linux/kernel/workqueue.c
<<
>>
Prefs
   1/*
   2 * kernel/workqueue.c - generic async execution with shared worker pool
   3 *
   4 * Copyright (C) 2002           Ingo Molnar
   5 *
   6 *   Derived from the taskqueue/keventd code by:
   7 *     David Woodhouse <dwmw2@infradead.org>
   8 *     Andrew Morton
   9 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10 *     Theodore Ts'o <tytso@mit.edu>
  11 *
  12 * Made to use alloc_percpu by Christoph Lameter.
  13 *
  14 * Copyright (C) 2010           SUSE Linux Products GmbH
  15 * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
  16 *
  17 * This is the generic async execution mechanism.  Work items as are
  18 * executed in process context.  The worker pool is shared and
  19 * automatically managed.  There are two worker pools for each CPU (one for
  20 * normal work items and the other for high priority ones) and some extra
  21 * pools for workqueues which are not bound to any specific CPU - the
  22 * number of these backing pools is dynamic.
  23 *
  24 * Please read Documentation/workqueue.txt for details.
  25 */
  26
  27#include <linux/export.h>
  28#include <linux/kernel.h>
  29#include <linux/sched.h>
  30#include <linux/init.h>
  31#include <linux/signal.h>
  32#include <linux/completion.h>
  33#include <linux/workqueue.h>
  34#include <linux/slab.h>
  35#include <linux/cpu.h>
  36#include <linux/notifier.h>
  37#include <linux/kthread.h>
  38#include <linux/hardirq.h>
  39#include <linux/mempolicy.h>
  40#include <linux/freezer.h>
  41#include <linux/kallsyms.h>
  42#include <linux/debug_locks.h>
  43#include <linux/lockdep.h>
  44#include <linux/idr.h>
  45#include <linux/jhash.h>
  46#include <linux/hashtable.h>
  47#include <linux/rculist.h>
  48#include <linux/nodemask.h>
  49#include <linux/moduleparam.h>
  50#include <linux/uaccess.h>
  51
  52#include "workqueue_internal.h"
  53
  54enum {
  55        /*
  56         * worker_pool flags
  57         *
  58         * A bound pool is either associated or disassociated with its CPU.
  59         * While associated (!DISASSOCIATED), all workers are bound to the
  60         * CPU and none has %WORKER_UNBOUND set and concurrency management
  61         * is in effect.
  62         *
  63         * While DISASSOCIATED, the cpu may be offline and all workers have
  64         * %WORKER_UNBOUND set and concurrency management disabled, and may
  65         * be executing on any CPU.  The pool behaves as an unbound one.
  66         *
  67         * Note that DISASSOCIATED should be flipped only while holding
  68         * attach_mutex to avoid changing binding state while
  69         * worker_attach_to_pool() is in progress.
  70         */
  71        POOL_DISASSOCIATED      = 1 << 2,       /* cpu can't serve workers */
  72
  73        /* worker flags */
  74        WORKER_DIE              = 1 << 1,       /* die die die */
  75        WORKER_IDLE             = 1 << 2,       /* is idle */
  76        WORKER_PREP             = 1 << 3,       /* preparing to run works */
  77        WORKER_CPU_INTENSIVE    = 1 << 6,       /* cpu intensive */
  78        WORKER_UNBOUND          = 1 << 7,       /* worker is unbound */
  79        WORKER_REBOUND          = 1 << 8,       /* worker was rebound */
  80
  81        WORKER_NOT_RUNNING      = WORKER_PREP | WORKER_CPU_INTENSIVE |
  82                                  WORKER_UNBOUND | WORKER_REBOUND,
  83
  84        NR_STD_WORKER_POOLS     = 2,            /* # standard pools per cpu */
  85
  86        UNBOUND_POOL_HASH_ORDER = 6,            /* hashed by pool->attrs */
  87        BUSY_WORKER_HASH_ORDER  = 6,            /* 64 pointers */
  88
  89        MAX_IDLE_WORKERS_RATIO  = 4,            /* 1/4 of busy can be idle */
  90        IDLE_WORKER_TIMEOUT     = 300 * HZ,     /* keep idle ones for 5 mins */
  91
  92        MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  93                                                /* call for help after 10ms
  94                                                   (min two ticks) */
  95        MAYDAY_INTERVAL         = HZ / 10,      /* and then every 100ms */
  96        CREATE_COOLDOWN         = HZ,           /* time to breath after fail */
  97
  98        /*
  99         * Rescue workers are used only on emergencies and shared by
 100         * all cpus.  Give MIN_NICE.
 101         */
 102        RESCUER_NICE_LEVEL      = MIN_NICE,
 103        HIGHPRI_NICE_LEVEL      = MIN_NICE,
 104
 105        WQ_NAME_LEN             = 24,
 106};
 107
 108/*
 109 * Structure fields follow one of the following exclusion rules.
 110 *
 111 * I: Modifiable by initialization/destruction paths and read-only for
 112 *    everyone else.
 113 *
 114 * P: Preemption protected.  Disabling preemption is enough and should
 115 *    only be modified and accessed from the local cpu.
 116 *
 117 * L: pool->lock protected.  Access with pool->lock held.
 118 *
 119 * X: During normal operation, modification requires pool->lock and should
 120 *    be done only from local cpu.  Either disabling preemption on local
 121 *    cpu or grabbing pool->lock is enough for read access.  If
 122 *    POOL_DISASSOCIATED is set, it's identical to L.
 123 *
 124 * A: pool->attach_mutex protected.
 125 *
 126 * PL: wq_pool_mutex protected.
 127 *
 128 * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
 129 *
 130 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 131 *
 132 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 133 *      sched-RCU for reads.
 134 *
 135 * WQ: wq->mutex protected.
 136 *
 137 * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
 138 *
 139 * MD: wq_mayday_lock protected.
 140 */
 141
 142/* struct worker is defined in workqueue_internal.h */
 143
 144struct worker_pool {
 145        spinlock_t              lock;           /* the pool lock */
 146        int                     cpu;            /* I: the associated cpu */
 147        int                     node;           /* I: the associated node ID */
 148        int                     id;             /* I: pool ID */
 149        unsigned int            flags;          /* X: flags */
 150
 151        unsigned long           watchdog_ts;    /* L: watchdog timestamp */
 152
 153        struct list_head        worklist;       /* L: list of pending works */
 154        int                     nr_workers;     /* L: total number of workers */
 155
 156        /* nr_idle includes the ones off idle_list for rebinding */
 157        int                     nr_idle;        /* L: currently idle ones */
 158
 159        struct list_head        idle_list;      /* X: list of idle workers */
 160        struct timer_list       idle_timer;     /* L: worker idle timeout */
 161        struct timer_list       mayday_timer;   /* L: SOS timer for workers */
 162
 163        /* a workers is either on busy_hash or idle_list, or the manager */
 164        DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 165                                                /* L: hash of busy workers */
 166
 167        /* see manage_workers() for details on the two manager mutexes */
 168        struct mutex            manager_arb;    /* manager arbitration */
 169        struct worker           *manager;       /* L: purely informational */
 170        struct mutex            attach_mutex;   /* attach/detach exclusion */
 171        struct list_head        workers;        /* A: attached workers */
 172        struct completion       *detach_completion; /* all workers detached */
 173
 174        struct ida              worker_ida;     /* worker IDs for task name */
 175
 176        struct workqueue_attrs  *attrs;         /* I: worker attributes */
 177        struct hlist_node       hash_node;      /* PL: unbound_pool_hash node */
 178        int                     refcnt;         /* PL: refcnt for unbound pools */
 179
 180        /*
 181         * The current concurrency level.  As it's likely to be accessed
 182         * from other CPUs during try_to_wake_up(), put it in a separate
 183         * cacheline.
 184         */
 185        atomic_t                nr_running ____cacheline_aligned_in_smp;
 186
 187        /*
 188         * Destruction of pool is sched-RCU protected to allow dereferences
 189         * from get_work_pool().
 190         */
 191        struct rcu_head         rcu;
 192} ____cacheline_aligned_in_smp;
 193
 194/*
 195 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 196 * of work_struct->data are used for flags and the remaining high bits
 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 198 * number of flag bits.
 199 */
 200struct pool_workqueue {
 201        struct worker_pool      *pool;          /* I: the associated pool */
 202        struct workqueue_struct *wq;            /* I: the owning workqueue */
 203        int                     work_color;     /* L: current color */
 204        int                     flush_color;    /* L: flushing color */
 205        int                     refcnt;         /* L: reference count */
 206        int                     nr_in_flight[WORK_NR_COLORS];
 207                                                /* L: nr of in_flight works */
 208        int                     nr_active;      /* L: nr of active works */
 209        int                     max_active;     /* L: max active works */
 210        struct list_head        delayed_works;  /* L: delayed works */
 211        struct list_head        pwqs_node;      /* WR: node on wq->pwqs */
 212        struct list_head        mayday_node;    /* MD: node on wq->maydays */
 213
 214        /*
 215         * Release of unbound pwq is punted to system_wq.  See put_pwq()
 216         * and pwq_unbound_release_workfn() for details.  pool_workqueue
 217         * itself is also sched-RCU protected so that the first pwq can be
 218         * determined without grabbing wq->mutex.
 219         */
 220        struct work_struct      unbound_release_work;
 221        struct rcu_head         rcu;
 222} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 223
 224/*
 225 * Structure used to wait for workqueue flush.
 226 */
 227struct wq_flusher {
 228        struct list_head        list;           /* WQ: list of flushers */
 229        int                     flush_color;    /* WQ: flush color waiting for */
 230        struct completion       done;           /* flush completion */
 231};
 232
 233struct wq_device;
 234
 235/*
 236 * The externally visible workqueue.  It relays the issued work items to
 237 * the appropriate worker_pool through its pool_workqueues.
 238 */
 239struct workqueue_struct {
 240        struct list_head        pwqs;           /* WR: all pwqs of this wq */
 241        struct list_head        list;           /* PR: list of all workqueues */
 242
 243        struct mutex            mutex;          /* protects this wq */
 244        int                     work_color;     /* WQ: current work color */
 245        int                     flush_color;    /* WQ: current flush color */
 246        atomic_t                nr_pwqs_to_flush; /* flush in progress */
 247        struct wq_flusher       *first_flusher; /* WQ: first flusher */
 248        struct list_head        flusher_queue;  /* WQ: flush waiters */
 249        struct list_head        flusher_overflow; /* WQ: flush overflow list */
 250
 251        struct list_head        maydays;        /* MD: pwqs requesting rescue */
 252        struct worker           *rescuer;       /* I: rescue worker */
 253
 254        int                     nr_drainers;    /* WQ: drain in progress */
 255        int                     saved_max_active; /* WQ: saved pwq max_active */
 256
 257        struct workqueue_attrs  *unbound_attrs; /* PW: only for unbound wqs */
 258        struct pool_workqueue   *dfl_pwq;       /* PW: only for unbound wqs */
 259
 260#ifdef CONFIG_SYSFS
 261        struct wq_device        *wq_dev;        /* I: for sysfs interface */
 262#endif
 263#ifdef CONFIG_LOCKDEP
 264        struct lockdep_map      lockdep_map;
 265#endif
 266        char                    name[WQ_NAME_LEN]; /* I: workqueue name */
 267
 268        /*
 269         * Destruction of workqueue_struct is sched-RCU protected to allow
 270         * walking the workqueues list without grabbing wq_pool_mutex.
 271         * This is used to dump all workqueues from sysrq.
 272         */
 273        struct rcu_head         rcu;
 274
 275        /* hot fields used during command issue, aligned to cacheline */
 276        unsigned int            flags ____cacheline_aligned; /* WQ: WQ_* flags */
 277        struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
 278        struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
 279};
 280
 281static struct kmem_cache *pwq_cache;
 282
 283static cpumask_var_t *wq_numa_possible_cpumask;
 284                                        /* possible CPUs of each node */
 285
 286static bool wq_disable_numa;
 287module_param_named(disable_numa, wq_disable_numa, bool, 0444);
 288
 289/* see the comment above the definition of WQ_POWER_EFFICIENT */
 290static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 291module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 292
 293static bool wq_online;                  /* can kworkers be created yet? */
 294
 295static bool wq_numa_enabled;            /* unbound NUMA affinity enabled */
 296
 297/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
 298static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
 299
 300static DEFINE_MUTEX(wq_pool_mutex);     /* protects pools and workqueues list */
 301static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
 302
 303static LIST_HEAD(workqueues);           /* PR: list of all workqueues */
 304static bool workqueue_freezing;         /* PL: have wqs started freezing? */
 305
 306/* PL: allowable cpus for unbound wqs and work items */
 307static cpumask_var_t wq_unbound_cpumask;
 308
 309/* CPU where unbound work was last round robin scheduled from this CPU */
 310static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 311
 312/*
 313 * Local execution of unbound work items is no longer guaranteed.  The
 314 * following always forces round-robin CPU selection on unbound work items
 315 * to uncover usages which depend on it.
 316 */
 317#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 318static bool wq_debug_force_rr_cpu = true;
 319#else
 320static bool wq_debug_force_rr_cpu = false;
 321#endif
 322module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 323
 324/* the per-cpu worker pools */
 325static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
 326
 327static DEFINE_IDR(worker_pool_idr);     /* PR: idr of all pools */
 328
 329/* PL: hash of all unbound pools keyed by pool->attrs */
 330static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 331
 332/* I: attributes used when instantiating standard unbound pools on demand */
 333static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 334
 335/* I: attributes used when instantiating ordered pools on demand */
 336static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 337
 338struct workqueue_struct *system_wq __read_mostly;
 339EXPORT_SYMBOL(system_wq);
 340struct workqueue_struct *system_highpri_wq __read_mostly;
 341EXPORT_SYMBOL_GPL(system_highpri_wq);
 342struct workqueue_struct *system_long_wq __read_mostly;
 343EXPORT_SYMBOL_GPL(system_long_wq);
 344struct workqueue_struct *system_unbound_wq __read_mostly;
 345EXPORT_SYMBOL_GPL(system_unbound_wq);
 346struct workqueue_struct *system_freezable_wq __read_mostly;
 347EXPORT_SYMBOL_GPL(system_freezable_wq);
 348struct workqueue_struct *system_power_efficient_wq __read_mostly;
 349EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 350struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
 351EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 352
 353static int worker_thread(void *__worker);
 354static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 355
 356#define CREATE_TRACE_POINTS
 357#include <trace/events/workqueue.h>
 358
 359#define assert_rcu_or_pool_mutex()                                      \
 360        RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&                 \
 361                         !lockdep_is_held(&wq_pool_mutex),              \
 362                         "sched RCU or wq_pool_mutex should be held")
 363
 364#define assert_rcu_or_wq_mutex(wq)                                      \
 365        RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&                 \
 366                         !lockdep_is_held(&wq->mutex),                  \
 367                         "sched RCU or wq->mutex should be held")
 368
 369#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)                        \
 370        RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&                 \
 371                         !lockdep_is_held(&wq->mutex) &&                \
 372                         !lockdep_is_held(&wq_pool_mutex),              \
 373                         "sched RCU, wq->mutex or wq_pool_mutex should be held")
 374
 375#define for_each_cpu_worker_pool(pool, cpu)                             \
 376        for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];               \
 377             (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 378             (pool)++)
 379
 380/**
 381 * for_each_pool - iterate through all worker_pools in the system
 382 * @pool: iteration cursor
 383 * @pi: integer used for iteration
 384 *
 385 * This must be called either with wq_pool_mutex held or sched RCU read
 386 * locked.  If the pool needs to be used beyond the locking in effect, the
 387 * caller is responsible for guaranteeing that the pool stays online.
 388 *
 389 * The if/else clause exists only for the lockdep assertion and can be
 390 * ignored.
 391 */
 392#define for_each_pool(pool, pi)                                         \
 393        idr_for_each_entry(&worker_pool_idr, pool, pi)                  \
 394                if (({ assert_rcu_or_pool_mutex(); false; })) { }       \
 395                else
 396
 397/**
 398 * for_each_pool_worker - iterate through all workers of a worker_pool
 399 * @worker: iteration cursor
 400 * @pool: worker_pool to iterate workers of
 401 *
 402 * This must be called with @pool->attach_mutex.
 403 *
 404 * The if/else clause exists only for the lockdep assertion and can be
 405 * ignored.
 406 */
 407#define for_each_pool_worker(worker, pool)                              \
 408        list_for_each_entry((worker), &(pool)->workers, node)           \
 409                if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
 410                else
 411
 412/**
 413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 414 * @pwq: iteration cursor
 415 * @wq: the target workqueue
 416 *
 417 * This must be called either with wq->mutex held or sched RCU read locked.
 418 * If the pwq needs to be used beyond the locking in effect, the caller is
 419 * responsible for guaranteeing that the pwq stays online.
 420 *
 421 * The if/else clause exists only for the lockdep assertion and can be
 422 * ignored.
 423 */
 424#define for_each_pwq(pwq, wq)                                           \
 425        list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)          \
 426                if (({ assert_rcu_or_wq_mutex(wq); false; })) { }       \
 427                else
 428
 429#ifdef CONFIG_DEBUG_OBJECTS_WORK
 430
 431static struct debug_obj_descr work_debug_descr;
 432
 433static void *work_debug_hint(void *addr)
 434{
 435        return ((struct work_struct *) addr)->func;
 436}
 437
 438static bool work_is_static_object(void *addr)
 439{
 440        struct work_struct *work = addr;
 441
 442        return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
 443}
 444
 445/*
 446 * fixup_init is called when:
 447 * - an active object is initialized
 448 */
 449static bool work_fixup_init(void *addr, enum debug_obj_state state)
 450{
 451        struct work_struct *work = addr;
 452
 453        switch (state) {
 454        case ODEBUG_STATE_ACTIVE:
 455                cancel_work_sync(work);
 456                debug_object_init(work, &work_debug_descr);
 457                return true;
 458        default:
 459                return false;
 460        }
 461}
 462
 463/*
 464 * fixup_free is called when:
 465 * - an active object is freed
 466 */
 467static bool work_fixup_free(void *addr, enum debug_obj_state state)
 468{
 469        struct work_struct *work = addr;
 470
 471        switch (state) {
 472        case ODEBUG_STATE_ACTIVE:
 473                cancel_work_sync(work);
 474                debug_object_free(work, &work_debug_descr);
 475                return true;
 476        default:
 477                return false;
 478        }
 479}
 480
 481static struct debug_obj_descr work_debug_descr = {
 482        .name           = "work_struct",
 483        .debug_hint     = work_debug_hint,
 484        .is_static_object = work_is_static_object,
 485        .fixup_init     = work_fixup_init,
 486        .fixup_free     = work_fixup_free,
 487};
 488
 489static inline void debug_work_activate(struct work_struct *work)
 490{
 491        debug_object_activate(work, &work_debug_descr);
 492}
 493
 494static inline void debug_work_deactivate(struct work_struct *work)
 495{
 496        debug_object_deactivate(work, &work_debug_descr);
 497}
 498
 499void __init_work(struct work_struct *work, int onstack)
 500{
 501        if (onstack)
 502                debug_object_init_on_stack(work, &work_debug_descr);
 503        else
 504                debug_object_init(work, &work_debug_descr);
 505}
 506EXPORT_SYMBOL_GPL(__init_work);
 507
 508void destroy_work_on_stack(struct work_struct *work)
 509{
 510        debug_object_free(work, &work_debug_descr);
 511}
 512EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 513
 514void destroy_delayed_work_on_stack(struct delayed_work *work)
 515{
 516        destroy_timer_on_stack(&work->timer);
 517        debug_object_free(&work->work, &work_debug_descr);
 518}
 519EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 520
 521#else
 522static inline void debug_work_activate(struct work_struct *work) { }
 523static inline void debug_work_deactivate(struct work_struct *work) { }
 524#endif
 525
 526/**
 527 * worker_pool_assign_id - allocate ID and assing it to @pool
 528 * @pool: the pool pointer of interest
 529 *
 530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 531 * successfully, -errno on failure.
 532 */
 533static int worker_pool_assign_id(struct worker_pool *pool)
 534{
 535        int ret;
 536
 537        lockdep_assert_held(&wq_pool_mutex);
 538
 539        ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 540                        GFP_KERNEL);
 541        if (ret >= 0) {
 542                pool->id = ret;
 543                return 0;
 544        }
 545        return ret;
 546}
 547
 548/**
 549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 550 * @wq: the target workqueue
 551 * @node: the node ID
 552 *
 553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
 554 * read locked.
 555 * If the pwq needs to be used beyond the locking in effect, the caller is
 556 * responsible for guaranteeing that the pwq stays online.
 557 *
 558 * Return: The unbound pool_workqueue for @node.
 559 */
 560static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
 561                                                  int node)
 562{
 563        assert_rcu_or_wq_mutex_or_pool_mutex(wq);
 564
 565        /*
 566         * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
 567         * delayed item is pending.  The plan is to keep CPU -> NODE
 568         * mapping valid and stable across CPU on/offlines.  Once that
 569         * happens, this workaround can be removed.
 570         */
 571        if (unlikely(node == NUMA_NO_NODE))
 572                return wq->dfl_pwq;
 573
 574        return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
 575}
 576
 577static unsigned int work_color_to_flags(int color)
 578{
 579        return color << WORK_STRUCT_COLOR_SHIFT;
 580}
 581
 582static int get_work_color(struct work_struct *work)
 583{
 584        return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
 585                ((1 << WORK_STRUCT_COLOR_BITS) - 1);
 586}
 587
 588static int work_next_color(int color)
 589{
 590        return (color + 1) % WORK_NR_COLORS;
 591}
 592
 593/*
 594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 595 * contain the pointer to the queued pwq.  Once execution starts, the flag
 596 * is cleared and the high bits contain OFFQ flags and pool ID.
 597 *
 598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 599 * and clear_work_data() can be used to set the pwq, pool or clear
 600 * work->data.  These functions should only be called while the work is
 601 * owned - ie. while the PENDING bit is set.
 602 *
 603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 604 * corresponding to a work.  Pool is available once the work has been
 605 * queued anywhere after initialization until it is sync canceled.  pwq is
 606 * available only while the work item is queued.
 607 *
 608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 609 * canceled.  While being canceled, a work item may have its PENDING set
 610 * but stay off timer and worklist for arbitrarily long and nobody should
 611 * try to steal the PENDING bit.
 612 */
 613static inline void set_work_data(struct work_struct *work, unsigned long data,
 614                                 unsigned long flags)
 615{
 616        WARN_ON_ONCE(!work_pending(work));
 617        atomic_long_set(&work->data, data | flags | work_static(work));
 618}
 619
 620static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 621                         unsigned long extra_flags)
 622{
 623        set_work_data(work, (unsigned long)pwq,
 624                      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 625}
 626
 627static void set_work_pool_and_keep_pending(struct work_struct *work,
 628                                           int pool_id)
 629{
 630        set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 631                      WORK_STRUCT_PENDING);
 632}
 633
 634static void set_work_pool_and_clear_pending(struct work_struct *work,
 635                                            int pool_id)
 636{
 637        /*
 638         * The following wmb is paired with the implied mb in
 639         * test_and_set_bit(PENDING) and ensures all updates to @work made
 640         * here are visible to and precede any updates by the next PENDING
 641         * owner.
 642         */
 643        smp_wmb();
 644        set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 645        /*
 646         * The following mb guarantees that previous clear of a PENDING bit
 647         * will not be reordered with any speculative LOADS or STORES from
 648         * work->current_func, which is executed afterwards.  This possible
 649         * reordering can lead to a missed execution on attempt to qeueue
 650         * the same @work.  E.g. consider this case:
 651         *
 652         *   CPU#0                         CPU#1
 653         *   ----------------------------  --------------------------------
 654         *
 655         * 1  STORE event_indicated
 656         * 2  queue_work_on() {
 657         * 3    test_and_set_bit(PENDING)
 658         * 4 }                             set_..._and_clear_pending() {
 659         * 5                                 set_work_data() # clear bit
 660         * 6                                 smp_mb()
 661         * 7                               work->current_func() {
 662         * 8                                  LOAD event_indicated
 663         *                                 }
 664         *
 665         * Without an explicit full barrier speculative LOAD on line 8 can
 666         * be executed before CPU#0 does STORE on line 1.  If that happens,
 667         * CPU#0 observes the PENDING bit is still set and new execution of
 668         * a @work is not queued in a hope, that CPU#1 will eventually
 669         * finish the queued @work.  Meanwhile CPU#1 does not see
 670         * event_indicated is set, because speculative LOAD was executed
 671         * before actual STORE.
 672         */
 673        smp_mb();
 674}
 675
 676static void clear_work_data(struct work_struct *work)
 677{
 678        smp_wmb();      /* see set_work_pool_and_clear_pending() */
 679        set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 680}
 681
 682static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 683{
 684        unsigned long data = atomic_long_read(&work->data);
 685
 686        if (data & WORK_STRUCT_PWQ)
 687                return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 688        else
 689                return NULL;
 690}
 691
 692/**
 693 * get_work_pool - return the worker_pool a given work was associated with
 694 * @work: the work item of interest
 695 *
 696 * Pools are created and destroyed under wq_pool_mutex, and allows read
 697 * access under sched-RCU read lock.  As such, this function should be
 698 * called under wq_pool_mutex or with preemption disabled.
 699 *
 700 * All fields of the returned pool are accessible as long as the above
 701 * mentioned locking is in effect.  If the returned pool needs to be used
 702 * beyond the critical section, the caller is responsible for ensuring the
 703 * returned pool is and stays online.
 704 *
 705 * Return: The worker_pool @work was last associated with.  %NULL if none.
 706 */
 707static struct worker_pool *get_work_pool(struct work_struct *work)
 708{
 709        unsigned long data = atomic_long_read(&work->data);
 710        int pool_id;
 711
 712        assert_rcu_or_pool_mutex();
 713
 714        if (data & WORK_STRUCT_PWQ)
 715                return ((struct pool_workqueue *)
 716                        (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
 717
 718        pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 719        if (pool_id == WORK_OFFQ_POOL_NONE)
 720                return NULL;
 721
 722        return idr_find(&worker_pool_idr, pool_id);
 723}
 724
 725/**
 726 * get_work_pool_id - return the worker pool ID a given work is associated with
 727 * @work: the work item of interest
 728 *
 729 * Return: The worker_pool ID @work was last associated with.
 730 * %WORK_OFFQ_POOL_NONE if none.
 731 */
 732static int get_work_pool_id(struct work_struct *work)
 733{
 734        unsigned long data = atomic_long_read(&work->data);
 735
 736        if (data & WORK_STRUCT_PWQ)
 737                return ((struct pool_workqueue *)
 738                        (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
 739
 740        return data >> WORK_OFFQ_POOL_SHIFT;
 741}
 742
 743static void mark_work_canceling(struct work_struct *work)
 744{
 745        unsigned long pool_id = get_work_pool_id(work);
 746
 747        pool_id <<= WORK_OFFQ_POOL_SHIFT;
 748        set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 749}
 750
 751static bool work_is_canceling(struct work_struct *work)
 752{
 753        unsigned long data = atomic_long_read(&work->data);
 754
 755        return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 756}
 757
 758/*
 759 * Policy functions.  These define the policies on how the global worker
 760 * pools are managed.  Unless noted otherwise, these functions assume that
 761 * they're being called with pool->lock held.
 762 */
 763
 764static bool __need_more_worker(struct worker_pool *pool)
 765{
 766        return !atomic_read(&pool->nr_running);
 767}
 768
 769/*
 770 * Need to wake up a worker?  Called from anything but currently
 771 * running workers.
 772 *
 773 * Note that, because unbound workers never contribute to nr_running, this
 774 * function will always return %true for unbound pools as long as the
 775 * worklist isn't empty.
 776 */
 777static bool need_more_worker(struct worker_pool *pool)
 778{
 779        return !list_empty(&pool->worklist) && __need_more_worker(pool);
 780}
 781
 782/* Can I start working?  Called from busy but !running workers. */
 783static bool may_start_working(struct worker_pool *pool)
 784{
 785        return pool->nr_idle;
 786}
 787
 788/* Do I need to keep working?  Called from currently running workers. */
 789static bool keep_working(struct worker_pool *pool)
 790{
 791        return !list_empty(&pool->worklist) &&
 792                atomic_read(&pool->nr_running) <= 1;
 793}
 794
 795/* Do we need a new worker?  Called from manager. */
 796static bool need_to_create_worker(struct worker_pool *pool)
 797{
 798        return need_more_worker(pool) && !may_start_working(pool);
 799}
 800
 801/* Do we have too many workers and should some go away? */
 802static bool too_many_workers(struct worker_pool *pool)
 803{
 804        bool managing = mutex_is_locked(&pool->manager_arb);
 805        int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 806        int nr_busy = pool->nr_workers - nr_idle;
 807
 808        return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 809}
 810
 811/*
 812 * Wake up functions.
 813 */
 814
 815/* Return the first idle worker.  Safe with preemption disabled */
 816static struct worker *first_idle_worker(struct worker_pool *pool)
 817{
 818        if (unlikely(list_empty(&pool->idle_list)))
 819                return NULL;
 820
 821        return list_first_entry(&pool->idle_list, struct worker, entry);
 822}
 823
 824/**
 825 * wake_up_worker - wake up an idle worker
 826 * @pool: worker pool to wake worker from
 827 *
 828 * Wake up the first idle worker of @pool.
 829 *
 830 * CONTEXT:
 831 * spin_lock_irq(pool->lock).
 832 */
 833static void wake_up_worker(struct worker_pool *pool)
 834{
 835        struct worker *worker = first_idle_worker(pool);
 836
 837        if (likely(worker))
 838                wake_up_process(worker->task);
 839}
 840
 841/**
 842 * wq_worker_waking_up - a worker is waking up
 843 * @task: task waking up
 844 * @cpu: CPU @task is waking up to
 845 *
 846 * This function is called during try_to_wake_up() when a worker is
 847 * being awoken.
 848 *
 849 * CONTEXT:
 850 * spin_lock_irq(rq->lock)
 851 */
 852void wq_worker_waking_up(struct task_struct *task, int cpu)
 853{
 854        struct worker *worker = kthread_data(task);
 855
 856        if (!(worker->flags & WORKER_NOT_RUNNING)) {
 857                WARN_ON_ONCE(worker->pool->cpu != cpu);
 858                atomic_inc(&worker->pool->nr_running);
 859        }
 860}
 861
 862/**
 863 * wq_worker_sleeping - a worker is going to sleep
 864 * @task: task going to sleep
 865 *
 866 * This function is called during schedule() when a busy worker is
 867 * going to sleep.  Worker on the same cpu can be woken up by
 868 * returning pointer to its task.
 869 *
 870 * CONTEXT:
 871 * spin_lock_irq(rq->lock)
 872 *
 873 * Return:
 874 * Worker task on @cpu to wake up, %NULL if none.
 875 */
 876struct task_struct *wq_worker_sleeping(struct task_struct *task)
 877{
 878        struct worker *worker = kthread_data(task), *to_wakeup = NULL;
 879        struct worker_pool *pool;
 880
 881        /*
 882         * Rescuers, which may not have all the fields set up like normal
 883         * workers, also reach here, let's not access anything before
 884         * checking NOT_RUNNING.
 885         */
 886        if (worker->flags & WORKER_NOT_RUNNING)
 887                return NULL;
 888
 889        pool = worker->pool;
 890
 891        /* this can only happen on the local cpu */
 892        if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
 893                return NULL;
 894
 895        /*
 896         * The counterpart of the following dec_and_test, implied mb,
 897         * worklist not empty test sequence is in insert_work().
 898         * Please read comment there.
 899         *
 900         * NOT_RUNNING is clear.  This means that we're bound to and
 901         * running on the local cpu w/ rq lock held and preemption
 902         * disabled, which in turn means that none else could be
 903         * manipulating idle_list, so dereferencing idle_list without pool
 904         * lock is safe.
 905         */
 906        if (atomic_dec_and_test(&pool->nr_running) &&
 907            !list_empty(&pool->worklist))
 908                to_wakeup = first_idle_worker(pool);
 909        return to_wakeup ? to_wakeup->task : NULL;
 910}
 911
 912/**
 913 * worker_set_flags - set worker flags and adjust nr_running accordingly
 914 * @worker: self
 915 * @flags: flags to set
 916 *
 917 * Set @flags in @worker->flags and adjust nr_running accordingly.
 918 *
 919 * CONTEXT:
 920 * spin_lock_irq(pool->lock)
 921 */
 922static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 923{
 924        struct worker_pool *pool = worker->pool;
 925
 926        WARN_ON_ONCE(worker->task != current);
 927
 928        /* If transitioning into NOT_RUNNING, adjust nr_running. */
 929        if ((flags & WORKER_NOT_RUNNING) &&
 930            !(worker->flags & WORKER_NOT_RUNNING)) {
 931                atomic_dec(&pool->nr_running);
 932        }
 933
 934        worker->flags |= flags;
 935}
 936
 937/**
 938 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 939 * @worker: self
 940 * @flags: flags to clear
 941 *
 942 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 943 *
 944 * CONTEXT:
 945 * spin_lock_irq(pool->lock)
 946 */
 947static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 948{
 949        struct worker_pool *pool = worker->pool;
 950        unsigned int oflags = worker->flags;
 951
 952        WARN_ON_ONCE(worker->task != current);
 953
 954        worker->flags &= ~flags;
 955
 956        /*
 957         * If transitioning out of NOT_RUNNING, increment nr_running.  Note
 958         * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
 959         * of multiple flags, not a single flag.
 960         */
 961        if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
 962                if (!(worker->flags & WORKER_NOT_RUNNING))
 963                        atomic_inc(&pool->nr_running);
 964}
 965
 966/**
 967 * find_worker_executing_work - find worker which is executing a work
 968 * @pool: pool of interest
 969 * @work: work to find worker for
 970 *
 971 * Find a worker which is executing @work on @pool by searching
 972 * @pool->busy_hash which is keyed by the address of @work.  For a worker
 973 * to match, its current execution should match the address of @work and
 974 * its work function.  This is to avoid unwanted dependency between
 975 * unrelated work executions through a work item being recycled while still
 976 * being executed.
 977 *
 978 * This is a bit tricky.  A work item may be freed once its execution
 979 * starts and nothing prevents the freed area from being recycled for
 980 * another work item.  If the same work item address ends up being reused
 981 * before the original execution finishes, workqueue will identify the
 982 * recycled work item as currently executing and make it wait until the
 983 * current execution finishes, introducing an unwanted dependency.
 984 *
 985 * This function checks the work item address and work function to avoid
 986 * false positives.  Note that this isn't complete as one may construct a
 987 * work function which can introduce dependency onto itself through a
 988 * recycled work item.  Well, if somebody wants to shoot oneself in the
 989 * foot that badly, there's only so much we can do, and if such deadlock
 990 * actually occurs, it should be easy to locate the culprit work function.
 991 *
 992 * CONTEXT:
 993 * spin_lock_irq(pool->lock).
 994 *
 995 * Return:
 996 * Pointer to worker which is executing @work if found, %NULL
 997 * otherwise.
 998 */
 999static struct worker *find_worker_executing_work(struct worker_pool *pool,
1000                                                 struct work_struct *work)
1001{
1002        struct worker *worker;
1003
1004        hash_for_each_possible(pool->busy_hash, worker, hentry,
1005                               (unsigned long)work)
1006                if (worker->current_work == work &&
1007                    worker->current_func == work->func)
1008                        return worker;
1009
1010        return NULL;
1011}
1012
1013/**
1014 * move_linked_works - move linked works to a list
1015 * @work: start of series of works to be scheduled
1016 * @head: target list to append @work to
1017 * @nextp: out parameter for nested worklist walking
1018 *
1019 * Schedule linked works starting from @work to @head.  Work series to
1020 * be scheduled starts at @work and includes any consecutive work with
1021 * WORK_STRUCT_LINKED set in its predecessor.
1022 *
1023 * If @nextp is not NULL, it's updated to point to the next work of
1024 * the last scheduled work.  This allows move_linked_works() to be
1025 * nested inside outer list_for_each_entry_safe().
1026 *
1027 * CONTEXT:
1028 * spin_lock_irq(pool->lock).
1029 */
1030static void move_linked_works(struct work_struct *work, struct list_head *head,
1031                              struct work_struct **nextp)
1032{
1033        struct work_struct *n;
1034
1035        /*
1036         * Linked worklist will always end before the end of the list,
1037         * use NULL for list head.
1038         */
1039        list_for_each_entry_safe_from(work, n, NULL, entry) {
1040                list_move_tail(&work->entry, head);
1041                if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1042                        break;
1043        }
1044
1045        /*
1046         * If we're already inside safe list traversal and have moved
1047         * multiple works to the scheduled queue, the next position
1048         * needs to be updated.
1049         */
1050        if (nextp)
1051                *nextp = n;
1052}
1053
1054/**
1055 * get_pwq - get an extra reference on the specified pool_workqueue
1056 * @pwq: pool_workqueue to get
1057 *
1058 * Obtain an extra reference on @pwq.  The caller should guarantee that
1059 * @pwq has positive refcnt and be holding the matching pool->lock.
1060 */
1061static void get_pwq(struct pool_workqueue *pwq)
1062{
1063        lockdep_assert_held(&pwq->pool->lock);
1064        WARN_ON_ONCE(pwq->refcnt <= 0);
1065        pwq->refcnt++;
1066}
1067
1068/**
1069 * put_pwq - put a pool_workqueue reference
1070 * @pwq: pool_workqueue to put
1071 *
1072 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1073 * destruction.  The caller should be holding the matching pool->lock.
1074 */
1075static void put_pwq(struct pool_workqueue *pwq)
1076{
1077        lockdep_assert_held(&pwq->pool->lock);
1078        if (likely(--pwq->refcnt))
1079                return;
1080        if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1081                return;
1082        /*
1083         * @pwq can't be released under pool->lock, bounce to
1084         * pwq_unbound_release_workfn().  This never recurses on the same
1085         * pool->lock as this path is taken only for unbound workqueues and
1086         * the release work item is scheduled on a per-cpu workqueue.  To
1087         * avoid lockdep warning, unbound pool->locks are given lockdep
1088         * subclass of 1 in get_unbound_pool().
1089         */
1090        schedule_work(&pwq->unbound_release_work);
1091}
1092
1093/**
1094 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1095 * @pwq: pool_workqueue to put (can be %NULL)
1096 *
1097 * put_pwq() with locking.  This function also allows %NULL @pwq.
1098 */
1099static void put_pwq_unlocked(struct pool_workqueue *pwq)
1100{
1101        if (pwq) {
1102                /*
1103                 * As both pwqs and pools are sched-RCU protected, the
1104                 * following lock operations are safe.
1105                 */
1106                spin_lock_irq(&pwq->pool->lock);
1107                put_pwq(pwq);
1108                spin_unlock_irq(&pwq->pool->lock);
1109        }
1110}
1111
1112static void pwq_activate_delayed_work(struct work_struct *work)
1113{
1114        struct pool_workqueue *pwq = get_work_pwq(work);
1115
1116        trace_workqueue_activate_work(work);
1117        if (list_empty(&pwq->pool->worklist))
1118                pwq->pool->watchdog_ts = jiffies;
1119        move_linked_works(work, &pwq->pool->worklist, NULL);
1120        __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1121        pwq->nr_active++;
1122}
1123
1124static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1125{
1126        struct work_struct *work = list_first_entry(&pwq->delayed_works,
1127                                                    struct work_struct, entry);
1128
1129        pwq_activate_delayed_work(work);
1130}
1131
1132/**
1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1134 * @pwq: pwq of interest
1135 * @color: color of work which left the queue
1136 *
1137 * A work either has completed or is removed from pending queue,
1138 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1139 *
1140 * CONTEXT:
1141 * spin_lock_irq(pool->lock).
1142 */
1143static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1144{
1145        /* uncolored work items don't participate in flushing or nr_active */
1146        if (color == WORK_NO_COLOR)
1147                goto out_put;
1148
1149        pwq->nr_in_flight[color]--;
1150
1151        pwq->nr_active--;
1152        if (!list_empty(&pwq->delayed_works)) {
1153                /* one down, submit a delayed one */
1154                if (pwq->nr_active < pwq->max_active)
1155                        pwq_activate_first_delayed(pwq);
1156        }
1157
1158        /* is flush in progress and are we at the flushing tip? */
1159        if (likely(pwq->flush_color != color))
1160                goto out_put;
1161
1162        /* are there still in-flight works? */
1163        if (pwq->nr_in_flight[color])
1164                goto out_put;
1165
1166        /* this pwq is done, clear flush_color */
1167        pwq->flush_color = -1;
1168
1169        /*
1170         * If this was the last pwq, wake up the first flusher.  It
1171         * will handle the rest.
1172         */
1173        if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1174                complete(&pwq->wq->first_flusher->done);
1175out_put:
1176        put_pwq(pwq);
1177}
1178
1179/**
1180 * try_to_grab_pending - steal work item from worklist and disable irq
1181 * @work: work item to steal
1182 * @is_dwork: @work is a delayed_work
1183 * @flags: place to store irq state
1184 *
1185 * Try to grab PENDING bit of @work.  This function can handle @work in any
1186 * stable state - idle, on timer or on worklist.
1187 *
1188 * Return:
1189 *  1           if @work was pending and we successfully stole PENDING
1190 *  0           if @work was idle and we claimed PENDING
1191 *  -EAGAIN     if PENDING couldn't be grabbed at the moment, safe to busy-retry
1192 *  -ENOENT     if someone else is canceling @work, this state may persist
1193 *              for arbitrarily long
1194 *
1195 * Note:
1196 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1197 * interrupted while holding PENDING and @work off queue, irq must be
1198 * disabled on entry.  This, combined with delayed_work->timer being
1199 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1200 *
1201 * On successful return, >= 0, irq is disabled and the caller is
1202 * responsible for releasing it using local_irq_restore(*@flags).
1203 *
1204 * This function is safe to call from any context including IRQ handler.
1205 */
1206static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1207                               unsigned long *flags)
1208{
1209        struct worker_pool *pool;
1210        struct pool_workqueue *pwq;
1211
1212        local_irq_save(*flags);
1213
1214        /* try to steal the timer if it exists */
1215        if (is_dwork) {
1216                struct delayed_work *dwork = to_delayed_work(work);
1217
1218                /*
1219                 * dwork->timer is irqsafe.  If del_timer() fails, it's
1220                 * guaranteed that the timer is not queued anywhere and not
1221                 * running on the local CPU.
1222                 */
1223                if (likely(del_timer(&dwork->timer)))
1224                        return 1;
1225        }
1226
1227        /* try to claim PENDING the normal way */
1228        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1229                return 0;
1230
1231        /*
1232         * The queueing is in progress, or it is already queued. Try to
1233         * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1234         */
1235        pool = get_work_pool(work);
1236        if (!pool)
1237                goto fail;
1238
1239        spin_lock(&pool->lock);
1240        /*
1241         * work->data is guaranteed to point to pwq only while the work
1242         * item is queued on pwq->wq, and both updating work->data to point
1243         * to pwq on queueing and to pool on dequeueing are done under
1244         * pwq->pool->lock.  This in turn guarantees that, if work->data
1245         * points to pwq which is associated with a locked pool, the work
1246         * item is currently queued on that pool.
1247         */
1248        pwq = get_work_pwq(work);
1249        if (pwq && pwq->pool == pool) {
1250                debug_work_deactivate(work);
1251
1252                /*
1253                 * A delayed work item cannot be grabbed directly because
1254                 * it might have linked NO_COLOR work items which, if left
1255                 * on the delayed_list, will confuse pwq->nr_active
1256                 * management later on and cause stall.  Make sure the work
1257                 * item is activated before grabbing.
1258                 */
1259                if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1260                        pwq_activate_delayed_work(work);
1261
1262                list_del_init(&work->entry);
1263                pwq_dec_nr_in_flight(pwq, get_work_color(work));
1264
1265                /* work->data points to pwq iff queued, point to pool */
1266                set_work_pool_and_keep_pending(work, pool->id);
1267
1268                spin_unlock(&pool->lock);
1269                return 1;
1270        }
1271        spin_unlock(&pool->lock);
1272fail:
1273        local_irq_restore(*flags);
1274        if (work_is_canceling(work))
1275                return -ENOENT;
1276        cpu_relax();
1277        return -EAGAIN;
1278}
1279
1280/**
1281 * insert_work - insert a work into a pool
1282 * @pwq: pwq @work belongs to
1283 * @work: work to insert
1284 * @head: insertion point
1285 * @extra_flags: extra WORK_STRUCT_* flags to set
1286 *
1287 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1288 * work_struct flags.
1289 *
1290 * CONTEXT:
1291 * spin_lock_irq(pool->lock).
1292 */
1293static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1294                        struct list_head *head, unsigned int extra_flags)
1295{
1296        struct worker_pool *pool = pwq->pool;
1297
1298        /* we own @work, set data and link */
1299        set_work_pwq(work, pwq, extra_flags);
1300        list_add_tail(&work->entry, head);
1301        get_pwq(pwq);
1302
1303        /*
1304         * Ensure either wq_worker_sleeping() sees the above
1305         * list_add_tail() or we see zero nr_running to avoid workers lying
1306         * around lazily while there are works to be processed.
1307         */
1308        smp_mb();
1309
1310        if (__need_more_worker(pool))
1311                wake_up_worker(pool);
1312}
1313
1314/*
1315 * Test whether @work is being queued from another work executing on the
1316 * same workqueue.
1317 */
1318static bool is_chained_work(struct workqueue_struct *wq)
1319{
1320        struct worker *worker;
1321
1322        worker = current_wq_worker();
1323        /*
1324         * Return %true iff I'm a worker execuing a work item on @wq.  If
1325         * I'm @worker, it's safe to dereference it without locking.
1326         */
1327        return worker && worker->current_pwq->wq == wq;
1328}
1329
1330/*
1331 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1332 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1333 * avoid perturbing sensitive tasks.
1334 */
1335static int wq_select_unbound_cpu(int cpu)
1336{
1337        static bool printed_dbg_warning;
1338        int new_cpu;
1339
1340        if (likely(!wq_debug_force_rr_cpu)) {
1341                if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1342                        return cpu;
1343        } else if (!printed_dbg_warning) {
1344                pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1345                printed_dbg_warning = true;
1346        }
1347
1348        if (cpumask_empty(wq_unbound_cpumask))
1349                return cpu;
1350
1351        new_cpu = __this_cpu_read(wq_rr_cpu_last);
1352        new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1353        if (unlikely(new_cpu >= nr_cpu_ids)) {
1354                new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1355                if (unlikely(new_cpu >= nr_cpu_ids))
1356                        return cpu;
1357        }
1358        __this_cpu_write(wq_rr_cpu_last, new_cpu);
1359
1360        return new_cpu;
1361}
1362
1363static void __queue_work(int cpu, struct workqueue_struct *wq,
1364                         struct work_struct *work)
1365{
1366        struct pool_workqueue *pwq;
1367        struct worker_pool *last_pool;
1368        struct list_head *worklist;
1369        unsigned int work_flags;
1370        unsigned int req_cpu = cpu;
1371
1372        /*
1373         * While a work item is PENDING && off queue, a task trying to
1374         * steal the PENDING will busy-loop waiting for it to either get
1375         * queued or lose PENDING.  Grabbing PENDING and queueing should
1376         * happen with IRQ disabled.
1377         */
1378        WARN_ON_ONCE(!irqs_disabled());
1379
1380        debug_work_activate(work);
1381
1382        /* if draining, only works from the same workqueue are allowed */
1383        if (unlikely(wq->flags & __WQ_DRAINING) &&
1384            WARN_ON_ONCE(!is_chained_work(wq)))
1385                return;
1386retry:
1387        if (req_cpu == WORK_CPU_UNBOUND)
1388                cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1389
1390        /* pwq which will be used unless @work is executing elsewhere */
1391        if (!(wq->flags & WQ_UNBOUND))
1392                pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1393        else
1394                pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1395
1396        /*
1397         * If @work was previously on a different pool, it might still be
1398         * running there, in which case the work needs to be queued on that
1399         * pool to guarantee non-reentrancy.
1400         */
1401        last_pool = get_work_pool(work);
1402        if (last_pool && last_pool != pwq->pool) {
1403                struct worker *worker;
1404
1405                spin_lock(&last_pool->lock);
1406
1407                worker = find_worker_executing_work(last_pool, work);
1408
1409                if (worker && worker->current_pwq->wq == wq) {
1410                        pwq = worker->current_pwq;
1411                } else {
1412                        /* meh... not running there, queue here */
1413                        spin_unlock(&last_pool->lock);
1414                        spin_lock(&pwq->pool->lock);
1415                }
1416        } else {
1417                spin_lock(&pwq->pool->lock);
1418        }
1419
1420        /*
1421         * pwq is determined and locked.  For unbound pools, we could have
1422         * raced with pwq release and it could already be dead.  If its
1423         * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1424         * without another pwq replacing it in the numa_pwq_tbl or while
1425         * work items are executing on it, so the retrying is guaranteed to
1426         * make forward-progress.
1427         */
1428        if (unlikely(!pwq->refcnt)) {
1429                if (wq->flags & WQ_UNBOUND) {
1430                        spin_unlock(&pwq->pool->lock);
1431                        cpu_relax();
1432                        goto retry;
1433                }
1434                /* oops */
1435                WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1436                          wq->name, cpu);
1437        }
1438
1439        /* pwq determined, queue */
1440        trace_workqueue_queue_work(req_cpu, pwq, work);
1441
1442        if (WARN_ON(!list_empty(&work->entry))) {
1443                spin_unlock(&pwq->pool->lock);
1444                return;
1445        }
1446
1447        pwq->nr_in_flight[pwq->work_color]++;
1448        work_flags = work_color_to_flags(pwq->work_color);
1449
1450        if (likely(pwq->nr_active < pwq->max_active)) {
1451                trace_workqueue_activate_work(work);
1452                pwq->nr_active++;
1453                worklist = &pwq->pool->worklist;
1454                if (list_empty(worklist))
1455                        pwq->pool->watchdog_ts = jiffies;
1456        } else {
1457                work_flags |= WORK_STRUCT_DELAYED;
1458                worklist = &pwq->delayed_works;
1459        }
1460
1461        insert_work(pwq, work, worklist, work_flags);
1462
1463        spin_unlock(&pwq->pool->lock);
1464}
1465
1466/**
1467 * queue_work_on - queue work on specific cpu
1468 * @cpu: CPU number to execute work on
1469 * @wq: workqueue to use
1470 * @work: work to queue
1471 *
1472 * We queue the work to a specific CPU, the caller must ensure it
1473 * can't go away.
1474 *
1475 * Return: %false if @work was already on a queue, %true otherwise.
1476 */
1477bool queue_work_on(int cpu, struct workqueue_struct *wq,
1478                   struct work_struct *work)
1479{
1480        bool ret = false;
1481        unsigned long flags;
1482
1483        local_irq_save(flags);
1484
1485        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1486                __queue_work(cpu, wq, work);
1487                ret = true;
1488        }
1489
1490        local_irq_restore(flags);
1491        return ret;
1492}
1493EXPORT_SYMBOL(queue_work_on);
1494
1495void delayed_work_timer_fn(unsigned long __data)
1496{
1497        struct delayed_work *dwork = (struct delayed_work *)__data;
1498
1499        /* should have been called from irqsafe timer with irq already off */
1500        __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1501}
1502EXPORT_SYMBOL(delayed_work_timer_fn);
1503
1504static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1505                                struct delayed_work *dwork, unsigned long delay)
1506{
1507        struct timer_list *timer = &dwork->timer;
1508        struct work_struct *work = &dwork->work;
1509
1510        WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1511                     timer->data != (unsigned long)dwork);
1512        WARN_ON_ONCE(timer_pending(timer));
1513        WARN_ON_ONCE(!list_empty(&work->entry));
1514
1515        /*
1516         * If @delay is 0, queue @dwork->work immediately.  This is for
1517         * both optimization and correctness.  The earliest @timer can
1518         * expire is on the closest next tick and delayed_work users depend
1519         * on that there's no such delay when @delay is 0.
1520         */
1521        if (!delay) {
1522                __queue_work(cpu, wq, &dwork->work);
1523                return;
1524        }
1525
1526        timer_stats_timer_set_start_info(&dwork->timer);
1527
1528        dwork->wq = wq;
1529        dwork->cpu = cpu;
1530        timer->expires = jiffies + delay;
1531
1532        if (unlikely(cpu != WORK_CPU_UNBOUND))
1533                add_timer_on(timer, cpu);
1534        else
1535                add_timer(timer);
1536}
1537
1538/**
1539 * queue_delayed_work_on - queue work on specific CPU after delay
1540 * @cpu: CPU number to execute work on
1541 * @wq: workqueue to use
1542 * @dwork: work to queue
1543 * @delay: number of jiffies to wait before queueing
1544 *
1545 * Return: %false if @work was already on a queue, %true otherwise.  If
1546 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1547 * execution.
1548 */
1549bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1550                           struct delayed_work *dwork, unsigned long delay)
1551{
1552        struct work_struct *work = &dwork->work;
1553        bool ret = false;
1554        unsigned long flags;
1555
1556        /* read the comment in __queue_work() */
1557        local_irq_save(flags);
1558
1559        if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1560                __queue_delayed_work(cpu, wq, dwork, delay);
1561                ret = true;
1562        }
1563
1564        local_irq_restore(flags);
1565        return ret;
1566}
1567EXPORT_SYMBOL(queue_delayed_work_on);
1568
1569/**
1570 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1571 * @cpu: CPU number to execute work on
1572 * @wq: workqueue to use
1573 * @dwork: work to queue
1574 * @delay: number of jiffies to wait before queueing
1575 *
1576 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1577 * modify @dwork's timer so that it expires after @delay.  If @delay is
1578 * zero, @work is guaranteed to be scheduled immediately regardless of its
1579 * current state.
1580 *
1581 * Return: %false if @dwork was idle and queued, %true if @dwork was
1582 * pending and its timer was modified.
1583 *
1584 * This function is safe to call from any context including IRQ handler.
1585 * See try_to_grab_pending() for details.
1586 */
1587bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1588                         struct delayed_work *dwork, unsigned long delay)
1589{
1590        unsigned long flags;
1591        int ret;
1592
1593        do {
1594                ret = try_to_grab_pending(&dwork->work, true, &flags);
1595        } while (unlikely(ret == -EAGAIN));
1596
1597        if (likely(ret >= 0)) {
1598                __queue_delayed_work(cpu, wq, dwork, delay);
1599                local_irq_restore(flags);
1600        }
1601
1602        /* -ENOENT from try_to_grab_pending() becomes %true */
1603        return ret;
1604}
1605EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1606
1607/**
1608 * worker_enter_idle - enter idle state
1609 * @worker: worker which is entering idle state
1610 *
1611 * @worker is entering idle state.  Update stats and idle timer if
1612 * necessary.
1613 *
1614 * LOCKING:
1615 * spin_lock_irq(pool->lock).
1616 */
1617static void worker_enter_idle(struct worker *worker)
1618{
1619        struct worker_pool *pool = worker->pool;
1620
1621        if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1622            WARN_ON_ONCE(!list_empty(&worker->entry) &&
1623                         (worker->hentry.next || worker->hentry.pprev)))
1624                return;
1625
1626        /* can't use worker_set_flags(), also called from create_worker() */
1627        worker->flags |= WORKER_IDLE;
1628        pool->nr_idle++;
1629        worker->last_active = jiffies;
1630
1631        /* idle_list is LIFO */
1632        list_add(&worker->entry, &pool->idle_list);
1633
1634        if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1635                mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1636
1637        /*
1638         * Sanity check nr_running.  Because wq_unbind_fn() releases
1639         * pool->lock between setting %WORKER_UNBOUND and zapping
1640         * nr_running, the warning may trigger spuriously.  Check iff
1641         * unbind is not in progress.
1642         */
1643        WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1644                     pool->nr_workers == pool->nr_idle &&
1645                     atomic_read(&pool->nr_running));
1646}
1647
1648/**
1649 * worker_leave_idle - leave idle state
1650 * @worker: worker which is leaving idle state
1651 *
1652 * @worker is leaving idle state.  Update stats.
1653 *
1654 * LOCKING:
1655 * spin_lock_irq(pool->lock).
1656 */
1657static void worker_leave_idle(struct worker *worker)
1658{
1659        struct worker_pool *pool = worker->pool;
1660
1661        if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1662                return;
1663        worker_clr_flags(worker, WORKER_IDLE);
1664        pool->nr_idle--;
1665        list_del_init(&worker->entry);
1666}
1667
1668static struct worker *alloc_worker(int node)
1669{
1670        struct worker *worker;
1671
1672        worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1673        if (worker) {
1674                INIT_LIST_HEAD(&worker->entry);
1675                INIT_LIST_HEAD(&worker->scheduled);
1676                INIT_LIST_HEAD(&worker->node);
1677                /* on creation a worker is in !idle && prep state */
1678                worker->flags = WORKER_PREP;
1679        }
1680        return worker;
1681}
1682
1683/**
1684 * worker_attach_to_pool() - attach a worker to a pool
1685 * @worker: worker to be attached
1686 * @pool: the target pool
1687 *
1688 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1689 * cpu-binding of @worker are kept coordinated with the pool across
1690 * cpu-[un]hotplugs.
1691 */
1692static void worker_attach_to_pool(struct worker *worker,
1693                                   struct worker_pool *pool)
1694{
1695        mutex_lock(&pool->attach_mutex);
1696
1697        /*
1698         * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1699         * online CPUs.  It'll be re-applied when any of the CPUs come up.
1700         */
1701        set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1702
1703        /*
1704         * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1705         * stable across this function.  See the comments above the
1706         * flag definition for details.
1707         */
1708        if (pool->flags & POOL_DISASSOCIATED)
1709                worker->flags |= WORKER_UNBOUND;
1710
1711        list_add_tail(&worker->node, &pool->workers);
1712
1713        mutex_unlock(&pool->attach_mutex);
1714}
1715
1716/**
1717 * worker_detach_from_pool() - detach a worker from its pool
1718 * @worker: worker which is attached to its pool
1719 * @pool: the pool @worker is attached to
1720 *
1721 * Undo the attaching which had been done in worker_attach_to_pool().  The
1722 * caller worker shouldn't access to the pool after detached except it has
1723 * other reference to the pool.
1724 */
1725static void worker_detach_from_pool(struct worker *worker,
1726                                    struct worker_pool *pool)
1727{
1728        struct completion *detach_completion = NULL;
1729
1730        mutex_lock(&pool->attach_mutex);
1731        list_del(&worker->node);
1732        if (list_empty(&pool->workers))
1733                detach_completion = pool->detach_completion;
1734        mutex_unlock(&pool->attach_mutex);
1735
1736        /* clear leftover flags without pool->lock after it is detached */
1737        worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1738
1739        if (detach_completion)
1740                complete(detach_completion);
1741}
1742
1743/**
1744 * create_worker - create a new workqueue worker
1745 * @pool: pool the new worker will belong to
1746 *
1747 * Create and start a new worker which is attached to @pool.
1748 *
1749 * CONTEXT:
1750 * Might sleep.  Does GFP_KERNEL allocations.
1751 *
1752 * Return:
1753 * Pointer to the newly created worker.
1754 */
1755static struct worker *create_worker(struct worker_pool *pool)
1756{
1757        struct worker *worker = NULL;
1758        int id = -1;
1759        char id_buf[16];
1760
1761        /* ID is needed to determine kthread name */
1762        id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1763        if (id < 0)
1764                goto fail;
1765
1766        worker = alloc_worker(pool->node);
1767        if (!worker)
1768                goto fail;
1769
1770        worker->pool = pool;
1771        worker->id = id;
1772
1773        if (pool->cpu >= 0)
1774                snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1775                         pool->attrs->nice < 0  ? "H" : "");
1776        else
1777                snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1778
1779        worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1780                                              "kworker/%s", id_buf);
1781        if (IS_ERR(worker->task))
1782                goto fail;
1783
1784        set_user_nice(worker->task, pool->attrs->nice);
1785        kthread_bind_mask(worker->task, pool->attrs->cpumask);
1786
1787        /* successful, attach the worker to the pool */
1788        worker_attach_to_pool(worker, pool);
1789
1790        /* start the newly created worker */
1791        spin_lock_irq(&pool->lock);
1792        worker->pool->nr_workers++;
1793        worker_enter_idle(worker);
1794        wake_up_process(worker->task);
1795        spin_unlock_irq(&pool->lock);
1796
1797        return worker;
1798
1799fail:
1800        if (id >= 0)
1801                ida_simple_remove(&pool->worker_ida, id);
1802        kfree(worker);
1803        return NULL;
1804}
1805
1806/**
1807 * destroy_worker - destroy a workqueue worker
1808 * @worker: worker to be destroyed
1809 *
1810 * Destroy @worker and adjust @pool stats accordingly.  The worker should
1811 * be idle.
1812 *
1813 * CONTEXT:
1814 * spin_lock_irq(pool->lock).
1815 */
1816static void destroy_worker(struct worker *worker)
1817{
1818        struct worker_pool *pool = worker->pool;
1819
1820        lockdep_assert_held(&pool->lock);
1821
1822        /* sanity check frenzy */
1823        if (WARN_ON(worker->current_work) ||
1824            WARN_ON(!list_empty(&worker->scheduled)) ||
1825            WARN_ON(!(worker->flags & WORKER_IDLE)))
1826                return;
1827
1828        pool->nr_workers--;
1829        pool->nr_idle--;
1830
1831        list_del_init(&worker->entry);
1832        worker->flags |= WORKER_DIE;
1833        wake_up_process(worker->task);
1834}
1835
1836static void idle_worker_timeout(unsigned long __pool)
1837{
1838        struct worker_pool *pool = (void *)__pool;
1839
1840        spin_lock_irq(&pool->lock);
1841
1842        while (too_many_workers(pool)) {
1843                struct worker *worker;
1844                unsigned long expires;
1845
1846                /* idle_list is kept in LIFO order, check the last one */
1847                worker = list_entry(pool->idle_list.prev, struct worker, entry);
1848                expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1849
1850                if (time_before(jiffies, expires)) {
1851                        mod_timer(&pool->idle_timer, expires);
1852                        break;
1853                }
1854
1855                destroy_worker(worker);
1856        }
1857
1858        spin_unlock_irq(&pool->lock);
1859}
1860
1861static void send_mayday(struct work_struct *work)
1862{
1863        struct pool_workqueue *pwq = get_work_pwq(work);
1864        struct workqueue_struct *wq = pwq->wq;
1865
1866        lockdep_assert_held(&wq_mayday_lock);
1867
1868        if (!wq->rescuer)
1869                return;
1870
1871        /* mayday mayday mayday */
1872        if (list_empty(&pwq->mayday_node)) {
1873                /*
1874                 * If @pwq is for an unbound wq, its base ref may be put at
1875                 * any time due to an attribute change.  Pin @pwq until the
1876                 * rescuer is done with it.
1877                 */
1878                get_pwq(pwq);
1879                list_add_tail(&pwq->mayday_node, &wq->maydays);
1880                wake_up_process(wq->rescuer->task);
1881        }
1882}
1883
1884static void pool_mayday_timeout(unsigned long __pool)
1885{
1886        struct worker_pool *pool = (void *)__pool;
1887        struct work_struct *work;
1888
1889        spin_lock_irq(&pool->lock);
1890        spin_lock(&wq_mayday_lock);             /* for wq->maydays */
1891
1892        if (need_to_create_worker(pool)) {
1893                /*
1894                 * We've been trying to create a new worker but
1895                 * haven't been successful.  We might be hitting an
1896                 * allocation deadlock.  Send distress signals to
1897                 * rescuers.
1898                 */
1899                list_for_each_entry(work, &pool->worklist, entry)
1900                        send_mayday(work);
1901        }
1902
1903        spin_unlock(&wq_mayday_lock);
1904        spin_unlock_irq(&pool->lock);
1905
1906        mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1907}
1908
1909/**
1910 * maybe_create_worker - create a new worker if necessary
1911 * @pool: pool to create a new worker for
1912 *
1913 * Create a new worker for @pool if necessary.  @pool is guaranteed to
1914 * have at least one idle worker on return from this function.  If
1915 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1916 * sent to all rescuers with works scheduled on @pool to resolve
1917 * possible allocation deadlock.
1918 *
1919 * On return, need_to_create_worker() is guaranteed to be %false and
1920 * may_start_working() %true.
1921 *
1922 * LOCKING:
1923 * spin_lock_irq(pool->lock) which may be released and regrabbed
1924 * multiple times.  Does GFP_KERNEL allocations.  Called only from
1925 * manager.
1926 */
1927static void maybe_create_worker(struct worker_pool *pool)
1928__releases(&pool->lock)
1929__acquires(&pool->lock)
1930{
1931restart:
1932        spin_unlock_irq(&pool->lock);
1933
1934        /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1935        mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1936
1937        while (true) {
1938                if (create_worker(pool) || !need_to_create_worker(pool))
1939                        break;
1940
1941                schedule_timeout_interruptible(CREATE_COOLDOWN);
1942
1943                if (!need_to_create_worker(pool))
1944                        break;
1945        }
1946
1947        del_timer_sync(&pool->mayday_timer);
1948        spin_lock_irq(&pool->lock);
1949        /*
1950         * This is necessary even after a new worker was just successfully
1951         * created as @pool->lock was dropped and the new worker might have
1952         * already become busy.
1953         */
1954        if (need_to_create_worker(pool))
1955                goto restart;
1956}
1957
1958/**
1959 * manage_workers - manage worker pool
1960 * @worker: self
1961 *
1962 * Assume the manager role and manage the worker pool @worker belongs
1963 * to.  At any given time, there can be only zero or one manager per
1964 * pool.  The exclusion is handled automatically by this function.
1965 *
1966 * The caller can safely start processing works on false return.  On
1967 * true return, it's guaranteed that need_to_create_worker() is false
1968 * and may_start_working() is true.
1969 *
1970 * CONTEXT:
1971 * spin_lock_irq(pool->lock) which may be released and regrabbed
1972 * multiple times.  Does GFP_KERNEL allocations.
1973 *
1974 * Return:
1975 * %false if the pool doesn't need management and the caller can safely
1976 * start processing works, %true if management function was performed and
1977 * the conditions that the caller verified before calling the function may
1978 * no longer be true.
1979 */
1980static bool manage_workers(struct worker *worker)
1981{
1982        struct worker_pool *pool = worker->pool;
1983
1984        /*
1985         * Anyone who successfully grabs manager_arb wins the arbitration
1986         * and becomes the manager.  mutex_trylock() on pool->manager_arb
1987         * failure while holding pool->lock reliably indicates that someone
1988         * else is managing the pool and the worker which failed trylock
1989         * can proceed to executing work items.  This means that anyone
1990         * grabbing manager_arb is responsible for actually performing
1991         * manager duties.  If manager_arb is grabbed and released without
1992         * actual management, the pool may stall indefinitely.
1993         */
1994        if (!mutex_trylock(&pool->manager_arb))
1995                return false;
1996        pool->manager = worker;
1997
1998        maybe_create_worker(pool);
1999
2000        pool->manager = NULL;
2001        mutex_unlock(&pool->manager_arb);
2002        return true;
2003}
2004
2005/**
2006 * process_one_work - process single work
2007 * @worker: self
2008 * @work: work to process
2009 *
2010 * Process @work.  This function contains all the logics necessary to
2011 * process a single work including synchronization against and
2012 * interaction with other workers on the same cpu, queueing and
2013 * flushing.  As long as context requirement is met, any worker can
2014 * call this function to process a work.
2015 *
2016 * CONTEXT:
2017 * spin_lock_irq(pool->lock) which is released and regrabbed.
2018 */
2019static void process_one_work(struct worker *worker, struct work_struct *work)
2020__releases(&pool->lock)
2021__acquires(&pool->lock)
2022{
2023        struct pool_workqueue *pwq = get_work_pwq(work);
2024        struct worker_pool *pool = worker->pool;
2025        bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2026        int work_color;
2027        struct worker *collision;
2028#ifdef CONFIG_LOCKDEP
2029        /*
2030         * It is permissible to free the struct work_struct from
2031         * inside the function that is called from it, this we need to
2032         * take into account for lockdep too.  To avoid bogus "held
2033         * lock freed" warnings as well as problems when looking into
2034         * work->lockdep_map, make a copy and use that here.
2035         */
2036        struct lockdep_map lockdep_map;
2037
2038        lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2039#endif
2040        /* ensure we're on the correct CPU */
2041        WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2042                     raw_smp_processor_id() != pool->cpu);
2043
2044        /*
2045         * A single work shouldn't be executed concurrently by
2046         * multiple workers on a single cpu.  Check whether anyone is
2047         * already processing the work.  If so, defer the work to the
2048         * currently executing one.
2049         */
2050        collision = find_worker_executing_work(pool, work);
2051        if (unlikely(collision)) {
2052                move_linked_works(work, &collision->scheduled, NULL);
2053                return;
2054        }
2055
2056        /* claim and dequeue */
2057        debug_work_deactivate(work);
2058        hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2059        worker->current_work = work;
2060        worker->current_func = work->func;
2061        worker->current_pwq = pwq;
2062        work_color = get_work_color(work);
2063
2064        list_del_init(&work->entry);
2065
2066        /*
2067         * CPU intensive works don't participate in concurrency management.
2068         * They're the scheduler's responsibility.  This takes @worker out
2069         * of concurrency management and the next code block will chain
2070         * execution of the pending work items.
2071         */
2072        if (unlikely(cpu_intensive))
2073                worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2074
2075        /*
2076         * Wake up another worker if necessary.  The condition is always
2077         * false for normal per-cpu workers since nr_running would always
2078         * be >= 1 at this point.  This is used to chain execution of the
2079         * pending work items for WORKER_NOT_RUNNING workers such as the
2080         * UNBOUND and CPU_INTENSIVE ones.
2081         */
2082        if (need_more_worker(pool))
2083                wake_up_worker(pool);
2084
2085        /*
2086         * Record the last pool and clear PENDING which should be the last
2087         * update to @work.  Also, do this inside @pool->lock so that
2088         * PENDING and queued state changes happen together while IRQ is
2089         * disabled.
2090         */
2091        set_work_pool_and_clear_pending(work, pool->id);
2092
2093        spin_unlock_irq(&pool->lock);
2094
2095        lock_map_acquire_read(&pwq->wq->lockdep_map);
2096        lock_map_acquire(&lockdep_map);
2097        trace_workqueue_execute_start(work);
2098        worker->current_func(work);
2099        /*
2100         * While we must be careful to not use "work" after this, the trace
2101         * point will only record its address.
2102         */
2103        trace_workqueue_execute_end(work);
2104        lock_map_release(&lockdep_map);
2105        lock_map_release(&pwq->wq->lockdep_map);
2106
2107        if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2108                pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2109                       "     last function: %pf\n",
2110                       current->comm, preempt_count(), task_pid_nr(current),
2111                       worker->current_func);
2112                debug_show_held_locks(current);
2113                dump_stack();
2114        }
2115
2116        /*
2117         * The following prevents a kworker from hogging CPU on !PREEMPT
2118         * kernels, where a requeueing work item waiting for something to
2119         * happen could deadlock with stop_machine as such work item could
2120         * indefinitely requeue itself while all other CPUs are trapped in
2121         * stop_machine. At the same time, report a quiescent RCU state so
2122         * the same condition doesn't freeze RCU.
2123         */
2124        cond_resched_rcu_qs();
2125
2126        spin_lock_irq(&pool->lock);
2127
2128        /* clear cpu intensive status */
2129        if (unlikely(cpu_intensive))
2130                worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2131
2132        /* we're done with it, release */
2133        hash_del(&worker->hentry);
2134        worker->current_work = NULL;
2135        worker->current_func = NULL;
2136        worker->current_pwq = NULL;
2137        worker->desc_valid = false;
2138        pwq_dec_nr_in_flight(pwq, work_color);
2139}
2140
2141/**
2142 * process_scheduled_works - process scheduled works
2143 * @worker: self
2144 *
2145 * Process all scheduled works.  Please note that the scheduled list
2146 * may change while processing a work, so this function repeatedly
2147 * fetches a work from the top and executes it.
2148 *
2149 * CONTEXT:
2150 * spin_lock_irq(pool->lock) which may be released and regrabbed
2151 * multiple times.
2152 */
2153static void process_scheduled_works(struct worker *worker)
2154{
2155        while (!list_empty(&worker->scheduled)) {
2156                struct work_struct *work = list_first_entry(&worker->scheduled,
2157                                                struct work_struct, entry);
2158                process_one_work(worker, work);
2159        }
2160}
2161
2162/**
2163 * worker_thread - the worker thread function
2164 * @__worker: self
2165 *
2166 * The worker thread function.  All workers belong to a worker_pool -
2167 * either a per-cpu one or dynamic unbound one.  These workers process all
2168 * work items regardless of their specific target workqueue.  The only
2169 * exception is work items which belong to workqueues with a rescuer which
2170 * will be explained in rescuer_thread().
2171 *
2172 * Return: 0
2173 */
2174static int worker_thread(void *__worker)
2175{
2176        struct worker *worker = __worker;
2177        struct worker_pool *pool = worker->pool;
2178
2179        /* tell the scheduler that this is a workqueue worker */
2180        worker->task->flags |= PF_WQ_WORKER;
2181woke_up:
2182        spin_lock_irq(&pool->lock);
2183
2184        /* am I supposed to die? */
2185        if (unlikely(worker->flags & WORKER_DIE)) {
2186                spin_unlock_irq(&pool->lock);
2187                WARN_ON_ONCE(!list_empty(&worker->entry));
2188                worker->task->flags &= ~PF_WQ_WORKER;
2189
2190                set_task_comm(worker->task, "kworker/dying");
2191                ida_simple_remove(&pool->worker_ida, worker->id);
2192                worker_detach_from_pool(worker, pool);
2193                kfree(worker);
2194                return 0;
2195        }
2196
2197        worker_leave_idle(worker);
2198recheck:
2199        /* no more worker necessary? */
2200        if (!need_more_worker(pool))
2201                goto sleep;
2202
2203        /* do we need to manage? */
2204        if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2205                goto recheck;
2206
2207        /*
2208         * ->scheduled list can only be filled while a worker is
2209         * preparing to process a work or actually processing it.
2210         * Make sure nobody diddled with it while I was sleeping.
2211         */
2212        WARN_ON_ONCE(!list_empty(&worker->scheduled));
2213
2214        /*
2215         * Finish PREP stage.  We're guaranteed to have at least one idle
2216         * worker or that someone else has already assumed the manager
2217         * role.  This is where @worker starts participating in concurrency
2218         * management if applicable and concurrency management is restored
2219         * after being rebound.  See rebind_workers() for details.
2220         */
2221        worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2222
2223        do {
2224                struct work_struct *work =
2225                        list_first_entry(&pool->worklist,
2226                                         struct work_struct, entry);
2227
2228                pool->watchdog_ts = jiffies;
2229
2230                if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2231                        /* optimization path, not strictly necessary */
2232                        process_one_work(worker, work);
2233                        if (unlikely(!list_empty(&worker->scheduled)))
2234                                process_scheduled_works(worker);
2235                } else {
2236                        move_linked_works(work, &worker->scheduled, NULL);
2237                        process_scheduled_works(worker);
2238                }
2239        } while (keep_working(pool));
2240
2241        worker_set_flags(worker, WORKER_PREP);
2242sleep:
2243        /*
2244         * pool->lock is held and there's no work to process and no need to
2245         * manage, sleep.  Workers are woken up only while holding
2246         * pool->lock or from local cpu, so setting the current state
2247         * before releasing pool->lock is enough to prevent losing any
2248         * event.
2249         */
2250        worker_enter_idle(worker);
2251        __set_current_state(TASK_INTERRUPTIBLE);
2252        spin_unlock_irq(&pool->lock);
2253        schedule();
2254        goto woke_up;
2255}
2256
2257/**
2258 * rescuer_thread - the rescuer thread function
2259 * @__rescuer: self
2260 *
2261 * Workqueue rescuer thread function.  There's one rescuer for each
2262 * workqueue which has WQ_MEM_RECLAIM set.
2263 *
2264 * Regular work processing on a pool may block trying to create a new
2265 * worker which uses GFP_KERNEL allocation which has slight chance of
2266 * developing into deadlock if some works currently on the same queue
2267 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2268 * the problem rescuer solves.
2269 *
2270 * When such condition is possible, the pool summons rescuers of all
2271 * workqueues which have works queued on the pool and let them process
2272 * those works so that forward progress can be guaranteed.
2273 *
2274 * This should happen rarely.
2275 *
2276 * Return: 0
2277 */
2278static int rescuer_thread(void *__rescuer)
2279{
2280        struct worker *rescuer = __rescuer;
2281        struct workqueue_struct *wq = rescuer->rescue_wq;
2282        struct list_head *scheduled = &rescuer->scheduled;
2283        bool should_stop;
2284
2285        set_user_nice(current, RESCUER_NICE_LEVEL);
2286
2287        /*
2288         * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2289         * doesn't participate in concurrency management.
2290         */
2291        rescuer->task->flags |= PF_WQ_WORKER;
2292repeat:
2293        set_current_state(TASK_INTERRUPTIBLE);
2294
2295        /*
2296         * By the time the rescuer is requested to stop, the workqueue
2297         * shouldn't have any work pending, but @wq->maydays may still have
2298         * pwq(s) queued.  This can happen by non-rescuer workers consuming
2299         * all the work items before the rescuer got to them.  Go through
2300         * @wq->maydays processing before acting on should_stop so that the
2301         * list is always empty on exit.
2302         */
2303        should_stop = kthread_should_stop();
2304
2305        /* see whether any pwq is asking for help */
2306        spin_lock_irq(&wq_mayday_lock);
2307
2308        while (!list_empty(&wq->maydays)) {
2309                struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2310                                        struct pool_workqueue, mayday_node);
2311                struct worker_pool *pool = pwq->pool;
2312                struct work_struct *work, *n;
2313                bool first = true;
2314
2315                __set_current_state(TASK_RUNNING);
2316                list_del_init(&pwq->mayday_node);
2317
2318                spin_unlock_irq(&wq_mayday_lock);
2319
2320                worker_attach_to_pool(rescuer, pool);
2321
2322                spin_lock_irq(&pool->lock);
2323                rescuer->pool = pool;
2324
2325                /*
2326                 * Slurp in all works issued via this workqueue and
2327                 * process'em.
2328                 */
2329                WARN_ON_ONCE(!list_empty(scheduled));
2330                list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2331                        if (get_work_pwq(work) == pwq) {
2332                                if (first)
2333                                        pool->watchdog_ts = jiffies;
2334                                move_linked_works(work, scheduled, &n);
2335                        }
2336                        first = false;
2337                }
2338
2339                if (!list_empty(scheduled)) {
2340                        process_scheduled_works(rescuer);
2341
2342                        /*
2343                         * The above execution of rescued work items could
2344                         * have created more to rescue through
2345                         * pwq_activate_first_delayed() or chained
2346                         * queueing.  Let's put @pwq back on mayday list so
2347                         * that such back-to-back work items, which may be
2348                         * being used to relieve memory pressure, don't
2349                         * incur MAYDAY_INTERVAL delay inbetween.
2350                         */
2351                        if (need_to_create_worker(pool)) {
2352                                spin_lock(&wq_mayday_lock);
2353                                get_pwq(pwq);
2354                                list_move_tail(&pwq->mayday_node, &wq->maydays);
2355                                spin_unlock(&wq_mayday_lock);
2356                        }
2357                }
2358
2359                /*
2360                 * Put the reference grabbed by send_mayday().  @pool won't
2361                 * go away while we're still attached to it.
2362                 */
2363                put_pwq(pwq);
2364
2365                /*
2366                 * Leave this pool.  If need_more_worker() is %true, notify a
2367                 * regular worker; otherwise, we end up with 0 concurrency
2368                 * and stalling the execution.
2369                 */
2370                if (need_more_worker(pool))
2371                        wake_up_worker(pool);
2372
2373                rescuer->pool = NULL;
2374                spin_unlock_irq(&pool->lock);
2375
2376                worker_detach_from_pool(rescuer, pool);
2377
2378                spin_lock_irq(&wq_mayday_lock);
2379        }
2380
2381        spin_unlock_irq(&wq_mayday_lock);
2382
2383        if (should_stop) {
2384                __set_current_state(TASK_RUNNING);
2385                rescuer->task->flags &= ~PF_WQ_WORKER;
2386                return 0;
2387        }
2388
2389        /* rescuers should never participate in concurrency management */
2390        WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2391        schedule();
2392        goto repeat;
2393}
2394
2395/**
2396 * check_flush_dependency - check for flush dependency sanity
2397 * @target_wq: workqueue being flushed
2398 * @target_work: work item being flushed (NULL for workqueue flushes)
2399 *
2400 * %current is trying to flush the whole @target_wq or @target_work on it.
2401 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2402 * reclaiming memory or running on a workqueue which doesn't have
2403 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2404 * a deadlock.
2405 */
2406static void check_flush_dependency(struct workqueue_struct *target_wq,
2407                                   struct work_struct *target_work)
2408{
2409        work_func_t target_func = target_work ? target_work->func : NULL;
2410        struct worker *worker;
2411
2412        if (target_wq->flags & WQ_MEM_RECLAIM)
2413                return;
2414
2415        worker = current_wq_worker();
2416
2417        WARN_ONCE(current->flags & PF_MEMALLOC,
2418                  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2419                  current->pid, current->comm, target_wq->name, target_func);
2420        WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2421                              (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2422                  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2423                  worker->current_pwq->wq->name, worker->current_func,
2424                  target_wq->name, target_func);
2425}
2426
2427struct wq_barrier {
2428        struct work_struct      work;
2429        struct completion       done;
2430        struct task_struct      *task;  /* purely informational */
2431};
2432
2433static void wq_barrier_func(struct work_struct *work)
2434{
2435        struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2436        complete(&barr->done);
2437}
2438
2439/**
2440 * insert_wq_barrier - insert a barrier work
2441 * @pwq: pwq to insert barrier into
2442 * @barr: wq_barrier to insert
2443 * @target: target work to attach @barr to
2444 * @worker: worker currently executing @target, NULL if @target is not executing
2445 *
2446 * @barr is linked to @target such that @barr is completed only after
2447 * @target finishes execution.  Please note that the ordering
2448 * guarantee is observed only with respect to @target and on the local
2449 * cpu.
2450 *
2451 * Currently, a queued barrier can't be canceled.  This is because
2452 * try_to_grab_pending() can't determine whether the work to be
2453 * grabbed is at the head of the queue and thus can't clear LINKED
2454 * flag of the previous work while there must be a valid next work
2455 * after a work with LINKED flag set.
2456 *
2457 * Note that when @worker is non-NULL, @target may be modified
2458 * underneath us, so we can't reliably determine pwq from @target.
2459 *
2460 * CONTEXT:
2461 * spin_lock_irq(pool->lock).
2462 */
2463static void insert_wq_barrier(struct pool_workqueue *pwq,
2464                              struct wq_barrier *barr,
2465                              struct work_struct *target, struct worker *worker)
2466{
2467        struct list_head *head;
2468        unsigned int linked = 0;
2469
2470        /*
2471         * debugobject calls are safe here even with pool->lock locked
2472         * as we know for sure that this will not trigger any of the
2473         * checks and call back into the fixup functions where we
2474         * might deadlock.
2475         */
2476        INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2477        __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2478        init_completion(&barr->done);
2479        barr->task = current;
2480
2481        /*
2482         * If @target is currently being executed, schedule the
2483         * barrier to the worker; otherwise, put it after @target.
2484         */
2485        if (worker)
2486                head = worker->scheduled.next;
2487        else {
2488                unsigned long *bits = work_data_bits(target);
2489
2490                head = target->entry.next;
2491                /* there can already be other linked works, inherit and set */
2492                linked = *bits & WORK_STRUCT_LINKED;
2493                __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2494        }
2495
2496        debug_work_activate(&barr->work);
2497        insert_work(pwq, &barr->work, head,
2498                    work_color_to_flags(WORK_NO_COLOR) | linked);
2499}
2500
2501/**
2502 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2503 * @wq: workqueue being flushed
2504 * @flush_color: new flush color, < 0 for no-op
2505 * @work_color: new work color, < 0 for no-op
2506 *
2507 * Prepare pwqs for workqueue flushing.
2508 *
2509 * If @flush_color is non-negative, flush_color on all pwqs should be
2510 * -1.  If no pwq has in-flight commands at the specified color, all
2511 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2512 * has in flight commands, its pwq->flush_color is set to
2513 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2514 * wakeup logic is armed and %true is returned.
2515 *
2516 * The caller should have initialized @wq->first_flusher prior to
2517 * calling this function with non-negative @flush_color.  If
2518 * @flush_color is negative, no flush color update is done and %false
2519 * is returned.
2520 *
2521 * If @work_color is non-negative, all pwqs should have the same
2522 * work_color which is previous to @work_color and all will be
2523 * advanced to @work_color.
2524 *
2525 * CONTEXT:
2526 * mutex_lock(wq->mutex).
2527 *
2528 * Return:
2529 * %true if @flush_color >= 0 and there's something to flush.  %false
2530 * otherwise.
2531 */
2532static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2533                                      int flush_color, int work_color)
2534{
2535        bool wait = false;
2536        struct pool_workqueue *pwq;
2537
2538        if (flush_color >= 0) {
2539                WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2540                atomic_set(&wq->nr_pwqs_to_flush, 1);
2541        }
2542
2543        for_each_pwq(pwq, wq) {
2544                struct worker_pool *pool = pwq->pool;
2545
2546                spin_lock_irq(&pool->lock);
2547
2548                if (flush_color >= 0) {
2549                        WARN_ON_ONCE(pwq->flush_color != -1);
2550
2551                        if (pwq->nr_in_flight[flush_color]) {
2552                                pwq->flush_color = flush_color;
2553                                atomic_inc(&wq->nr_pwqs_to_flush);
2554                                wait = true;
2555                        }
2556                }
2557
2558                if (work_color >= 0) {
2559                        WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2560                        pwq->work_color = work_color;
2561                }
2562
2563                spin_unlock_irq(&pool->lock);
2564        }
2565
2566        if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2567                complete(&wq->first_flusher->done);
2568
2569        return wait;
2570}
2571
2572/**
2573 * flush_workqueue - ensure that any scheduled work has run to completion.
2574 * @wq: workqueue to flush
2575 *
2576 * This function sleeps until all work items which were queued on entry
2577 * have finished execution, but it is not livelocked by new incoming ones.
2578 */
2579void flush_workqueue(struct workqueue_struct *wq)
2580{
2581        struct wq_flusher this_flusher = {
2582                .list = LIST_HEAD_INIT(this_flusher.list),
2583                .flush_color = -1,
2584                .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2585        };
2586        int next_color;
2587
2588        if (WARN_ON(!wq_online))
2589                return;
2590
2591        lock_map_acquire(&wq->lockdep_map);
2592        lock_map_release(&wq->lockdep_map);
2593
2594        mutex_lock(&wq->mutex);
2595
2596        /*
2597         * Start-to-wait phase
2598         */
2599        next_color = work_next_color(wq->work_color);
2600
2601        if (next_color != wq->flush_color) {
2602                /*
2603                 * Color space is not full.  The current work_color
2604                 * becomes our flush_color and work_color is advanced
2605                 * by one.
2606                 */
2607                WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2608                this_flusher.flush_color = wq->work_color;
2609                wq->work_color = next_color;
2610
2611                if (!wq->first_flusher) {
2612                        /* no flush in progress, become the first flusher */
2613                        WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2614
2615                        wq->first_flusher = &this_flusher;
2616
2617                        if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2618                                                       wq->work_color)) {
2619                                /* nothing to flush, done */
2620                                wq->flush_color = next_color;
2621                                wq->first_flusher = NULL;
2622                                goto out_unlock;
2623                        }
2624                } else {
2625                        /* wait in queue */
2626                        WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2627                        list_add_tail(&this_flusher.list, &wq->flusher_queue);
2628                        flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2629                }
2630        } else {
2631                /*
2632                 * Oops, color space is full, wait on overflow queue.
2633                 * The next flush completion will assign us
2634                 * flush_color and transfer to flusher_queue.
2635                 */
2636                list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2637        }
2638
2639        check_flush_dependency(wq, NULL);
2640
2641        mutex_unlock(&wq->mutex);
2642
2643        wait_for_completion(&this_flusher.done);
2644
2645        /*
2646         * Wake-up-and-cascade phase
2647         *
2648         * First flushers are responsible for cascading flushes and
2649         * handling overflow.  Non-first flushers can simply return.
2650         */
2651        if (wq->first_flusher != &this_flusher)
2652                return;
2653
2654        mutex_lock(&wq->mutex);
2655
2656        /* we might have raced, check again with mutex held */
2657        if (wq->first_flusher != &this_flusher)
2658                goto out_unlock;
2659
2660        wq->first_flusher = NULL;
2661
2662        WARN_ON_ONCE(!list_empty(&this_flusher.list));
2663        WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2664
2665        while (true) {
2666                struct wq_flusher *next, *tmp;
2667
2668                /* complete all the flushers sharing the current flush color */
2669                list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2670                        if (next->flush_color != wq->flush_color)
2671                                break;
2672                        list_del_init(&next->list);
2673                        complete(&next->done);
2674                }
2675
2676                WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2677                             wq->flush_color != work_next_color(wq->work_color));
2678
2679                /* this flush_color is finished, advance by one */
2680                wq->flush_color = work_next_color(wq->flush_color);
2681
2682                /* one color has been freed, handle overflow queue */
2683                if (!list_empty(&wq->flusher_overflow)) {
2684                        /*
2685                         * Assign the same color to all overflowed
2686                         * flushers, advance work_color and append to
2687                         * flusher_queue.  This is the start-to-wait
2688                         * phase for these overflowed flushers.
2689                         */
2690                        list_for_each_entry(tmp, &wq->flusher_overflow, list)
2691                                tmp->flush_color = wq->work_color;
2692
2693                        wq->work_color = work_next_color(wq->work_color);
2694
2695                        list_splice_tail_init(&wq->flusher_overflow,
2696                                              &wq->flusher_queue);
2697                        flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2698                }
2699
2700                if (list_empty(&wq->flusher_queue)) {
2701                        WARN_ON_ONCE(wq->flush_color != wq->work_color);
2702                        break;
2703                }
2704
2705                /*
2706                 * Need to flush more colors.  Make the next flusher
2707                 * the new first flusher and arm pwqs.
2708                 */
2709                WARN_ON_ONCE(wq->flush_color == wq->work_color);
2710                WARN_ON_ONCE(wq->flush_color != next->flush_color);
2711
2712                list_del_init(&next->list);
2713                wq->first_flusher = next;
2714
2715                if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2716                        break;
2717
2718                /*
2719                 * Meh... this color is already done, clear first
2720                 * flusher and repeat cascading.
2721                 */
2722                wq->first_flusher = NULL;
2723        }
2724
2725out_unlock:
2726        mutex_unlock(&wq->mutex);
2727}
2728EXPORT_SYMBOL(flush_workqueue);
2729
2730/**
2731 * drain_workqueue - drain a workqueue
2732 * @wq: workqueue to drain
2733 *
2734 * Wait until the workqueue becomes empty.  While draining is in progress,
2735 * only chain queueing is allowed.  IOW, only currently pending or running
2736 * work items on @wq can queue further work items on it.  @wq is flushed
2737 * repeatedly until it becomes empty.  The number of flushing is determined
2738 * by the depth of chaining and should be relatively short.  Whine if it
2739 * takes too long.
2740 */
2741void drain_workqueue(struct workqueue_struct *wq)
2742{
2743        unsigned int flush_cnt = 0;
2744        struct pool_workqueue *pwq;
2745
2746        /*
2747         * __queue_work() needs to test whether there are drainers, is much
2748         * hotter than drain_workqueue() and already looks at @wq->flags.
2749         * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2750         */
2751        mutex_lock(&wq->mutex);
2752        if (!wq->nr_drainers++)
2753                wq->flags |= __WQ_DRAINING;
2754        mutex_unlock(&wq->mutex);
2755reflush:
2756        flush_workqueue(wq);
2757
2758        mutex_lock(&wq->mutex);
2759
2760        for_each_pwq(pwq, wq) {
2761                bool drained;
2762
2763                spin_lock_irq(&pwq->pool->lock);
2764                drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2765                spin_unlock_irq(&pwq->pool->lock);
2766
2767                if (drained)
2768                        continue;
2769
2770                if (++flush_cnt == 10 ||
2771                    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2772                        pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2773                                wq->name, flush_cnt);
2774
2775                mutex_unlock(&wq->mutex);
2776                goto reflush;
2777        }
2778
2779        if (!--wq->nr_drainers)
2780                wq->flags &= ~__WQ_DRAINING;
2781        mutex_unlock(&wq->mutex);
2782}
2783EXPORT_SYMBOL_GPL(drain_workqueue);
2784
2785static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2786{
2787        struct worker *worker = NULL;
2788        struct worker_pool *pool;
2789        struct pool_workqueue *pwq;
2790
2791        might_sleep();
2792
2793        local_irq_disable();
2794        pool = get_work_pool(work);
2795        if (!pool) {
2796                local_irq_enable();
2797                return false;
2798        }
2799
2800        spin_lock(&pool->lock);
2801        /* see the comment in try_to_grab_pending() with the same code */
2802        pwq = get_work_pwq(work);
2803        if (pwq) {
2804                if (unlikely(pwq->pool != pool))
2805                        goto already_gone;
2806        } else {
2807                worker = find_worker_executing_work(pool, work);
2808                if (!worker)
2809                        goto already_gone;
2810                pwq = worker->current_pwq;
2811        }
2812
2813        check_flush_dependency(pwq->wq, work);
2814
2815        insert_wq_barrier(pwq, barr, work, worker);
2816        spin_unlock_irq(&pool->lock);
2817
2818        /*
2819         * If @max_active is 1 or rescuer is in use, flushing another work
2820         * item on the same workqueue may lead to deadlock.  Make sure the
2821         * flusher is not running on the same workqueue by verifying write
2822         * access.
2823         */
2824        if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2825                lock_map_acquire(&pwq->wq->lockdep_map);
2826        else
2827                lock_map_acquire_read(&pwq->wq->lockdep_map);
2828        lock_map_release(&pwq->wq->lockdep_map);
2829
2830        return true;
2831already_gone:
2832        spin_unlock_irq(&pool->lock);
2833        return false;
2834}
2835
2836/**
2837 * flush_work - wait for a work to finish executing the last queueing instance
2838 * @work: the work to flush
2839 *
2840 * Wait until @work has finished execution.  @work is guaranteed to be idle
2841 * on return if it hasn't been requeued since flush started.
2842 *
2843 * Return:
2844 * %true if flush_work() waited for the work to finish execution,
2845 * %false if it was already idle.
2846 */
2847bool flush_work(struct work_struct *work)
2848{
2849        struct wq_barrier barr;
2850
2851        if (WARN_ON(!wq_online))
2852                return false;
2853
2854        lock_map_acquire(&work->lockdep_map);
2855        lock_map_release(&work->lockdep_map);
2856
2857        if (start_flush_work(work, &barr)) {
2858                wait_for_completion(&barr.done);
2859                destroy_work_on_stack(&barr.work);
2860                return true;
2861        } else {
2862                return false;
2863        }
2864}
2865EXPORT_SYMBOL_GPL(flush_work);
2866
2867struct cwt_wait {
2868        wait_queue_t            wait;
2869        struct work_struct      *work;
2870};
2871
2872static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2873{
2874        struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2875
2876        if (cwait->work != key)
2877                return 0;
2878        return autoremove_wake_function(wait, mode, sync, key);
2879}
2880
2881static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2882{
2883        static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2884        unsigned long flags;
2885        int ret;
2886
2887        do {
2888                ret = try_to_grab_pending(work, is_dwork, &flags);
2889                /*
2890                 * If someone else is already canceling, wait for it to
2891                 * finish.  flush_work() doesn't work for PREEMPT_NONE
2892                 * because we may get scheduled between @work's completion
2893                 * and the other canceling task resuming and clearing
2894                 * CANCELING - flush_work() will return false immediately
2895                 * as @work is no longer busy, try_to_grab_pending() will
2896                 * return -ENOENT as @work is still being canceled and the
2897                 * other canceling task won't be able to clear CANCELING as
2898                 * we're hogging the CPU.
2899                 *
2900                 * Let's wait for completion using a waitqueue.  As this
2901                 * may lead to the thundering herd problem, use a custom
2902                 * wake function which matches @work along with exclusive
2903                 * wait and wakeup.
2904                 */
2905                if (unlikely(ret == -ENOENT)) {
2906                        struct cwt_wait cwait;
2907
2908                        init_wait(&cwait.wait);
2909                        cwait.wait.func = cwt_wakefn;
2910                        cwait.work = work;
2911
2912                        prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2913                                                  TASK_UNINTERRUPTIBLE);
2914                        if (work_is_canceling(work))
2915                                schedule();
2916                        finish_wait(&cancel_waitq, &cwait.wait);
2917                }
2918        } while (unlikely(ret < 0));
2919
2920        /* tell other tasks trying to grab @work to back off */
2921        mark_work_canceling(work);
2922        local_irq_restore(flags);
2923
2924        /*
2925         * This allows canceling during early boot.  We know that @work
2926         * isn't executing.
2927         */
2928        if (wq_online)
2929                flush_work(work);
2930
2931        clear_work_data(work);
2932
2933        /*
2934         * Paired with prepare_to_wait() above so that either
2935         * waitqueue_active() is visible here or !work_is_canceling() is
2936         * visible there.
2937         */
2938        smp_mb();
2939        if (waitqueue_active(&cancel_waitq))
2940                __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2941
2942        return ret;
2943}
2944
2945/**
2946 * cancel_work_sync - cancel a work and wait for it to finish
2947 * @work: the work to cancel
2948 *
2949 * Cancel @work and wait for its execution to finish.  This function
2950 * can be used even if the work re-queues itself or migrates to
2951 * another workqueue.  On return from this function, @work is
2952 * guaranteed to be not pending or executing on any CPU.
2953 *
2954 * cancel_work_sync(&delayed_work->work) must not be used for
2955 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2956 *
2957 * The caller must ensure that the workqueue on which @work was last
2958 * queued can't be destroyed before this function returns.
2959 *
2960 * Return:
2961 * %true if @work was pending, %false otherwise.
2962 */
2963bool cancel_work_sync(struct work_struct *work)
2964{
2965        return __cancel_work_timer(work, false);
2966}
2967EXPORT_SYMBOL_GPL(cancel_work_sync);
2968
2969/**
2970 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2971 * @dwork: the delayed work to flush
2972 *
2973 * Delayed timer is cancelled and the pending work is queued for
2974 * immediate execution.  Like flush_work(), this function only
2975 * considers the last queueing instance of @dwork.
2976 *
2977 * Return:
2978 * %true if flush_work() waited for the work to finish execution,
2979 * %false if it was already idle.
2980 */
2981bool flush_delayed_work(struct delayed_work *dwork)
2982{
2983        local_irq_disable();
2984        if (del_timer_sync(&dwork->timer))
2985                __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2986        local_irq_enable();
2987        return flush_work(&dwork->work);
2988}
2989EXPORT_SYMBOL(flush_delayed_work);
2990
2991static bool __cancel_work(struct work_struct *work, bool is_dwork)
2992{
2993        unsigned long flags;
2994        int ret;
2995
2996        do {
2997                ret = try_to_grab_pending(work, is_dwork, &flags);
2998        } while (unlikely(ret == -EAGAIN));
2999
3000        if (unlikely(ret < 0))
3001                return false;
3002
3003        set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3004        local_irq_restore(flags);
3005        return ret;
3006}
3007
3008/*
3009 * See cancel_delayed_work()
3010 */
3011bool cancel_work(struct work_struct *work)
3012{
3013        return __cancel_work(work, false);
3014}
3015
3016/**
3017 * cancel_delayed_work - cancel a delayed work
3018 * @dwork: delayed_work to cancel
3019 *
3020 * Kill off a pending delayed_work.
3021 *
3022 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3023 * pending.
3024 *
3025 * Note:
3026 * The work callback function may still be running on return, unless
3027 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3028 * use cancel_delayed_work_sync() to wait on it.
3029 *
3030 * This function is safe to call from any context including IRQ handler.
3031 */
3032bool cancel_delayed_work(struct delayed_work *dwork)
3033{
3034        return __cancel_work(&dwork->work, true);
3035}
3036EXPORT_SYMBOL(cancel_delayed_work);
3037
3038/**
3039 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3040 * @dwork: the delayed work cancel
3041 *
3042 * This is cancel_work_sync() for delayed works.
3043 *
3044 * Return:
3045 * %true if @dwork was pending, %false otherwise.
3046 */
3047bool cancel_delayed_work_sync(struct delayed_work *dwork)
3048{
3049        return __cancel_work_timer(&dwork->work, true);
3050}
3051EXPORT_SYMBOL(cancel_delayed_work_sync);
3052
3053/**
3054 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3055 * @func: the function to call
3056 *
3057 * schedule_on_each_cpu() executes @func on each online CPU using the
3058 * system workqueue and blocks until all CPUs have completed.
3059 * schedule_on_each_cpu() is very slow.
3060 *
3061 * Return:
3062 * 0 on success, -errno on failure.
3063 */
3064int schedule_on_each_cpu(work_func_t func)
3065{
3066        int cpu;
3067        struct work_struct __percpu *works;
3068
3069        works = alloc_percpu(struct work_struct);
3070        if (!works)
3071                return -ENOMEM;
3072
3073        get_online_cpus();
3074
3075        for_each_online_cpu(cpu) {
3076                struct work_struct *work = per_cpu_ptr(works, cpu);
3077
3078                INIT_WORK(work, func);
3079                schedule_work_on(cpu, work);
3080        }
3081
3082        for_each_online_cpu(cpu)
3083                flush_work(per_cpu_ptr(works, cpu));
3084
3085        put_online_cpus();
3086        free_percpu(works);
3087        return 0;
3088}
3089
3090/**
3091 * execute_in_process_context - reliably execute the routine with user context
3092 * @fn:         the function to execute
3093 * @ew:         guaranteed storage for the execute work structure (must
3094 *              be available when the work executes)
3095 *
3096 * Executes the function immediately if process context is available,
3097 * otherwise schedules the function for delayed execution.
3098 *
3099 * Return:      0 - function was executed
3100 *              1 - function was scheduled for execution
3101 */
3102int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3103{
3104        if (!in_interrupt()) {
3105                fn(&ew->work);
3106                return 0;
3107        }
3108
3109        INIT_WORK(&ew->work, fn);
3110        schedule_work(&ew->work);
3111
3112        return 1;
3113}
3114EXPORT_SYMBOL_GPL(execute_in_process_context);
3115
3116/**
3117 * free_workqueue_attrs - free a workqueue_attrs
3118 * @attrs: workqueue_attrs to free
3119 *
3120 * Undo alloc_workqueue_attrs().
3121 */
3122void free_workqueue_attrs(struct workqueue_attrs *attrs)
3123{
3124        if (attrs) {
3125                free_cpumask_var(attrs->cpumask);
3126                kfree(attrs);
3127        }
3128}
3129
3130/**
3131 * alloc_workqueue_attrs - allocate a workqueue_attrs
3132 * @gfp_mask: allocation mask to use
3133 *
3134 * Allocate a new workqueue_attrs, initialize with default settings and
3135 * return it.
3136 *
3137 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3138 */
3139struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3140{
3141        struct workqueue_attrs *attrs;
3142
3143        attrs = kzalloc(sizeof(*attrs), gfp_mask);
3144        if (!attrs)
3145                goto fail;
3146        if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3147                goto fail;
3148
3149        cpumask_copy(attrs->cpumask, cpu_possible_mask);
3150        return attrs;
3151fail:
3152        free_workqueue_attrs(attrs);
3153        return NULL;
3154}
3155
3156static void copy_workqueue_attrs(struct workqueue_attrs *to,
3157                                 const struct workqueue_attrs *from)
3158{
3159        to->nice = from->nice;
3160        cpumask_copy(to->cpumask, from->cpumask);
3161        /*
3162         * Unlike hash and equality test, this function doesn't ignore
3163         * ->no_numa as it is used for both pool and wq attrs.  Instead,
3164         * get_unbound_pool() explicitly clears ->no_numa after copying.
3165         */
3166        to->no_numa = from->no_numa;
3167}
3168
3169/* hash value of the content of @attr */
3170static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3171{
3172        u32 hash = 0;
3173
3174        hash = jhash_1word(attrs->nice, hash);
3175        hash = jhash(cpumask_bits(attrs->cpumask),
3176                     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3177        return hash;
3178}
3179
3180/* content equality test */
3181static bool wqattrs_equal(const struct workqueue_attrs *a,
3182                          const struct workqueue_attrs *b)
3183{
3184        if (a->nice != b->nice)
3185                return false;
3186        if (!cpumask_equal(a->cpumask, b->cpumask))
3187                return false;
3188        return true;
3189}
3190
3191/**
3192 * init_worker_pool - initialize a newly zalloc'd worker_pool
3193 * @pool: worker_pool to initialize
3194 *
3195 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3196 *
3197 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3198 * inside @pool proper are initialized and put_unbound_pool() can be called
3199 * on @pool safely to release it.
3200 */
3201static int init_worker_pool(struct worker_pool *pool)
3202{
3203        spin_lock_init(&pool->lock);
3204        pool->id = -1;
3205        pool->cpu = -1;
3206        pool->node = NUMA_NO_NODE;
3207        pool->flags |= POOL_DISASSOCIATED;
3208        pool->watchdog_ts = jiffies;
3209        INIT_LIST_HEAD(&pool->worklist);
3210        INIT_LIST_HEAD(&pool->idle_list);
3211        hash_init(pool->busy_hash);
3212
3213        init_timer_deferrable(&pool->idle_timer);
3214        pool->idle_timer.function = idle_worker_timeout;
3215        pool->idle_timer.data = (unsigned long)pool;
3216
3217        setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3218                    (unsigned long)pool);
3219
3220        mutex_init(&pool->manager_arb);
3221        mutex_init(&pool->attach_mutex);
3222        INIT_LIST_HEAD(&pool->workers);
3223
3224        ida_init(&pool->worker_ida);
3225        INIT_HLIST_NODE(&pool->hash_node);
3226        pool->refcnt = 1;
3227
3228        /* shouldn't fail above this point */
3229        pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3230        if (!pool->attrs)
3231                return -ENOMEM;
3232        return 0;
3233}
3234
3235static void rcu_free_wq(struct rcu_head *rcu)
3236{
3237        struct workqueue_struct *wq =
3238                container_of(rcu, struct workqueue_struct, rcu);
3239
3240        if (!(wq->flags & WQ_UNBOUND))
3241                free_percpu(wq->cpu_pwqs);
3242        else
3243                free_workqueue_attrs(wq->unbound_attrs);
3244
3245        kfree(wq->rescuer);
3246        kfree(wq);
3247}
3248
3249static void rcu_free_pool(struct rcu_head *rcu)
3250{
3251        struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3252
3253        ida_destroy(&pool->worker_ida);
3254        free_workqueue_attrs(pool->attrs);
3255        kfree(pool);
3256}
3257
3258/**
3259 * put_unbound_pool - put a worker_pool
3260 * @pool: worker_pool to put
3261 *
3262 * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3263 * safe manner.  get_unbound_pool() calls this function on its failure path
3264 * and this function should be able to release pools which went through,
3265 * successfully or not, init_worker_pool().
3266 *
3267 * Should be called with wq_pool_mutex held.
3268 */
3269static void put_unbound_pool(struct worker_pool *pool)
3270{
3271        DECLARE_COMPLETION_ONSTACK(detach_completion);
3272        struct worker *worker;
3273
3274        lockdep_assert_held(&wq_pool_mutex);
3275
3276        if (--pool->refcnt)
3277                return;
3278
3279        /* sanity checks */
3280        if (WARN_ON(!(pool->cpu < 0)) ||
3281            WARN_ON(!list_empty(&pool->worklist)))
3282                return;
3283
3284        /* release id and unhash */
3285        if (pool->id >= 0)
3286                idr_remove(&worker_pool_idr, pool->id);
3287        hash_del(&pool->hash_node);
3288
3289        /*
3290         * Become the manager and destroy all workers.  Grabbing
3291         * manager_arb prevents @pool's workers from blocking on
3292         * attach_mutex.
3293         */
3294        mutex_lock(&pool->manager_arb);
3295
3296        spin_lock_irq(&pool->lock);
3297        while ((worker = first_idle_worker(pool)))
3298                destroy_worker(worker);
3299        WARN_ON(pool->nr_workers || pool->nr_idle);
3300        spin_unlock_irq(&pool->lock);
3301
3302        mutex_lock(&pool->attach_mutex);
3303        if (!list_empty(&pool->workers))
3304                pool->detach_completion = &detach_completion;
3305        mutex_unlock(&pool->attach_mutex);
3306
3307        if (pool->detach_completion)
3308                wait_for_completion(pool->detach_completion);
3309
3310        mutex_unlock(&pool->manager_arb);
3311
3312        /* shut down the timers */
3313        del_timer_sync(&pool->idle_timer);
3314        del_timer_sync(&pool->mayday_timer);
3315
3316        /* sched-RCU protected to allow dereferences from get_work_pool() */
3317        call_rcu_sched(&pool->rcu, rcu_free_pool);
3318}
3319
3320/**
3321 * get_unbound_pool - get a worker_pool with the specified attributes
3322 * @attrs: the attributes of the worker_pool to get
3323 *
3324 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3325 * reference count and return it.  If there already is a matching
3326 * worker_pool, it will be used; otherwise, this function attempts to
3327 * create a new one.
3328 *
3329 * Should be called with wq_pool_mutex held.
3330 *
3331 * Return: On success, a worker_pool with the same attributes as @attrs.
3332 * On failure, %NULL.
3333 */
3334static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3335{
3336        u32 hash = wqattrs_hash(attrs);
3337        struct worker_pool *pool;
3338        int node;
3339        int target_node = NUMA_NO_NODE;
3340
3341        lockdep_assert_held(&wq_pool_mutex);
3342
3343        /* do we already have a matching pool? */
3344        hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3345                if (wqattrs_equal(pool->attrs, attrs)) {
3346                        pool->refcnt++;
3347                        return pool;
3348                }
3349        }
3350
3351        /* if cpumask is contained inside a NUMA node, we belong to that node */
3352        if (wq_numa_enabled) {
3353                for_each_node(node) {
3354                        if (cpumask_subset(attrs->cpumask,
3355                                           wq_numa_possible_cpumask[node])) {
3356                                target_node = node;
3357                                break;
3358                        }
3359                }
3360        }
3361
3362        /* nope, create a new one */
3363        pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3364        if (!pool || init_worker_pool(pool) < 0)
3365                goto fail;
3366
3367        lockdep_set_subclass(&pool->lock, 1);   /* see put_pwq() */
3368        copy_workqueue_attrs(pool->attrs, attrs);
3369        pool->node = target_node;
3370
3371        /*
3372         * no_numa isn't a worker_pool attribute, always clear it.  See
3373         * 'struct workqueue_attrs' comments for detail.
3374         */
3375        pool->attrs->no_numa = false;
3376
3377        if (worker_pool_assign_id(pool) < 0)
3378                goto fail;
3379
3380        /* create and start the initial worker */
3381        if (wq_online && !create_worker(pool))
3382                goto fail;
3383
3384        /* install */
3385        hash_add(unbound_pool_hash, &pool->hash_node, hash);
3386
3387        return pool;
3388fail:
3389        if (pool)
3390                put_unbound_pool(pool);
3391        return NULL;
3392}
3393
3394static void rcu_free_pwq(struct rcu_head *rcu)
3395{
3396        kmem_cache_free(pwq_cache,
3397                        container_of(rcu, struct pool_workqueue, rcu));
3398}
3399
3400/*
3401 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3402 * and needs to be destroyed.
3403 */
3404static void pwq_unbound_release_workfn(struct work_struct *work)
3405{
3406        struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3407                                                  unbound_release_work);
3408        struct workqueue_struct *wq = pwq->wq;
3409        struct worker_pool *pool = pwq->pool;
3410        bool is_last;
3411
3412        if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3413                return;
3414
3415        mutex_lock(&wq->mutex);
3416        list_del_rcu(&pwq->pwqs_node);
3417        is_last = list_empty(&wq->pwqs);
3418        mutex_unlock(&wq->mutex);
3419
3420        mutex_lock(&wq_pool_mutex);
3421        put_unbound_pool(pool);
3422        mutex_unlock(&wq_pool_mutex);
3423
3424        call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3425
3426        /*
3427         * If we're the last pwq going away, @wq is already dead and no one
3428         * is gonna access it anymore.  Schedule RCU free.
3429         */
3430        if (is_last)
3431                call_rcu_sched(&wq->rcu, rcu_free_wq);
3432}
3433
3434/**
3435 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3436 * @pwq: target pool_workqueue
3437 *
3438 * If @pwq isn't freezing, set @pwq->max_active to the associated
3439 * workqueue's saved_max_active and activate delayed work items
3440 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3441 */
3442static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3443{
3444        struct workqueue_struct *wq = pwq->wq;
3445        bool freezable = wq->flags & WQ_FREEZABLE;
3446        unsigned long flags;
3447
3448        /* for @wq->saved_max_active */
3449        lockdep_assert_held(&wq->mutex);
3450
3451        /* fast exit for non-freezable wqs */
3452        if (!freezable && pwq->max_active == wq->saved_max_active)
3453                return;
3454
3455        /* this function can be called during early boot w/ irq disabled */
3456        spin_lock_irqsave(&pwq->pool->lock, flags);
3457
3458        /*
3459         * During [un]freezing, the caller is responsible for ensuring that
3460         * this function is called at least once after @workqueue_freezing
3461         * is updated and visible.
3462         */
3463        if (!freezable || !workqueue_freezing) {
3464                pwq->max_active = wq->saved_max_active;
3465
3466                while (!list_empty(&pwq->delayed_works) &&
3467                       pwq->nr_active < pwq->max_active)
3468                        pwq_activate_first_delayed(pwq);
3469
3470                /*
3471                 * Need to kick a worker after thawed or an unbound wq's
3472                 * max_active is bumped.  It's a slow path.  Do it always.
3473                 */
3474                wake_up_worker(pwq->pool);
3475        } else {
3476                pwq->max_active = 0;
3477        }
3478
3479        spin_unlock_irqrestore(&pwq->pool->lock, flags);
3480}
3481
3482/* initialize newly alloced @pwq which is associated with @wq and @pool */
3483static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3484                     struct worker_pool *pool)
3485{
3486        BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3487
3488        memset(pwq, 0, sizeof(*pwq));
3489
3490        pwq->pool = pool;
3491        pwq->wq = wq;
3492        pwq->flush_color = -1;
3493        pwq->refcnt = 1;
3494        INIT_LIST_HEAD(&pwq->delayed_works);
3495        INIT_LIST_HEAD(&pwq->pwqs_node);
3496        INIT_LIST_HEAD(&pwq->mayday_node);
3497        INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3498}
3499
3500/* sync @pwq with the current state of its associated wq and link it */
3501static void link_pwq(struct pool_workqueue *pwq)
3502{
3503        struct workqueue_struct *wq = pwq->wq;
3504
3505        lockdep_assert_held(&wq->mutex);
3506
3507        /* may be called multiple times, ignore if already linked */
3508        if (!list_empty(&pwq->pwqs_node))
3509                return;
3510
3511        /* set the matching work_color */
3512        pwq->work_color = wq->work_color;
3513
3514        /* sync max_active to the current setting */
3515        pwq_adjust_max_active(pwq);
3516
3517        /* link in @pwq */
3518        list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3519}
3520
3521/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3522static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3523                                        const struct workqueue_attrs *attrs)
3524{
3525        struct worker_pool *pool;
3526        struct pool_workqueue *pwq;
3527
3528        lockdep_assert_held(&wq_pool_mutex);
3529
3530        pool = get_unbound_pool(attrs);
3531        if (!pool)
3532                return NULL;
3533
3534        pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3535        if (!pwq) {
3536                put_unbound_pool(pool);
3537                return NULL;
3538        }
3539
3540        init_pwq(pwq, wq, pool);
3541        return pwq;
3542}
3543
3544/**
3545 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3546 * @attrs: the wq_attrs of the default pwq of the target workqueue
3547 * @node: the target NUMA node
3548 * @cpu_going_down: if >= 0, the CPU to consider as offline
3549 * @cpumask: outarg, the resulting cpumask
3550 *
3551 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3552 * @cpu_going_down is >= 0, that cpu is considered offline during
3553 * calculation.  The result is stored in @cpumask.
3554 *
3555 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3556 * enabled and @node has online CPUs requested by @attrs, the returned
3557 * cpumask is the intersection of the possible CPUs of @node and
3558 * @attrs->cpumask.
3559 *
3560 * The caller is responsible for ensuring that the cpumask of @node stays
3561 * stable.
3562 *
3563 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3564 * %false if equal.
3565 */
3566static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3567                                 int cpu_going_down, cpumask_t *cpumask)
3568{
3569        if (!wq_numa_enabled || attrs->no_numa)
3570                goto use_dfl;
3571
3572        /* does @node have any online CPUs @attrs wants? */
3573        cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3574        if (cpu_going_down >= 0)
3575                cpumask_clear_cpu(cpu_going_down, cpumask);
3576
3577        if (cpumask_empty(cpumask))
3578                goto use_dfl;
3579
3580        /* yeap, return possible CPUs in @node that @attrs wants */
3581        cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3582        return !cpumask_equal(cpumask, attrs->cpumask);
3583
3584use_dfl:
3585        cpumask_copy(cpumask, attrs->cpumask);
3586        return false;
3587}
3588
3589/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3590static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3591                                                   int node,
3592                                                   struct pool_workqueue *pwq)
3593{
3594        struct pool_workqueue *old_pwq;
3595
3596        lockdep_assert_held(&wq_pool_mutex);
3597        lockdep_assert_held(&wq->mutex);
3598
3599        /* link_pwq() can handle duplicate calls */
3600        link_pwq(pwq);
3601
3602        old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3603        rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3604        return old_pwq;
3605}
3606
3607/* context to store the prepared attrs & pwqs before applying */
3608struct apply_wqattrs_ctx {
3609        struct workqueue_struct *wq;            /* target workqueue */
3610        struct workqueue_attrs  *attrs;         /* attrs to apply */
3611        struct list_head        list;           /* queued for batching commit */
3612        struct pool_workqueue   *dfl_pwq;
3613        struct pool_workqueue   *pwq_tbl[];
3614};
3615
3616/* free the resources after success or abort */
3617static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3618{
3619        if (ctx) {
3620                int node;
3621
3622                for_each_node(node)
3623                        put_pwq_unlocked(ctx->pwq_tbl[node]);
3624                put_pwq_unlocked(ctx->dfl_pwq);
3625
3626                free_workqueue_attrs(ctx->attrs);
3627
3628                kfree(ctx);
3629        }
3630}
3631
3632/* allocate the attrs and pwqs for later installation */
3633static struct apply_wqattrs_ctx *
3634apply_wqattrs_prepare(struct workqueue_struct *wq,
3635                      const struct workqueue_attrs *attrs)
3636{
3637        struct apply_wqattrs_ctx *ctx;
3638        struct workqueue_attrs *new_attrs, *tmp_attrs;
3639        int node;
3640
3641        lockdep_assert_held(&wq_pool_mutex);
3642
3643        ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3644                      GFP_KERNEL);
3645
3646        new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3647        tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3648        if (!ctx || !new_attrs || !tmp_attrs)
3649                goto out_free;
3650
3651        /*
3652         * Calculate the attrs of the default pwq.
3653         * If the user configured cpumask doesn't overlap with the
3654         * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3655         */
3656        copy_workqueue_attrs(new_attrs, attrs);
3657        cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3658        if (unlikely(cpumask_empty(new_attrs->cpumask)))
3659                cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3660
3661        /*
3662         * We may create multiple pwqs with differing cpumasks.  Make a
3663         * copy of @new_attrs which will be modified and used to obtain
3664         * pools.
3665         */
3666        copy_workqueue_attrs(tmp_attrs, new_attrs);
3667
3668        /*
3669         * If something goes wrong during CPU up/down, we'll fall back to
3670         * the default pwq covering whole @attrs->cpumask.  Always create
3671         * it even if we don't use it immediately.
3672         */
3673        ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3674        if (!ctx->dfl_pwq)
3675                goto out_free;
3676
3677        for_each_node(node) {
3678                if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3679                        ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3680                        if (!ctx->pwq_tbl[node])
3681                                goto out_free;
3682                } else {
3683                        ctx->dfl_pwq->refcnt++;
3684                        ctx->pwq_tbl[node] = ctx->dfl_pwq;
3685                }
3686        }
3687
3688        /* save the user configured attrs and sanitize it. */
3689        copy_workqueue_attrs(new_attrs, attrs);
3690        cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3691        ctx->attrs = new_attrs;
3692
3693        ctx->wq = wq;
3694        free_workqueue_attrs(tmp_attrs);
3695        return ctx;
3696
3697out_free:
3698        free_workqueue_attrs(tmp_attrs);
3699        free_workqueue_attrs(new_attrs);
3700        apply_wqattrs_cleanup(ctx);
3701        return NULL;
3702}
3703
3704/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3705static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3706{
3707        int node;
3708
3709        /* all pwqs have been created successfully, let's install'em */
3710        mutex_lock(&ctx->wq->mutex);
3711
3712        copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3713
3714        /* save the previous pwq and install the new one */
3715        for_each_node(node)
3716                ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3717                                                          ctx->pwq_tbl[node]);
3718
3719        /* @dfl_pwq might not have been used, ensure it's linked */
3720        link_pwq(ctx->dfl_pwq);
3721        swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3722
3723        mutex_unlock(&ctx->wq->mutex);
3724}
3725
3726static void apply_wqattrs_lock(void)
3727{
3728        /* CPUs should stay stable across pwq creations and installations */
3729        get_online_cpus();
3730        mutex_lock(&wq_pool_mutex);
3731}
3732
3733static void apply_wqattrs_unlock(void)
3734{
3735        mutex_unlock(&wq_pool_mutex);
3736        put_online_cpus();
3737}
3738
3739static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3740                                        const struct workqueue_attrs *attrs)
3741{
3742        struct apply_wqattrs_ctx *ctx;
3743
3744        /* only unbound workqueues can change attributes */
3745        if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3746                return -EINVAL;
3747
3748        /* creating multiple pwqs breaks ordering guarantee */
3749        if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3750                return -EINVAL;
3751
3752        ctx = apply_wqattrs_prepare(wq, attrs);
3753        if (!ctx)
3754                return -ENOMEM;
3755
3756        /* the ctx has been prepared successfully, let's commit it */
3757        apply_wqattrs_commit(ctx);
3758        apply_wqattrs_cleanup(ctx);
3759
3760        return 0;
3761}
3762
3763/**
3764 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3765 * @wq: the target workqueue
3766 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3767 *
3768 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3769 * machines, this function maps a separate pwq to each NUMA node with
3770 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3771 * NUMA node it was issued on.  Older pwqs are released as in-flight work
3772 * items finish.  Note that a work item which repeatedly requeues itself
3773 * back-to-back will stay on its current pwq.
3774 *
3775 * Performs GFP_KERNEL allocations.
3776 *
3777 * Return: 0 on success and -errno on failure.
3778 */
3779int apply_workqueue_attrs(struct workqueue_struct *wq,
3780                          const struct workqueue_attrs *attrs)
3781{
3782        int ret;
3783
3784        apply_wqattrs_lock();
3785        ret = apply_workqueue_attrs_locked(wq, attrs);
3786        apply_wqattrs_unlock();
3787
3788        return ret;
3789}
3790
3791/**
3792 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3793 * @wq: the target workqueue
3794 * @cpu: the CPU coming up or going down
3795 * @online: whether @cpu is coming up or going down
3796 *
3797 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3798 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3799 * @wq accordingly.
3800 *
3801 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3802 * falls back to @wq->dfl_pwq which may not be optimal but is always
3803 * correct.
3804 *
3805 * Note that when the last allowed CPU of a NUMA node goes offline for a
3806 * workqueue with a cpumask spanning multiple nodes, the workers which were
3807 * already executing the work items for the workqueue will lose their CPU
3808 * affinity and may execute on any CPU.  This is similar to how per-cpu
3809 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3810 * affinity, it's the user's responsibility to flush the work item from
3811 * CPU_DOWN_PREPARE.
3812 */
3813static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3814                                   bool online)
3815{
3816        int node = cpu_to_node(cpu);
3817        int cpu_off = online ? -1 : cpu;
3818        struct pool_workqueue *old_pwq = NULL, *pwq;
3819        struct workqueue_attrs *target_attrs;
3820        cpumask_t *cpumask;
3821
3822        lockdep_assert_held(&wq_pool_mutex);
3823
3824        if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3825            wq->unbound_attrs->no_numa)
3826                return;
3827
3828        /*
3829         * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3830         * Let's use a preallocated one.  The following buf is protected by
3831         * CPU hotplug exclusion.
3832         */
3833        target_attrs = wq_update_unbound_numa_attrs_buf;
3834        cpumask = target_attrs->cpumask;
3835
3836        copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3837        pwq = unbound_pwq_by_node(wq, node);
3838
3839        /*
3840         * Let's determine what needs to be done.  If the target cpumask is
3841         * different from the default pwq's, we need to compare it to @pwq's
3842         * and create a new one if they don't match.  If the target cpumask
3843         * equals the default pwq's, the default pwq should be used.
3844         */
3845        if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3846                if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3847                        return;
3848        } else {
3849                goto use_dfl_pwq;
3850        }
3851
3852        /* create a new pwq */
3853        pwq = alloc_unbound_pwq(wq, target_attrs);
3854        if (!pwq) {
3855                pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3856                        wq->name);
3857                goto use_dfl_pwq;
3858        }
3859
3860        /* Install the new pwq. */
3861        mutex_lock(&wq->mutex);
3862        old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3863        goto out_unlock;
3864
3865use_dfl_pwq:
3866        mutex_lock(&wq->mutex);
3867        spin_lock_irq(&wq->dfl_pwq->pool->lock);
3868        get_pwq(wq->dfl_pwq);
3869        spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3870        old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3871out_unlock:
3872        mutex_unlock(&wq->mutex);
3873        put_pwq_unlocked(old_pwq);
3874}
3875
3876static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3877{
3878        bool highpri = wq->flags & WQ_HIGHPRI;
3879        int cpu, ret;
3880
3881        if (!(wq->flags & WQ_UNBOUND)) {
3882                wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3883                if (!wq->cpu_pwqs)
3884                        return -ENOMEM;
3885
3886                for_each_possible_cpu(cpu) {
3887                        struct pool_workqueue *pwq =
3888                                per_cpu_ptr(wq->cpu_pwqs, cpu);
3889                        struct worker_pool *cpu_pools =
3890                                per_cpu(cpu_worker_pools, cpu);
3891
3892                        init_pwq(pwq, wq, &cpu_pools[highpri]);
3893
3894                        mutex_lock(&wq->mutex);
3895                        link_pwq(pwq);
3896                        mutex_unlock(&wq->mutex);
3897                }
3898                return 0;
3899        } else if (wq->flags & __WQ_ORDERED) {
3900                ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3901                /* there should only be single pwq for ordering guarantee */
3902                WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3903                              wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3904                     "ordering guarantee broken for workqueue %s\n", wq->name);
3905                return ret;
3906        } else {
3907                return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3908        }
3909}
3910
3911static int wq_clamp_max_active(int max_active, unsigned int flags,
3912                               const char *name)
3913{
3914        int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3915
3916        if (max_active < 1 || max_active > lim)
3917                pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3918                        max_active, name, 1, lim);
3919
3920        return clamp_val(max_active, 1, lim);
3921}
3922
3923struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3924                                               unsigned int flags,
3925                                               int max_active,
3926                                               struct lock_class_key *key,
3927                                               const char *lock_name, ...)
3928{
3929        size_t tbl_size = 0;
3930        va_list args;
3931        struct workqueue_struct *wq;
3932        struct pool_workqueue *pwq;
3933
3934        /* see the comment above the definition of WQ_POWER_EFFICIENT */
3935        if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3936                flags |= WQ_UNBOUND;
3937
3938        /* allocate wq and format name */
3939        if (flags & WQ_UNBOUND)
3940                tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3941
3942        wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3943        if (!wq)
3944                return NULL;
3945
3946        if (flags & WQ_UNBOUND) {
3947                wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3948                if (!wq->unbound_attrs)
3949                        goto err_free_wq;
3950        }
3951
3952        va_start(args, lock_name);
3953        vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3954        va_end(args);
3955
3956        max_active = max_active ?: WQ_DFL_ACTIVE;
3957        max_active = wq_clamp_max_active(max_active, flags, wq->name);
3958
3959        /* init wq */
3960        wq->flags = flags;
3961        wq->saved_max_active = max_active;
3962        mutex_init(&wq->mutex);
3963        atomic_set(&wq->nr_pwqs_to_flush, 0);
3964        INIT_LIST_HEAD(&wq->pwqs);
3965        INIT_LIST_HEAD(&wq->flusher_queue);
3966        INIT_LIST_HEAD(&wq->flusher_overflow);
3967        INIT_LIST_HEAD(&wq->maydays);
3968
3969        lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3970        INIT_LIST_HEAD(&wq->list);
3971
3972        if (alloc_and_link_pwqs(wq) < 0)
3973                goto err_free_wq;
3974
3975        /*
3976         * Workqueues which may be used during memory reclaim should
3977         * have a rescuer to guarantee forward progress.
3978         */
3979        if (flags & WQ_MEM_RECLAIM) {
3980                struct worker *rescuer;
3981
3982                rescuer = alloc_worker(NUMA_NO_NODE);
3983                if (!rescuer)
3984                        goto err_destroy;
3985
3986                rescuer->rescue_wq = wq;
3987                rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3988                                               wq->name);
3989                if (IS_ERR(rescuer->task)) {
3990                        kfree(rescuer);
3991                        goto err_destroy;
3992                }
3993
3994                wq->rescuer = rescuer;
3995                kthread_bind_mask(rescuer->task, cpu_possible_mask);
3996                wake_up_process(rescuer->task);
3997        }
3998
3999        if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4000                goto err_destroy;
4001
4002        /*
4003         * wq_pool_mutex protects global freeze state and workqueues list.
4004         * Grab it, adjust max_active and add the new @wq to workqueues
4005         * list.
4006         */
4007        mutex_lock(&wq_pool_mutex);
4008
4009        mutex_lock(&wq->mutex);
4010        for_each_pwq(pwq, wq)
4011                pwq_adjust_max_active(pwq);
4012        mutex_unlock(&wq->mutex);
4013
4014        list_add_tail_rcu(&wq->list, &workqueues);
4015
4016        mutex_unlock(&wq_pool_mutex);
4017
4018        return wq;
4019
4020err_free_wq:
4021        free_workqueue_attrs(wq->unbound_attrs);
4022        kfree(wq);
4023        return NULL;
4024err_destroy:
4025        destroy_workqueue(wq);
4026        return NULL;
4027}
4028EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4029
4030/**
4031 * destroy_workqueue - safely terminate a workqueue
4032 * @wq: target workqueue
4033 *
4034 * Safely destroy a workqueue. All work currently pending will be done first.
4035 */
4036void destroy_workqueue(struct workqueue_struct *wq)
4037{
4038        struct pool_workqueue *pwq;
4039        int node;
4040
4041        /* drain it before proceeding with destruction */
4042        drain_workqueue(wq);
4043
4044        /* sanity checks */
4045        mutex_lock(&wq->mutex);
4046        for_each_pwq(pwq, wq) {
4047                int i;
4048
4049                for (i = 0; i < WORK_NR_COLORS; i++) {
4050                        if (WARN_ON(pwq->nr_in_flight[i])) {
4051                                mutex_unlock(&wq->mutex);
4052                                show_workqueue_state();
4053                                return;
4054                        }
4055                }
4056
4057                if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4058                    WARN_ON(pwq->nr_active) ||
4059                    WARN_ON(!list_empty(&pwq->delayed_works))) {
4060                        mutex_unlock(&wq->mutex);
4061                        show_workqueue_state();
4062                        return;
4063                }
4064        }
4065        mutex_unlock(&wq->mutex);
4066
4067        /*
4068         * wq list is used to freeze wq, remove from list after
4069         * flushing is complete in case freeze races us.
4070         */
4071        mutex_lock(&wq_pool_mutex);
4072        list_del_rcu(&wq->list);
4073        mutex_unlock(&wq_pool_mutex);
4074
4075        workqueue_sysfs_unregister(wq);
4076
4077        if (wq->rescuer)
4078                kthread_stop(wq->rescuer->task);
4079
4080        if (!(wq->flags & WQ_UNBOUND)) {
4081                /*
4082                 * The base ref is never dropped on per-cpu pwqs.  Directly
4083                 * schedule RCU free.
4084                 */
4085                call_rcu_sched(&wq->rcu, rcu_free_wq);
4086        } else {
4087                /*
4088                 * We're the sole accessor of @wq at this point.  Directly
4089                 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4090                 * @wq will be freed when the last pwq is released.
4091                 */
4092                for_each_node(node) {
4093                        pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4094                        RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4095                        put_pwq_unlocked(pwq);
4096                }
4097
4098                /*
4099                 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4100                 * put.  Don't access it afterwards.
4101                 */
4102                pwq = wq->dfl_pwq;
4103                wq->dfl_pwq = NULL;
4104                put_pwq_unlocked(pwq);
4105        }
4106}
4107EXPORT_SYMBOL_GPL(destroy_workqueue);
4108
4109/**
4110 * workqueue_set_max_active - adjust max_active of a workqueue
4111 * @wq: target workqueue
4112 * @max_active: new max_active value.
4113 *
4114 * Set max_active of @wq to @max_active.
4115 *
4116 * CONTEXT:
4117 * Don't call from IRQ context.
4118 */
4119void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4120{
4121        struct pool_workqueue *pwq;
4122
4123        /* disallow meddling with max_active for ordered workqueues */
4124        if (WARN_ON(wq->flags & __WQ_ORDERED))
4125                return;
4126
4127        max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4128
4129        mutex_lock(&wq->mutex);
4130
4131        wq->saved_max_active = max_active;
4132
4133        for_each_pwq(pwq, wq)
4134                pwq_adjust_max_active(pwq);
4135
4136        mutex_unlock(&wq->mutex);
4137}
4138EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4139
4140/**
4141 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4142 *
4143 * Determine whether %current is a workqueue rescuer.  Can be used from
4144 * work functions to determine whether it's being run off the rescuer task.
4145 *
4146 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4147 */
4148bool current_is_workqueue_rescuer(void)
4149{
4150        struct worker *worker = current_wq_worker();
4151
4152        return worker && worker->rescue_wq;
4153}
4154
4155/**
4156 * workqueue_congested - test whether a workqueue is congested
4157 * @cpu: CPU in question
4158 * @wq: target workqueue
4159 *
4160 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4161 * no synchronization around this function and the test result is
4162 * unreliable and only useful as advisory hints or for debugging.
4163 *
4164 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4165 * Note that both per-cpu and unbound workqueues may be associated with
4166 * multiple pool_workqueues which have separate congested states.  A
4167 * workqueue being congested on one CPU doesn't mean the workqueue is also
4168 * contested on other CPUs / NUMA nodes.
4169 *
4170 * Return:
4171 * %true if congested, %false otherwise.
4172 */
4173bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4174{
4175        struct pool_workqueue *pwq;
4176        bool ret;
4177
4178        rcu_read_lock_sched();
4179
4180        if (cpu == WORK_CPU_UNBOUND)
4181                cpu = smp_processor_id();
4182
4183        if (!(wq->flags & WQ_UNBOUND))
4184                pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4185        else
4186                pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4187
4188        ret = !list_empty(&pwq->delayed_works);
4189        rcu_read_unlock_sched();
4190
4191        return ret;
4192}
4193EXPORT_SYMBOL_GPL(workqueue_congested);
4194
4195/**
4196 * work_busy - test whether a work is currently pending or running
4197 * @work: the work to be tested
4198 *
4199 * Test whether @work is currently pending or running.  There is no
4200 * synchronization around this function and the test result is
4201 * unreliable and only useful as advisory hints or for debugging.
4202 *
4203 * Return:
4204 * OR'd bitmask of WORK_BUSY_* bits.
4205 */
4206unsigned int work_busy(struct work_struct *work)
4207{
4208        struct worker_pool *pool;
4209        unsigned long flags;
4210        unsigned int ret = 0;
4211
4212        if (work_pending(work))
4213                ret |= WORK_BUSY_PENDING;
4214
4215        local_irq_save(flags);
4216        pool = get_work_pool(work);
4217        if (pool) {
4218                spin_lock(&pool->lock);
4219                if (find_worker_executing_work(pool, work))
4220                        ret |= WORK_BUSY_RUNNING;
4221                spin_unlock(&pool->lock);
4222        }
4223        local_irq_restore(flags);
4224
4225        return ret;
4226}
4227EXPORT_SYMBOL_GPL(work_busy);
4228
4229/**
4230 * set_worker_desc - set description for the current work item
4231 * @fmt: printf-style format string
4232 * @...: arguments for the format string
4233 *
4234 * This function can be called by a running work function to describe what
4235 * the work item is about.  If the worker task gets dumped, this
4236 * information will be printed out together to help debugging.  The
4237 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4238 */
4239void set_worker_desc(const char *fmt, ...)
4240{
4241        struct worker *worker = current_wq_worker();
4242        va_list args;
4243
4244        if (worker) {
4245                va_start(args, fmt);
4246                vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4247                va_end(args);
4248                worker->desc_valid = true;
4249        }
4250}
4251
4252/**
4253 * print_worker_info - print out worker information and description
4254 * @log_lvl: the log level to use when printing
4255 * @task: target task
4256 *
4257 * If @task is a worker and currently executing a work item, print out the
4258 * name of the workqueue being serviced and worker description set with
4259 * set_worker_desc() by the currently executing work item.
4260 *
4261 * This function can be safely called on any task as long as the
4262 * task_struct itself is accessible.  While safe, this function isn't
4263 * synchronized and may print out mixups or garbages of limited length.
4264 */
4265void print_worker_info(const char *log_lvl, struct task_struct *task)
4266{
4267        work_func_t *fn = NULL;
4268        char name[WQ_NAME_LEN] = { };
4269        char desc[WORKER_DESC_LEN] = { };
4270        struct pool_workqueue *pwq = NULL;
4271        struct workqueue_struct *wq = NULL;
4272        bool desc_valid = false;
4273        struct worker *worker;
4274
4275        if (!(task->flags & PF_WQ_WORKER))
4276                return;
4277
4278        /*
4279         * This function is called without any synchronization and @task
4280         * could be in any state.  Be careful with dereferences.
4281         */
4282        worker = kthread_probe_data(task);
4283
4284        /*
4285         * Carefully copy the associated workqueue's workfn and name.  Keep
4286         * the original last '\0' in case the original contains garbage.
4287         */
4288        probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4289        probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4290        probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4291        probe_kernel_read(name, wq->name, sizeof(name) - 1);
4292
4293        /* copy worker description */
4294        probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4295        if (desc_valid)
4296                probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4297
4298        if (fn || name[0] || desc[0]) {
4299                printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4300                if (desc[0])
4301                        pr_cont(" (%s)", desc);
4302                pr_cont("\n");
4303        }
4304}
4305
4306static void pr_cont_pool_info(struct worker_pool *pool)
4307{
4308        pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4309        if (pool->node != NUMA_NO_NODE)
4310                pr_cont(" node=%d", pool->node);
4311        pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4312}
4313
4314static void pr_cont_work(bool comma, struct work_struct *work)
4315{
4316        if (work->func == wq_barrier_func) {
4317                struct wq_barrier *barr;
4318
4319                barr = container_of(work, struct wq_barrier, work);
4320
4321                pr_cont("%s BAR(%d)", comma ? "," : "",
4322                        task_pid_nr(barr->task));
4323        } else {
4324                pr_cont("%s %pf", comma ? "," : "", work->func);
4325        }
4326}
4327
4328static void show_pwq(struct pool_workqueue *pwq)
4329{
4330        struct worker_pool *pool = pwq->pool;
4331        struct work_struct *work;
4332        struct worker *worker;
4333        bool has_in_flight = false, has_pending = false;
4334        int bkt;
4335
4336        pr_info("  pwq %d:", pool->id);
4337        pr_cont_pool_info(pool);
4338
4339        pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4340                !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4341
4342        hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4343                if (worker->current_pwq == pwq) {
4344                        has_in_flight = true;
4345                        break;
4346                }
4347        }
4348        if (has_in_flight) {
4349                bool comma = false;
4350
4351                pr_info("    in-flight:");
4352                hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4353                        if (worker->current_pwq != pwq)
4354                                continue;
4355
4356                        pr_cont("%s %d%s:%pf", comma ? "," : "",
4357                                task_pid_nr(worker->task),
4358                                worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4359                                worker->current_func);
4360                        list_for_each_entry(work, &worker->scheduled, entry)
4361                                pr_cont_work(false, work);
4362                        comma = true;
4363                }
4364                pr_cont("\n");
4365        }
4366
4367        list_for_each_entry(work, &pool->worklist, entry) {
4368                if (get_work_pwq(work) == pwq) {
4369                        has_pending = true;
4370                        break;
4371                }
4372        }
4373        if (has_pending) {
4374                bool comma = false;
4375
4376                pr_info("    pending:");
4377                list_for_each_entry(work, &pool->worklist, entry) {
4378                        if (get_work_pwq(work) != pwq)
4379                                continue;
4380
4381                        pr_cont_work(comma, work);
4382                        comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4383                }
4384                pr_cont("\n");
4385        }
4386
4387        if (!list_empty(&pwq->delayed_works)) {
4388                bool comma = false;
4389
4390                pr_info("    delayed:");
4391                list_for_each_entry(work, &pwq->delayed_works, entry) {
4392                        pr_cont_work(comma, work);
4393                        comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4394                }
4395                pr_cont("\n");
4396        }
4397}
4398
4399/**
4400 * show_workqueue_state - dump workqueue state
4401 *
4402 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4403 * all busy workqueues and pools.
4404 */
4405void show_workqueue_state(void)
4406{
4407        struct workqueue_struct *wq;
4408        struct worker_pool *pool;
4409        unsigned long flags;
4410        int pi;
4411
4412        rcu_read_lock_sched();
4413
4414        pr_info("Showing busy workqueues and worker pools:\n");
4415
4416        list_for_each_entry_rcu(wq, &workqueues, list) {
4417                struct pool_workqueue *pwq;
4418                bool idle = true;
4419
4420                for_each_pwq(pwq, wq) {
4421                        if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4422                                idle = false;
4423                                break;
4424                        }
4425                }
4426                if (idle)
4427                        continue;
4428
4429                pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4430
4431                for_each_pwq(pwq, wq) {
4432                        spin_lock_irqsave(&pwq->pool->lock, flags);
4433                        if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4434                                show_pwq(pwq);
4435                        spin_unlock_irqrestore(&pwq->pool->lock, flags);
4436                }
4437        }
4438
4439        for_each_pool(pool, pi) {
4440                struct worker *worker;
4441                bool first = true;
4442
4443                spin_lock_irqsave(&pool->lock, flags);
4444                if (pool->nr_workers == pool->nr_idle)
4445                        goto next_pool;
4446
4447                pr_info("pool %d:", pool->id);
4448                pr_cont_pool_info(pool);
4449                pr_cont(" hung=%us workers=%d",
4450                        jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4451                        pool->nr_workers);
4452                if (pool->manager)
4453                        pr_cont(" manager: %d",
4454                                task_pid_nr(pool->manager->task));
4455                list_for_each_entry(worker, &pool->idle_list, entry) {
4456                        pr_cont(" %s%d", first ? "idle: " : "",
4457                                task_pid_nr(worker->task));
4458                        first = false;
4459                }
4460                pr_cont("\n");
4461        next_pool:
4462                spin_unlock_irqrestore(&pool->lock, flags);
4463        }
4464
4465        rcu_read_unlock_sched();
4466}
4467
4468/*
4469 * CPU hotplug.
4470 *
4471 * There are two challenges in supporting CPU hotplug.  Firstly, there
4472 * are a lot of assumptions on strong associations among work, pwq and
4473 * pool which make migrating pending and scheduled works very
4474 * difficult to implement without impacting hot paths.  Secondly,
4475 * worker pools serve mix of short, long and very long running works making
4476 * blocked draining impractical.
4477 *
4478 * This is solved by allowing the pools to be disassociated from the CPU
4479 * running as an unbound one and allowing it to be reattached later if the
4480 * cpu comes back online.
4481 */
4482
4483static void wq_unbind_fn(struct work_struct *work)
4484{
4485        int cpu = smp_processor_id();
4486        struct worker_pool *pool;
4487        struct worker *worker;
4488
4489        for_each_cpu_worker_pool(pool, cpu) {
4490                mutex_lock(&pool->attach_mutex);
4491                spin_lock_irq(&pool->lock);
4492
4493                /*
4494                 * We've blocked all attach/detach operations. Make all workers
4495                 * unbound and set DISASSOCIATED.  Before this, all workers
4496                 * except for the ones which are still executing works from
4497                 * before the last CPU down must be on the cpu.  After
4498                 * this, they may become diasporas.
4499                 */
4500                for_each_pool_worker(worker, pool)
4501                        worker->flags |= WORKER_UNBOUND;
4502
4503                pool->flags |= POOL_DISASSOCIATED;
4504
4505                spin_unlock_irq(&pool->lock);
4506                mutex_unlock(&pool->attach_mutex);
4507
4508                /*
4509                 * Call schedule() so that we cross rq->lock and thus can
4510                 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4511                 * This is necessary as scheduler callbacks may be invoked
4512                 * from other cpus.
4513                 */
4514                schedule();
4515
4516                /*
4517                 * Sched callbacks are disabled now.  Zap nr_running.
4518                 * After this, nr_running stays zero and need_more_worker()
4519                 * and keep_working() are always true as long as the
4520                 * worklist is not empty.  This pool now behaves as an
4521                 * unbound (in terms of concurrency management) pool which
4522                 * are served by workers tied to the pool.
4523                 */
4524                atomic_set(&pool->nr_running, 0);
4525
4526                /*
4527                 * With concurrency management just turned off, a busy
4528                 * worker blocking could lead to lengthy stalls.  Kick off
4529                 * unbound chain execution of currently pending work items.
4530                 */
4531                spin_lock_irq(&pool->lock);
4532                wake_up_worker(pool);
4533                spin_unlock_irq(&pool->lock);
4534        }
4535}
4536
4537/**
4538 * rebind_workers - rebind all workers of a pool to the associated CPU
4539 * @pool: pool of interest
4540 *
4541 * @pool->cpu is coming online.  Rebind all workers to the CPU.
4542 */
4543static void rebind_workers(struct worker_pool *pool)
4544{
4545        struct worker *worker;
4546
4547        lockdep_assert_held(&pool->attach_mutex);
4548
4549        /*
4550         * Restore CPU affinity of all workers.  As all idle workers should
4551         * be on the run-queue of the associated CPU before any local
4552         * wake-ups for concurrency management happen, restore CPU affinity
4553         * of all workers first and then clear UNBOUND.  As we're called
4554         * from CPU_ONLINE, the following shouldn't fail.
4555         */
4556        for_each_pool_worker(worker, pool)
4557                WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4558                                                  pool->attrs->cpumask) < 0);
4559
4560        spin_lock_irq(&pool->lock);
4561
4562        /*
4563         * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4564         * w/o preceding DOWN_PREPARE.  Work around it.  CPU hotplug is
4565         * being reworked and this can go away in time.
4566         */
4567        if (!(pool->flags & POOL_DISASSOCIATED)) {
4568                spin_unlock_irq(&pool->lock);
4569                return;
4570        }
4571
4572        pool->flags &= ~POOL_DISASSOCIATED;
4573
4574        for_each_pool_worker(worker, pool) {
4575                unsigned int worker_flags = worker->flags;
4576
4577                /*
4578                 * A bound idle worker should actually be on the runqueue
4579                 * of the associated CPU for local wake-ups targeting it to
4580                 * work.  Kick all idle workers so that they migrate to the
4581                 * associated CPU.  Doing this in the same loop as
4582                 * replacing UNBOUND with REBOUND is safe as no worker will
4583                 * be bound before @pool->lock is released.
4584                 */
4585                if (worker_flags & WORKER_IDLE)
4586                        wake_up_process(worker->task);
4587
4588                /*
4589                 * We want to clear UNBOUND but can't directly call
4590                 * worker_clr_flags() or adjust nr_running.  Atomically
4591                 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4592                 * @worker will clear REBOUND using worker_clr_flags() when
4593                 * it initiates the next execution cycle thus restoring
4594                 * concurrency management.  Note that when or whether
4595                 * @worker clears REBOUND doesn't affect correctness.
4596                 *
4597                 * ACCESS_ONCE() is necessary because @worker->flags may be
4598                 * tested without holding any lock in
4599                 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4600                 * fail incorrectly leading to premature concurrency
4601                 * management operations.
4602                 */
4603                WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4604                worker_flags |= WORKER_REBOUND;
4605                worker_flags &= ~WORKER_UNBOUND;
4606                ACCESS_ONCE(worker->flags) = worker_flags;
4607        }
4608
4609        spin_unlock_irq(&pool->lock);
4610}
4611
4612/**
4613 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4614 * @pool: unbound pool of interest
4615 * @cpu: the CPU which is coming up
4616 *
4617 * An unbound pool may end up with a cpumask which doesn't have any online
4618 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4619 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4620 * online CPU before, cpus_allowed of all its workers should be restored.
4621 */
4622static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4623{
4624        static cpumask_t cpumask;
4625        struct worker *worker;
4626
4627        lockdep_assert_held(&pool->attach_mutex);
4628
4629        /* is @cpu allowed for @pool? */
4630        if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4631                return;
4632
4633        cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4634
4635        /* as we're called from CPU_ONLINE, the following shouldn't fail */
4636        for_each_pool_worker(worker, pool)
4637                WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4638}
4639
4640int workqueue_prepare_cpu(unsigned int cpu)
4641{
4642        struct worker_pool *pool;
4643
4644        for_each_cpu_worker_pool(pool, cpu) {
4645                if (pool->nr_workers)
4646                        continue;
4647                if (!create_worker(pool))
4648                        return -ENOMEM;
4649        }
4650        return 0;
4651}
4652
4653int workqueue_online_cpu(unsigned int cpu)
4654{
4655        struct worker_pool *pool;
4656        struct workqueue_struct *wq;
4657        int pi;
4658
4659        mutex_lock(&wq_pool_mutex);
4660
4661        for_each_pool(pool, pi) {
4662                mutex_lock(&pool->attach_mutex);
4663
4664                if (pool->cpu == cpu)
4665                        rebind_workers(pool);
4666                else if (pool->cpu < 0)
4667                        restore_unbound_workers_cpumask(pool, cpu);
4668
4669                mutex_unlock(&pool->attach_mutex);
4670        }
4671
4672        /* update NUMA affinity of unbound workqueues */
4673        list_for_each_entry(wq, &workqueues, list)
4674                wq_update_unbound_numa(wq, cpu, true);
4675
4676        mutex_unlock(&wq_pool_mutex);
4677        return 0;
4678}
4679
4680int workqueue_offline_cpu(unsigned int cpu)
4681{
4682        struct work_struct unbind_work;
4683        struct workqueue_struct *wq;
4684
4685        /* unbinding per-cpu workers should happen on the local CPU */
4686        INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4687        queue_work_on(cpu, system_highpri_wq, &unbind_work);
4688
4689        /* update NUMA affinity of unbound workqueues */
4690        mutex_lock(&wq_pool_mutex);
4691        list_for_each_entry(wq, &workqueues, list)
4692                wq_update_unbound_numa(wq, cpu, false);
4693        mutex_unlock(&wq_pool_mutex);
4694
4695        /* wait for per-cpu unbinding to finish */
4696        flush_work(&unbind_work);
4697        destroy_work_on_stack(&unbind_work);
4698        return 0;
4699}
4700
4701#ifdef CONFIG_SMP
4702
4703struct work_for_cpu {
4704        struct work_struct work;
4705        long (*fn)(void *);
4706        void *arg;
4707        long ret;
4708};
4709
4710static void work_for_cpu_fn(struct work_struct *work)
4711{
4712        struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4713
4714        wfc->ret = wfc->fn(wfc->arg);
4715}
4716
4717/**
4718 * work_on_cpu - run a function in thread context on a particular cpu
4719 * @cpu: the cpu to run on
4720 * @fn: the function to run
4721 * @arg: the function arg
4722 *
4723 * It is up to the caller to ensure that the cpu doesn't go offline.
4724 * The caller must not hold any locks which would prevent @fn from completing.
4725 *
4726 * Return: The value @fn returns.
4727 */
4728long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4729{
4730        struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4731
4732        INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4733        schedule_work_on(cpu, &wfc.work);
4734        flush_work(&wfc.work);
4735        destroy_work_on_stack(&wfc.work);
4736        return wfc.ret;
4737}
4738EXPORT_SYMBOL_GPL(work_on_cpu);
4739#endif /* CONFIG_SMP */
4740
4741#ifdef CONFIG_FREEZER
4742
4743/**
4744 * freeze_workqueues_begin - begin freezing workqueues
4745 *
4746 * Start freezing workqueues.  After this function returns, all freezable
4747 * workqueues will queue new works to their delayed_works list instead of
4748 * pool->worklist.
4749 *
4750 * CONTEXT:
4751 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4752 */
4753void freeze_workqueues_begin(void)
4754{
4755        struct workqueue_struct *wq;
4756        struct pool_workqueue *pwq;
4757
4758        mutex_lock(&wq_pool_mutex);
4759
4760        WARN_ON_ONCE(workqueue_freezing);
4761        workqueue_freezing = true;
4762
4763        list_for_each_entry(wq, &workqueues, list) {
4764                mutex_lock(&wq->mutex);
4765                for_each_pwq(pwq, wq)
4766                        pwq_adjust_max_active(pwq);
4767                mutex_unlock(&wq->mutex);
4768        }
4769
4770        mutex_unlock(&wq_pool_mutex);
4771}
4772
4773/**
4774 * freeze_workqueues_busy - are freezable workqueues still busy?
4775 *
4776 * Check whether freezing is complete.  This function must be called
4777 * between freeze_workqueues_begin() and thaw_workqueues().
4778 *
4779 * CONTEXT:
4780 * Grabs and releases wq_pool_mutex.
4781 *
4782 * Return:
4783 * %true if some freezable workqueues are still busy.  %false if freezing
4784 * is complete.
4785 */
4786bool freeze_workqueues_busy(void)
4787{
4788        bool busy = false;
4789        struct workqueue_struct *wq;
4790        struct pool_workqueue *pwq;
4791
4792        mutex_lock(&wq_pool_mutex);
4793
4794        WARN_ON_ONCE(!workqueue_freezing);
4795
4796        list_for_each_entry(wq, &workqueues, list) {
4797                if (!(wq->flags & WQ_FREEZABLE))
4798                        continue;
4799                /*
4800                 * nr_active is monotonically decreasing.  It's safe
4801                 * to peek without lock.
4802                 */
4803                rcu_read_lock_sched();
4804                for_each_pwq(pwq, wq) {
4805                        WARN_ON_ONCE(pwq->nr_active < 0);
4806                        if (pwq->nr_active) {
4807                                busy = true;
4808                                rcu_read_unlock_sched();
4809                                goto out_unlock;
4810                        }
4811                }
4812                rcu_read_unlock_sched();
4813        }
4814out_unlock:
4815        mutex_unlock(&wq_pool_mutex);
4816        return busy;
4817}
4818
4819/**
4820 * thaw_workqueues - thaw workqueues
4821 *
4822 * Thaw workqueues.  Normal queueing is restored and all collected
4823 * frozen works are transferred to their respective pool worklists.
4824 *
4825 * CONTEXT:
4826 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4827 */
4828void thaw_workqueues(void)
4829{
4830        struct workqueue_struct *wq;
4831        struct pool_workqueue *pwq;
4832
4833        mutex_lock(&wq_pool_mutex);
4834
4835        if (!workqueue_freezing)
4836                goto out_unlock;
4837
4838        workqueue_freezing = false;
4839
4840        /* restore max_active and repopulate worklist */
4841        list_for_each_entry(wq, &workqueues, list) {
4842                mutex_lock(&wq->mutex);
4843                for_each_pwq(pwq, wq)
4844                        pwq_adjust_max_active(pwq);
4845                mutex_unlock(&wq->mutex);
4846        }
4847
4848out_unlock:
4849        mutex_unlock(&wq_pool_mutex);
4850}
4851#endif /* CONFIG_FREEZER */
4852
4853static int workqueue_apply_unbound_cpumask(void)
4854{
4855        LIST_HEAD(ctxs);
4856        int ret = 0;
4857        struct workqueue_struct *wq;
4858        struct apply_wqattrs_ctx *ctx, *n;
4859
4860        lockdep_assert_held(&wq_pool_mutex);
4861
4862        list_for_each_entry(wq, &workqueues, list) {
4863                if (!(wq->flags & WQ_UNBOUND))
4864                        continue;
4865                /* creating multiple pwqs breaks ordering guarantee */
4866                if (wq->flags & __WQ_ORDERED)
4867                        continue;
4868
4869                ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4870                if (!ctx) {
4871                        ret = -ENOMEM;
4872                        break;
4873                }
4874
4875                list_add_tail(&ctx->list, &ctxs);
4876        }
4877
4878        list_for_each_entry_safe(ctx, n, &ctxs, list) {
4879                if (!ret)
4880                        apply_wqattrs_commit(ctx);
4881                apply_wqattrs_cleanup(ctx);
4882        }
4883
4884        return ret;
4885}
4886
4887/**
4888 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4889 *  @cpumask: the cpumask to set
4890 *
4891 *  The low-level workqueues cpumask is a global cpumask that limits
4892 *  the affinity of all unbound workqueues.  This function check the @cpumask
4893 *  and apply it to all unbound workqueues and updates all pwqs of them.
4894 *
4895 *  Retun:      0       - Success
4896 *              -EINVAL - Invalid @cpumask
4897 *              -ENOMEM - Failed to allocate memory for attrs or pwqs.
4898 */
4899int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4900{
4901        int ret = -EINVAL;
4902        cpumask_var_t saved_cpumask;
4903
4904        if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4905                return -ENOMEM;
4906
4907        cpumask_and(cpumask, cpumask, cpu_possible_mask);
4908        if (!cpumask_empty(cpumask)) {
4909                apply_wqattrs_lock();
4910
4911                /* save the old wq_unbound_cpumask. */
4912                cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4913
4914                /* update wq_unbound_cpumask at first and apply it to wqs. */
4915                cpumask_copy(wq_unbound_cpumask, cpumask);
4916                ret = workqueue_apply_unbound_cpumask();
4917
4918                /* restore the wq_unbound_cpumask when failed. */
4919                if (ret < 0)
4920                        cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4921
4922                apply_wqattrs_unlock();
4923        }
4924
4925        free_cpumask_var(saved_cpumask);
4926        return ret;
4927}
4928
4929#ifdef CONFIG_SYSFS
4930/*
4931 * Workqueues with WQ_SYSFS flag set is visible to userland via
4932 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
4933 * following attributes.
4934 *
4935 *  per_cpu     RO bool : whether the workqueue is per-cpu or unbound
4936 *  max_active  RW int  : maximum number of in-flight work items
4937 *
4938 * Unbound workqueues have the following extra attributes.
4939 *
4940 *  id          RO int  : the associated pool ID
4941 *  nice        RW int  : nice value of the workers
4942 *  cpumask     RW mask : bitmask of allowed CPUs for the workers
4943 */
4944struct wq_device {
4945        struct workqueue_struct         *wq;
4946        struct device                   dev;
4947};
4948
4949static struct workqueue_struct *dev_to_wq(struct device *dev)
4950{
4951        struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4952
4953        return wq_dev->wq;
4954}
4955
4956static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4957                            char *buf)
4958{
4959        struct workqueue_struct *wq = dev_to_wq(dev);
4960
4961        return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4962}
4963static DEVICE_ATTR_RO(per_cpu);
4964
4965static ssize_t max_active_show(struct device *dev,
4966                               struct device_attribute *attr, char *buf)
4967{
4968        struct workqueue_struct *wq = dev_to_wq(dev);
4969
4970        return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4971}
4972
4973static ssize_t max_active_store(struct device *dev,
4974                                struct device_attribute *attr, const char *buf,
4975                                size_t count)
4976{
4977        struct workqueue_struct *wq = dev_to_wq(dev);
4978        int val;
4979
4980        if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4981                return -EINVAL;
4982
4983        workqueue_set_max_active(wq, val);
4984        return count;
4985}
4986static DEVICE_ATTR_RW(max_active);
4987
4988static struct attribute *wq_sysfs_attrs[] = {
4989        &dev_attr_per_cpu.attr,
4990        &dev_attr_max_active.attr,
4991        NULL,
4992};
4993ATTRIBUTE_GROUPS(wq_sysfs);
4994
4995static ssize_t wq_pool_ids_show(struct device *dev,
4996                                struct device_attribute *attr, char *buf)
4997{
4998        struct workqueue_struct *wq = dev_to_wq(dev);
4999        const char *delim = "";
5000        int node, written = 0;
5001
5002        rcu_read_lock_sched();
5003        for_each_node(node) {
5004                written += scnprintf(buf + written, PAGE_SIZE - written,
5005                                     "%s%d:%d", delim, node,
5006                                     unbound_pwq_by_node(wq, node)->pool->id);
5007                delim = " ";
5008        }
5009        written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5010        rcu_read_unlock_sched();
5011
5012        return written;
5013}
5014
5015static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5016                            char *buf)
5017{
5018        struct workqueue_struct *wq = dev_to_wq(dev);
5019        int written;
5020
5021        mutex_lock(&wq->mutex);
5022        written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5023        mutex_unlock(&wq->mutex);
5024
5025        return written;
5026}
5027
5028/* prepare workqueue_attrs for sysfs store operations */
5029static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5030{
5031        struct workqueue_attrs *attrs;
5032
5033        lockdep_assert_held(&wq_pool_mutex);
5034
5035        attrs = alloc_workqueue_attrs(GFP_KERNEL);
5036        if (!attrs)
5037                return NULL;
5038
5039        copy_workqueue_attrs(attrs, wq->unbound_attrs);
5040        return attrs;
5041}
5042
5043static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5044                             const char *buf, size_t count)
5045{
5046        struct workqueue_struct *wq = dev_to_wq(dev);
5047        struct workqueue_attrs *attrs;
5048        int ret = -ENOMEM;
5049
5050        apply_wqattrs_lock();
5051
5052        attrs = wq_sysfs_prep_attrs(wq);
5053        if (!attrs)
5054                goto out_unlock;
5055
5056        if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5057            attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5058                ret = apply_workqueue_attrs_locked(wq, attrs);
5059        else
5060                ret = -EINVAL;
5061
5062out_unlock:
5063        apply_wqattrs_unlock();
5064        free_workqueue_attrs(attrs);
5065        return ret ?: count;
5066}
5067
5068static ssize_t wq_cpumask_show(struct device *dev,
5069                               struct device_attribute *attr, char *buf)
5070{
5071        struct workqueue_struct *wq = dev_to_wq(dev);
5072        int written;
5073
5074        mutex_lock(&wq->mutex);
5075        written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5076                            cpumask_pr_args(wq->unbound_attrs->cpumask));
5077        mutex_unlock(&wq->mutex);
5078        return written;
5079}
5080
5081static ssize_t wq_cpumask_store(struct device *dev,
5082                                struct device_attribute *attr,
5083                                const char *buf, size_t count)
5084{
5085        struct workqueue_struct *wq = dev_to_wq(dev);
5086        struct workqueue_attrs *attrs;
5087        int ret = -ENOMEM;
5088
5089        apply_wqattrs_lock();
5090
5091        attrs = wq_sysfs_prep_attrs(wq);
5092        if (!attrs)
5093                goto out_unlock;
5094
5095        ret = cpumask_parse(buf, attrs->cpumask);
5096        if (!ret)
5097                ret = apply_workqueue_attrs_locked(wq, attrs);
5098
5099out_unlock:
5100        apply_wqattrs_unlock();
5101        free_workqueue_attrs(attrs);
5102        return ret ?: count;
5103}
5104
5105static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5106                            char *buf)
5107{
5108        struct workqueue_struct *wq = dev_to_wq(dev);
5109        int written;
5110
5111        mutex_lock(&wq->mutex);
5112        written = scnprintf(buf, PAGE_SIZE, "%d\n",
5113                            !wq->unbound_attrs->no_numa);
5114        mutex_unlock(&wq->mutex);
5115
5116        return written;
5117}
5118
5119static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5120                             const char *buf, size_t count)
5121{
5122        struct workqueue_struct *wq = dev_to_wq(dev);
5123        struct workqueue_attrs *attrs;
5124        int v, ret = -ENOMEM;
5125
5126        apply_wqattrs_lock();
5127
5128        attrs = wq_sysfs_prep_attrs(wq);
5129        if (!attrs)
5130                goto out_unlock;
5131
5132        ret = -EINVAL;
5133        if (sscanf(buf, "%d", &v) == 1) {
5134                attrs->no_numa = !v;
5135                ret = apply_workqueue_attrs_locked(wq, attrs);
5136        }
5137
5138out_unlock:
5139        apply_wqattrs_unlock();
5140        free_workqueue_attrs(attrs);
5141        return ret ?: count;
5142}
5143
5144static struct device_attribute wq_sysfs_unbound_attrs[] = {
5145        __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5146        __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5147        __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5148        __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5149        __ATTR_NULL,
5150};
5151
5152static struct bus_type wq_subsys = {
5153        .name                           = "workqueue",
5154        .dev_groups                     = wq_sysfs_groups,
5155};
5156
5157static ssize_t wq_unbound_cpumask_show(struct device *dev,
5158                struct device_attribute *attr, char *buf)
5159{
5160        int written;
5161
5162        mutex_lock(&wq_pool_mutex);
5163        written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5164                            cpumask_pr_args(wq_unbound_cpumask));
5165        mutex_unlock(&wq_pool_mutex);
5166
5167        return written;
5168}
5169
5170static ssize_t wq_unbound_cpumask_store(struct device *dev,
5171                struct device_attribute *attr, const char *buf, size_t count)
5172{
5173        cpumask_var_t cpumask;
5174        int ret;
5175
5176        if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5177                return -ENOMEM;
5178
5179        ret = cpumask_parse(buf, cpumask);
5180        if (!ret)
5181                ret = workqueue_set_unbound_cpumask(cpumask);
5182
5183        free_cpumask_var(cpumask);
5184        return ret ? ret : count;
5185}
5186
5187static struct device_attribute wq_sysfs_cpumask_attr =
5188        __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5189               wq_unbound_cpumask_store);
5190
5191static int __init wq_sysfs_init(void)
5192{
5193        int err;
5194
5195        err = subsys_virtual_register(&wq_subsys, NULL);
5196        if (err)
5197                return err;
5198
5199        return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5200}
5201core_initcall(wq_sysfs_init);
5202
5203static void wq_device_release(struct device *dev)
5204{
5205        struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5206
5207        kfree(wq_dev);
5208}
5209
5210/**
5211 * workqueue_sysfs_register - make a workqueue visible in sysfs
5212 * @wq: the workqueue to register
5213 *
5214 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5215 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5216 * which is the preferred method.
5217 *
5218 * Workqueue user should use this function directly iff it wants to apply
5219 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5220 * apply_workqueue_attrs() may race against userland updating the
5221 * attributes.
5222 *
5223 * Return: 0 on success, -errno on failure.
5224 */
5225int workqueue_sysfs_register(struct workqueue_struct *wq)
5226{
5227        struct wq_device *wq_dev;
5228        int ret;
5229
5230        /*
5231         * Adjusting max_active or creating new pwqs by applying
5232         * attributes breaks ordering guarantee.  Disallow exposing ordered
5233         * workqueues.
5234         */
5235        if (WARN_ON(wq->flags & __WQ_ORDERED))
5236                return -EINVAL;
5237
5238        wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5239        if (!wq_dev)
5240                return -ENOMEM;
5241
5242        wq_dev->wq = wq;
5243        wq_dev->dev.bus = &wq_subsys;
5244        wq_dev->dev.release = wq_device_release;
5245        dev_set_name(&wq_dev->dev, "%s", wq->name);
5246
5247        /*
5248         * unbound_attrs are created separately.  Suppress uevent until
5249         * everything is ready.
5250         */
5251        dev_set_uevent_suppress(&wq_dev->dev, true);
5252
5253        ret = device_register(&wq_dev->dev);
5254        if (ret) {
5255                kfree(wq_dev);
5256                wq->wq_dev = NULL;
5257                return ret;
5258        }
5259
5260        if (wq->flags & WQ_UNBOUND) {
5261                struct device_attribute *attr;
5262
5263                for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5264                        ret = device_create_file(&wq_dev->dev, attr);
5265                        if (ret) {
5266                                device_unregister(&wq_dev->dev);
5267                                wq->wq_dev = NULL;
5268                                return ret;
5269                        }
5270                }
5271        }
5272
5273        dev_set_uevent_suppress(&wq_dev->dev, false);
5274        kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5275        return 0;
5276}
5277
5278/**
5279 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5280 * @wq: the workqueue to unregister
5281 *
5282 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5283 */
5284static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5285{
5286        struct wq_device *wq_dev = wq->wq_dev;
5287
5288        if (!wq->wq_dev)
5289                return;
5290
5291        wq->wq_dev = NULL;
5292        device_unregister(&wq_dev->dev);
5293}
5294#else   /* CONFIG_SYSFS */
5295static void workqueue_sysfs_unregister(struct workqueue_struct *wq)     { }
5296#endif  /* CONFIG_SYSFS */
5297
5298/*
5299 * Workqueue watchdog.
5300 *
5301 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5302 * flush dependency, a concurrency managed work item which stays RUNNING
5303 * indefinitely.  Workqueue stalls can be very difficult to debug as the
5304 * usual warning mechanisms don't trigger and internal workqueue state is
5305 * largely opaque.
5306 *
5307 * Workqueue watchdog monitors all worker pools periodically and dumps
5308 * state if some pools failed to make forward progress for a while where
5309 * forward progress is defined as the first item on ->worklist changing.
5310 *
5311 * This mechanism is controlled through the kernel parameter
5312 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5313 * corresponding sysfs parameter file.
5314 */
5315#ifdef CONFIG_WQ_WATCHDOG
5316
5317static void wq_watchdog_timer_fn(unsigned long data);
5318
5319static unsigned long wq_watchdog_thresh = 30;
5320static struct timer_list wq_watchdog_timer =
5321        TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5322
5323static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5324static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5325
5326static void wq_watchdog_reset_touched(void)
5327{
5328        int cpu;
5329
5330        wq_watchdog_touched = jiffies;
5331        for_each_possible_cpu(cpu)
5332                per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5333}
5334
5335static void wq_watchdog_timer_fn(unsigned long data)
5336{
5337        unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5338        bool lockup_detected = false;
5339        struct worker_pool *pool;
5340        int pi;
5341
5342        if (!thresh)
5343                return;
5344
5345        rcu_read_lock();
5346
5347        for_each_pool(pool, pi) {
5348                unsigned long pool_ts, touched, ts;
5349
5350                if (list_empty(&pool->worklist))
5351                        continue;
5352
5353                /* get the latest of pool and touched timestamps */
5354                pool_ts = READ_ONCE(pool->watchdog_ts);
5355                touched = READ_ONCE(wq_watchdog_touched);
5356
5357                if (time_after(pool_ts, touched))
5358                        ts = pool_ts;
5359                else
5360                        ts = touched;
5361
5362                if (pool->cpu >= 0) {
5363                        unsigned long cpu_touched =
5364                                READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5365                                                  pool->cpu));
5366                        if (time_after(cpu_touched, ts))
5367                                ts = cpu_touched;
5368                }
5369
5370                /* did we stall? */
5371                if (time_after(jiffies, ts + thresh)) {
5372                        lockup_detected = true;
5373                        pr_emerg("BUG: workqueue lockup - pool");
5374                        pr_cont_pool_info(pool);
5375                        pr_cont(" stuck for %us!\n",
5376                                jiffies_to_msecs(jiffies - pool_ts) / 1000);
5377                }
5378        }
5379
5380        rcu_read_unlock();
5381
5382        if (lockup_detected)
5383                show_workqueue_state();
5384
5385        wq_watchdog_reset_touched();
5386        mod_timer(&wq_watchdog_timer, jiffies + thresh);
5387}
5388
5389void wq_watchdog_touch(int cpu)
5390{
5391        if (cpu >= 0)
5392                per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5393        else
5394                wq_watchdog_touched = jiffies;
5395}
5396
5397static void wq_watchdog_set_thresh(unsigned long thresh)
5398{
5399        wq_watchdog_thresh = 0;
5400        del_timer_sync(&wq_watchdog_timer);
5401
5402        if (thresh) {
5403                wq_watchdog_thresh = thresh;
5404                wq_watchdog_reset_touched();
5405                mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5406        }
5407}
5408
5409static int wq_watchdog_param_set_thresh(const char *val,
5410                                        const struct kernel_param *kp)
5411{
5412        unsigned long thresh;
5413        int ret;
5414
5415        ret = kstrtoul(val, 0, &thresh);
5416        if (ret)
5417                return ret;
5418
5419        if (system_wq)
5420                wq_watchdog_set_thresh(thresh);
5421        else
5422                wq_watchdog_thresh = thresh;
5423
5424        return 0;
5425}
5426
5427static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5428        .set    = wq_watchdog_param_set_thresh,
5429        .get    = param_get_ulong,
5430};
5431
5432module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5433                0644);
5434
5435static void wq_watchdog_init(void)
5436{
5437        wq_watchdog_set_thresh(wq_watchdog_thresh);
5438}
5439
5440#else   /* CONFIG_WQ_WATCHDOG */
5441
5442static inline void wq_watchdog_init(void) { }
5443
5444#endif  /* CONFIG_WQ_WATCHDOG */
5445
5446static void __init wq_numa_init(void)
5447{
5448        cpumask_var_t *tbl;
5449        int node, cpu;
5450
5451        if (num_possible_nodes() <= 1)
5452                return;
5453
5454        if (wq_disable_numa) {
5455                pr_info("workqueue: NUMA affinity support disabled\n");
5456                return;
5457        }
5458
5459        wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5460        BUG_ON(!wq_update_unbound_numa_attrs_buf);
5461
5462        /*
5463         * We want masks of possible CPUs of each node which isn't readily
5464         * available.  Build one from cpu_to_node() which should have been
5465         * fully initialized by now.
5466         */
5467        tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5468        BUG_ON(!tbl);
5469
5470        for_each_node(node)
5471                BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5472                                node_online(node) ? node : NUMA_NO_NODE));
5473
5474        for_each_possible_cpu(cpu) {
5475                node = cpu_to_node(cpu);
5476                if (WARN_ON(node == NUMA_NO_NODE)) {
5477                        pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5478                        /* happens iff arch is bonkers, let's just proceed */
5479                        return;
5480                }
5481                cpumask_set_cpu(cpu, tbl[node]);
5482        }
5483
5484        wq_numa_possible_cpumask = tbl;
5485        wq_numa_enabled = true;
5486}
5487
5488/**
5489 * workqueue_init_early - early init for workqueue subsystem
5490 *
5491 * This is the first half of two-staged workqueue subsystem initialization
5492 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5493 * idr are up.  It sets up all the data structures and system workqueues
5494 * and allows early boot code to create workqueues and queue/cancel work
5495 * items.  Actual work item execution starts only after kthreads can be
5496 * created and scheduled right before early initcalls.
5497 */
5498int __init workqueue_init_early(void)
5499{
5500        int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5501        int i, cpu;
5502
5503        WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5504
5505        BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5506        cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5507
5508        pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5509
5510        /* initialize CPU pools */
5511        for_each_possible_cpu(cpu) {
5512                struct worker_pool *pool;
5513
5514                i = 0;
5515                for_each_cpu_worker_pool(pool, cpu) {
5516                        BUG_ON(init_worker_pool(pool));
5517                        pool->cpu = cpu;
5518                        cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5519                        pool->attrs->nice = std_nice[i++];
5520                        pool->node = cpu_to_node(cpu);
5521
5522                        /* alloc pool ID */
5523                        mutex_lock(&wq_pool_mutex);
5524                        BUG_ON(worker_pool_assign_id(pool));
5525                        mutex_unlock(&wq_pool_mutex);
5526                }
5527        }
5528
5529        /* create default unbound and ordered wq attrs */
5530        for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5531                struct workqueue_attrs *attrs;
5532
5533                BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5534                attrs->nice = std_nice[i];
5535                unbound_std_wq_attrs[i] = attrs;
5536
5537                /*
5538                 * An ordered wq should have only one pwq as ordering is
5539                 * guaranteed by max_active which is enforced by pwqs.
5540                 * Turn off NUMA so that dfl_pwq is used for all nodes.
5541                 */
5542                BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5543                attrs->nice = std_nice[i];
5544                attrs->no_numa = true;
5545                ordered_wq_attrs[i] = attrs;
5546        }
5547
5548        system_wq = alloc_workqueue("events", 0, 0);
5549        system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5550        system_long_wq = alloc_workqueue("events_long", 0, 0);
5551        system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5552                                            WQ_UNBOUND_MAX_ACTIVE);
5553        system_freezable_wq = alloc_workqueue("events_freezable",
5554                                              WQ_FREEZABLE, 0);
5555        system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5556                                              WQ_POWER_EFFICIENT, 0);
5557        system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5558                                              WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5559                                              0);
5560        BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5561               !system_unbound_wq || !system_freezable_wq ||
5562               !system_power_efficient_wq ||
5563               !system_freezable_power_efficient_wq);
5564
5565        return 0;
5566}
5567
5568/**
5569 * workqueue_init - bring workqueue subsystem fully online
5570 *
5571 * This is the latter half of two-staged workqueue subsystem initialization
5572 * and invoked as soon as kthreads can be created and scheduled.
5573 * Workqueues have been created and work items queued on them, but there
5574 * are no kworkers executing the work items yet.  Populate the worker pools
5575 * with the initial workers and enable future kworker creations.
5576 */
5577int __init workqueue_init(void)
5578{
5579        struct workqueue_struct *wq;
5580        struct worker_pool *pool;
5581        int cpu, bkt;
5582
5583        /*
5584         * It'd be simpler to initialize NUMA in workqueue_init_early() but
5585         * CPU to node mapping may not be available that early on some
5586         * archs such as power and arm64.  As per-cpu pools created
5587         * previously could be missing node hint and unbound pools NUMA
5588         * affinity, fix them up.
5589         */
5590        wq_numa_init();
5591
5592        mutex_lock(&wq_pool_mutex);
5593
5594        for_each_possible_cpu(cpu) {
5595                for_each_cpu_worker_pool(pool, cpu) {
5596                        pool->node = cpu_to_node(cpu);
5597                }
5598        }
5599
5600        list_for_each_entry(wq, &workqueues, list)
5601                wq_update_unbound_numa(wq, smp_processor_id(), true);
5602
5603        mutex_unlock(&wq_pool_mutex);
5604
5605        /* create the initial workers */
5606        for_each_online_cpu(cpu) {
5607                for_each_cpu_worker_pool(pool, cpu) {
5608                        pool->flags &= ~POOL_DISASSOCIATED;
5609                        BUG_ON(!create_worker(pool));
5610                }
5611        }
5612
5613        hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5614                BUG_ON(!create_worker(pool));
5615
5616        wq_online = true;
5617        wq_watchdog_init();
5618
5619        return 0;
5620}
5621