linux/mm/memory-failure.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2008, 2009 Intel Corporation
   3 * Authors: Andi Kleen, Fengguang Wu
   4 *
   5 * This software may be redistributed and/or modified under the terms of
   6 * the GNU General Public License ("GPL") version 2 only as published by the
   7 * Free Software Foundation.
   8 *
   9 * High level machine check handler. Handles pages reported by the
  10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11 * failure.
  12 * 
  13 * In addition there is a "soft offline" entry point that allows stop using
  14 * not-yet-corrupted-by-suspicious pages without killing anything.
  15 *
  16 * Handles page cache pages in various states.  The tricky part
  17 * here is that we can access any page asynchronously in respect to 
  18 * other VM users, because memory failures could happen anytime and 
  19 * anywhere. This could violate some of their assumptions. This is why 
  20 * this code has to be extremely careful. Generally it tries to use 
  21 * normal locking rules, as in get the standard locks, even if that means 
  22 * the error handling takes potentially a long time.
  23 *
  24 * It can be very tempting to add handling for obscure cases here.
  25 * In general any code for handling new cases should only be added iff:
  26 * - You know how to test it.
  27 * - You have a test that can be added to mce-test
  28 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  29 * - The case actually shows up as a frequent (top 10) page state in
  30 *   tools/vm/page-types when running a real workload.
  31 * 
  32 * There are several operations here with exponential complexity because
  33 * of unsuitable VM data structures. For example the operation to map back 
  34 * from RMAP chains to processes has to walk the complete process list and 
  35 * has non linear complexity with the number. But since memory corruptions
  36 * are rare we hope to get away with this. This avoids impacting the core 
  37 * VM.
  38 */
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/page-flags.h>
  42#include <linux/kernel-page-flags.h>
  43#include <linux/sched.h>
  44#include <linux/ksm.h>
  45#include <linux/rmap.h>
  46#include <linux/export.h>
  47#include <linux/pagemap.h>
  48#include <linux/swap.h>
  49#include <linux/backing-dev.h>
  50#include <linux/migrate.h>
  51#include <linux/page-isolation.h>
  52#include <linux/suspend.h>
  53#include <linux/slab.h>
  54#include <linux/swapops.h>
  55#include <linux/hugetlb.h>
  56#include <linux/memory_hotplug.h>
  57#include <linux/mm_inline.h>
  58#include <linux/kfifo.h>
  59#include <linux/ratelimit.h>
  60#include "internal.h"
  61#include "ras/ras_event.h"
  62
  63int sysctl_memory_failure_early_kill __read_mostly = 0;
  64
  65int sysctl_memory_failure_recovery __read_mostly = 1;
  66
  67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  68
  69#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  70
  71u32 hwpoison_filter_enable = 0;
  72u32 hwpoison_filter_dev_major = ~0U;
  73u32 hwpoison_filter_dev_minor = ~0U;
  74u64 hwpoison_filter_flags_mask;
  75u64 hwpoison_filter_flags_value;
  76EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  78EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  80EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  81
  82static int hwpoison_filter_dev(struct page *p)
  83{
  84        struct address_space *mapping;
  85        dev_t dev;
  86
  87        if (hwpoison_filter_dev_major == ~0U &&
  88            hwpoison_filter_dev_minor == ~0U)
  89                return 0;
  90
  91        /*
  92         * page_mapping() does not accept slab pages.
  93         */
  94        if (PageSlab(p))
  95                return -EINVAL;
  96
  97        mapping = page_mapping(p);
  98        if (mapping == NULL || mapping->host == NULL)
  99                return -EINVAL;
 100
 101        dev = mapping->host->i_sb->s_dev;
 102        if (hwpoison_filter_dev_major != ~0U &&
 103            hwpoison_filter_dev_major != MAJOR(dev))
 104                return -EINVAL;
 105        if (hwpoison_filter_dev_minor != ~0U &&
 106            hwpoison_filter_dev_minor != MINOR(dev))
 107                return -EINVAL;
 108
 109        return 0;
 110}
 111
 112static int hwpoison_filter_flags(struct page *p)
 113{
 114        if (!hwpoison_filter_flags_mask)
 115                return 0;
 116
 117        if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 118                                    hwpoison_filter_flags_value)
 119                return 0;
 120        else
 121                return -EINVAL;
 122}
 123
 124/*
 125 * This allows stress tests to limit test scope to a collection of tasks
 126 * by putting them under some memcg. This prevents killing unrelated/important
 127 * processes such as /sbin/init. Note that the target task may share clean
 128 * pages with init (eg. libc text), which is harmless. If the target task
 129 * share _dirty_ pages with another task B, the test scheme must make sure B
 130 * is also included in the memcg. At last, due to race conditions this filter
 131 * can only guarantee that the page either belongs to the memcg tasks, or is
 132 * a freed page.
 133 */
 134#ifdef CONFIG_MEMCG
 135u64 hwpoison_filter_memcg;
 136EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 137static int hwpoison_filter_task(struct page *p)
 138{
 139        if (!hwpoison_filter_memcg)
 140                return 0;
 141
 142        if (page_cgroup_ino(p) != hwpoison_filter_memcg)
 143                return -EINVAL;
 144
 145        return 0;
 146}
 147#else
 148static int hwpoison_filter_task(struct page *p) { return 0; }
 149#endif
 150
 151int hwpoison_filter(struct page *p)
 152{
 153        if (!hwpoison_filter_enable)
 154                return 0;
 155
 156        if (hwpoison_filter_dev(p))
 157                return -EINVAL;
 158
 159        if (hwpoison_filter_flags(p))
 160                return -EINVAL;
 161
 162        if (hwpoison_filter_task(p))
 163                return -EINVAL;
 164
 165        return 0;
 166}
 167#else
 168int hwpoison_filter(struct page *p)
 169{
 170        return 0;
 171}
 172#endif
 173
 174EXPORT_SYMBOL_GPL(hwpoison_filter);
 175
 176/*
 177 * Send all the processes who have the page mapped a signal.
 178 * ``action optional'' if they are not immediately affected by the error
 179 * ``action required'' if error happened in current execution context
 180 */
 181static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
 182                        unsigned long pfn, struct page *page, int flags)
 183{
 184        struct siginfo si;
 185        int ret;
 186
 187        pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
 188                pfn, t->comm, t->pid);
 189        si.si_signo = SIGBUS;
 190        si.si_errno = 0;
 191        si.si_addr = (void *)addr;
 192#ifdef __ARCH_SI_TRAPNO
 193        si.si_trapno = trapno;
 194#endif
 195        si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
 196
 197        if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
 198                si.si_code = BUS_MCEERR_AR;
 199                ret = force_sig_info(SIGBUS, &si, current);
 200        } else {
 201                /*
 202                 * Don't use force here, it's convenient if the signal
 203                 * can be temporarily blocked.
 204                 * This could cause a loop when the user sets SIGBUS
 205                 * to SIG_IGN, but hopefully no one will do that?
 206                 */
 207                si.si_code = BUS_MCEERR_AO;
 208                ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
 209        }
 210        if (ret < 0)
 211                pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
 212                        t->comm, t->pid, ret);
 213        return ret;
 214}
 215
 216/*
 217 * When a unknown page type is encountered drain as many buffers as possible
 218 * in the hope to turn the page into a LRU or free page, which we can handle.
 219 */
 220void shake_page(struct page *p, int access)
 221{
 222        if (!PageSlab(p)) {
 223                lru_add_drain_all();
 224                if (PageLRU(p))
 225                        return;
 226                drain_all_pages(page_zone(p));
 227                if (PageLRU(p) || is_free_buddy_page(p))
 228                        return;
 229        }
 230
 231        /*
 232         * Only call shrink_node_slabs here (which would also shrink
 233         * other caches) if access is not potentially fatal.
 234         */
 235        if (access)
 236                drop_slab_node(page_to_nid(p));
 237}
 238EXPORT_SYMBOL_GPL(shake_page);
 239
 240/*
 241 * Kill all processes that have a poisoned page mapped and then isolate
 242 * the page.
 243 *
 244 * General strategy:
 245 * Find all processes having the page mapped and kill them.
 246 * But we keep a page reference around so that the page is not
 247 * actually freed yet.
 248 * Then stash the page away
 249 *
 250 * There's no convenient way to get back to mapped processes
 251 * from the VMAs. So do a brute-force search over all
 252 * running processes.
 253 *
 254 * Remember that machine checks are not common (or rather
 255 * if they are common you have other problems), so this shouldn't
 256 * be a performance issue.
 257 *
 258 * Also there are some races possible while we get from the
 259 * error detection to actually handle it.
 260 */
 261
 262struct to_kill {
 263        struct list_head nd;
 264        struct task_struct *tsk;
 265        unsigned long addr;
 266        char addr_valid;
 267};
 268
 269/*
 270 * Failure handling: if we can't find or can't kill a process there's
 271 * not much we can do.  We just print a message and ignore otherwise.
 272 */
 273
 274/*
 275 * Schedule a process for later kill.
 276 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 277 * TBD would GFP_NOIO be enough?
 278 */
 279static void add_to_kill(struct task_struct *tsk, struct page *p,
 280                       struct vm_area_struct *vma,
 281                       struct list_head *to_kill,
 282                       struct to_kill **tkc)
 283{
 284        struct to_kill *tk;
 285
 286        if (*tkc) {
 287                tk = *tkc;
 288                *tkc = NULL;
 289        } else {
 290                tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 291                if (!tk) {
 292                        pr_err("Memory failure: Out of memory while machine check handling\n");
 293                        return;
 294                }
 295        }
 296        tk->addr = page_address_in_vma(p, vma);
 297        tk->addr_valid = 1;
 298
 299        /*
 300         * In theory we don't have to kill when the page was
 301         * munmaped. But it could be also a mremap. Since that's
 302         * likely very rare kill anyways just out of paranoia, but use
 303         * a SIGKILL because the error is not contained anymore.
 304         */
 305        if (tk->addr == -EFAULT) {
 306                pr_info("Memory failure: Unable to find user space address %lx in %s\n",
 307                        page_to_pfn(p), tsk->comm);
 308                tk->addr_valid = 0;
 309        }
 310        get_task_struct(tsk);
 311        tk->tsk = tsk;
 312        list_add_tail(&tk->nd, to_kill);
 313}
 314
 315/*
 316 * Kill the processes that have been collected earlier.
 317 *
 318 * Only do anything when DOIT is set, otherwise just free the list
 319 * (this is used for clean pages which do not need killing)
 320 * Also when FAIL is set do a force kill because something went
 321 * wrong earlier.
 322 */
 323static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
 324                          int fail, struct page *page, unsigned long pfn,
 325                          int flags)
 326{
 327        struct to_kill *tk, *next;
 328
 329        list_for_each_entry_safe (tk, next, to_kill, nd) {
 330                if (forcekill) {
 331                        /*
 332                         * In case something went wrong with munmapping
 333                         * make sure the process doesn't catch the
 334                         * signal and then access the memory. Just kill it.
 335                         */
 336                        if (fail || tk->addr_valid == 0) {
 337                                pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 338                                       pfn, tk->tsk->comm, tk->tsk->pid);
 339                                force_sig(SIGKILL, tk->tsk);
 340                        }
 341
 342                        /*
 343                         * In theory the process could have mapped
 344                         * something else on the address in-between. We could
 345                         * check for that, but we need to tell the
 346                         * process anyways.
 347                         */
 348                        else if (kill_proc(tk->tsk, tk->addr, trapno,
 349                                              pfn, page, flags) < 0)
 350                                pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
 351                                       pfn, tk->tsk->comm, tk->tsk->pid);
 352                }
 353                put_task_struct(tk->tsk);
 354                kfree(tk);
 355        }
 356}
 357
 358/*
 359 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 360 * on behalf of the thread group. Return task_struct of the (first found)
 361 * dedicated thread if found, and return NULL otherwise.
 362 *
 363 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 364 * have to call rcu_read_lock/unlock() in this function.
 365 */
 366static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
 367{
 368        struct task_struct *t;
 369
 370        for_each_thread(tsk, t)
 371                if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
 372                        return t;
 373        return NULL;
 374}
 375
 376/*
 377 * Determine whether a given process is "early kill" process which expects
 378 * to be signaled when some page under the process is hwpoisoned.
 379 * Return task_struct of the dedicated thread (main thread unless explicitly
 380 * specified) if the process is "early kill," and otherwise returns NULL.
 381 */
 382static struct task_struct *task_early_kill(struct task_struct *tsk,
 383                                           int force_early)
 384{
 385        struct task_struct *t;
 386        if (!tsk->mm)
 387                return NULL;
 388        if (force_early)
 389                return tsk;
 390        t = find_early_kill_thread(tsk);
 391        if (t)
 392                return t;
 393        if (sysctl_memory_failure_early_kill)
 394                return tsk;
 395        return NULL;
 396}
 397
 398/*
 399 * Collect processes when the error hit an anonymous page.
 400 */
 401static void collect_procs_anon(struct page *page, struct list_head *to_kill,
 402                              struct to_kill **tkc, int force_early)
 403{
 404        struct vm_area_struct *vma;
 405        struct task_struct *tsk;
 406        struct anon_vma *av;
 407        pgoff_t pgoff;
 408
 409        av = page_lock_anon_vma_read(page);
 410        if (av == NULL) /* Not actually mapped anymore */
 411                return;
 412
 413        pgoff = page_to_pgoff(page);
 414        read_lock(&tasklist_lock);
 415        for_each_process (tsk) {
 416                struct anon_vma_chain *vmac;
 417                struct task_struct *t = task_early_kill(tsk, force_early);
 418
 419                if (!t)
 420                        continue;
 421                anon_vma_interval_tree_foreach(vmac, &av->rb_root,
 422                                               pgoff, pgoff) {
 423                        vma = vmac->vma;
 424                        if (!page_mapped_in_vma(page, vma))
 425                                continue;
 426                        if (vma->vm_mm == t->mm)
 427                                add_to_kill(t, page, vma, to_kill, tkc);
 428                }
 429        }
 430        read_unlock(&tasklist_lock);
 431        page_unlock_anon_vma_read(av);
 432}
 433
 434/*
 435 * Collect processes when the error hit a file mapped page.
 436 */
 437static void collect_procs_file(struct page *page, struct list_head *to_kill,
 438                              struct to_kill **tkc, int force_early)
 439{
 440        struct vm_area_struct *vma;
 441        struct task_struct *tsk;
 442        struct address_space *mapping = page->mapping;
 443
 444        i_mmap_lock_read(mapping);
 445        read_lock(&tasklist_lock);
 446        for_each_process(tsk) {
 447                pgoff_t pgoff = page_to_pgoff(page);
 448                struct task_struct *t = task_early_kill(tsk, force_early);
 449
 450                if (!t)
 451                        continue;
 452                vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
 453                                      pgoff) {
 454                        /*
 455                         * Send early kill signal to tasks where a vma covers
 456                         * the page but the corrupted page is not necessarily
 457                         * mapped it in its pte.
 458                         * Assume applications who requested early kill want
 459                         * to be informed of all such data corruptions.
 460                         */
 461                        if (vma->vm_mm == t->mm)
 462                                add_to_kill(t, page, vma, to_kill, tkc);
 463                }
 464        }
 465        read_unlock(&tasklist_lock);
 466        i_mmap_unlock_read(mapping);
 467}
 468
 469/*
 470 * Collect the processes who have the corrupted page mapped to kill.
 471 * This is done in two steps for locking reasons.
 472 * First preallocate one tokill structure outside the spin locks,
 473 * so that we can kill at least one process reasonably reliable.
 474 */
 475static void collect_procs(struct page *page, struct list_head *tokill,
 476                                int force_early)
 477{
 478        struct to_kill *tk;
 479
 480        if (!page->mapping)
 481                return;
 482
 483        tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
 484        if (!tk)
 485                return;
 486        if (PageAnon(page))
 487                collect_procs_anon(page, tokill, &tk, force_early);
 488        else
 489                collect_procs_file(page, tokill, &tk, force_early);
 490        kfree(tk);
 491}
 492
 493static const char *action_name[] = {
 494        [MF_IGNORED] = "Ignored",
 495        [MF_FAILED] = "Failed",
 496        [MF_DELAYED] = "Delayed",
 497        [MF_RECOVERED] = "Recovered",
 498};
 499
 500static const char * const action_page_types[] = {
 501        [MF_MSG_KERNEL]                 = "reserved kernel page",
 502        [MF_MSG_KERNEL_HIGH_ORDER]      = "high-order kernel page",
 503        [MF_MSG_SLAB]                   = "kernel slab page",
 504        [MF_MSG_DIFFERENT_COMPOUND]     = "different compound page after locking",
 505        [MF_MSG_POISONED_HUGE]          = "huge page already hardware poisoned",
 506        [MF_MSG_HUGE]                   = "huge page",
 507        [MF_MSG_FREE_HUGE]              = "free huge page",
 508        [MF_MSG_UNMAP_FAILED]           = "unmapping failed page",
 509        [MF_MSG_DIRTY_SWAPCACHE]        = "dirty swapcache page",
 510        [MF_MSG_CLEAN_SWAPCACHE]        = "clean swapcache page",
 511        [MF_MSG_DIRTY_MLOCKED_LRU]      = "dirty mlocked LRU page",
 512        [MF_MSG_CLEAN_MLOCKED_LRU]      = "clean mlocked LRU page",
 513        [MF_MSG_DIRTY_UNEVICTABLE_LRU]  = "dirty unevictable LRU page",
 514        [MF_MSG_CLEAN_UNEVICTABLE_LRU]  = "clean unevictable LRU page",
 515        [MF_MSG_DIRTY_LRU]              = "dirty LRU page",
 516        [MF_MSG_CLEAN_LRU]              = "clean LRU page",
 517        [MF_MSG_TRUNCATED_LRU]          = "already truncated LRU page",
 518        [MF_MSG_BUDDY]                  = "free buddy page",
 519        [MF_MSG_BUDDY_2ND]              = "free buddy page (2nd try)",
 520        [MF_MSG_UNKNOWN]                = "unknown page",
 521};
 522
 523/*
 524 * XXX: It is possible that a page is isolated from LRU cache,
 525 * and then kept in swap cache or failed to remove from page cache.
 526 * The page count will stop it from being freed by unpoison.
 527 * Stress tests should be aware of this memory leak problem.
 528 */
 529static int delete_from_lru_cache(struct page *p)
 530{
 531        if (!isolate_lru_page(p)) {
 532                /*
 533                 * Clear sensible page flags, so that the buddy system won't
 534                 * complain when the page is unpoison-and-freed.
 535                 */
 536                ClearPageActive(p);
 537                ClearPageUnevictable(p);
 538                /*
 539                 * drop the page count elevated by isolate_lru_page()
 540                 */
 541                put_page(p);
 542                return 0;
 543        }
 544        return -EIO;
 545}
 546
 547/*
 548 * Error hit kernel page.
 549 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 550 * could be more sophisticated.
 551 */
 552static int me_kernel(struct page *p, unsigned long pfn)
 553{
 554        return MF_IGNORED;
 555}
 556
 557/*
 558 * Page in unknown state. Do nothing.
 559 */
 560static int me_unknown(struct page *p, unsigned long pfn)
 561{
 562        pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
 563        return MF_FAILED;
 564}
 565
 566/*
 567 * Clean (or cleaned) page cache page.
 568 */
 569static int me_pagecache_clean(struct page *p, unsigned long pfn)
 570{
 571        int err;
 572        int ret = MF_FAILED;
 573        struct address_space *mapping;
 574
 575        delete_from_lru_cache(p);
 576
 577        /*
 578         * For anonymous pages we're done the only reference left
 579         * should be the one m_f() holds.
 580         */
 581        if (PageAnon(p))
 582                return MF_RECOVERED;
 583
 584        /*
 585         * Now truncate the page in the page cache. This is really
 586         * more like a "temporary hole punch"
 587         * Don't do this for block devices when someone else
 588         * has a reference, because it could be file system metadata
 589         * and that's not safe to truncate.
 590         */
 591        mapping = page_mapping(p);
 592        if (!mapping) {
 593                /*
 594                 * Page has been teared down in the meanwhile
 595                 */
 596                return MF_FAILED;
 597        }
 598
 599        /*
 600         * Truncation is a bit tricky. Enable it per file system for now.
 601         *
 602         * Open: to take i_mutex or not for this? Right now we don't.
 603         */
 604        if (mapping->a_ops->error_remove_page) {
 605                err = mapping->a_ops->error_remove_page(mapping, p);
 606                if (err != 0) {
 607                        pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
 608                                pfn, err);
 609                } else if (page_has_private(p) &&
 610                                !try_to_release_page(p, GFP_NOIO)) {
 611                        pr_info("Memory failure: %#lx: failed to release buffers\n",
 612                                pfn);
 613                } else {
 614                        ret = MF_RECOVERED;
 615                }
 616        } else {
 617                /*
 618                 * If the file system doesn't support it just invalidate
 619                 * This fails on dirty or anything with private pages
 620                 */
 621                if (invalidate_inode_page(p))
 622                        ret = MF_RECOVERED;
 623                else
 624                        pr_info("Memory failure: %#lx: Failed to invalidate\n",
 625                                pfn);
 626        }
 627        return ret;
 628}
 629
 630/*
 631 * Dirty pagecache page
 632 * Issues: when the error hit a hole page the error is not properly
 633 * propagated.
 634 */
 635static int me_pagecache_dirty(struct page *p, unsigned long pfn)
 636{
 637        struct address_space *mapping = page_mapping(p);
 638
 639        SetPageError(p);
 640        /* TBD: print more information about the file. */
 641        if (mapping) {
 642                /*
 643                 * IO error will be reported by write(), fsync(), etc.
 644                 * who check the mapping.
 645                 * This way the application knows that something went
 646                 * wrong with its dirty file data.
 647                 *
 648                 * There's one open issue:
 649                 *
 650                 * The EIO will be only reported on the next IO
 651                 * operation and then cleared through the IO map.
 652                 * Normally Linux has two mechanisms to pass IO error
 653                 * first through the AS_EIO flag in the address space
 654                 * and then through the PageError flag in the page.
 655                 * Since we drop pages on memory failure handling the
 656                 * only mechanism open to use is through AS_AIO.
 657                 *
 658                 * This has the disadvantage that it gets cleared on
 659                 * the first operation that returns an error, while
 660                 * the PageError bit is more sticky and only cleared
 661                 * when the page is reread or dropped.  If an
 662                 * application assumes it will always get error on
 663                 * fsync, but does other operations on the fd before
 664                 * and the page is dropped between then the error
 665                 * will not be properly reported.
 666                 *
 667                 * This can already happen even without hwpoisoned
 668                 * pages: first on metadata IO errors (which only
 669                 * report through AS_EIO) or when the page is dropped
 670                 * at the wrong time.
 671                 *
 672                 * So right now we assume that the application DTRT on
 673                 * the first EIO, but we're not worse than other parts
 674                 * of the kernel.
 675                 */
 676                mapping_set_error(mapping, EIO);
 677        }
 678
 679        return me_pagecache_clean(p, pfn);
 680}
 681
 682/*
 683 * Clean and dirty swap cache.
 684 *
 685 * Dirty swap cache page is tricky to handle. The page could live both in page
 686 * cache and swap cache(ie. page is freshly swapped in). So it could be
 687 * referenced concurrently by 2 types of PTEs:
 688 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 689 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 690 * and then
 691 *      - clear dirty bit to prevent IO
 692 *      - remove from LRU
 693 *      - but keep in the swap cache, so that when we return to it on
 694 *        a later page fault, we know the application is accessing
 695 *        corrupted data and shall be killed (we installed simple
 696 *        interception code in do_swap_page to catch it).
 697 *
 698 * Clean swap cache pages can be directly isolated. A later page fault will
 699 * bring in the known good data from disk.
 700 */
 701static int me_swapcache_dirty(struct page *p, unsigned long pfn)
 702{
 703        ClearPageDirty(p);
 704        /* Trigger EIO in shmem: */
 705        ClearPageUptodate(p);
 706
 707        if (!delete_from_lru_cache(p))
 708                return MF_DELAYED;
 709        else
 710                return MF_FAILED;
 711}
 712
 713static int me_swapcache_clean(struct page *p, unsigned long pfn)
 714{
 715        delete_from_swap_cache(p);
 716
 717        if (!delete_from_lru_cache(p))
 718                return MF_RECOVERED;
 719        else
 720                return MF_FAILED;
 721}
 722
 723/*
 724 * Huge pages. Needs work.
 725 * Issues:
 726 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 727 *   To narrow down kill region to one page, we need to break up pmd.
 728 */
 729static int me_huge_page(struct page *p, unsigned long pfn)
 730{
 731        int res = 0;
 732        struct page *hpage = compound_head(p);
 733
 734        if (!PageHuge(hpage))
 735                return MF_DELAYED;
 736
 737        /*
 738         * We can safely recover from error on free or reserved (i.e.
 739         * not in-use) hugepage by dequeuing it from freelist.
 740         * To check whether a hugepage is in-use or not, we can't use
 741         * page->lru because it can be used in other hugepage operations,
 742         * such as __unmap_hugepage_range() and gather_surplus_pages().
 743         * So instead we use page_mapping() and PageAnon().
 744         */
 745        if (!(page_mapping(hpage) || PageAnon(hpage))) {
 746                res = dequeue_hwpoisoned_huge_page(hpage);
 747                if (!res)
 748                        return MF_RECOVERED;
 749        }
 750        return MF_DELAYED;
 751}
 752
 753/*
 754 * Various page states we can handle.
 755 *
 756 * A page state is defined by its current page->flags bits.
 757 * The table matches them in order and calls the right handler.
 758 *
 759 * This is quite tricky because we can access page at any time
 760 * in its live cycle, so all accesses have to be extremely careful.
 761 *
 762 * This is not complete. More states could be added.
 763 * For any missing state don't attempt recovery.
 764 */
 765
 766#define dirty           (1UL << PG_dirty)
 767#define sc              ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
 768#define unevict         (1UL << PG_unevictable)
 769#define mlock           (1UL << PG_mlocked)
 770#define writeback       (1UL << PG_writeback)
 771#define lru             (1UL << PG_lru)
 772#define head            (1UL << PG_head)
 773#define slab            (1UL << PG_slab)
 774#define reserved        (1UL << PG_reserved)
 775
 776static struct page_state {
 777        unsigned long mask;
 778        unsigned long res;
 779        enum mf_action_page_type type;
 780        int (*action)(struct page *p, unsigned long pfn);
 781} error_states[] = {
 782        { reserved,     reserved,       MF_MSG_KERNEL,  me_kernel },
 783        /*
 784         * free pages are specially detected outside this table:
 785         * PG_buddy pages only make a small fraction of all free pages.
 786         */
 787
 788        /*
 789         * Could in theory check if slab page is free or if we can drop
 790         * currently unused objects without touching them. But just
 791         * treat it as standard kernel for now.
 792         */
 793        { slab,         slab,           MF_MSG_SLAB,    me_kernel },
 794
 795        { head,         head,           MF_MSG_HUGE,            me_huge_page },
 796
 797        { sc|dirty,     sc|dirty,       MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
 798        { sc|dirty,     sc,             MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
 799
 800        { mlock|dirty,  mlock|dirty,    MF_MSG_DIRTY_MLOCKED_LRU,       me_pagecache_dirty },
 801        { mlock|dirty,  mlock,          MF_MSG_CLEAN_MLOCKED_LRU,       me_pagecache_clean },
 802
 803        { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU,   me_pagecache_dirty },
 804        { unevict|dirty, unevict,       MF_MSG_CLEAN_UNEVICTABLE_LRU,   me_pagecache_clean },
 805
 806        { lru|dirty,    lru|dirty,      MF_MSG_DIRTY_LRU,       me_pagecache_dirty },
 807        { lru|dirty,    lru,            MF_MSG_CLEAN_LRU,       me_pagecache_clean },
 808
 809        /*
 810         * Catchall entry: must be at end.
 811         */
 812        { 0,            0,              MF_MSG_UNKNOWN, me_unknown },
 813};
 814
 815#undef dirty
 816#undef sc
 817#undef unevict
 818#undef mlock
 819#undef writeback
 820#undef lru
 821#undef head
 822#undef slab
 823#undef reserved
 824
 825/*
 826 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 827 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 828 */
 829static void action_result(unsigned long pfn, enum mf_action_page_type type,
 830                          enum mf_result result)
 831{
 832        trace_memory_failure_event(pfn, type, result);
 833
 834        pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
 835                pfn, action_page_types[type], action_name[result]);
 836}
 837
 838static int page_action(struct page_state *ps, struct page *p,
 839                        unsigned long pfn)
 840{
 841        int result;
 842        int count;
 843
 844        result = ps->action(p, pfn);
 845
 846        count = page_count(p) - 1;
 847        if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
 848                count--;
 849        if (count != 0) {
 850                pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
 851                       pfn, action_page_types[ps->type], count);
 852                result = MF_FAILED;
 853        }
 854        action_result(pfn, ps->type, result);
 855
 856        /* Could do more checks here if page looks ok */
 857        /*
 858         * Could adjust zone counters here to correct for the missing page.
 859         */
 860
 861        return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
 862}
 863
 864/**
 865 * get_hwpoison_page() - Get refcount for memory error handling:
 866 * @page:       raw error page (hit by memory error)
 867 *
 868 * Return: return 0 if failed to grab the refcount, otherwise true (some
 869 * non-zero value.)
 870 */
 871int get_hwpoison_page(struct page *page)
 872{
 873        struct page *head = compound_head(page);
 874
 875        if (!PageHuge(head) && PageTransHuge(head)) {
 876                /*
 877                 * Non anonymous thp exists only in allocation/free time. We
 878                 * can't handle such a case correctly, so let's give it up.
 879                 * This should be better than triggering BUG_ON when kernel
 880                 * tries to touch the "partially handled" page.
 881                 */
 882                if (!PageAnon(head)) {
 883                        pr_err("Memory failure: %#lx: non anonymous thp\n",
 884                                page_to_pfn(page));
 885                        return 0;
 886                }
 887        }
 888
 889        if (get_page_unless_zero(head)) {
 890                if (head == compound_head(page))
 891                        return 1;
 892
 893                pr_info("Memory failure: %#lx cannot catch tail\n",
 894                        page_to_pfn(page));
 895                put_page(head);
 896        }
 897
 898        return 0;
 899}
 900EXPORT_SYMBOL_GPL(get_hwpoison_page);
 901
 902/*
 903 * Do all that is necessary to remove user space mappings. Unmap
 904 * the pages and send SIGBUS to the processes if the data was dirty.
 905 */
 906static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
 907                                  int trapno, int flags, struct page **hpagep)
 908{
 909        enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
 910        struct address_space *mapping;
 911        LIST_HEAD(tokill);
 912        int ret;
 913        int kill = 1, forcekill;
 914        struct page *hpage = *hpagep;
 915
 916        /*
 917         * Here we are interested only in user-mapped pages, so skip any
 918         * other types of pages.
 919         */
 920        if (PageReserved(p) || PageSlab(p))
 921                return SWAP_SUCCESS;
 922        if (!(PageLRU(hpage) || PageHuge(p)))
 923                return SWAP_SUCCESS;
 924
 925        /*
 926         * This check implies we don't kill processes if their pages
 927         * are in the swap cache early. Those are always late kills.
 928         */
 929        if (!page_mapped(hpage))
 930                return SWAP_SUCCESS;
 931
 932        if (PageKsm(p)) {
 933                pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
 934                return SWAP_FAIL;
 935        }
 936
 937        if (PageSwapCache(p)) {
 938                pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
 939                        pfn);
 940                ttu |= TTU_IGNORE_HWPOISON;
 941        }
 942
 943        /*
 944         * Propagate the dirty bit from PTEs to struct page first, because we
 945         * need this to decide if we should kill or just drop the page.
 946         * XXX: the dirty test could be racy: set_page_dirty() may not always
 947         * be called inside page lock (it's recommended but not enforced).
 948         */
 949        mapping = page_mapping(hpage);
 950        if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
 951            mapping_cap_writeback_dirty(mapping)) {
 952                if (page_mkclean(hpage)) {
 953                        SetPageDirty(hpage);
 954                } else {
 955                        kill = 0;
 956                        ttu |= TTU_IGNORE_HWPOISON;
 957                        pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
 958                                pfn);
 959                }
 960        }
 961
 962        /*
 963         * First collect all the processes that have the page
 964         * mapped in dirty form.  This has to be done before try_to_unmap,
 965         * because ttu takes the rmap data structures down.
 966         *
 967         * Error handling: We ignore errors here because
 968         * there's nothing that can be done.
 969         */
 970        if (kill)
 971                collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
 972
 973        ret = try_to_unmap(hpage, ttu);
 974        if (ret != SWAP_SUCCESS)
 975                pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
 976                       pfn, page_mapcount(hpage));
 977
 978        /*
 979         * Now that the dirty bit has been propagated to the
 980         * struct page and all unmaps done we can decide if
 981         * killing is needed or not.  Only kill when the page
 982         * was dirty or the process is not restartable,
 983         * otherwise the tokill list is merely
 984         * freed.  When there was a problem unmapping earlier
 985         * use a more force-full uncatchable kill to prevent
 986         * any accesses to the poisoned memory.
 987         */
 988        forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
 989        kill_procs(&tokill, forcekill, trapno,
 990                      ret != SWAP_SUCCESS, p, pfn, flags);
 991
 992        return ret;
 993}
 994
 995static void set_page_hwpoison_huge_page(struct page *hpage)
 996{
 997        int i;
 998        int nr_pages = 1 << compound_order(hpage);
 999        for (i = 0; i < nr_pages; i++)
1000                SetPageHWPoison(hpage + i);
1001}
1002
1003static void clear_page_hwpoison_huge_page(struct page *hpage)
1004{
1005        int i;
1006        int nr_pages = 1 << compound_order(hpage);
1007        for (i = 0; i < nr_pages; i++)
1008                ClearPageHWPoison(hpage + i);
1009}
1010
1011/**
1012 * memory_failure - Handle memory failure of a page.
1013 * @pfn: Page Number of the corrupted page
1014 * @trapno: Trap number reported in the signal to user space.
1015 * @flags: fine tune action taken
1016 *
1017 * This function is called by the low level machine check code
1018 * of an architecture when it detects hardware memory corruption
1019 * of a page. It tries its best to recover, which includes
1020 * dropping pages, killing processes etc.
1021 *
1022 * The function is primarily of use for corruptions that
1023 * happen outside the current execution context (e.g. when
1024 * detected by a background scrubber)
1025 *
1026 * Must run in process context (e.g. a work queue) with interrupts
1027 * enabled and no spinlocks hold.
1028 */
1029int memory_failure(unsigned long pfn, int trapno, int flags)
1030{
1031        struct page_state *ps;
1032        struct page *p;
1033        struct page *hpage;
1034        struct page *orig_head;
1035        int res;
1036        unsigned int nr_pages;
1037        unsigned long page_flags;
1038
1039        if (!sysctl_memory_failure_recovery)
1040                panic("Memory failure from trap %d on page %lx", trapno, pfn);
1041
1042        if (!pfn_valid(pfn)) {
1043                pr_err("Memory failure: %#lx: memory outside kernel control\n",
1044                        pfn);
1045                return -ENXIO;
1046        }
1047
1048        p = pfn_to_page(pfn);
1049        orig_head = hpage = compound_head(p);
1050        if (TestSetPageHWPoison(p)) {
1051                pr_err("Memory failure: %#lx: already hardware poisoned\n",
1052                        pfn);
1053                return 0;
1054        }
1055
1056        /*
1057         * Currently errors on hugetlbfs pages are measured in hugepage units,
1058         * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1059         * transparent hugepages, they are supposed to be split and error
1060         * measurement is done in normal page units.  So nr_pages should be one
1061         * in this case.
1062         */
1063        if (PageHuge(p))
1064                nr_pages = 1 << compound_order(hpage);
1065        else /* normal page or thp */
1066                nr_pages = 1;
1067        num_poisoned_pages_add(nr_pages);
1068
1069        /*
1070         * We need/can do nothing about count=0 pages.
1071         * 1) it's a free page, and therefore in safe hand:
1072         *    prep_new_page() will be the gate keeper.
1073         * 2) it's a free hugepage, which is also safe:
1074         *    an affected hugepage will be dequeued from hugepage freelist,
1075         *    so there's no concern about reusing it ever after.
1076         * 3) it's part of a non-compound high order page.
1077         *    Implies some kernel user: cannot stop them from
1078         *    R/W the page; let's pray that the page has been
1079         *    used and will be freed some time later.
1080         * In fact it's dangerous to directly bump up page count from 0,
1081         * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1082         */
1083        if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1084                if (is_free_buddy_page(p)) {
1085                        action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1086                        return 0;
1087                } else if (PageHuge(hpage)) {
1088                        /*
1089                         * Check "filter hit" and "race with other subpage."
1090                         */
1091                        lock_page(hpage);
1092                        if (PageHWPoison(hpage)) {
1093                                if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1094                                    || (p != hpage && TestSetPageHWPoison(hpage))) {
1095                                        num_poisoned_pages_sub(nr_pages);
1096                                        unlock_page(hpage);
1097                                        return 0;
1098                                }
1099                        }
1100                        set_page_hwpoison_huge_page(hpage);
1101                        res = dequeue_hwpoisoned_huge_page(hpage);
1102                        action_result(pfn, MF_MSG_FREE_HUGE,
1103                                      res ? MF_IGNORED : MF_DELAYED);
1104                        unlock_page(hpage);
1105                        return res;
1106                } else {
1107                        action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1108                        return -EBUSY;
1109                }
1110        }
1111
1112        if (!PageHuge(p) && PageTransHuge(hpage)) {
1113                lock_page(p);
1114                if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1115                        unlock_page(p);
1116                        if (!PageAnon(p))
1117                                pr_err("Memory failure: %#lx: non anonymous thp\n",
1118                                        pfn);
1119                        else
1120                                pr_err("Memory failure: %#lx: thp split failed\n",
1121                                        pfn);
1122                        if (TestClearPageHWPoison(p))
1123                                num_poisoned_pages_sub(nr_pages);
1124                        put_hwpoison_page(p);
1125                        return -EBUSY;
1126                }
1127                unlock_page(p);
1128                VM_BUG_ON_PAGE(!page_count(p), p);
1129                hpage = compound_head(p);
1130        }
1131
1132        /*
1133         * We ignore non-LRU pages for good reasons.
1134         * - PG_locked is only well defined for LRU pages and a few others
1135         * - to avoid races with __SetPageLocked()
1136         * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1137         * The check (unnecessarily) ignores LRU pages being isolated and
1138         * walked by the page reclaim code, however that's not a big loss.
1139         */
1140        if (!PageHuge(p)) {
1141                if (!PageLRU(p))
1142                        shake_page(p, 0);
1143                if (!PageLRU(p)) {
1144                        /*
1145                         * shake_page could have turned it free.
1146                         */
1147                        if (is_free_buddy_page(p)) {
1148                                if (flags & MF_COUNT_INCREASED)
1149                                        action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1150                                else
1151                                        action_result(pfn, MF_MSG_BUDDY_2ND,
1152                                                      MF_DELAYED);
1153                                return 0;
1154                        }
1155                }
1156        }
1157
1158        lock_page(hpage);
1159
1160        /*
1161         * The page could have changed compound pages during the locking.
1162         * If this happens just bail out.
1163         */
1164        if (PageCompound(p) && compound_head(p) != orig_head) {
1165                action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1166                res = -EBUSY;
1167                goto out;
1168        }
1169
1170        /*
1171         * We use page flags to determine what action should be taken, but
1172         * the flags can be modified by the error containment action.  One
1173         * example is an mlocked page, where PG_mlocked is cleared by
1174         * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1175         * correctly, we save a copy of the page flags at this time.
1176         */
1177        page_flags = p->flags;
1178
1179        /*
1180         * unpoison always clear PG_hwpoison inside page lock
1181         */
1182        if (!PageHWPoison(p)) {
1183                pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1184                num_poisoned_pages_sub(nr_pages);
1185                unlock_page(hpage);
1186                put_hwpoison_page(hpage);
1187                return 0;
1188        }
1189        if (hwpoison_filter(p)) {
1190                if (TestClearPageHWPoison(p))
1191                        num_poisoned_pages_sub(nr_pages);
1192                unlock_page(hpage);
1193                put_hwpoison_page(hpage);
1194                return 0;
1195        }
1196
1197        if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1198                goto identify_page_state;
1199
1200        /*
1201         * For error on the tail page, we should set PG_hwpoison
1202         * on the head page to show that the hugepage is hwpoisoned
1203         */
1204        if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1205                action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1206                unlock_page(hpage);
1207                put_hwpoison_page(hpage);
1208                return 0;
1209        }
1210        /*
1211         * Set PG_hwpoison on all pages in an error hugepage,
1212         * because containment is done in hugepage unit for now.
1213         * Since we have done TestSetPageHWPoison() for the head page with
1214         * page lock held, we can safely set PG_hwpoison bits on tail pages.
1215         */
1216        if (PageHuge(p))
1217                set_page_hwpoison_huge_page(hpage);
1218
1219        /*
1220         * It's very difficult to mess with pages currently under IO
1221         * and in many cases impossible, so we just avoid it here.
1222         */
1223        wait_on_page_writeback(p);
1224
1225        /*
1226         * Now take care of user space mappings.
1227         * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1228         *
1229         * When the raw error page is thp tail page, hpage points to the raw
1230         * page after thp split.
1231         */
1232        if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1233            != SWAP_SUCCESS) {
1234                action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1235                res = -EBUSY;
1236                goto out;
1237        }
1238
1239        /*
1240         * Torn down by someone else?
1241         */
1242        if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1243                action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1244                res = -EBUSY;
1245                goto out;
1246        }
1247
1248identify_page_state:
1249        res = -EBUSY;
1250        /*
1251         * The first check uses the current page flags which may not have any
1252         * relevant information. The second check with the saved page flagss is
1253         * carried out only if the first check can't determine the page status.
1254         */
1255        for (ps = error_states;; ps++)
1256                if ((p->flags & ps->mask) == ps->res)
1257                        break;
1258
1259        page_flags |= (p->flags & (1UL << PG_dirty));
1260
1261        if (!ps->mask)
1262                for (ps = error_states;; ps++)
1263                        if ((page_flags & ps->mask) == ps->res)
1264                                break;
1265        res = page_action(ps, p, pfn);
1266out:
1267        unlock_page(hpage);
1268        return res;
1269}
1270EXPORT_SYMBOL_GPL(memory_failure);
1271
1272#define MEMORY_FAILURE_FIFO_ORDER       4
1273#define MEMORY_FAILURE_FIFO_SIZE        (1 << MEMORY_FAILURE_FIFO_ORDER)
1274
1275struct memory_failure_entry {
1276        unsigned long pfn;
1277        int trapno;
1278        int flags;
1279};
1280
1281struct memory_failure_cpu {
1282        DECLARE_KFIFO(fifo, struct memory_failure_entry,
1283                      MEMORY_FAILURE_FIFO_SIZE);
1284        spinlock_t lock;
1285        struct work_struct work;
1286};
1287
1288static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1289
1290/**
1291 * memory_failure_queue - Schedule handling memory failure of a page.
1292 * @pfn: Page Number of the corrupted page
1293 * @trapno: Trap number reported in the signal to user space.
1294 * @flags: Flags for memory failure handling
1295 *
1296 * This function is called by the low level hardware error handler
1297 * when it detects hardware memory corruption of a page. It schedules
1298 * the recovering of error page, including dropping pages, killing
1299 * processes etc.
1300 *
1301 * The function is primarily of use for corruptions that
1302 * happen outside the current execution context (e.g. when
1303 * detected by a background scrubber)
1304 *
1305 * Can run in IRQ context.
1306 */
1307void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1308{
1309        struct memory_failure_cpu *mf_cpu;
1310        unsigned long proc_flags;
1311        struct memory_failure_entry entry = {
1312                .pfn =          pfn,
1313                .trapno =       trapno,
1314                .flags =        flags,
1315        };
1316
1317        mf_cpu = &get_cpu_var(memory_failure_cpu);
1318        spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1319        if (kfifo_put(&mf_cpu->fifo, entry))
1320                schedule_work_on(smp_processor_id(), &mf_cpu->work);
1321        else
1322                pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1323                       pfn);
1324        spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1325        put_cpu_var(memory_failure_cpu);
1326}
1327EXPORT_SYMBOL_GPL(memory_failure_queue);
1328
1329static void memory_failure_work_func(struct work_struct *work)
1330{
1331        struct memory_failure_cpu *mf_cpu;
1332        struct memory_failure_entry entry = { 0, };
1333        unsigned long proc_flags;
1334        int gotten;
1335
1336        mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1337        for (;;) {
1338                spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1339                gotten = kfifo_get(&mf_cpu->fifo, &entry);
1340                spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1341                if (!gotten)
1342                        break;
1343                if (entry.flags & MF_SOFT_OFFLINE)
1344                        soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1345                else
1346                        memory_failure(entry.pfn, entry.trapno, entry.flags);
1347        }
1348}
1349
1350static int __init memory_failure_init(void)
1351{
1352        struct memory_failure_cpu *mf_cpu;
1353        int cpu;
1354
1355        for_each_possible_cpu(cpu) {
1356                mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1357                spin_lock_init(&mf_cpu->lock);
1358                INIT_KFIFO(mf_cpu->fifo);
1359                INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1360        }
1361
1362        return 0;
1363}
1364core_initcall(memory_failure_init);
1365
1366#define unpoison_pr_info(fmt, pfn, rs)                  \
1367({                                                      \
1368        if (__ratelimit(rs))                            \
1369                pr_info(fmt, pfn);                      \
1370})
1371
1372/**
1373 * unpoison_memory - Unpoison a previously poisoned page
1374 * @pfn: Page number of the to be unpoisoned page
1375 *
1376 * Software-unpoison a page that has been poisoned by
1377 * memory_failure() earlier.
1378 *
1379 * This is only done on the software-level, so it only works
1380 * for linux injected failures, not real hardware failures
1381 *
1382 * Returns 0 for success, otherwise -errno.
1383 */
1384int unpoison_memory(unsigned long pfn)
1385{
1386        struct page *page;
1387        struct page *p;
1388        int freeit = 0;
1389        unsigned int nr_pages;
1390        static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1391                                        DEFAULT_RATELIMIT_BURST);
1392
1393        if (!pfn_valid(pfn))
1394                return -ENXIO;
1395
1396        p = pfn_to_page(pfn);
1397        page = compound_head(p);
1398
1399        if (!PageHWPoison(p)) {
1400                unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1401                                 pfn, &unpoison_rs);
1402                return 0;
1403        }
1404
1405        if (page_count(page) > 1) {
1406                unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1407                                 pfn, &unpoison_rs);
1408                return 0;
1409        }
1410
1411        if (page_mapped(page)) {
1412                unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1413                                 pfn, &unpoison_rs);
1414                return 0;
1415        }
1416
1417        if (page_mapping(page)) {
1418                unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1419                                 pfn, &unpoison_rs);
1420                return 0;
1421        }
1422
1423        /*
1424         * unpoison_memory() can encounter thp only when the thp is being
1425         * worked by memory_failure() and the page lock is not held yet.
1426         * In such case, we yield to memory_failure() and make unpoison fail.
1427         */
1428        if (!PageHuge(page) && PageTransHuge(page)) {
1429                unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1430                                 pfn, &unpoison_rs);
1431                return 0;
1432        }
1433
1434        nr_pages = 1 << compound_order(page);
1435
1436        if (!get_hwpoison_page(p)) {
1437                /*
1438                 * Since HWPoisoned hugepage should have non-zero refcount,
1439                 * race between memory failure and unpoison seems to happen.
1440                 * In such case unpoison fails and memory failure runs
1441                 * to the end.
1442                 */
1443                if (PageHuge(page)) {
1444                        unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
1445                                         pfn, &unpoison_rs);
1446                        return 0;
1447                }
1448                if (TestClearPageHWPoison(p))
1449                        num_poisoned_pages_dec();
1450                unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1451                                 pfn, &unpoison_rs);
1452                return 0;
1453        }
1454
1455        lock_page(page);
1456        /*
1457         * This test is racy because PG_hwpoison is set outside of page lock.
1458         * That's acceptable because that won't trigger kernel panic. Instead,
1459         * the PG_hwpoison page will be caught and isolated on the entrance to
1460         * the free buddy page pool.
1461         */
1462        if (TestClearPageHWPoison(page)) {
1463                unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1464                                 pfn, &unpoison_rs);
1465                num_poisoned_pages_sub(nr_pages);
1466                freeit = 1;
1467                if (PageHuge(page))
1468                        clear_page_hwpoison_huge_page(page);
1469        }
1470        unlock_page(page);
1471
1472        put_hwpoison_page(page);
1473        if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1474                put_hwpoison_page(page);
1475
1476        return 0;
1477}
1478EXPORT_SYMBOL(unpoison_memory);
1479
1480static struct page *new_page(struct page *p, unsigned long private, int **x)
1481{
1482        int nid = page_to_nid(p);
1483        if (PageHuge(p))
1484                return alloc_huge_page_node(page_hstate(compound_head(p)),
1485                                                   nid);
1486        else
1487                return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1488}
1489
1490/*
1491 * Safely get reference count of an arbitrary page.
1492 * Returns 0 for a free page, -EIO for a zero refcount page
1493 * that is not free, and 1 for any other page type.
1494 * For 1 the page is returned with increased page count, otherwise not.
1495 */
1496static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1497{
1498        int ret;
1499
1500        if (flags & MF_COUNT_INCREASED)
1501                return 1;
1502
1503        /*
1504         * When the target page is a free hugepage, just remove it
1505         * from free hugepage list.
1506         */
1507        if (!get_hwpoison_page(p)) {
1508                if (PageHuge(p)) {
1509                        pr_info("%s: %#lx free huge page\n", __func__, pfn);
1510                        ret = 0;
1511                } else if (is_free_buddy_page(p)) {
1512                        pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1513                        ret = 0;
1514                } else {
1515                        pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1516                                __func__, pfn, p->flags);
1517                        ret = -EIO;
1518                }
1519        } else {
1520                /* Not a free page */
1521                ret = 1;
1522        }
1523        return ret;
1524}
1525
1526static int get_any_page(struct page *page, unsigned long pfn, int flags)
1527{
1528        int ret = __get_any_page(page, pfn, flags);
1529
1530        if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1531                /*
1532                 * Try to free it.
1533                 */
1534                put_hwpoison_page(page);
1535                shake_page(page, 1);
1536
1537                /*
1538                 * Did it turn free?
1539                 */
1540                ret = __get_any_page(page, pfn, 0);
1541                if (ret == 1 && !PageLRU(page)) {
1542                        /* Drop page reference which is from __get_any_page() */
1543                        put_hwpoison_page(page);
1544                        pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1545                                pfn, page->flags);
1546                        return -EIO;
1547                }
1548        }
1549        return ret;
1550}
1551
1552static int soft_offline_huge_page(struct page *page, int flags)
1553{
1554        int ret;
1555        unsigned long pfn = page_to_pfn(page);
1556        struct page *hpage = compound_head(page);
1557        LIST_HEAD(pagelist);
1558
1559        /*
1560         * This double-check of PageHWPoison is to avoid the race with
1561         * memory_failure(). See also comment in __soft_offline_page().
1562         */
1563        lock_page(hpage);
1564        if (PageHWPoison(hpage)) {
1565                unlock_page(hpage);
1566                put_hwpoison_page(hpage);
1567                pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1568                return -EBUSY;
1569        }
1570        unlock_page(hpage);
1571
1572        ret = isolate_huge_page(hpage, &pagelist);
1573        /*
1574         * get_any_page() and isolate_huge_page() takes a refcount each,
1575         * so need to drop one here.
1576         */
1577        put_hwpoison_page(hpage);
1578        if (!ret) {
1579                pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1580                return -EBUSY;
1581        }
1582
1583        ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1584                                MIGRATE_SYNC, MR_MEMORY_FAILURE);
1585        if (ret) {
1586                pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1587                        pfn, ret, page->flags);
1588                /*
1589                 * We know that soft_offline_huge_page() tries to migrate
1590                 * only one hugepage pointed to by hpage, so we need not
1591                 * run through the pagelist here.
1592                 */
1593                putback_active_hugepage(hpage);
1594                if (ret > 0)
1595                        ret = -EIO;
1596        } else {
1597                /* overcommit hugetlb page will be freed to buddy */
1598                if (PageHuge(page)) {
1599                        set_page_hwpoison_huge_page(hpage);
1600                        dequeue_hwpoisoned_huge_page(hpage);
1601                        num_poisoned_pages_add(1 << compound_order(hpage));
1602                } else {
1603                        SetPageHWPoison(page);
1604                        num_poisoned_pages_inc();
1605                }
1606        }
1607        return ret;
1608}
1609
1610static int __soft_offline_page(struct page *page, int flags)
1611{
1612        int ret;
1613        unsigned long pfn = page_to_pfn(page);
1614
1615        /*
1616         * Check PageHWPoison again inside page lock because PageHWPoison
1617         * is set by memory_failure() outside page lock. Note that
1618         * memory_failure() also double-checks PageHWPoison inside page lock,
1619         * so there's no race between soft_offline_page() and memory_failure().
1620         */
1621        lock_page(page);
1622        wait_on_page_writeback(page);
1623        if (PageHWPoison(page)) {
1624                unlock_page(page);
1625                put_hwpoison_page(page);
1626                pr_info("soft offline: %#lx page already poisoned\n", pfn);
1627                return -EBUSY;
1628        }
1629        /*
1630         * Try to invalidate first. This should work for
1631         * non dirty unmapped page cache pages.
1632         */
1633        ret = invalidate_inode_page(page);
1634        unlock_page(page);
1635        /*
1636         * RED-PEN would be better to keep it isolated here, but we
1637         * would need to fix isolation locking first.
1638         */
1639        if (ret == 1) {
1640                put_hwpoison_page(page);
1641                pr_info("soft_offline: %#lx: invalidated\n", pfn);
1642                SetPageHWPoison(page);
1643                num_poisoned_pages_inc();
1644                return 0;
1645        }
1646
1647        /*
1648         * Simple invalidation didn't work.
1649         * Try to migrate to a new page instead. migrate.c
1650         * handles a large number of cases for us.
1651         */
1652        ret = isolate_lru_page(page);
1653        /*
1654         * Drop page reference which is came from get_any_page()
1655         * successful isolate_lru_page() already took another one.
1656         */
1657        put_hwpoison_page(page);
1658        if (!ret) {
1659                LIST_HEAD(pagelist);
1660                inc_node_page_state(page, NR_ISOLATED_ANON +
1661                                        page_is_file_cache(page));
1662                list_add(&page->lru, &pagelist);
1663                ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1664                                        MIGRATE_SYNC, MR_MEMORY_FAILURE);
1665                if (ret) {
1666                        if (!list_empty(&pagelist)) {
1667                                list_del(&page->lru);
1668                                dec_node_page_state(page, NR_ISOLATED_ANON +
1669                                                page_is_file_cache(page));
1670                                putback_lru_page(page);
1671                        }
1672
1673                        pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1674                                pfn, ret, page->flags);
1675                        if (ret > 0)
1676                                ret = -EIO;
1677                }
1678        } else {
1679                pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1680                        pfn, ret, page_count(page), page->flags);
1681        }
1682        return ret;
1683}
1684
1685static int soft_offline_in_use_page(struct page *page, int flags)
1686{
1687        int ret;
1688        struct page *hpage = compound_head(page);
1689
1690        if (!PageHuge(page) && PageTransHuge(hpage)) {
1691                lock_page(hpage);
1692                if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1693                        unlock_page(hpage);
1694                        if (!PageAnon(hpage))
1695                                pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1696                        else
1697                                pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1698                        put_hwpoison_page(hpage);
1699                        return -EBUSY;
1700                }
1701                unlock_page(hpage);
1702                get_hwpoison_page(page);
1703                put_hwpoison_page(hpage);
1704        }
1705
1706        if (PageHuge(page))
1707                ret = soft_offline_huge_page(page, flags);
1708        else
1709                ret = __soft_offline_page(page, flags);
1710
1711        return ret;
1712}
1713
1714static void soft_offline_free_page(struct page *page)
1715{
1716        if (PageHuge(page)) {
1717                struct page *hpage = compound_head(page);
1718
1719                set_page_hwpoison_huge_page(hpage);
1720                if (!dequeue_hwpoisoned_huge_page(hpage))
1721                        num_poisoned_pages_add(1 << compound_order(hpage));
1722        } else {
1723                if (!TestSetPageHWPoison(page))
1724                        num_poisoned_pages_inc();
1725        }
1726}
1727
1728/**
1729 * soft_offline_page - Soft offline a page.
1730 * @page: page to offline
1731 * @flags: flags. Same as memory_failure().
1732 *
1733 * Returns 0 on success, otherwise negated errno.
1734 *
1735 * Soft offline a page, by migration or invalidation,
1736 * without killing anything. This is for the case when
1737 * a page is not corrupted yet (so it's still valid to access),
1738 * but has had a number of corrected errors and is better taken
1739 * out.
1740 *
1741 * The actual policy on when to do that is maintained by
1742 * user space.
1743 *
1744 * This should never impact any application or cause data loss,
1745 * however it might take some time.
1746 *
1747 * This is not a 100% solution for all memory, but tries to be
1748 * ``good enough'' for the majority of memory.
1749 */
1750int soft_offline_page(struct page *page, int flags)
1751{
1752        int ret;
1753        unsigned long pfn = page_to_pfn(page);
1754
1755        if (PageHWPoison(page)) {
1756                pr_info("soft offline: %#lx page already poisoned\n", pfn);
1757                if (flags & MF_COUNT_INCREASED)
1758                        put_hwpoison_page(page);
1759                return -EBUSY;
1760        }
1761
1762        get_online_mems();
1763        ret = get_any_page(page, pfn, flags);
1764        put_online_mems();
1765
1766        if (ret > 0)
1767                ret = soft_offline_in_use_page(page, flags);
1768        else if (ret == 0)
1769                soft_offline_free_page(page);
1770
1771        return ret;
1772}
1773