             = timer_fixup_free,
 711        .fixup_assert_init      = timer_fixup_assert_init,
 712};
 713
 714static inline void debug_timer_init(struct timer_list *timer)
 715{
 716        debug_object_init(timer, &timer_debug_descr);
 717}
 718
 719static inline void debug_timer_activate(struct timer_list *timer)
 720{
 721        debug_object_activate(timer, &timer_debug_descr);
 722}
 723
 724static inline void debug_timer_deactivate(struct timer_list *timer)
 725{
 726        debug_object_deactivate(timer, &timer_debug_descr);
 727}
 728
 729static inline void debug_timer_free(struct timer_list *timer)
 730{
 731        debug_object_free(timer, &timer_debug_descr);
 732}
 733
 734static inline void debug_timer_assert_init(struct timer_list *timer)
 735{
 736        debug_object_assert_init(timer, &timer_debug_descr);
 737}
 738
 739static void do_init_timer(struct timer_list *timer, unsigned int flags,
 740                          const char *name, struct lock_class_key *key);
 741
 742void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
 743                             const char *name, struct lock_class_key *key)
 744{
 745        debug_object_init_on_stack(timer, &timer_debug_descr);
 746        do_init_timer(timer, flags, name, key);
 747}
 748EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
 749
 750void destroy_timer_on_stack(struct timer_list *timer)
 751{
 752        debug_object_free(timer, &timer_debug_descr);
 753}
 754EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
 755
 756#else
 757static inline void debug_timer_init(struct timer_list *timer) { }
 758static inline void debug_timer_activate(struct timer_list *timer) { }
 759static inline void debug_timer_deactivate(struct timer_list *timer) { }
 760static inline void debug_timer_assert_init(struct timer_list *timer) { }
 761#endif
 762
 763static inline void debug_init(struct timer_list *timer)
 764{
 765        debug_timer_init(timer);
 766        trace_timer_init(timer);
 767}
 768
 769static inline void
 770debug_activate(struct timer_list *timer, unsigned long expires)
 771{
 772        debug_timer_activate(timer);
 773        trace_timer_start(timer, expires, timer->flags);
 774}
 775
 776static inline void debug_deactivate(struct timer_list *timer)
 777{
 778        debug_timer_deactivate(timer);
 779        trace_timer_cancel(timer);
 780}
 781
 782static inline void debug_assert_init(struct timer_list *timer)
 783{
 784        debug_timer_assert_init(timer);
 785}
 786
 787static void do_init_timer(struct timer_list *timer, unsigned int flags,
 788                          const char *name, struct lock_class_key *key)
 789{
 790        timer->entry.pprev = NULL;
 791        timer->flags = flags | raw_smp_processor_id();
 792#ifdef CONFIG_TIMER_STATS
 793        timer->start_site = NULL;
 794        timer->start_pid = -1;
 795        memset(timer->start_comm, 0, TASK_COMM_LEN);
 796#endif
 797        lockdep_init_map(&timer->lockdep_map, name, key, 0);
 798}
 799
 800/**
 801 * init_timer_key - initialize a timer
 802 * @timer: the timer to be initialized
 803 * @flags: timer flags
 804 * @name: name of the timer
 805 * @key: lockdep class key of the fake lock used for tracking timer
 806 *       sync lock dependencies
 807 *
 808 * init_timer_key() must be done to a timer prior calling *any* of the
 809 * other timer functions.
 810 */
 811void init_timer_key(struct timer_list *timer, unsigned int flags,
 812                    const char *name, struct lock_class_key *key)
 813{
 814        debug_init(timer);
 815        do_init_timer(timer, flags, name, key);
 816}
 817EXPORT_SYMBOL(init_timer_key);
 818
 819static inline void detach_timer(struct timer_list *timer, bool clear_pending)
 820{
 821        struct hlist_node *entry = &timer->entry;
 822
 823        debug_deactivate(timer);
 824
 825        __hlist_del(entry);
 826        if (clear_pending)
 827                entry->pprev = NULL;
 828        entry->next = LIST_POISON2;
 829}
 830
 831static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
 832                             bool clear_pending)
 833{
 834        unsigned idx = timer_get_idx(timer);
 835
 836        if (!timer_pending(timer))
 837                return 0;
 838
 839        if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
 840                __clear_bit(idx, base->pending_map);
 841
 842        detach_timer(timer, clear_pending);
 843        return 1;
 844}
 845
 846static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
 847{
 848        struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
 849
 850        /*
 851         * If the timer is deferrable and nohz is active then we need to use
 852         * the deferrable base.
 853         */
 854        if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
 855            (tflags & TIMER_DEFERRABLE))
 856                base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
 857        return base;
 858}
 859
 860static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
 861{
 862        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
 863
 864        /*
 865         * If the timer is deferrable and nohz is active then we need to use
 866         * the deferrable base.
 867         */
 868        if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
 869            (tflags & TIMER_DEFERRABLE))
 870                base = this_cpu_ptr(&timer_bases[BASE_DEF]);
 871        return base;
 872}
 873
 874static inline struct timer_base *get_timer_base(u32 tflags)
 875{
 876        return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
 877}
 878
 879#ifdef CONFIG_NO_HZ_COMMON
 880static inline struct timer_base *
 881get_target_base(struct timer_base *base, unsigned tflags)
 882{
 883#ifdef CONFIG_SMP
 884        if ((tflags & TIMER_PINNED) || !base->migration_enabled)
 885                return get_timer_this_cpu_base(tflags);
 886        return get_timer_cpu_base(tflags, get_nohz_timer_target());
 887#else
 888        return get_timer_this_cpu_base(tflags);
 889#endif
 890}
 891
 892static inline void forward_timer_base(struct timer_base *base)
 893{
 894        unsigned long jnow = READ_ONCE(jiffies);
 895
 896        /*
 897         * We only forward the base when it's idle and we have a delta between
 898         * base clock and jiffies.
 899         */
 900        if (!base->is_idle || (long) (jnow - base->clk) < 2)
 901                return;
 902
 903        /*
 904         * If the next expiry value is > jiffies, then we fast forward to
 905         * jiffies otherwise we forward to the next expiry value.
 906         */
 907        if (time_after(base->next_expiry, jnow))
 908                base->clk = jnow;
 909        else
 910                base->clk = base->next_expiry;
 911}
 912#else
 913static inline struct timer_base *
 914get_target_base(struct timer_base *base, unsigned tflags)
 915{
 916        return get_timer_this_cpu_base(tflags);
 917}
 918
 919static inline void forward_timer_base(struct timer_base *base) { }
 920#endif
 921
 922
 923/*
 924 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
 925 * that all timers which are tied to this base are locked, and the base itself
 926 * is locked too.
 927 *
 928 * So __run_timers/migrate_timers can safely modify all timers which could
 929 * be found in the base->vectors array.
 930 *
 931 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
 932 * to wait until the migration is done.
 933 */
 934static struct timer_base *lock_timer_base(struct timer_list *timer,
 935                                          unsigned long *flags)
 936        __acquires(timer->base->lock)
 937{
 938        for (;;) {
 939                struct timer_base *base;
 940                u32 tf;
 941
 942                /*
 943                 * We need to use READ_ONCE() here, otherwise the compiler
 944                 * might re-read @tf between the check for TIMER_MIGRATING
 945                 * and spin_lock().
 946                 */
 947                tf = READ_ONCE(timer->flags);
 948
 949                if (!(tf & TIMER_MIGRATING)) {
 950                        base = get_timer_base(tf);
 951                        spin_lock_irqsave(&base->lock, *flags);
 952                        if (timer->flags == tf)
 953                                return base;
 954                        spin_unlock_irqrestore(&base->lock, *flags);
 955                }
 956                cpu_relax();
 957        }
 958}
 959
 960static inline int
 961__mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
 962{
 963        struct timer_base *base, *new_base;
 964        unsigned int idx = UINT_MAX;
 965        unsigned long clk = 0, flags;
 966        int ret = 0;
 967
 968        BUG_ON(!timer->function);
 969
 970        /*
 971         * This is a common optimization triggered by the networking code - if
 972         * the timer is re-modified to have the same timeout or ends up in the
 973         * same array bucket then just return:
 974         */
 975        if (timer_pending(timer)) {
 976                if (timer->expires == expires)
 977                        return 1;
 978
 979                /*
 980                 * We lock timer base and calculate the bucket index right
 981                 * here. If the timer ends up in the same bucket, then we
 982                 * just update the expiry time and avoid the whole
 983                 * dequeue/enqueue dance.
 984                 */
 985                base = lock_timer_base(timer, &flags);
 986
 987                clk = base->clk;
 988                idx = calc_wheel_index(expires, clk);
 989
 990                /*
 991                 * Retrieve and compare the array index of the pending
 992                 * timer. If it matches set the expiry to the new value so a
 993                 * subsequent call will exit in the expires check above.
 994                 */
 995                if (idx == timer_get_idx(timer)) {
 996                        timer->expires = expires;
 997                        ret = 1;
 998                        goto out_unlock;
 999                }
1000        } else {
1001                base = lock_timer_base(timer, &flags);
1002        }
1003
1004        timer_stats_timer_set_start_info(timer);
1005
1006        ret = detach_if_pending(timer, base, false);
1007        if (!ret && pending_only)
1008                goto out_unlock;
1009
1010        debug_activate(timer, expires);
1011
1012        new_base = get_target_base(base, timer->flags);
1013
1014        if (base != new_base) {
1015                /*
1016                 * We are trying to schedule the timer on the new base.
1017                 * However we can't change timer's base while it is running,
1018                 * otherwise del_timer_sync() can't detect that the timer's
1019                 * handler yet has not finished. This also guarantees that the
1020                 * timer is serialized wrt itself.
1021                 */
1022                if (likely(base->running_timer != timer)) {
1023                        /* See the comment in lock_timer_base() */
1024                        timer->flags |= TIMER_MIGRATING;
1025
1026                        spin_unlock(&base->lock);
1027                        base = new_base;
1028                        spin_lock(&base->lock);
1029                        WRITE_ONCE(timer->flags,
1030                                   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1031                }
1032        }
1033
1034        /* Try to forward a stale timer base clock */
1035        forward_timer_base(base);
1036
1037        timer->expires = expires;
1038        /*
1039         * If 'idx' was calculated above and the base time did not advance
1040         * between calculating 'idx' and possibly switching the base, only
1041         * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1042         * we need to (re)calculate the wheel index via
1043         * internal_add_timer().
1044         */
1045        if (idx != UINT_MAX && clk == base->clk) {
1046                enqueue_timer(base, timer, idx);
1047                trigger_dyntick_cpu(base, timer);
1048        } else {
1049                internal_add_timer(base, timer);
1050        }
1051
1052out_unlock:
1053        spin_unlock_irqrestore(&base->lock, flags);
1054
1055        return ret;
1056}
1057
1058/**
1059 * mod_timer_pending - modify a pending timer's timeout
1060 * @timer: the pending timer to be modified
1061 * @expires: new timeout in jiffies
1062 *
1063 * mod_timer_pending() is the same for pending timers as mod_timer(),
1064 * but will not re-activate and modify already deleted timers.
1065 *
1066 * It is useful for unserialized use of timers.
1067 */
1068int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1069{
1070        return __mod_timer(timer, expires, true);
1071}
1072EXPORT_SYMBOL(mod_timer_pending);
1073
1074/**
1075 * mod_timer - modify a timer's timeout
1076 * @timer: the timer to be modified
1077 * @expires: new timeout in jiffies
1078 *
1079 * mod_timer() is a more efficient way to update the expire field of an
1080 * active timer (if the timer is inactive it will be activated)
1081 *
1082 * mod_timer(timer, expires) is equivalent to:
1083 *
1084 *     del_timer(timer); timer->expires = expires; add_timer(timer);
1085 *
1086 * Note that if there are multiple unserialized concurrent users of the
1087 * same timer, then mod_timer() is the only safe way to modify the timeout,
1088 * since add_timer() cannot modify an already running timer.
1089 *
1090 * The function returns whether it has modified a pending timer or not.
1091 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1092 * active timer returns 1.)
1093 */
1094int mod_timer(struct timer_list *timer, unsigned long expires)
1095{
1096        return __mod_timer(timer, expires, false);
1097}
1098EXPORT_SYMBOL(mod_timer);
1099
1100/**
1101 * add_timer - start a timer
1102 * @timer: the timer to be added
1103 *
1104 * The kernel will do a ->function(->data) callback from the
1105 * timer interrupt at the ->expires point in the future. The
1106 * current time is 'jiffies'.
1107 *
1108 * The timer's ->expires, ->function (and if the handler uses it, ->data)
1109 * fields must be set prior calling this function.
1110 *
1111 * Timers with an ->expires field in the past will be executed in the next
1112 * timer tick.
1113 */
1114void add_timer(struct timer_list *timer)
1115{
1116        BUG_ON(timer_pending(timer));
1117        mod_timer(timer, timer->expires);
1118}
1119EXPORT_SYMBOL(add_timer);
1120
1121/**
1122 * add_timer_on - start a timer on a particular CPU
1123 * @timer: the timer to be added
1124 * @cpu: the CPU to start it on
1125 *
1126 * This is not very scalable on SMP. Double adds are not possible.
1127 */
1128void add_timer_on(struct timer_list *timer, int cpu)
1129{
1130        struct timer_base *new_base, *base;
1131        unsigned long flags;
1132
1133        timer_stats_timer_set_start_info(timer);
1134        BUG_ON(timer_pending(timer) || !timer->function);
1135
1136        new_base = get_timer_cpu_base(timer->flags, cpu);
1137
1138        /*
1139         * If @timer was on a different CPU, it should be migrated with the
1140         * old base locked to prevent other operations proceeding with the
1141         * wrong base locked.  See lock_timer_base().
1142         */
1143        base = lock_timer_base(timer, &flags);
1144        if (base != new_base) {
1145                timer->flags |= TIMER_MIGRATING;
1146
1147                spin_unlock(&base->lock);
1148                base = new_base;
1149                spin_lock(&base->lock);
1150                WRITE_ONCE(timer->flags,
1151                           (timer->flags & ~TIMER_BASEMASK) | cpu);
1152        }
1153
1154        debug_activate(timer, timer->expires);
1155        internal_add_timer(base, timer);
1156        spin_unlock_irqrestore(&base->lock, flags);
1157}
1158EXPORT_SYMBOL_GPL(add_timer_on);
1159
1160/**
1161 * del_timer - deactive a timer.
1162 * @timer: the timer to be deactivated
1163 *
1164 * del_timer() deactivates a timer - this works on both active and inactive
1165 * timers.
1166 *
1167 * The function returns whether it has deactivated a pending timer or not.
1168 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1169 * active timer returns 1.)
1170 */
1171int del_timer(struct timer_list *timer)
1172{
1173        struct timer_base *base;
1174        unsigned long flags;
1175        int ret = 0;
1176
1177        debug_assert_init(timer);
1178
1179        timer_stats_timer_clear_start_info(timer);
1180        if (timer_pending(timer)) {
1181                base = lock_timer_base(timer, &flags);
1182                ret = detach_if_pending(timer, base, true);
1183                spin_unlock_irqrestore(&base->lock, flags);
1184        }
1185
1186        return ret;
1187}
1188EXPORT_SYMBOL(del_timer);
1189
1190/**
1191 * try_to_del_timer_sync - Try to deactivate a timer
1192 * @timer: timer do del
1193 *
1194 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1195 * exit the timer is not queued and the handler is not running on any CPU.
1196 */
1197int try_to_del_timer_sync(struct timer_list *timer)
1198{
1199        struct timer_base *base;
1200        unsigned long flags;
1201        int ret = -1;
1202
1203        debug_assert_init(timer);
1204
1205        base = lock_timer_base(timer, &flags);
1206
1207        if (base->running_timer != timer) {
1208                timer_stats_timer_clear_start_info(timer);
1209                ret = detach_if_pending(timer, base, true);
1210        }
1211        spin_unlock_irqrestore(&base->lock, flags);
1212
1213        return ret;
1214}
1215EXPORT_SYMBOL(try_to_del_timer_sync);
1216
1217#ifdef CONFIG_SMP
1218/**
1219 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1220 * @timer: the timer to be deactivated
1221 *
1222 * This function only differs from del_timer() on SMP: besides deactivating
1223 * the timer it also makes sure the handler has finished executing on other
1224 * CPUs.
1225 *
1226 * Synchronization rules: Callers must prevent restarting of the timer,
1227 * otherwise this function is meaningless. It must not be called from
1228 * interrupt contexts unless the timer is an irqsafe one. The caller must
1229 * not hold locks which would prevent completion of the timer's
1230 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1231 * timer is not queued and the handler is not running on any CPU.
1232 *
1233 * Note: For !irqsafe timers, you must not hold locks that are held in
1234 *   interrupt context while calling this function. Even if the lock has
1235 *   nothing to do with the timer in question.  Here's why:
1236 *
1237 *    CPU0                             CPU1
1238 *    ----                             ----
1239 *                                   <SOFTIRQ>
1240 *                                   call_timer_fn();
1241 *                                     base->running_timer = mytimer;
1242 *  spin_lock_irq(somelock);
1243 *                                     <IRQ>
1244 *                                        spin_lock(somelock);
1245 *  del_timer_sync(mytimer);
1246 *   while (base->running_timer == mytimer);
1247 *
1248 * Now del_timer_sync() will never return and never release somelock.
1249 * The interrupt on the other CPU is waiting to grab somelock but
1250 * it has interrupted the softirq that CPU0 is waiting to finish.
1251 *
1252 * The function returns whether it has deactivated a pending timer or not.
1253 */
1254int del_timer_sync(struct timer_list *timer)
1255{
1256#ifdef CONFIG_LOCKDEP
1257        unsigned long flags;
1258
1259        /*
1260         * If lockdep gives a backtrace here, please reference
1261         * the synchronization rules above.
1262         */
1263        local_irq_save(flags);
1264        lock_map_acquire(&timer->lockdep_map);
1265        lock_map_release(&timer->lockdep_map);
1266        local_irq_restore(flags);
1267#endif
1268        /*
1269         * don't use it in hardirq context, because it
1270         * could lead to deadlock.
1271         */
1272        WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1273        for (;;) {
1274                int ret = try_to_del_timer_sync(timer);
1275                if (ret >= 0)
1276                        return ret;
1277                cpu_relax();
1278        }
1279}
1280EXPORT_SYMBOL(del_timer_sync);
1281#endif
1282
1283static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1284                          unsigned long data)
1285{
1286        int count = preempt_count();
1287
1288#ifdef CONFIG_LOCKDEP
1289        /*
1290         * It is permissible to free the timer from inside the
1291         * function that is called from it, this we need to take into
1292         * account for lockdep too. To avoid bogus "held lock freed"
1293         * warnings as well as problems when looking into
1294         * timer->lockdep_map, make a copy and use that here.
1295         */
1296        struct lockdep_map lockdep_map;
1297
1298        lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1299#endif
1300        /*
1301         * Couple the lock chain with the lock chain at
1302         * del_timer_sync() by acquiring the lock_map around the fn()
1303         * call here and in del_timer_sync().
1304         */
1305        lock_map_acquire(&lockdep_map);
1306
1307        trace_timer_expire_entry(timer);
1308        fn(data);
1309        trace_timer_expire_exit(timer);
1310
1311        lock_map_release(&lockdep_map);
1312
1313        if (count != preempt_count()) {
1314                WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1315                          fn, count, preempt_count());
1316                /*
1317                 * Restore the preempt count. That gives us a decent
1318                 * chance to survive and extract information. If the
1319                 * callback kept a lock held, bad luck, but not worse
1320                 * than the BUG() we had.
1321                 */
1322                preempt_count_set(count);
1323        }
1324}
1325
1326static void expire_timers(struct timer_base *base, struct hlist_head *head)
1327{
1328        while (!hlist_empty(head)) {
1329                struct timer_list *timer;
1330                void (*fn)(unsigned long);
1331                unsigned long data;
1332
1333                timer = hlist_entry(head->first, struct timer_list, entry);
1334                timer_stats_account_timer(timer);
1335
1336                base->running_timer = timer;
1337                detach_timer(timer, true);
1338
1339                fn = timer->function;
1340                data = timer->data;
1341
1342                if (timer->flags & TIMER_IRQSAFE) {
1343                        spin_unlock(&base->lock);
1344                        call_timer_fn(timer, fn, data);
1345                        spin_lock(&base->lock);
1346                } else {
1347                        spin_unlock_irq(&base->lock);
1348                        call_timer_fn(timer, fn, data);
1349                        spin_lock_irq(&base->lock);
1350                }
1351        }
1352}
1353
1354static int __collect_expired_timers(struct timer_base *base,
1355                                    struct hlist_head *heads)
1356{
1357        unsigned long clk = base->clk;
1358        struct hlist_head *vec;
1359        int i, levels = 0;
1360        unsigned int idx;
1361
1362        for (i = 0; i < LVL_DEPTH; i++) {
1363                idx = (clk & LVL_MASK) + i * LVL_SIZE;
1364
1365                if (__test_and_clear_bit(idx, base->pending_map)) {
1366                        vec = base->vectors + idx;
1367                        hlist_move_list(vec, heads++);
1368                        levels++;
1369                }
1370                /* Is it time to look at the next level? */
1371                if (clk & LVL_CLK_MASK)
1372                        break;
1373                /* Shift clock for the next level granularity */
1374                clk >>= LVL_CLK_SHIFT;
1375        }
1376        return levels;
1377}
1378
1379#ifdef CONFIG_NO_HZ_COMMON
1380/*
1381 * Find the next pending bucket of a level. Search from level start (@offset)
1382 * + @clk upwards and if nothing there, search from start of the level
1383 * (@offset) up to @offset + clk.
1384 */
1385static int next_pending_bucket(struct timer_base *base, unsigned offset,
1386                               unsigned clk)
1387{
1388        unsigned pos, start = offset + clk;
1389        unsigned end = offset + LVL_SIZE;
1390
1391        pos = find_next_bit(base->pending_map, end, start);
1392        if (pos < end)
1393                return pos - start;
1394
1395        pos = find_next_bit(base->pending_map, start, offset);
1396        return pos < start ? pos + LVL_SIZE - start : -1;
1397}
1398
1399/*
1400 * Search the first expiring timer in the various clock levels. Caller must
1401 * hold base->lock.
1402 */
1403static unsigned long __next_timer_interrupt(struct timer_base *base)
1404{
1405        unsigned long clk, next, adj;
1406        unsigned lvl, offset = 0;
1407
1408        next = base->clk + NEXT_TIMER_MAX_DELTA;
1409        clk = base->clk;
1410        for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1411                int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1412
1413                if (pos >= 0) {
1414                        unsigned long tmp = clk + (unsigned long) pos;
1415
1416                        tmp <<= LVL_SHIFT(lvl);
1417                        if (time_before(tmp, next))
1418                                next = tmp;
1419                }
1420                /*
1421                 * Clock for the next level. If the current level clock lower
1422                 * bits are zero, we look at the next level as is. If not we
1423                 * need to advance it by one because that's going to be the
1424                 * next expiring bucket in that level. base->clk is the next
1425                 * expiring jiffie. So in case of:
1426                 *
1427                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1428                 *  0    0    0    0    0    0
1429                 *
1430                 * we have to look at all levels @index 0. With
1431                 *
1432                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1433                 *  0    0    0    0    0    2
1434                 *
1435                 * LVL0 has the next expiring bucket @index 2. The upper
1436                 * levels have the next expiring bucket @index 1.
1437                 *
1438                 * In case that the propagation wraps the next level the same
1439                 * rules apply:
1440                 *
1441                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1442                 *  0    0    0    0    F    2
1443                 *
1444                 * So after looking at LVL0 we get:
1445                 *
1446                 * LVL5 LVL4 LVL3 LVL2 LVL1
1447                 *  0    0    0    1    0
1448                 *
1449                 * So no propagation from LVL1 to LVL2 because that happened
1450                 * with the add already, but then we need to propagate further
1451                 * from LVL2 to LVL3.
1452                 *
1453                 * So the simple check whether the lower bits of the current
1454                 * level are 0 or not is sufficient for all cases.
1455                 */
1456                adj = clk & LVL_CLK_MASK ? 1 : 0;
1457                clk >>= LVL_CLK_SHIFT;
1458                clk += adj;
1459        }
1460        return next;
1461}
1462
1463/*
1464 * Check, if the next hrtimer event is before the next timer wheel
1465 * event:
1466 */
1467static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1468{
1469        u64 nextevt = hrtimer_get_next_event();
1470
1471        /*
1472         * If high resolution timers are enabled
1473         * hrtimer_get_next_event() returns KTIME_MAX.
1474         */
1475        if (expires <= nextevt)
1476                return expires;
1477
1478        /*
1479         * If the next timer is already expired, return the tick base
1480         * time so the tick is fired immediately.
1481         */
1482        if (nextevt <= basem)
1483                return basem;
1484
1485        /*
1486         * Round up to the next jiffie. High resolution timers are
1487         * off, so the hrtimers are expired in the tick and we need to
1488         * make sure that this tick really expires the timer to avoid
1489         * a ping pong of the nohz stop code.
1490         *
1491         * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1492         */
1493        return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1494}
1495
1496/**
1497 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1498 * @basej:      base time jiffies
1499 * @basem:      base time clock monotonic
1500 *
1501 * Returns the tick aligned clock monotonic time of the next pending
1502 * timer or KTIME_MAX if no timer is pending.
1503 */
1504u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1505{
1506        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1507        u64 expires = KTIME_MAX;
1508        unsigned long nextevt;
1509        bool is_max_delta;
1510
1511        /*
1512         * Pretend that there is no timer pending if the cpu is offline.
1513         * Possible pending timers will be migrated later to an active cpu.
1514         */
1515        if (cpu_is_offline(smp_processor_id()))
1516                return expires;
1517
1518        spin_lock(&base->lock);
1519        nextevt = __next_timer_interrupt(base);
1520        is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1521        base->next_expiry = nextevt;
1522        /*
1523         * We have a fresh next event. Check whether we can forward the
1524         * base. We can only do that when @basej is past base->clk
1525         * otherwise we might rewind base->clk.
1526         */
1527        if (time_after(basej, base->clk)) {
1528                if (time_after(nextevt, basej))
1529                        base->clk = basej;
1530                else if (time_after(nextevt, base->clk))
1531                        base->clk = nextevt;
1532        }
1533
1534        if (time_before_eq(nextevt, basej)) {
1535                expires = basem;
1536                base->is_idle = false;
1537        } else {
1538                if (!is_max_delta)
1539                        expires = basem + (nextevt - basej) * TICK_NSEC;
1540                /*
1541                 * If we expect to sleep more than a tick, mark the base idle:
1542                 */
1543                if ((expires - basem) > TICK_NSEC)
1544                        base->is_idle = true;
1545        }
1546        spin_unlock(&base->lock);
1547
1548        return cmp_next_hrtimer_event(basem, expires);
1549}
1550
1551/**
1552 * timer_clear_idle - Clear the idle state of the timer base
1553 *
1554 * Called with interrupts disabled
1555 */
1556void timer_clear_idle(void)
1557{
1558        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1559
1560        /*
1561         * We do this unlocked. The worst outcome is a remote enqueue sending
1562         * a pointless IPI, but taking the lock would just make the window for
1563         * sending the IPI a few instructions smaller for the cost of taking
1564         * the lock in the exit from idle path.
1565         */
1566        base->is_idle = false;
1567}
1568
1569static int collect_expired_timers(struct timer_base *base,
1570                                  struct hlist_head *heads)
1571{
1572        /*
1573         * NOHZ optimization. After a long idle sleep we need to forward the
1574         * base to current jiffies. Avoid a loop by searching the bitfield for
1575         * the next expiring timer.
1576         */
1577        if ((long)(jiffies - base->clk) > 2) {
1578                unsigned long next = __next_timer_interrupt(base);
1579
1580                /*
1581                 * If the next timer is ahead of time forward to current
1582                 * jiffies, otherwise forward to the next expiry time:
1583                 */
1584                if (time_after(next, jiffies)) {
1585                        /* The call site will increment clock! */
1586                        base->clk = jiffies - 1;
1587                        return 0;
1588                }
1589                base->clk = next;
1590        }
1591        return __collect_expired_timers(base, heads);
1592}
1593#else
1594static inline int collect_expired_timers(struct timer_base *base,
1595                                         struct hlist_head *heads)
1596{
1597        return __collect_expired_timers(base, heads);
1598}
1599#endif
1600
1601/*
1602 * Called from the timer interrupt handler to charge one tick to the current
1603 * process.  user_tick is 1 if the tick is user time, 0 for system.
1604 */
1605void update_process_times(int user_tick)
1606{
1607        struct task_struct *p = current;
1608
1609        /* Note: this timer irq context must be accounted for as well. */
1610        account_process_tick(p, user_tick);
1611        run_local_timers();
1612        rcu_check_callbacks(user_tick);
1613#ifdef CONFIG_IRQ_WORK
1614        if (in_irq())
1615                irq_work_tick();
1616#endif
1617        scheduler_tick();
1618        if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1619                run_posix_cpu_timers(p);
1620}
1621
1622/**
1623 * __run_timers - run all expired timers (if any) on this CPU.
1624 * @base: the timer vector to be processed.
1625 */
1626static inline void __run_timers(struct timer_base *base)
1627{
1628        struct hlist_head heads[LVL_DEPTH];
1629        int levels;
1630
1631        if (!time_after_eq(jiffies, base->clk))
1632                return;
1633
1634        spin_lock_irq(&base->lock);
1635
1636        while (time_after_eq(jiffies, base->clk)) {
1637
1638                levels = collect_expired_timers(base, heads);
1639                base->clk++;
1640
1641                while (levels--)
1642                        expire_timers(base, heads + levels);
1643        }
1644        base->running_timer = NULL;
1645        spin_unlock_irq(&base->lock);
1646}
1647
1648/*
1649 * This function runs timers and the timer-tq in bottom half context.
1650 */
1651static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1652{
1653        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1654
1655        __run_timers(base);
1656        if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active)
1657                __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1658}
1659
1660/*
1661 * Called by the local, per-CPU timer interrupt on SMP.
1662 */
1663void run_local_timers(void)
1664{
1665        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1666
1667        hrtimer_run_queues();
1668        /* Raise the softirq only if required. */
1669        if (time_before(jiffies, base->clk)) {
1670                if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
1671                        return;
1672                /* CPU is awake, so check the deferrable base. */
1673                base++;
1674                if (time_before(jiffies, base->clk))
1675                        return;
1676        }
1677        raise_softirq(TIMER_SOFTIRQ);
1678}
1679
1680static void process_timeout(unsigned long __data)
1681{
1682        wake_up_process((struct task_struct *)__data);
1683}
1684
1685/**
1686 * schedule_timeout - sleep until timeout
1687 * @timeout: timeout value in jiffies
1688 *
1689 * Make the current task sleep until @timeout jiffies have
1690 * elapsed. The routine will return immediately unless
1691 * the current task state has been set (see set_current_state()).
1692 *
1693 * You can set the task state as follows -
1694 *
1695 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1696 * pass before the routine returns unless the current task is explicitly
1697 * woken up, (e.g. by wake_up_process())".
1698 *
1699 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1700 * delivered to the current task or the current task is explicitly woken
1701 * up.
1702 *
1703 * The current task state is guaranteed to be TASK_RUNNING when this
1704 * routine returns.
1705 *
1706 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1707 * the CPU away without a bound on the timeout. In this case the return
1708 * value will be %MAX_SCHEDULE_TIMEOUT.
1709 *
1710 * Returns 0 when the timer has expired otherwise the remaining time in
1711 * jiffies will be returned.  In all cases the return value is guaranteed
1712 * to be non-negative.
1713 */
1714signed long __sched schedule_timeout(signed long timeout)
1715{
1716        struct timer_list timer;
1717        unsigned long expire;
1718
1719        switch (timeout)
1720        {
1721        case MAX_SCHEDULE_TIMEOUT:
1722                /*
1723                 * These two special cases are useful to be comfortable
1724                 * in the caller. Nothing more. We could take
1725                 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1726                 * but I' d like to return a valid offset (>=0) to allow
1727                 * the caller to do everything it want with the retval.
1728                 */
1729                schedule();
1730                goto out;
1731        default:
1732                /*
1733                 * Another bit of PARANOID. Note that the retval will be
1734                 * 0 since no piece of kernel is supposed to do a check
1735                 * for a negative retval of schedule_timeout() (since it
1736                 * should never happens anyway). You just have the printk()
1737                 * that will tell you if something is gone wrong and where.
1738                 */
1739                if (timeout < 0) {
1740                        printk(KERN_ERR "schedule_timeout: wrong timeout "
1741                                "value %lx\n", timeout);
1742                        dump_stack();
1743                        current->state = TASK_RUNNING;
1744                        goto out;
1745                }
1746        }
1747
1748        expire = timeout + jiffies;
1749
1750        setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1751        __mod_timer(&timer, expire, false);
1752        schedule();
1753        del_singleshot_timer_sync(&timer);
1754
1755        /* Remove the timer from the object tracker */
1756        destroy_timer_on_stack(&timer);
1757
1758        timeout = expire - jiffies;
1759
1760 out:
1761        return timeout < 0 ? 0 : timeout;
1762}
1763EXPORT_SYMBOL(schedule_timeout);
1764
1765/*
1766 * We can use __set_current_state() here because schedule_timeout() calls
1767 * schedule() unconditionally.
1768 */
1769signed long __sched schedule_timeout_interruptible(signed long timeout)
1770{
1771        __set_current_state(TASK_INTERRUPTIBLE);
1772        return schedule_timeout(timeout);
1773}
1774EXPORT_SYMBOL(schedule_timeout_interruptible);
1775
1776signed long __sched schedule_timeout_killable(signed long timeout)
1777{
1778        __set_current_state(TASK_KILLABLE);
1779        return schedule_timeout(timeout);
1780}
1781EXPORT_SYMBOL(schedule_timeout_killable);
1782
1783signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1784{
1785        __set_current_state(TASK_UNINTERRUPTIBLE);
1786        return schedule_timeout(timeout);
1787}
1788EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1789
1790/*
1791 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1792 * to load average.
1793 */
1794signed long __sched schedule_timeout_idle(signed long timeout)
1795{
1796        __set_current_state(TASK_IDLE);
1797        return schedule_timeout(timeout);
1798}
1799EXPORT_SYMBOL(schedule_timeout_idle);
1800
1801#ifdef CONFIG_HOTPLUG_CPU
1802static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1803{
1804        struct timer_list *timer;
1805        int cpu = new_base->cpu;
1806
1807        while (!hlist_empty(head)) {
1808                timer = hlist_entry(head->first, struct timer_list, entry);
1809                detach_timer(timer, false);
1810                timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1811                internal_add_timer(new_base, timer);
1812        }
1813}
1814
1815int timers_dead_cpu(unsigned int cpu)
1816{
1817        struct timer_base *old_base;
1818        struct timer_base *new_base;
1819        int b, i;
1820
1821        BUG_ON(cpu_online(cpu));
1822
1823        for (b = 0; b < NR_BASES; b++) {
1824                old_base = per_cpu_ptr(&timer_bases[b], cpu);
1825                new_base = get_cpu_ptr(&timer_bases[b]);
1826                /*
1827                 * The caller is globally serialized and nobody else
1828                 * takes two locks at once, deadlock is not possible.
1829                 */
1830                spin_lock_irq(&new_base->lock);
1831                spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1832
1833                BUG_ON(old_base->running_timer);
1834
1835                for (i = 0; i < WHEEL_SIZE; i++)
1836                        migrate_timer_list(new_base, old_base->vectors + i);
1837
1838                spin_unlock(&old_base->lock);
1839                spin_unlock_irq(&new_base->lock);
1840                put_cpu_ptr(&timer_bases);
1841        }
1842        return 0;
1843}
1844
1845#endif /* CONFIG_HOTPLUG_CPU */
1846
1847static void __init init_timer_cpu(int cpu)
1848{
1849        struct timer_base *base;
1850        int i;
1851
1852        for (i = 0; i < NR_BASES; i++) {
1853                base = per_cpu_ptr(&timer_bases[i], cpu);
1854                base->cpu = cpu;
1855                spin_lock_init(&base->lock);
1856                base->clk = jiffies;
1857        }
1858}
1859
1860static void __init init_timer_cpus(void)
1861{
1862        int cpu;
1863
1864        for_each_possible_cpu(cpu)
1865                init_timer_cpu(cpu);
1866}
1867
1868void __init init_timers(void)
1869{
1870        init_timer_cpus();
1871        init_timer_stats();
1872        open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1873}
1874
1875/**
1876 * msleep - sleep safely even with waitqueue interruptions
1877 * @msecs: Time in milliseconds to sleep for
1878 */
1879void msleep(unsigned int msecs)
1880{
1881        unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1882
1883        while (timeout)
1884                timeout = schedule_timeout_uninterruptible(timeout);
1885}
1886
1887EXPORT_SYMBOL(msleep);
1888
1889/**
1890 * msleep_interruptible - sleep waiting for signals
1891 * @msecs: Time in milliseconds to sleep for
1892 */
1893unsigned long msleep_interruptible(unsigned int msecs)
1894{
1895        unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1896
1897        while (timeout && !signal_pending(current))
1898                timeout = schedule_timeout_interruptible(timeout);
1899        return jiffies_to_msecs(timeout);
1900}
1901
1902EXPORT_SYMBOL(msleep_interruptible);
1903
1904/**
1905 * usleep_range - Sleep for an approximate time
1906 * @min: Minimum time in usecs to sleep
1907 * @max: Maximum time in usecs to sleep
1908 *
1909 * In non-atomic context where the exact wakeup time is flexible, use
1910 * usleep_range() instead of udelay().  The sleep improves responsiveness
1911 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1912 * power usage by allowing hrtimers to take advantage of an already-
1913 * scheduled interrupt instead of scheduling a new one just for this sleep.
1914 */
1915void __sched usleep_range(unsigned long min, unsigned long max)
1916{
1917        ktime_t exp = ktime_add_us(ktime_get(), min);
1918        u64 delta = (u64)(max - min) * NSEC_PER_USEC;
1919
1920        for (;;) {
1921                __set_current_state(TASK_UNINTERRUPTIBLE);
1922                /* Do not return before the requested sleep time has elapsed */
1923                if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
1924                        break;
1925        }
1926}
1927EXPORT_SYMBOL(usleep_range);
1928