linux/mm/ksm.c
<<
>>
Prefs
   1/*
   2 * Memory merging support.
   3 *
   4 * This code enables dynamic sharing of identical pages found in different
   5 * memory areas, even if they are not shared by fork()
   6 *
   7 * Copyright (C) 2008-2009 Red Hat, Inc.
   8 * Authors:
   9 *      Izik Eidus
  10 *      Andrea Arcangeli
  11 *      Chris Wright
  12 *      Hugh Dickins
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.
  15 */
  16
  17#include <linux/errno.h>
  18#include <linux/mm.h>
  19#include <linux/fs.h>
  20#include <linux/mman.h>
  21#include <linux/sched.h>
  22#include <linux/rwsem.h>
  23#include <linux/pagemap.h>
  24#include <linux/rmap.h>
  25#include <linux/spinlock.h>
  26#include <linux/jhash.h>
  27#include <linux/delay.h>
  28#include <linux/kthread.h>
  29#include <linux/wait.h>
  30#include <linux/slab.h>
  31#include <linux/rbtree.h>
  32#include <linux/memory.h>
  33#include <linux/mmu_notifier.h>
  34#include <linux/swap.h>
  35#include <linux/ksm.h>
  36#include <linux/hashtable.h>
  37#include <linux/freezer.h>
  38#include <linux/oom.h>
  39#include <linux/numa.h>
  40
  41#include <asm/tlbflush.h>
  42#include "internal.h"
  43
  44#ifdef CONFIG_NUMA
  45#define NUMA(x)         (x)
  46#define DO_NUMA(x)      do { (x); } while (0)
  47#else
  48#define NUMA(x)         (0)
  49#define DO_NUMA(x)      do { } while (0)
  50#endif
  51
  52/*
  53 * A few notes about the KSM scanning process,
  54 * to make it easier to understand the data structures below:
  55 *
  56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
  57 * contents into a data structure that holds pointers to the pages' locations.
  58 *
  59 * Since the contents of the pages may change at any moment, KSM cannot just
  60 * insert the pages into a normal sorted tree and expect it to find anything.
  61 * Therefore KSM uses two data structures - the stable and the unstable tree.
  62 *
  63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
  64 * by their contents.  Because each such page is write-protected, searching on
  65 * this tree is fully assured to be working (except when pages are unmapped),
  66 * and therefore this tree is called the stable tree.
  67 *
  68 * In addition to the stable tree, KSM uses a second data structure called the
  69 * unstable tree: this tree holds pointers to pages which have been found to
  70 * be "unchanged for a period of time".  The unstable tree sorts these pages
  71 * by their contents, but since they are not write-protected, KSM cannot rely
  72 * upon the unstable tree to work correctly - the unstable tree is liable to
  73 * be corrupted as its contents are modified, and so it is called unstable.
  74 *
  75 * KSM solves this problem by several techniques:
  76 *
  77 * 1) The unstable tree is flushed every time KSM completes scanning all
  78 *    memory areas, and then the tree is rebuilt again from the beginning.
  79 * 2) KSM will only insert into the unstable tree, pages whose hash value
  80 *    has not changed since the previous scan of all memory areas.
  81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
  82 *    colors of the nodes and not on their contents, assuring that even when
  83 *    the tree gets "corrupted" it won't get out of balance, so scanning time
  84 *    remains the same (also, searching and inserting nodes in an rbtree uses
  85 *    the same algorithm, so we have no overhead when we flush and rebuild).
  86 * 4) KSM never flushes the stable tree, which means that even if it were to
  87 *    take 10 attempts to find a page in the unstable tree, once it is found,
  88 *    it is secured in the stable tree.  (When we scan a new page, we first
  89 *    compare it against the stable tree, and then against the unstable tree.)
  90 *
  91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
  92 * stable trees and multiple unstable trees: one of each for each NUMA node.
  93 */
  94
  95/**
  96 * struct mm_slot - ksm information per mm that is being scanned
  97 * @link: link to the mm_slots hash list
  98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
  99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
 100 * @mm: the mm that this information is valid for
 101 */
 102struct mm_slot {
 103        struct hlist_node link;
 104        struct list_head mm_list;
 105        struct rmap_item *rmap_list;
 106        struct mm_struct *mm;
 107};
 108
 109/**
 110 * struct ksm_scan - cursor for scanning
 111 * @mm_slot: the current mm_slot we are scanning
 112 * @address: the next address inside that to be scanned
 113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
 114 * @seqnr: count of completed full scans (needed when removing unstable node)
 115 *
 116 * There is only the one ksm_scan instance of this cursor structure.
 117 */
 118struct ksm_scan {
 119        struct mm_slot *mm_slot;
 120        unsigned long address;
 121        struct rmap_item **rmap_list;
 122        unsigned long seqnr;
 123};
 124
 125/**
 126 * struct stable_node - node of the stable rbtree
 127 * @node: rb node of this ksm page in the stable tree
 128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
 129 * @list: linked into migrate_nodes, pending placement in the proper node tree
 130 * @hlist: hlist head of rmap_items using this ksm page
 131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
 132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
 133 */
 134struct stable_node {
 135        union {
 136                struct rb_node node;    /* when node of stable tree */
 137                struct {                /* when listed for migration */
 138                        struct list_head *head;
 139                        struct list_head list;
 140                };
 141        };
 142        struct hlist_head hlist;
 143        unsigned long kpfn;
 144#ifdef CONFIG_NUMA
 145        int nid;
 146#endif
 147};
 148
 149/**
 150 * struct rmap_item - reverse mapping item for virtual addresses
 151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
 152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
 153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
 154 * @mm: the memory structure this rmap_item is pointing into
 155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
 156 * @oldchecksum: previous checksum of the page at that virtual address
 157 * @node: rb node of this rmap_item in the unstable tree
 158 * @head: pointer to stable_node heading this list in the stable tree
 159 * @hlist: link into hlist of rmap_items hanging off that stable_node
 160 */
 161struct rmap_item {
 162        struct rmap_item *rmap_list;
 163        union {
 164                struct anon_vma *anon_vma;      /* when stable */
 165#ifdef CONFIG_NUMA
 166                int nid;                /* when node of unstable tree */
 167#endif
 168        };
 169        struct mm_struct *mm;
 170        unsigned long address;          /* + low bits used for flags below */
 171        unsigned int oldchecksum;       /* when unstable */
 172        union {
 173                struct rb_node node;    /* when node of unstable tree */
 174                struct {                /* when listed from stable tree */
 175                        struct stable_node *head;
 176                        struct hlist_node hlist;
 177                };
 178        };
 179};
 180
 181#define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
 182#define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
 183#define STABLE_FLAG     0x200   /* is listed from the stable tree */
 184
 185/* The stable and unstable tree heads */
 186static struct rb_root one_stable_tree[1] = { RB_ROOT };
 187static struct rb_root one_unstable_tree[1] = { RB_ROOT };
 188static struct rb_root *root_stable_tree = one_stable_tree;
 189static struct rb_root *root_unstable_tree = one_unstable_tree;
 190
 191/* Recently migrated nodes of stable tree, pending proper placement */
 192static LIST_HEAD(migrate_nodes);
 193
 194#define MM_SLOTS_HASH_BITS 10
 195static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 196
 197static struct mm_slot ksm_mm_head = {
 198        .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
 199};
 200static struct ksm_scan ksm_scan = {
 201        .mm_slot = &ksm_mm_head,
 202};
 203
 204static struct kmem_cache *rmap_item_cache;
 205static struct kmem_cache *stable_node_cache;
 206static struct kmem_cache *mm_slot_cache;
 207
 208/* The number of nodes in the stable tree */
 209static unsigned long ksm_pages_shared;
 210
 211/* The number of page slots additionally sharing those nodes */
 212static unsigned long ksm_pages_sharing;
 213
 214/* The number of nodes in the unstable tree */
 215static unsigned long ksm_pages_unshared;
 216
 217/* The number of rmap_items in use: to calculate pages_volatile */
 218static unsigned long ksm_rmap_items;
 219
 220/* Number of pages ksmd should scan in one batch */
 221static unsigned int ksm_thread_pages_to_scan = 100;
 222
 223/* Milliseconds ksmd should sleep between batches */
 224static unsigned int ksm_thread_sleep_millisecs = 20;
 225
 226#ifdef CONFIG_NUMA
 227/* Zeroed when merging across nodes is not allowed */
 228static unsigned int ksm_merge_across_nodes = 1;
 229static int ksm_nr_node_ids = 1;
 230#else
 231#define ksm_merge_across_nodes  1U
 232#define ksm_nr_node_ids         1
 233#endif
 234
 235#define KSM_RUN_STOP    0
 236#define KSM_RUN_MERGE   1
 237#define KSM_RUN_UNMERGE 2
 238#define KSM_RUN_OFFLINE 4
 239static unsigned long ksm_run = KSM_RUN_STOP;
 240static void wait_while_offlining(void);
 241
 242static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
 243static DEFINE_MUTEX(ksm_thread_mutex);
 244static DEFINE_SPINLOCK(ksm_mmlist_lock);
 245
 246#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
 247                sizeof(struct __struct), __alignof__(struct __struct),\
 248                (__flags), NULL)
 249
 250static int __init ksm_slab_init(void)
 251{
 252        rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
 253        if (!rmap_item_cache)
 254                goto out;
 255
 256        stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
 257        if (!stable_node_cache)
 258                goto out_free1;
 259
 260        mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
 261        if (!mm_slot_cache)
 262                goto out_free2;
 263
 264        return 0;
 265
 266out_free2:
 267        kmem_cache_destroy(stable_node_cache);
 268out_free1:
 269        kmem_cache_destroy(rmap_item_cache);
 270out:
 271        return -ENOMEM;
 272}
 273
 274static void __init ksm_slab_free(void)
 275{
 276        kmem_cache_destroy(mm_slot_cache);
 277        kmem_cache_destroy(stable_node_cache);
 278        kmem_cache_destroy(rmap_item_cache);
 279        mm_slot_cache = NULL;
 280}
 281
 282static inline struct rmap_item *alloc_rmap_item(void)
 283{
 284        struct rmap_item *rmap_item;
 285
 286        rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
 287                                                __GFP_NORETRY | __GFP_NOWARN);
 288        if (rmap_item)
 289                ksm_rmap_items++;
 290        return rmap_item;
 291}
 292
 293static inline void free_rmap_item(struct rmap_item *rmap_item)
 294{
 295        ksm_rmap_items--;
 296        rmap_item->mm = NULL;   /* debug safety */
 297        kmem_cache_free(rmap_item_cache, rmap_item);
 298}
 299
 300static inline struct stable_node *alloc_stable_node(void)
 301{
 302        /*
 303         * The allocation can take too long with GFP_KERNEL when memory is under
 304         * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
 305         * grants access to memory reserves, helping to avoid this problem.
 306         */
 307        return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
 308}
 309
 310static inline void free_stable_node(struct stable_node *stable_node)
 311{
 312        kmem_cache_free(stable_node_cache, stable_node);
 313}
 314
 315static inline struct mm_slot *alloc_mm_slot(void)
 316{
 317        if (!mm_slot_cache)     /* initialization failed */
 318                return NULL;
 319        return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 320}
 321
 322static inline void free_mm_slot(struct mm_slot *mm_slot)
 323{
 324        kmem_cache_free(mm_slot_cache, mm_slot);
 325}
 326
 327static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 328{
 329        struct mm_slot *slot;
 330
 331        hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
 332                if (slot->mm == mm)
 333                        return slot;
 334
 335        return NULL;
 336}
 337
 338static void insert_to_mm_slots_hash(struct mm_struct *mm,
 339                                    struct mm_slot *mm_slot)
 340{
 341        mm_slot->mm = mm;
 342        hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
 343}
 344
 345/*
 346 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
 347 * page tables after it has passed through ksm_exit() - which, if necessary,
 348 * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
 349 * a special flag: they can just back out as soon as mm_users goes to zero.
 350 * ksm_test_exit() is used throughout to make this test for exit: in some
 351 * places for correctness, in some places just to avoid unnecessary work.
 352 */
 353static inline bool ksm_test_exit(struct mm_struct *mm)
 354{
 355        return atomic_read(&mm->mm_users) == 0;
 356}
 357
 358/*
 359 * We use break_ksm to break COW on a ksm page: it's a stripped down
 360 *
 361 *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
 362 *              put_page(page);
 363 *
 364 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
 365 * in case the application has unmapped and remapped mm,addr meanwhile.
 366 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
 367 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
 368 *
 369 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
 370 * of the process that owns 'vma'.  We also do not want to enforce
 371 * protection keys here anyway.
 372 */
 373static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
 374{
 375        struct page *page;
 376        int ret = 0;
 377
 378        do {
 379                cond_resched();
 380                page = follow_page(vma, addr,
 381                                FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
 382                if (IS_ERR_OR_NULL(page))
 383                        break;
 384                if (PageKsm(page))
 385                        ret = handle_mm_fault(vma, addr,
 386                                        FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
 387                else
 388                        ret = VM_FAULT_WRITE;
 389                put_page(page);
 390        } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
 391        /*
 392         * We must loop because handle_mm_fault() may back out if there's
 393         * any difficulty e.g. if pte accessed bit gets updated concurrently.
 394         *
 395         * VM_FAULT_WRITE is what we have been hoping for: it indicates that
 396         * COW has been broken, even if the vma does not permit VM_WRITE;
 397         * but note that a concurrent fault might break PageKsm for us.
 398         *
 399         * VM_FAULT_SIGBUS could occur if we race with truncation of the
 400         * backing file, which also invalidates anonymous pages: that's
 401         * okay, that truncation will have unmapped the PageKsm for us.
 402         *
 403         * VM_FAULT_OOM: at the time of writing (late July 2009), setting
 404         * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
 405         * current task has TIF_MEMDIE set, and will be OOM killed on return
 406         * to user; and ksmd, having no mm, would never be chosen for that.
 407         *
 408         * But if the mm is in a limited mem_cgroup, then the fault may fail
 409         * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
 410         * even ksmd can fail in this way - though it's usually breaking ksm
 411         * just to undo a merge it made a moment before, so unlikely to oom.
 412         *
 413         * That's a pity: we might therefore have more kernel pages allocated
 414         * than we're counting as nodes in the stable tree; but ksm_do_scan
 415         * will retry to break_cow on each pass, so should recover the page
 416         * in due course.  The important thing is to not let VM_MERGEABLE
 417         * be cleared while any such pages might remain in the area.
 418         */
 419        return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
 420}
 421
 422static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
 423                unsigned long addr)
 424{
 425        struct vm_area_struct *vma;
 426        if (ksm_test_exit(mm))
 427                return NULL;
 428        vma = find_vma(mm, addr);
 429        if (!vma || vma->vm_start > addr)
 430                return NULL;
 431        if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 432                return NULL;
 433        return vma;
 434}
 435
 436static void break_cow(struct rmap_item *rmap_item)
 437{
 438        struct mm_struct *mm = rmap_item->mm;
 439        unsigned long addr = rmap_item->address;
 440        struct vm_area_struct *vma;
 441
 442        /*
 443         * It is not an accident that whenever we want to break COW
 444         * to undo, we also need to drop a reference to the anon_vma.
 445         */
 446        put_anon_vma(rmap_item->anon_vma);
 447
 448        down_read(&mm->mmap_sem);
 449        vma = find_mergeable_vma(mm, addr);
 450        if (vma)
 451                break_ksm(vma, addr);
 452        up_read(&mm->mmap_sem);
 453}
 454
 455static struct page *get_mergeable_page(struct rmap_item *rmap_item)
 456{
 457        struct mm_struct *mm = rmap_item->mm;
 458        unsigned long addr = rmap_item->address;
 459        struct vm_area_struct *vma;
 460        struct page *page;
 461
 462        down_read(&mm->mmap_sem);
 463        vma = find_mergeable_vma(mm, addr);
 464        if (!vma)
 465                goto out;
 466
 467        page = follow_page(vma, addr, FOLL_GET);
 468        if (IS_ERR_OR_NULL(page))
 469                goto out;
 470        if (PageAnon(page)) {
 471                flush_anon_page(vma, page, addr);
 472                flush_dcache_page(page);
 473        } else {
 474                put_page(page);
 475out:
 476                page = NULL;
 477        }
 478        up_read(&mm->mmap_sem);
 479        return page;
 480}
 481
 482/*
 483 * This helper is used for getting right index into array of tree roots.
 484 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
 485 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
 486 * every node has its own stable and unstable tree.
 487 */
 488static inline int get_kpfn_nid(unsigned long kpfn)
 489{
 490        return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
 491}
 492
 493static void remove_node_from_stable_tree(struct stable_node *stable_node)
 494{
 495        struct rmap_item *rmap_item;
 496
 497        hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
 498                if (rmap_item->hlist.next)
 499                        ksm_pages_sharing--;
 500                else
 501                        ksm_pages_shared--;
 502                put_anon_vma(rmap_item->anon_vma);
 503                rmap_item->address &= PAGE_MASK;
 504                cond_resched();
 505        }
 506
 507        if (stable_node->head == &migrate_nodes)
 508                list_del(&stable_node->list);
 509        else
 510                rb_erase(&stable_node->node,
 511                         root_stable_tree + NUMA(stable_node->nid));
 512        free_stable_node(stable_node);
 513}
 514
 515/*
 516 * get_ksm_page: checks if the page indicated by the stable node
 517 * is still its ksm page, despite having held no reference to it.
 518 * In which case we can trust the content of the page, and it
 519 * returns the gotten page; but if the page has now been zapped,
 520 * remove the stale node from the stable tree and return NULL.
 521 * But beware, the stable node's page might be being migrated.
 522 *
 523 * You would expect the stable_node to hold a reference to the ksm page.
 524 * But if it increments the page's count, swapping out has to wait for
 525 * ksmd to come around again before it can free the page, which may take
 526 * seconds or even minutes: much too unresponsive.  So instead we use a
 527 * "keyhole reference": access to the ksm page from the stable node peeps
 528 * out through its keyhole to see if that page still holds the right key,
 529 * pointing back to this stable node.  This relies on freeing a PageAnon
 530 * page to reset its page->mapping to NULL, and relies on no other use of
 531 * a page to put something that might look like our key in page->mapping.
 532 * is on its way to being freed; but it is an anomaly to bear in mind.
 533 */
 534static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
 535{
 536        struct page *page;
 537        void *expected_mapping;
 538        unsigned long kpfn;
 539
 540        expected_mapping = (void *)((unsigned long)stable_node |
 541                                        PAGE_MAPPING_KSM);
 542again:
 543        kpfn = READ_ONCE(stable_node->kpfn);
 544        page = pfn_to_page(kpfn);
 545
 546        /*
 547         * page is computed from kpfn, so on most architectures reading
 548         * page->mapping is naturally ordered after reading node->kpfn,
 549         * but on Alpha we need to be more careful.
 550         */
 551        smp_read_barrier_depends();
 552        if (READ_ONCE(page->mapping) != expected_mapping)
 553                goto stale;
 554
 555        /*
 556         * We cannot do anything with the page while its refcount is 0.
 557         * Usually 0 means free, or tail of a higher-order page: in which
 558         * case this node is no longer referenced, and should be freed;
 559         * however, it might mean that the page is under page_freeze_refs().
 560         * The __remove_mapping() case is easy, again the node is now stale;
 561         * but if page is swapcache in migrate_page_move_mapping(), it might
 562         * still be our page, in which case it's essential to keep the node.
 563         */
 564        while (!get_page_unless_zero(page)) {
 565                /*
 566                 * Another check for page->mapping != expected_mapping would
 567                 * work here too.  We have chosen the !PageSwapCache test to
 568                 * optimize the common case, when the page is or is about to
 569                 * be freed: PageSwapCache is cleared (under spin_lock_irq)
 570                 * in the freeze_refs section of __remove_mapping(); but Anon
 571                 * page->mapping reset to NULL later, in free_pages_prepare().
 572                 */
 573                if (!PageSwapCache(page))
 574                        goto stale;
 575                cpu_relax();
 576        }
 577
 578        if (READ_ONCE(page->mapping) != expected_mapping) {
 579                put_page(page);
 580                goto stale;
 581        }
 582
 583        if (lock_it) {
 584                lock_page(page);
 585                if (READ_ONCE(page->mapping) != expected_mapping) {
 586                        unlock_page(page);
 587                        put_page(page);
 588                        goto stale;
 589                }
 590        }
 591        return page;
 592
 593stale:
 594        /*
 595         * We come here from above when page->mapping or !PageSwapCache
 596         * suggests that the node is stale; but it might be under migration.
 597         * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
 598         * before checking whether node->kpfn has been changed.
 599         */
 600        smp_rmb();
 601        if (READ_ONCE(stable_node->kpfn) != kpfn)
 602                goto again;
 603        remove_node_from_stable_tree(stable_node);
 604        return NULL;
 605}
 606
 607/*
 608 * Removing rmap_item from stable or unstable tree.
 609 * This function will clean the information from the stable/unstable tree.
 610 */
 611static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
 612{
 613        if (rmap_item->address & STABLE_FLAG) {
 614                struct stable_node *stable_node;
 615                struct page *page;
 616
 617                stable_node = rmap_item->head;
 618                page = get_ksm_page(stable_node, true);
 619                if (!page)
 620                        goto out;
 621
 622                hlist_del(&rmap_item->hlist);
 623                unlock_page(page);
 624                put_page(page);
 625
 626                if (!hlist_empty(&stable_node->hlist))
 627                        ksm_pages_sharing--;
 628                else
 629                        ksm_pages_shared--;
 630
 631                put_anon_vma(rmap_item->anon_vma);
 632                rmap_item->address &= PAGE_MASK;
 633
 634        } else if (rmap_item->address & UNSTABLE_FLAG) {
 635                unsigned char age;
 636                /*
 637                 * Usually ksmd can and must skip the rb_erase, because
 638                 * root_unstable_tree was already reset to RB_ROOT.
 639                 * But be careful when an mm is exiting: do the rb_erase
 640                 * if this rmap_item was inserted by this scan, rather
 641                 * than left over from before.
 642                 */
 643                age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
 644                BUG_ON(age > 1);
 645                if (!age)
 646                        rb_erase(&rmap_item->node,
 647                                 root_unstable_tree + NUMA(rmap_item->nid));
 648                ksm_pages_unshared--;
 649                rmap_item->address &= PAGE_MASK;
 650        }
 651out:
 652        cond_resched();         /* we're called from many long loops */
 653}
 654
 655static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
 656                                       struct rmap_item **rmap_list)
 657{
 658        while (*rmap_list) {
 659                struct rmap_item *rmap_item = *rmap_list;
 660                *rmap_list = rmap_item->rmap_list;
 661                remove_rmap_item_from_tree(rmap_item);
 662                free_rmap_item(rmap_item);
 663        }
 664}
 665
 666/*
 667 * Though it's very tempting to unmerge rmap_items from stable tree rather
 668 * than check every pte of a given vma, the locking doesn't quite work for
 669 * that - an rmap_item is assigned to the stable tree after inserting ksm
 670 * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
 671 * rmap_items from parent to child at fork time (so as not to waste time
 672 * if exit comes before the next scan reaches it).
 673 *
 674 * Similarly, although we'd like to remove rmap_items (so updating counts
 675 * and freeing memory) when unmerging an area, it's easier to leave that
 676 * to the next pass of ksmd - consider, for example, how ksmd might be
 677 * in cmp_and_merge_page on one of the rmap_items we would be removing.
 678 */
 679static int unmerge_ksm_pages(struct vm_area_struct *vma,
 680                             unsigned long start, unsigned long end)
 681{
 682        unsigned long addr;
 683        int err = 0;
 684
 685        for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
 686                if (ksm_test_exit(vma->vm_mm))
 687                        break;
 688                if (signal_pending(current))
 689                        err = -ERESTARTSYS;
 690                else
 691                        err = break_ksm(vma, addr);
 692        }
 693        return err;
 694}
 695
 696#ifdef CONFIG_SYSFS
 697/*
 698 * Only called through the sysfs control interface:
 699 */
 700static int remove_stable_node(struct stable_node *stable_node)
 701{
 702        struct page *page;
 703        int err;
 704
 705        page = get_ksm_page(stable_node, true);
 706        if (!page) {
 707                /*
 708                 * get_ksm_page did remove_node_from_stable_tree itself.
 709                 */
 710                return 0;
 711        }
 712
 713        if (WARN_ON_ONCE(page_mapped(page))) {
 714                /*
 715                 * This should not happen: but if it does, just refuse to let
 716                 * merge_across_nodes be switched - there is no need to panic.
 717                 */
 718                err = -EBUSY;
 719        } else {
 720                /*
 721                 * The stable node did not yet appear stale to get_ksm_page(),
 722                 * since that allows for an unmapped ksm page to be recognized
 723                 * right up until it is freed; but the node is safe to remove.
 724                 * This page might be in a pagevec waiting to be freed,
 725                 * or it might be PageSwapCache (perhaps under writeback),
 726                 * or it might have been removed from swapcache a moment ago.
 727                 */
 728                set_page_stable_node(page, NULL);
 729                remove_node_from_stable_tree(stable_node);
 730                err = 0;
 731        }
 732
 733        unlock_page(page);
 734        put_page(page);
 735        return err;
 736}
 737
 738static int remove_all_stable_nodes(void)
 739{
 740        struct stable_node *stable_node, *next;
 741        int nid;
 742        int err = 0;
 743
 744        for (nid = 0; nid < ksm_nr_node_ids; nid++) {
 745                while (root_stable_tree[nid].rb_node) {
 746                        stable_node = rb_entry(root_stable_tree[nid].rb_node,
 747                                                struct stable_node, node);
 748                        if (remove_stable_node(stable_node)) {
 749                                err = -EBUSY;
 750                                break;  /* proceed to next nid */
 751                        }
 752                        cond_resched();
 753                }
 754        }
 755        list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
 756                if (remove_stable_node(stable_node))
 757                        err = -EBUSY;
 758                cond_resched();
 759        }
 760        return err;
 761}
 762
 763static int unmerge_and_remove_all_rmap_items(void)
 764{
 765        struct mm_slot *mm_slot;
 766        struct mm_struct *mm;
 767        struct vm_area_struct *vma;
 768        int err = 0;
 769
 770        spin_lock(&ksm_mmlist_lock);
 771        ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
 772                                                struct mm_slot, mm_list);
 773        spin_unlock(&ksm_mmlist_lock);
 774
 775        for (mm_slot = ksm_scan.mm_slot;
 776                        mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
 777                mm = mm_slot->mm;
 778                down_read(&mm->mmap_sem);
 779                for (vma = mm->mmap; vma; vma = vma->vm_next) {
 780                        if (ksm_test_exit(mm))
 781                                break;
 782                        if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 783                                continue;
 784                        err = unmerge_ksm_pages(vma,
 785                                                vma->vm_start, vma->vm_end);
 786                        if (err)
 787                                goto error;
 788                }
 789
 790                remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
 791                up_read(&mm->mmap_sem);
 792
 793                spin_lock(&ksm_mmlist_lock);
 794                ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
 795                                                struct mm_slot, mm_list);
 796                if (ksm_test_exit(mm)) {
 797                        hash_del(&mm_slot->link);
 798                        list_del(&mm_slot->mm_list);
 799                        spin_unlock(&ksm_mmlist_lock);
 800
 801                        free_mm_slot(mm_slot);
 802                        clear_bit(MMF_VM_MERGEABLE, &mm->flags);
 803                        mmdrop(mm);
 804                } else
 805                        spin_unlock(&ksm_mmlist_lock);
 806        }
 807
 808        /* Clean up stable nodes, but don't worry if some are still busy */
 809        remove_all_stable_nodes();
 810        ksm_scan.seqnr = 0;
 811        return 0;
 812
 813error:
 814        up_read(&mm->mmap_sem);
 815        spin_lock(&ksm_mmlist_lock);
 816        ksm_scan.mm_slot = &ksm_mm_head;
 817        spin_unlock(&ksm_mmlist_lock);
 818        return err;
 819}
 820#endif /* CONFIG_SYSFS */
 821
 822static u32 calc_checksum(struct page *page)
 823{
 824        u32 checksum;
 825        void *addr = kmap_atomic(page);
 826        checksum = jhash2(addr, PAGE_SIZE / 4, 17);
 827        kunmap_atomic(addr);
 828        return checksum;
 829}
 830
 831static int memcmp_pages(struct page *page1, struct page *page2)
 832{
 833        char *addr1, *addr2;
 834        int ret;
 835
 836        addr1 = kmap_atomic(page1);
 837        addr2 = kmap_atomic(page2);
 838        ret = memcmp(addr1, addr2, PAGE_SIZE);
 839        kunmap_atomic(addr2);
 840        kunmap_atomic(addr1);
 841        return ret;
 842}
 843
 844static inline int pages_identical(struct page *page1, struct page *page2)
 845{
 846        return !memcmp_pages(page1, page2);
 847}
 848
 849static int write_protect_page(struct vm_area_struct *vma, struct page *page,
 850                              pte_t *orig_pte)
 851{
 852        struct mm_struct *mm = vma->vm_mm;
 853        unsigned long addr;
 854        pte_t *ptep;
 855        spinlock_t *ptl;
 856        int swapped;
 857        int err = -EFAULT;
 858        unsigned long mmun_start;       /* For mmu_notifiers */
 859        unsigned long mmun_end;         /* For mmu_notifiers */
 860
 861        addr = page_address_in_vma(page, vma);
 862        if (addr == -EFAULT)
 863                goto out;
 864
 865        BUG_ON(PageTransCompound(page));
 866
 867        mmun_start = addr;
 868        mmun_end   = addr + PAGE_SIZE;
 869        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 870
 871        ptep = page_check_address(page, mm, addr, &ptl, 0);
 872        if (!ptep)
 873                goto out_mn;
 874
 875        if (pte_write(*ptep) || pte_dirty(*ptep)) {
 876                pte_t entry;
 877
 878                swapped = PageSwapCache(page);
 879                flush_cache_page(vma, addr, page_to_pfn(page));
 880                /*
 881                 * Ok this is tricky, when get_user_pages_fast() run it doesn't
 882                 * take any lock, therefore the check that we are going to make
 883                 * with the pagecount against the mapcount is racey and
 884                 * O_DIRECT can happen right after the check.
 885                 * So we clear the pte and flush the tlb before the check
 886                 * this assure us that no O_DIRECT can happen after the check
 887                 * or in the middle of the check.
 888                 */
 889                entry = ptep_clear_flush_notify(vma, addr, ptep);
 890                /*
 891                 * Check that no O_DIRECT or similar I/O is in progress on the
 892                 * page
 893                 */
 894                if (page_mapcount(page) + 1 + swapped != page_count(page)) {
 895                        set_pte_at(mm, addr, ptep, entry);
 896                        goto out_unlock;
 897                }
 898                if (pte_dirty(entry))
 899                        set_page_dirty(page);
 900                entry = pte_mkclean(pte_wrprotect(entry));
 901                set_pte_at_notify(mm, addr, ptep, entry);
 902        }
 903        *orig_pte = *ptep;
 904        err = 0;
 905
 906out_unlock:
 907        pte_unmap_unlock(ptep, ptl);
 908out_mn:
 909        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 910out:
 911        return err;
 912}
 913
 914/**
 915 * replace_page - replace page in vma by new ksm page
 916 * @vma:      vma that holds the pte pointing to page
 917 * @page:     the page we are replacing by kpage
 918 * @kpage:    the ksm page we replace page by
 919 * @orig_pte: the original value of the pte
 920 *
 921 * Returns 0 on success, -EFAULT on failure.
 922 */
 923static int replace_page(struct vm_area_struct *vma, struct page *page,
 924                        struct page *kpage, pte_t orig_pte)
 925{
 926        struct mm_struct *mm = vma->vm_mm;
 927        pmd_t *pmd;
 928        pte_t *ptep;
 929        spinlock_t *ptl;
 930        unsigned long addr;
 931        int err = -EFAULT;
 932        unsigned long mmun_start;       /* For mmu_notifiers */
 933        unsigned long mmun_end;         /* For mmu_notifiers */
 934
 935        addr = page_address_in_vma(page, vma);
 936        if (addr == -EFAULT)
 937                goto out;
 938
 939        pmd = mm_find_pmd(mm, addr);
 940        if (!pmd)
 941                goto out;
 942
 943        mmun_start = addr;
 944        mmun_end   = addr + PAGE_SIZE;
 945        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 946
 947        ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
 948        if (!pte_same(*ptep, orig_pte)) {
 949                pte_unmap_unlock(ptep, ptl);
 950                goto out_mn;
 951        }
 952
 953        get_page(kpage);
 954        page_add_anon_rmap(kpage, vma, addr, false);
 955
 956        flush_cache_page(vma, addr, pte_pfn(*ptep));
 957        ptep_clear_flush_notify(vma, addr, ptep);
 958        set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
 959
 960        page_remove_rmap(page, false);
 961        if (!page_mapped(page))
 962                try_to_free_swap(page);
 963        put_page(page);
 964
 965        pte_unmap_unlock(ptep, ptl);
 966        err = 0;
 967out_mn:
 968        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 969out:
 970        return err;
 971}
 972
 973/*
 974 * try_to_merge_one_page - take two pages and merge them into one
 975 * @vma: the vma that holds the pte pointing to page
 976 * @page: the PageAnon page that we want to replace with kpage
 977 * @kpage: the PageKsm page that we want to map instead of page,
 978 *         or NULL the first time when we want to use page as kpage.
 979 *
 980 * This function returns 0 if the pages were merged, -EFAULT otherwise.
 981 */
 982static int try_to_merge_one_page(struct vm_area_struct *vma,
 983                                 struct page *page, struct page *kpage)
 984{
 985        pte_t orig_pte = __pte(0);
 986        int err = -EFAULT;
 987
 988        if (page == kpage)                      /* ksm page forked */
 989                return 0;
 990
 991        if (!PageAnon(page))
 992                goto out;
 993
 994        /*
 995         * We need the page lock to read a stable PageSwapCache in
 996         * write_protect_page().  We use trylock_page() instead of
 997         * lock_page() because we don't want to wait here - we
 998         * prefer to continue scanning and merging different pages,
 999         * then come back to this page when it is unlocked.
1000         */
1001        if (!trylock_page(page))
1002                goto out;
1003
1004        if (PageTransCompound(page)) {
1005                err = split_huge_page(page);
1006                if (err)
1007                        goto out_unlock;
1008        }
1009
1010        /*
1011         * If this anonymous page is mapped only here, its pte may need
1012         * to be write-protected.  If it's mapped elsewhere, all of its
1013         * ptes are necessarily already write-protected.  But in either
1014         * case, we need to lock and check page_count is not raised.
1015         */
1016        if (write_protect_page(vma, page, &orig_pte) == 0) {
1017                if (!kpage) {
1018                        /*
1019                         * While we hold page lock, upgrade page from
1020                         * PageAnon+anon_vma to PageKsm+NULL stable_node:
1021                         * stable_tree_insert() will update stable_node.
1022                         */
1023                        set_page_stable_node(page, NULL);
1024                        mark_page_accessed(page);
1025                        /*
1026                         * Page reclaim just frees a clean page with no dirty
1027                         * ptes: make sure that the ksm page would be swapped.
1028                         */
1029                        if (!PageDirty(page))
1030                                SetPageDirty(page);
1031                        err = 0;
1032                } else if (pages_identical(page, kpage))
1033                        err = replace_page(vma, page, kpage, orig_pte);
1034        }
1035
1036        if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1037                munlock_vma_page(page);
1038                if (!PageMlocked(kpage)) {
1039                        unlock_page(page);
1040                        lock_page(kpage);
1041                        mlock_vma_page(kpage);
1042                        page = kpage;           /* for final unlock */
1043                }
1044        }
1045
1046out_unlock:
1047        unlock_page(page);
1048out:
1049        return err;
1050}
1051
1052/*
1053 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1054 * but no new kernel page is allocated: kpage must already be a ksm page.
1055 *
1056 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1057 */
1058static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1059                                      struct page *page, struct page *kpage)
1060{
1061        struct mm_struct *mm = rmap_item->mm;
1062        struct vm_area_struct *vma;
1063        int err = -EFAULT;
1064
1065        down_read(&mm->mmap_sem);
1066        vma = find_mergeable_vma(mm, rmap_item->address);
1067        if (!vma)
1068                goto out;
1069
1070        err = try_to_merge_one_page(vma, page, kpage);
1071        if (err)
1072                goto out;
1073
1074        /* Unstable nid is in union with stable anon_vma: remove first */
1075        remove_rmap_item_from_tree(rmap_item);
1076
1077        /* Must get reference to anon_vma while still holding mmap_sem */
1078        rmap_item->anon_vma = vma->anon_vma;
1079        get_anon_vma(vma->anon_vma);
1080out:
1081        up_read(&mm->mmap_sem);
1082        return err;
1083}
1084
1085/*
1086 * try_to_merge_two_pages - take two identical pages and prepare them
1087 * to be merged into one page.
1088 *
1089 * This function returns the kpage if we successfully merged two identical
1090 * pages into one ksm page, NULL otherwise.
1091 *
1092 * Note that this function upgrades page to ksm page: if one of the pages
1093 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1094 */
1095static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1096                                           struct page *page,
1097                                           struct rmap_item *tree_rmap_item,
1098                                           struct page *tree_page)
1099{
1100        int err;
1101
1102        err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1103        if (!err) {
1104                err = try_to_merge_with_ksm_page(tree_rmap_item,
1105                                                        tree_page, page);
1106                /*
1107                 * If that fails, we have a ksm page with only one pte
1108                 * pointing to it: so break it.
1109                 */
1110                if (err)
1111                        break_cow(rmap_item);
1112        }
1113        return err ? NULL : page;
1114}
1115
1116/*
1117 * stable_tree_search - search for page inside the stable tree
1118 *
1119 * This function checks if there is a page inside the stable tree
1120 * with identical content to the page that we are scanning right now.
1121 *
1122 * This function returns the stable tree node of identical content if found,
1123 * NULL otherwise.
1124 */
1125static struct page *stable_tree_search(struct page *page)
1126{
1127        int nid;
1128        struct rb_root *root;
1129        struct rb_node **new;
1130        struct rb_node *parent;
1131        struct stable_node *stable_node;
1132        struct stable_node *page_node;
1133
1134        page_node = page_stable_node(page);
1135        if (page_node && page_node->head != &migrate_nodes) {
1136                /* ksm page forked */
1137                get_page(page);
1138                return page;
1139        }
1140
1141        nid = get_kpfn_nid(page_to_pfn(page));
1142        root = root_stable_tree + nid;
1143again:
1144        new = &root->rb_node;
1145        parent = NULL;
1146
1147        while (*new) {
1148                struct page *tree_page;
1149                int ret;
1150
1151                cond_resched();
1152                stable_node = rb_entry(*new, struct stable_node, node);
1153                tree_page = get_ksm_page(stable_node, false);
1154                if (!tree_page) {
1155                        /*
1156                         * If we walked over a stale stable_node,
1157                         * get_ksm_page() will call rb_erase() and it
1158                         * may rebalance the tree from under us. So
1159                         * restart the search from scratch. Returning
1160                         * NULL would be safe too, but we'd generate
1161                         * false negative insertions just because some
1162                         * stable_node was stale.
1163                         */
1164                        goto again;
1165                }
1166
1167                ret = memcmp_pages(page, tree_page);
1168                put_page(tree_page);
1169
1170                parent = *new;
1171                if (ret < 0)
1172                        new = &parent->rb_left;
1173                else if (ret > 0)
1174                        new = &parent->rb_right;
1175                else {
1176                        /*
1177                         * Lock and unlock the stable_node's page (which
1178                         * might already have been migrated) so that page
1179                         * migration is sure to notice its raised count.
1180                         * It would be more elegant to return stable_node
1181                         * than kpage, but that involves more changes.
1182                         */
1183                        tree_page = get_ksm_page(stable_node, true);
1184                        if (tree_page) {
1185                                unlock_page(tree_page);
1186                                if (get_kpfn_nid(stable_node->kpfn) !=
1187                                                NUMA(stable_node->nid)) {
1188                                        put_page(tree_page);
1189                                        goto replace;
1190                                }
1191                                return tree_page;
1192                        }
1193                        /*
1194                         * There is now a place for page_node, but the tree may
1195                         * have been rebalanced, so re-evaluate parent and new.
1196                         */
1197                        if (page_node)
1198                                goto again;
1199                        return NULL;
1200                }
1201        }
1202
1203        if (!page_node)
1204                return NULL;
1205
1206        list_del(&page_node->list);
1207        DO_NUMA(page_node->nid = nid);
1208        rb_link_node(&page_node->node, parent, new);
1209        rb_insert_color(&page_node->node, root);
1210        get_page(page);
1211        return page;
1212
1213replace:
1214        if (page_node) {
1215                list_del(&page_node->list);
1216                DO_NUMA(page_node->nid = nid);
1217                rb_replace_node(&stable_node->node, &page_node->node, root);
1218                get_page(page);
1219        } else {
1220                rb_erase(&stable_node->node, root);
1221                page = NULL;
1222        }
1223        stable_node->head = &migrate_nodes;
1224        list_add(&stable_node->list, stable_node->head);
1225        return page;
1226}
1227
1228/*
1229 * stable_tree_insert - insert stable tree node pointing to new ksm page
1230 * into the stable tree.
1231 *
1232 * This function returns the stable tree node just allocated on success,
1233 * NULL otherwise.
1234 */
1235static struct stable_node *stable_tree_insert(struct page *kpage)
1236{
1237        int nid;
1238        unsigned long kpfn;
1239        struct rb_root *root;
1240        struct rb_node **new;
1241        struct rb_node *parent;
1242        struct stable_node *stable_node;
1243
1244        kpfn = page_to_pfn(kpage);
1245        nid = get_kpfn_nid(kpfn);
1246        root = root_stable_tree + nid;
1247again:
1248        parent = NULL;
1249        new = &root->rb_node;
1250
1251        while (*new) {
1252                struct page *tree_page;
1253                int ret;
1254
1255                cond_resched();
1256                stable_node = rb_entry(*new, struct stable_node, node);
1257                tree_page = get_ksm_page(stable_node, false);
1258                if (!tree_page) {
1259                        /*
1260                         * If we walked over a stale stable_node,
1261                         * get_ksm_page() will call rb_erase() and it
1262                         * may rebalance the tree from under us. So
1263                         * restart the search from scratch. Returning
1264                         * NULL would be safe too, but we'd generate
1265                         * false negative insertions just because some
1266                         * stable_node was stale.
1267                         */
1268                        goto again;
1269                }
1270
1271                ret = memcmp_pages(kpage, tree_page);
1272                put_page(tree_page);
1273
1274                parent = *new;
1275                if (ret < 0)
1276                        new = &parent->rb_left;
1277                else if (ret > 0)
1278                        new = &parent->rb_right;
1279                else {
1280                        /*
1281                         * It is not a bug that stable_tree_search() didn't
1282                         * find this node: because at that time our page was
1283                         * not yet write-protected, so may have changed since.
1284                         */
1285                        return NULL;
1286                }
1287        }
1288
1289        stable_node = alloc_stable_node();
1290        if (!stable_node)
1291                return NULL;
1292
1293        INIT_HLIST_HEAD(&stable_node->hlist);
1294        stable_node->kpfn = kpfn;
1295        set_page_stable_node(kpage, stable_node);
1296        DO_NUMA(stable_node->nid = nid);
1297        rb_link_node(&stable_node->node, parent, new);
1298        rb_insert_color(&stable_node->node, root);
1299
1300        return stable_node;
1301}
1302
1303/*
1304 * unstable_tree_search_insert - search for identical page,
1305 * else insert rmap_item into the unstable tree.
1306 *
1307 * This function searches for a page in the unstable tree identical to the
1308 * page currently being scanned; and if no identical page is found in the
1309 * tree, we insert rmap_item as a new object into the unstable tree.
1310 *
1311 * This function returns pointer to rmap_item found to be identical
1312 * to the currently scanned page, NULL otherwise.
1313 *
1314 * This function does both searching and inserting, because they share
1315 * the same walking algorithm in an rbtree.
1316 */
1317static
1318struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1319                                              struct page *page,
1320                                              struct page **tree_pagep)
1321{
1322        struct rb_node **new;
1323        struct rb_root *root;
1324        struct rb_node *parent = NULL;
1325        int nid;
1326
1327        nid = get_kpfn_nid(page_to_pfn(page));
1328        root = root_unstable_tree + nid;
1329        new = &root->rb_node;
1330
1331        while (*new) {
1332                struct rmap_item *tree_rmap_item;
1333                struct page *tree_page;
1334                int ret;
1335
1336                cond_resched();
1337                tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1338                tree_page = get_mergeable_page(tree_rmap_item);
1339                if (!tree_page)
1340                        return NULL;
1341
1342                /*
1343                 * Don't substitute a ksm page for a forked page.
1344                 */
1345                if (page == tree_page) {
1346                        put_page(tree_page);
1347                        return NULL;
1348                }
1349
1350                ret = memcmp_pages(page, tree_page);
1351
1352                parent = *new;
1353                if (ret < 0) {
1354                        put_page(tree_page);
1355                        new = &parent->rb_left;
1356                } else if (ret > 0) {
1357                        put_page(tree_page);
1358                        new = &parent->rb_right;
1359                } else if (!ksm_merge_across_nodes &&
1360                           page_to_nid(tree_page) != nid) {
1361                        /*
1362                         * If tree_page has been migrated to another NUMA node,
1363                         * it will be flushed out and put in the right unstable
1364                         * tree next time: only merge with it when across_nodes.
1365                         */
1366                        put_page(tree_page);
1367                        return NULL;
1368                } else {
1369                        *tree_pagep = tree_page;
1370                        return tree_rmap_item;
1371                }
1372        }
1373
1374        rmap_item->address |= UNSTABLE_FLAG;
1375        rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1376        DO_NUMA(rmap_item->nid = nid);
1377        rb_link_node(&rmap_item->node, parent, new);
1378        rb_insert_color(&rmap_item->node, root);
1379
1380        ksm_pages_unshared++;
1381        return NULL;
1382}
1383
1384/*
1385 * stable_tree_append - add another rmap_item to the linked list of
1386 * rmap_items hanging off a given node of the stable tree, all sharing
1387 * the same ksm page.
1388 */
1389static void stable_tree_append(struct rmap_item *rmap_item,
1390                               struct stable_node *stable_node)
1391{
1392        rmap_item->head = stable_node;
1393        rmap_item->address |= STABLE_FLAG;
1394        hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1395
1396        if (rmap_item->hlist.next)
1397                ksm_pages_sharing++;
1398        else
1399                ksm_pages_shared++;
1400}
1401
1402/*
1403 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1404 * if not, compare checksum to previous and if it's the same, see if page can
1405 * be inserted into the unstable tree, or merged with a page already there and
1406 * both transferred to the stable tree.
1407 *
1408 * @page: the page that we are searching identical page to.
1409 * @rmap_item: the reverse mapping into the virtual address of this page
1410 */
1411static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1412{
1413        struct rmap_item *tree_rmap_item;
1414        struct page *tree_page = NULL;
1415        struct stable_node *stable_node;
1416        struct page *kpage;
1417        unsigned int checksum;
1418        int err;
1419
1420        stable_node = page_stable_node(page);
1421        if (stable_node) {
1422                if (stable_node->head != &migrate_nodes &&
1423                    get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1424                        rb_erase(&stable_node->node,
1425                                 root_stable_tree + NUMA(stable_node->nid));
1426                        stable_node->head = &migrate_nodes;
1427                        list_add(&stable_node->list, stable_node->head);
1428                }
1429                if (stable_node->head != &migrate_nodes &&
1430                    rmap_item->head == stable_node)
1431                        return;
1432        }
1433
1434        /* We first start with searching the page inside the stable tree */
1435        kpage = stable_tree_search(page);
1436        if (kpage == page && rmap_item->head == stable_node) {
1437                put_page(kpage);
1438                return;
1439        }
1440
1441        remove_rmap_item_from_tree(rmap_item);
1442
1443        if (kpage) {
1444                err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1445                if (!err) {
1446                        /*
1447                         * The page was successfully merged:
1448                         * add its rmap_item to the stable tree.
1449                         */
1450                        lock_page(kpage);
1451                        stable_tree_append(rmap_item, page_stable_node(kpage));
1452                        unlock_page(kpage);
1453                }
1454                put_page(kpage);
1455                return;
1456        }
1457
1458        /*
1459         * If the hash value of the page has changed from the last time
1460         * we calculated it, this page is changing frequently: therefore we
1461         * don't want to insert it in the unstable tree, and we don't want
1462         * to waste our time searching for something identical to it there.
1463         */
1464        checksum = calc_checksum(page);
1465        if (rmap_item->oldchecksum != checksum) {
1466                rmap_item->oldchecksum = checksum;
1467                return;
1468        }
1469
1470        tree_rmap_item =
1471                unstable_tree_search_insert(rmap_item, page, &tree_page);
1472        if (tree_rmap_item) {
1473                kpage = try_to_merge_two_pages(rmap_item, page,
1474                                                tree_rmap_item, tree_page);
1475                put_page(tree_page);
1476                if (kpage) {
1477                        /*
1478                         * The pages were successfully merged: insert new
1479                         * node in the stable tree and add both rmap_items.
1480                         */
1481                        lock_page(kpage);
1482                        stable_node = stable_tree_insert(kpage);
1483                        if (stable_node) {
1484                                stable_tree_append(tree_rmap_item, stable_node);
1485                                stable_tree_append(rmap_item, stable_node);
1486                        }
1487                        unlock_page(kpage);
1488
1489                        /*
1490                         * If we fail to insert the page into the stable tree,
1491                         * we will have 2 virtual addresses that are pointing
1492                         * to a ksm page left outside the stable tree,
1493                         * in which case we need to break_cow on both.
1494                         */
1495                        if (!stable_node) {
1496                                break_cow(tree_rmap_item);
1497                                break_cow(rmap_item);
1498                        }
1499                }
1500        }
1501}
1502
1503static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1504                                            struct rmap_item **rmap_list,
1505                                            unsigned long addr)
1506{
1507        struct rmap_item *rmap_item;
1508
1509        while (*rmap_list) {
1510                rmap_item = *rmap_list;
1511                if ((rmap_item->address & PAGE_MASK) == addr)
1512                        return rmap_item;
1513                if (rmap_item->address > addr)
1514                        break;
1515                *rmap_list = rmap_item->rmap_list;
1516                remove_rmap_item_from_tree(rmap_item);
1517                free_rmap_item(rmap_item);
1518        }
1519
1520        rmap_item = alloc_rmap_item();
1521        if (rmap_item) {
1522                /* It has already been zeroed */
1523                rmap_item->mm = mm_slot->mm;
1524                rmap_item->address = addr;
1525                rmap_item->rmap_list = *rmap_list;
1526                *rmap_list = rmap_item;
1527        }
1528        return rmap_item;
1529}
1530
1531static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1532{
1533        struct mm_struct *mm;
1534        struct mm_slot *slot;
1535        struct vm_area_struct *vma;
1536        struct rmap_item *rmap_item;
1537        int nid;
1538
1539        if (list_empty(&ksm_mm_head.mm_list))
1540                return NULL;
1541
1542        slot = ksm_scan.mm_slot;
1543        if (slot == &ksm_mm_head) {
1544                /*
1545                 * A number of pages can hang around indefinitely on per-cpu
1546                 * pagevecs, raised page count preventing write_protect_page
1547                 * from merging them.  Though it doesn't really matter much,
1548                 * it is puzzling to see some stuck in pages_volatile until
1549                 * other activity jostles them out, and they also prevented
1550                 * LTP's KSM test from succeeding deterministically; so drain
1551                 * them here (here rather than on entry to ksm_do_scan(),
1552                 * so we don't IPI too often when pages_to_scan is set low).
1553                 */
1554                lru_add_drain_all();
1555
1556                /*
1557                 * Whereas stale stable_nodes on the stable_tree itself
1558                 * get pruned in the regular course of stable_tree_search(),
1559                 * those moved out to the migrate_nodes list can accumulate:
1560                 * so prune them once before each full scan.
1561                 */
1562                if (!ksm_merge_across_nodes) {
1563                        struct stable_node *stable_node, *next;
1564                        struct page *page;
1565
1566                        list_for_each_entry_safe(stable_node, next,
1567                                                 &migrate_nodes, list) {
1568                                page = get_ksm_page(stable_node, false);
1569                                if (page)
1570                                        put_page(page);
1571                                cond_resched();
1572                        }
1573                }
1574
1575                for (nid = 0; nid < ksm_nr_node_ids; nid++)
1576                        root_unstable_tree[nid] = RB_ROOT;
1577
1578                spin_lock(&ksm_mmlist_lock);
1579                slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1580                ksm_scan.mm_slot = slot;
1581                spin_unlock(&ksm_mmlist_lock);
1582                /*
1583                 * Although we tested list_empty() above, a racing __ksm_exit
1584                 * of the last mm on the list may have removed it since then.
1585                 */
1586                if (slot == &ksm_mm_head)
1587                        return NULL;
1588next_mm:
1589                ksm_scan.address = 0;
1590                ksm_scan.rmap_list = &slot->rmap_list;
1591        }
1592
1593        mm = slot->mm;
1594        down_read(&mm->mmap_sem);
1595        if (ksm_test_exit(mm))
1596                vma = NULL;
1597        else
1598                vma = find_vma(mm, ksm_scan.address);
1599
1600        for (; vma; vma = vma->vm_next) {
1601                if (!(vma->vm_flags & VM_MERGEABLE))
1602                        continue;
1603                if (ksm_scan.address < vma->vm_start)
1604                        ksm_scan.address = vma->vm_start;
1605                if (!vma->anon_vma)
1606                        ksm_scan.address = vma->vm_end;
1607
1608                while (ksm_scan.address < vma->vm_end) {
1609                        if (ksm_test_exit(mm))
1610                                break;
1611                        *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1612                        if (IS_ERR_OR_NULL(*page)) {
1613                                ksm_scan.address += PAGE_SIZE;
1614                                cond_resched();
1615                                continue;
1616                        }
1617                        if (PageAnon(*page)) {
1618                                flush_anon_page(vma, *page, ksm_scan.address);
1619                                flush_dcache_page(*page);
1620                                rmap_item = get_next_rmap_item(slot,
1621                                        ksm_scan.rmap_list, ksm_scan.address);
1622                                if (rmap_item) {
1623                                        ksm_scan.rmap_list =
1624                                                        &rmap_item->rmap_list;
1625                                        ksm_scan.address += PAGE_SIZE;
1626                                } else
1627                                        put_page(*page);
1628                                up_read(&mm->mmap_sem);
1629                                return rmap_item;
1630                        }
1631                        put_page(*page);
1632                        ksm_scan.address += PAGE_SIZE;
1633                        cond_resched();
1634                }
1635        }
1636
1637        if (ksm_test_exit(mm)) {
1638                ksm_scan.address = 0;
1639                ksm_scan.rmap_list = &slot->rmap_list;
1640        }
1641        /*
1642         * Nuke all the rmap_items that are above this current rmap:
1643         * because there were no VM_MERGEABLE vmas with such addresses.
1644         */
1645        remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1646
1647        spin_lock(&ksm_mmlist_lock);
1648        ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1649                                                struct mm_slot, mm_list);
1650        if (ksm_scan.address == 0) {
1651                /*
1652                 * We've completed a full scan of all vmas, holding mmap_sem
1653                 * throughout, and found no VM_MERGEABLE: so do the same as
1654                 * __ksm_exit does to remove this mm from all our lists now.
1655                 * This applies either when cleaning up after __ksm_exit
1656                 * (but beware: we can reach here even before __ksm_exit),
1657                 * or when all VM_MERGEABLE areas have been unmapped (and
1658                 * mmap_sem then protects against race with MADV_MERGEABLE).
1659                 */
1660                hash_del(&slot->link);
1661                list_del(&slot->mm_list);
1662                spin_unlock(&ksm_mmlist_lock);
1663
1664                free_mm_slot(slot);
1665                clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1666                up_read(&mm->mmap_sem);
1667                mmdrop(mm);
1668        } else {
1669                up_read(&mm->mmap_sem);
1670                /*
1671                 * up_read(&mm->mmap_sem) first because after
1672                 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
1673                 * already have been freed under us by __ksm_exit()
1674                 * because the "mm_slot" is still hashed and
1675                 * ksm_scan.mm_slot doesn't point to it anymore.
1676                 */
1677                spin_unlock(&ksm_mmlist_lock);
1678        }
1679
1680        /* Repeat until we've completed scanning the whole list */
1681        slot = ksm_scan.mm_slot;
1682        if (slot != &ksm_mm_head)
1683                goto next_mm;
1684
1685        ksm_scan.seqnr++;
1686        return NULL;
1687}
1688
1689/**
1690 * ksm_do_scan  - the ksm scanner main worker function.
1691 * @scan_npages - number of pages we want to scan before we return.
1692 */
1693static void ksm_do_scan(unsigned int scan_npages)
1694{
1695        struct rmap_item *rmap_item;
1696        struct page *uninitialized_var(page);
1697
1698        while (scan_npages-- && likely(!freezing(current))) {
1699                cond_resched();
1700                rmap_item = scan_get_next_rmap_item(&page);
1701                if (!rmap_item)
1702                        return;
1703                cmp_and_merge_page(page, rmap_item);
1704                put_page(page);
1705        }
1706}
1707
1708static int ksmd_should_run(void)
1709{
1710        return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1711}
1712
1713static int ksm_scan_thread(void *nothing)
1714{
1715        set_freezable();
1716        set_user_nice(current, 5);
1717
1718        while (!kthread_should_stop()) {
1719                mutex_lock(&ksm_thread_mutex);
1720                wait_while_offlining();
1721                if (ksmd_should_run())
1722                        ksm_do_scan(ksm_thread_pages_to_scan);
1723                mutex_unlock(&ksm_thread_mutex);
1724
1725                try_to_freeze();
1726
1727                if (ksmd_should_run()) {
1728                        schedule_timeout_interruptible(
1729                                msecs_to_jiffies(ksm_thread_sleep_millisecs));
1730                } else {
1731                        wait_event_freezable(ksm_thread_wait,
1732                                ksmd_should_run() || kthread_should_stop());
1733                }
1734        }
1735        return 0;
1736}
1737
1738int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1739                unsigned long end, int advice, unsigned long *vm_flags)
1740{
1741        struct mm_struct *mm = vma->vm_mm;
1742        int err;
1743
1744        switch (advice) {
1745        case MADV_MERGEABLE:
1746                /*
1747                 * Be somewhat over-protective for now!
1748                 */
1749                if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1750                                 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1751                                 VM_HUGETLB | VM_MIXEDMAP))
1752                        return 0;               /* just ignore the advice */
1753
1754#ifdef VM_SAO
1755                if (*vm_flags & VM_SAO)
1756                        return 0;
1757#endif
1758
1759                if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1760                        err = __ksm_enter(mm);
1761                        if (err)
1762                                return err;
1763                }
1764
1765                *vm_flags |= VM_MERGEABLE;
1766                break;
1767
1768        case MADV_UNMERGEABLE:
1769                if (!(*vm_flags & VM_MERGEABLE))
1770                        return 0;               /* just ignore the advice */
1771
1772                if (vma->anon_vma) {
1773                        err = unmerge_ksm_pages(vma, start, end);
1774                        if (err)
1775                                return err;
1776                }
1777
1778                *vm_flags &= ~VM_MERGEABLE;
1779                break;
1780        }
1781
1782        return 0;
1783}
1784
1785int __ksm_enter(struct mm_struct *mm)
1786{
1787        struct mm_slot *mm_slot;
1788        int needs_wakeup;
1789
1790        mm_slot = alloc_mm_slot();
1791        if (!mm_slot)
1792                return -ENOMEM;
1793
1794        /* Check ksm_run too?  Would need tighter locking */
1795        needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1796
1797        spin_lock(&ksm_mmlist_lock);
1798        insert_to_mm_slots_hash(mm, mm_slot);
1799        /*
1800         * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1801         * insert just behind the scanning cursor, to let the area settle
1802         * down a little; when fork is followed by immediate exec, we don't
1803         * want ksmd to waste time setting up and tearing down an rmap_list.
1804         *
1805         * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1806         * scanning cursor, otherwise KSM pages in newly forked mms will be
1807         * missed: then we might as well insert at the end of the list.
1808         */
1809        if (ksm_run & KSM_RUN_UNMERGE)
1810                list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1811        else
1812                list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1813        spin_unlock(&ksm_mmlist_lock);
1814
1815        set_bit(MMF_VM_MERGEABLE, &mm->flags);
1816        atomic_inc(&mm->mm_count);
1817
1818        if (needs_wakeup)
1819                wake_up_interruptible(&ksm_thread_wait);
1820
1821        return 0;
1822}
1823
1824void __ksm_exit(struct mm_struct *mm)
1825{
1826        struct mm_slot *mm_slot;
1827        int easy_to_free = 0;
1828
1829        /*
1830         * This process is exiting: if it's straightforward (as is the
1831         * case when ksmd was never running), free mm_slot immediately.
1832         * But if it's at the cursor or has rmap_items linked to it, use
1833         * mmap_sem to synchronize with any break_cows before pagetables
1834         * are freed, and leave the mm_slot on the list for ksmd to free.
1835         * Beware: ksm may already have noticed it exiting and freed the slot.
1836         */
1837
1838        spin_lock(&ksm_mmlist_lock);
1839        mm_slot = get_mm_slot(mm);
1840        if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1841                if (!mm_slot->rmap_list) {
1842                        hash_del(&mm_slot->link);
1843                        list_del(&mm_slot->mm_list);
1844                        easy_to_free = 1;
1845                } else {
1846                        list_move(&mm_slot->mm_list,
1847                                  &ksm_scan.mm_slot->mm_list);
1848                }
1849        }
1850        spin_unlock(&ksm_mmlist_lock);
1851
1852        if (easy_to_free) {
1853                free_mm_slot(mm_slot);
1854                clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1855                mmdrop(mm);
1856        } else if (mm_slot) {
1857                down_write(&mm->mmap_sem);
1858                up_write(&mm->mmap_sem);
1859        }
1860}
1861
1862struct page *ksm_might_need_to_copy(struct page *page,
1863                        struct vm_area_struct *vma, unsigned long address)
1864{
1865        struct anon_vma *anon_vma = page_anon_vma(page);
1866        struct page *new_page;
1867
1868        if (PageKsm(page)) {
1869                if (page_stable_node(page) &&
1870                    !(ksm_run & KSM_RUN_UNMERGE))
1871                        return page;    /* no need to copy it */
1872        } else if (!anon_vma) {
1873                return page;            /* no need to copy it */
1874        } else if (anon_vma->root == vma->anon_vma->root &&
1875                 page->index == linear_page_index(vma, address)) {
1876                return page;            /* still no need to copy it */
1877        }
1878        if (!PageUptodate(page))
1879                return page;            /* let do_swap_page report the error */
1880
1881        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1882        if (new_page) {
1883                copy_user_highpage(new_page, page, address, vma);
1884
1885                SetPageDirty(new_page);
1886                __SetPageUptodate(new_page);
1887                __SetPageLocked(new_page);
1888        }
1889
1890        return new_page;
1891}
1892
1893int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1894{
1895        struct stable_node *stable_node;
1896        struct rmap_item *rmap_item;
1897        int ret = SWAP_AGAIN;
1898        int search_new_forks = 0;
1899
1900        VM_BUG_ON_PAGE(!PageKsm(page), page);
1901
1902        /*
1903         * Rely on the page lock to protect against concurrent modifications
1904         * to that page's node of the stable tree.
1905         */
1906        VM_BUG_ON_PAGE(!PageLocked(page), page);
1907
1908        stable_node = page_stable_node(page);
1909        if (!stable_node)
1910                return ret;
1911again:
1912        hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1913                struct anon_vma *anon_vma = rmap_item->anon_vma;
1914                struct anon_vma_chain *vmac;
1915                struct vm_area_struct *vma;
1916
1917                cond_resched();
1918                anon_vma_lock_read(anon_vma);
1919                anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1920                                               0, ULONG_MAX) {
1921                        cond_resched();
1922                        vma = vmac->vma;
1923                        if (rmap_item->address < vma->vm_start ||
1924                            rmap_item->address >= vma->vm_end)
1925                                continue;
1926                        /*
1927                         * Initially we examine only the vma which covers this
1928                         * rmap_item; but later, if there is still work to do,
1929                         * we examine covering vmas in other mms: in case they
1930                         * were forked from the original since ksmd passed.
1931                         */
1932                        if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1933                                continue;
1934
1935                        if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1936                                continue;
1937
1938                        ret = rwc->rmap_one(page, vma,
1939                                        rmap_item->address, rwc->arg);
1940                        if (ret != SWAP_AGAIN) {
1941                                anon_vma_unlock_read(anon_vma);
1942                                goto out;
1943                        }
1944                        if (rwc->done && rwc->done(page)) {
1945                                anon_vma_unlock_read(anon_vma);
1946                                goto out;
1947                        }
1948                }
1949                anon_vma_unlock_read(anon_vma);
1950        }
1951        if (!search_new_forks++)
1952                goto again;
1953out:
1954        return ret;
1955}
1956
1957#ifdef CONFIG_MIGRATION
1958void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1959{
1960        struct stable_node *stable_node;
1961
1962        VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1963        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1964        VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1965
1966        stable_node = page_stable_node(newpage);
1967        if (stable_node) {
1968                VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1969                stable_node->kpfn = page_to_pfn(newpage);
1970                /*
1971                 * newpage->mapping was set in advance; now we need smp_wmb()
1972                 * to make sure that the new stable_node->kpfn is visible
1973                 * to get_ksm_page() before it can see that oldpage->mapping
1974                 * has gone stale (or that PageSwapCache has been cleared).
1975                 */
1976                smp_wmb();
1977                set_page_stable_node(oldpage, NULL);
1978        }
1979}
1980#endif /* CONFIG_MIGRATION */
1981
1982#ifdef CONFIG_MEMORY_HOTREMOVE
1983static void wait_while_offlining(void)
1984{
1985        while (ksm_run & KSM_RUN_OFFLINE) {
1986                mutex_unlock(&ksm_thread_mutex);
1987                wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
1988                            TASK_UNINTERRUPTIBLE);
1989                mutex_lock(&ksm_thread_mutex);
1990        }
1991}
1992
1993static void ksm_check_stable_tree(unsigned long start_pfn,
1994                                  unsigned long end_pfn)
1995{
1996        struct stable_node *stable_node, *next;
1997        struct rb_node *node;
1998        int nid;
1999
2000        for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2001                node = rb_first(root_stable_tree + nid);
2002                while (node) {
2003                        stable_node = rb_entry(node, struct stable_node, node);
2004                        if (stable_node->kpfn >= start_pfn &&
2005                            stable_node->kpfn < end_pfn) {
2006                                /*
2007                                 * Don't get_ksm_page, page has already gone:
2008                                 * which is why we keep kpfn instead of page*
2009                                 */
2010                                remove_node_from_stable_tree(stable_node);
2011                                node = rb_first(root_stable_tree + nid);
2012                        } else
2013                                node = rb_next(node);
2014                        cond_resched();
2015                }
2016        }
2017        list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2018                if (stable_node->kpfn >= start_pfn &&
2019                    stable_node->kpfn < end_pfn)
2020                        remove_node_from_stable_tree(stable_node);
2021                cond_resched();
2022        }
2023}
2024
2025static int ksm_memory_callback(struct notifier_block *self,
2026                               unsigned long action, void *arg)
2027{
2028        struct memory_notify *mn = arg;
2029
2030        switch (action) {
2031        case MEM_GOING_OFFLINE:
2032                /*
2033                 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2034                 * and remove_all_stable_nodes() while memory is going offline:
2035                 * it is unsafe for them to touch the stable tree at this time.
2036                 * But unmerge_ksm_pages(), rmap lookups and other entry points
2037                 * which do not need the ksm_thread_mutex are all safe.
2038                 */
2039                mutex_lock(&ksm_thread_mutex);
2040                ksm_run |= KSM_RUN_OFFLINE;
2041                mutex_unlock(&ksm_thread_mutex);
2042                break;
2043
2044        case MEM_OFFLINE:
2045                /*
2046                 * Most of the work is done by page migration; but there might
2047                 * be a few stable_nodes left over, still pointing to struct
2048                 * pages which have been offlined: prune those from the tree,
2049                 * otherwise get_ksm_page() might later try to access a
2050                 * non-existent struct page.
2051                 */
2052                ksm_check_stable_tree(mn->start_pfn,
2053                                      mn->start_pfn + mn->nr_pages);
2054                /* fallthrough */
2055
2056        case MEM_CANCEL_OFFLINE:
2057                mutex_lock(&ksm_thread_mutex);
2058                ksm_run &= ~KSM_RUN_OFFLINE;
2059                mutex_unlock(&ksm_thread_mutex);
2060
2061                smp_mb();       /* wake_up_bit advises this */
2062                wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2063                break;
2064        }
2065        return NOTIFY_OK;
2066}
2067#else
2068static void wait_while_offlining(void)
2069{
2070}
2071#endif /* CONFIG_MEMORY_HOTREMOVE */
2072
2073#ifdef CONFIG_SYSFS
2074/*
2075 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2076 */
2077
2078#define KSM_ATTR_RO(_name) \
2079        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2080#define KSM_ATTR(_name) \
2081        static struct kobj_attribute _name##_attr = \
2082                __ATTR(_name, 0644, _name##_show, _name##_store)
2083
2084static ssize_t sleep_millisecs_show(struct kobject *kobj,
2085                                    struct kobj_attribute *attr, char *buf)
2086{
2087        return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2088}
2089
2090static ssize_t sleep_millisecs_store(struct kobject *kobj,
2091                                     struct kobj_attribute *attr,
2092                                     const char *buf, size_t count)
2093{
2094        unsigned long msecs;
2095        int err;
2096
2097        err = kstrtoul(buf, 10, &msecs);
2098        if (err || msecs > UINT_MAX)
2099                return -EINVAL;
2100
2101        ksm_thread_sleep_millisecs = msecs;
2102
2103        return count;
2104}
2105KSM_ATTR(sleep_millisecs);
2106
2107static ssize_t pages_to_scan_show(struct kobject *kobj,
2108                                  struct kobj_attribute *attr, char *buf)
2109{
2110        return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2111}
2112
2113static ssize_t pages_to_scan_store(struct kobject *kobj,
2114                                   struct kobj_attribute *attr,
2115                                   const char *buf, size_t count)
2116{
2117        int err;
2118        unsigned long nr_pages;
2119
2120        err = kstrtoul(buf, 10, &nr_pages);
2121        if (err || nr_pages > UINT_MAX)
2122                return -EINVAL;
2123
2124        ksm_thread_pages_to_scan = nr_pages;
2125
2126        return count;
2127}
2128KSM_ATTR(pages_to_scan);
2129
2130static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2131                        char *buf)
2132{
2133        return sprintf(buf, "%lu\n", ksm_run);
2134}
2135
2136static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2137                         const char *buf, size_t count)
2138{
2139        int err;
2140        unsigned long flags;
2141
2142        err = kstrtoul(buf, 10, &flags);
2143        if (err || flags > UINT_MAX)
2144                return -EINVAL;
2145        if (flags > KSM_RUN_UNMERGE)
2146                return -EINVAL;
2147
2148        /*
2149         * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2150         * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2151         * breaking COW to free the pages_shared (but leaves mm_slots
2152         * on the list for when ksmd may be set running again).
2153         */
2154
2155        mutex_lock(&ksm_thread_mutex);
2156        wait_while_offlining();
2157        if (ksm_run != flags) {
2158                ksm_run = flags;
2159                if (flags & KSM_RUN_UNMERGE) {
2160                        set_current_oom_origin();
2161                        err = unmerge_and_remove_all_rmap_items();
2162                        clear_current_oom_origin();
2163                        if (err) {
2164                                ksm_run = KSM_RUN_STOP;
2165                                count = err;
2166                        }
2167                }
2168        }
2169        mutex_unlock(&ksm_thread_mutex);
2170
2171        if (flags & KSM_RUN_MERGE)
2172                wake_up_interruptible(&ksm_thread_wait);
2173
2174        return count;
2175}
2176KSM_ATTR(run);
2177
2178#ifdef CONFIG_NUMA
2179static ssize_t merge_across_nodes_show(struct kobject *kobj,
2180                                struct kobj_attribute *attr, char *buf)
2181{
2182        return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2183}
2184
2185static ssize_t merge_across_nodes_store(struct kobject *kobj,
2186                                   struct kobj_attribute *attr,
2187                                   const char *buf, size_t count)
2188{
2189        int err;
2190        unsigned long knob;
2191
2192        err = kstrtoul(buf, 10, &knob);
2193        if (err)
2194                return err;
2195        if (knob > 1)
2196                return -EINVAL;
2197
2198        mutex_lock(&ksm_thread_mutex);
2199        wait_while_offlining();
2200        if (ksm_merge_across_nodes != knob) {
2201                if (ksm_pages_shared || remove_all_stable_nodes())
2202                        err = -EBUSY;
2203                else if (root_stable_tree == one_stable_tree) {
2204                        struct rb_root *buf;
2205                        /*
2206                         * This is the first time that we switch away from the
2207                         * default of merging across nodes: must now allocate
2208                         * a buffer to hold as many roots as may be needed.
2209                         * Allocate stable and unstable together:
2210                         * MAXSMP NODES_SHIFT 10 will use 16kB.
2211                         */
2212                        buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2213                                      GFP_KERNEL);
2214                        /* Let us assume that RB_ROOT is NULL is zero */
2215                        if (!buf)
2216                                err = -ENOMEM;
2217                        else {
2218                                root_stable_tree = buf;
2219                                root_unstable_tree = buf + nr_node_ids;
2220                                /* Stable tree is empty but not the unstable */
2221                                root_unstable_tree[0] = one_unstable_tree[0];
2222                        }
2223                }
2224                if (!err) {
2225                        ksm_merge_across_nodes = knob;
2226                        ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2227                }
2228        }
2229        mutex_unlock(&ksm_thread_mutex);
2230
2231        return err ? err : count;
2232}
2233KSM_ATTR(merge_across_nodes);
2234#endif
2235
2236static ssize_t pages_shared_show(struct kobject *kobj,
2237                                 struct kobj_attribute *attr, char *buf)
2238{
2239        return sprintf(buf, "%lu\n", ksm_pages_shared);
2240}
2241KSM_ATTR_RO(pages_shared);
2242
2243static ssize_t pages_sharing_show(struct kobject *kobj,
2244                                  struct kobj_attribute *attr, char *buf)
2245{
2246        return sprintf(buf, "%lu\n", ksm_pages_sharing);
2247}
2248KSM_ATTR_RO(pages_sharing);
2249
2250static ssize_t pages_unshared_show(struct kobject *kobj,
2251                                   struct kobj_attribute *attr, char *buf)
2252{
2253        return sprintf(buf, "%lu\n", ksm_pages_unshared);
2254}
2255KSM_ATTR_RO(pages_unshared);
2256
2257static ssize_t pages_volatile_show(struct kobject *kobj,
2258                                   struct kobj_attribute *attr, char *buf)
2259{
2260        long ksm_pages_volatile;
2261
2262        ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2263                                - ksm_pages_sharing - ksm_pages_unshared;
2264        /*
2265         * It was not worth any locking to calculate that statistic,
2266         * but it might therefore sometimes be negative: conceal that.
2267         */
2268        if (ksm_pages_volatile < 0)
2269                ksm_pages_volatile = 0;
2270        return sprintf(buf, "%ld\n", ksm_pages_volatile);
2271}
2272KSM_ATTR_RO(pages_volatile);
2273
2274static ssize_t full_scans_show(struct kobject *kobj,
2275                               struct kobj_attribute *attr, char *buf)
2276{
2277        return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2278}
2279KSM_ATTR_RO(full_scans);
2280
2281static struct attribute *ksm_attrs[] = {
2282        &sleep_millisecs_attr.attr,
2283        &pages_to_scan_attr.attr,
2284        &run_attr.attr,
2285        &pages_shared_attr.attr,
2286        &pages_sharing_attr.attr,
2287        &pages_unshared_attr.attr,
2288        &pages_volatile_attr.attr,
2289        &full_scans_attr.attr,
2290#ifdef CONFIG_NUMA
2291        &merge_across_nodes_attr.attr,
2292#endif
2293        NULL,
2294};
2295
2296static struct attribute_group ksm_attr_group = {
2297        .attrs = ksm_attrs,
2298        .name = "ksm",
2299};
2300#endif /* CONFIG_SYSFS */
2301
2302static int __init ksm_init(void)
2303{
2304        struct task_struct *ksm_thread;
2305        int err;
2306
2307        err = ksm_slab_init();
2308        if (err)
2309                goto out;
2310
2311        ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2312        if (IS_ERR(ksm_thread)) {
2313                pr_err("ksm: creating kthread failed\n");
2314                err = PTR_ERR(ksm_thread);
2315                goto out_free;
2316        }
2317
2318#ifdef CONFIG_SYSFS
2319        err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2320        if (err) {
2321                pr_err("ksm: register sysfs failed\n");
2322                kthread_stop(ksm_thread);
2323                goto out_free;
2324        }
2325#else
2326        ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2327
2328#endif /* CONFIG_SYSFS */
2329
2330#ifdef CONFIG_MEMORY_HOTREMOVE
2331        /* There is no significance to this priority 100 */
2332        hotplug_memory_notifier(ksm_memory_callback, 100);
2333#endif
2334        return 0;
2335
2336out_free:
2337        ksm_slab_free();
2338out:
2339        return err;
2340}
2341subsys_initcall(ksm_init);
2342