linux/mm/slab.c
<<
>>
Prefs
   1/*
   2 * linux/mm/slab.c
   3 * Written by Mark Hemment, 1996/97.
   4 * (markhe@nextd.demon.co.uk)
   5 *
   6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   7 *
   8 * Major cleanup, different bufctl logic, per-cpu arrays
   9 *      (c) 2000 Manfred Spraul
  10 *
  11 * Cleanup, make the head arrays unconditional, preparation for NUMA
  12 *      (c) 2002 Manfred Spraul
  13 *
  14 * An implementation of the Slab Allocator as described in outline in;
  15 *      UNIX Internals: The New Frontiers by Uresh Vahalia
  16 *      Pub: Prentice Hall      ISBN 0-13-101908-2
  17 * or with a little more detail in;
  18 *      The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19 *      Jeff Bonwick (Sun Microsystems).
  20 *      Presented at: USENIX Summer 1994 Technical Conference
  21 *
  22 * The memory is organized in caches, one cache for each object type.
  23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24 * Each cache consists out of many slabs (they are small (usually one
  25 * page long) and always contiguous), and each slab contains multiple
  26 * initialized objects.
  27 *
  28 * This means, that your constructor is used only for newly allocated
  29 * slabs and you must pass objects with the same initializations to
  30 * kmem_cache_free.
  31 *
  32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33 * normal). If you need a special memory type, then must create a new
  34 * cache for that memory type.
  35 *
  36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37 *   full slabs with 0 free objects
  38 *   partial slabs
  39 *   empty slabs with no allocated objects
  40 *
  41 * If partial slabs exist, then new allocations come from these slabs,
  42 * otherwise from empty slabs or new slabs are allocated.
  43 *
  44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46 *
  47 * Each cache has a short per-cpu head array, most allocs
  48 * and frees go into that array, and if that array overflows, then 1/2
  49 * of the entries in the array are given back into the global cache.
  50 * The head array is strictly LIFO and should improve the cache hit rates.
  51 * On SMP, it additionally reduces the spinlock operations.
  52 *
  53 * The c_cpuarray may not be read with enabled local interrupts -
  54 * it's changed with a smp_call_function().
  55 *
  56 * SMP synchronization:
  57 *  constructors and destructors are called without any locking.
  58 *  Several members in struct kmem_cache and struct slab never change, they
  59 *      are accessed without any locking.
  60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61 *      and local interrupts are disabled so slab code is preempt-safe.
  62 *  The non-constant members are protected with a per-cache irq spinlock.
  63 *
  64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65 * in 2000 - many ideas in the current implementation are derived from
  66 * his patch.
  67 *
  68 * Further notes from the original documentation:
  69 *
  70 * 11 April '97.  Started multi-threading - markhe
  71 *      The global cache-chain is protected by the mutex 'slab_mutex'.
  72 *      The sem is only needed when accessing/extending the cache-chain, which
  73 *      can never happen inside an interrupt (kmem_cache_create(),
  74 *      kmem_cache_shrink() and kmem_cache_reap()).
  75 *
  76 *      At present, each engine can be growing a cache.  This should be blocked.
  77 *
  78 * 15 March 2005. NUMA slab allocator.
  79 *      Shai Fultheim <shai@scalex86.org>.
  80 *      Shobhit Dayal <shobhit@calsoftinc.com>
  81 *      Alok N Kataria <alokk@calsoftinc.com>
  82 *      Christoph Lameter <christoph@lameter.com>
  83 *
  84 *      Modified the slab allocator to be node aware on NUMA systems.
  85 *      Each node has its own list of partial, free and full slabs.
  86 *      All object allocations for a node occur from node specific slab lists.
  87 */
  88
  89#include        <linux/slab.h>
  90#include        <linux/mm.h>
  91#include        <linux/poison.h>
  92#include        <linux/swap.h>
  93#include        <linux/cache.h>
  94#include        <linux/interrupt.h>
  95#include        <linux/init.h>
  96#include        <linux/compiler.h>
  97#include        <linux/cpuset.h>
  98#include        <linux/proc_fs.h>
  99#include        <linux/seq_file.h>
 100#include        <linux/notifier.h>
 101#include        <linux/kallsyms.h>
 102#include        <linux/cpu.h>
 103#include        <linux/sysctl.h>
 104#include        <linux/module.h>
 105#include        <linux/rcupdate.h>
 106#include        <linux/string.h>
 107#include        <linux/uaccess.h>
 108#include        <linux/nodemask.h>
 109#include        <linux/kmemleak.h>
 110#include        <linux/mempolicy.h>
 111#include        <linux/mutex.h>
 112#include        <linux/fault-inject.h>
 113#include        <linux/rtmutex.h>
 114#include        <linux/reciprocal_div.h>
 115#include        <linux/debugobjects.h>
 116#include        <linux/kmemcheck.h>
 117#include        <linux/memory.h>
 118#include        <linux/prefetch.h>
 119
 120#include        <net/sock.h>
 121
 122#include        <asm/cacheflush.h>
 123#include        <asm/tlbflush.h>
 124#include        <asm/page.h>
 125
 126#include <trace/events/kmem.h>
 127
 128#include        "internal.h"
 129
 130#include        "slab.h"
 131
 132/*
 133 * DEBUG        - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 134 *                0 for faster, smaller code (especially in the critical paths).
 135 *
 136 * STATS        - 1 to collect stats for /proc/slabinfo.
 137 *                0 for faster, smaller code (especially in the critical paths).
 138 *
 139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 140 */
 141
 142#ifdef CONFIG_DEBUG_SLAB
 143#define DEBUG           1
 144#define STATS           1
 145#define FORCED_DEBUG    1
 146#else
 147#define DEBUG           0
 148#define STATS           0
 149#define FORCED_DEBUG    0
 150#endif
 151
 152/* Shouldn't this be in a header file somewhere? */
 153#define BYTES_PER_WORD          sizeof(void *)
 154#define REDZONE_ALIGN           max(BYTES_PER_WORD, __alignof__(unsigned long long))
 155
 156#ifndef ARCH_KMALLOC_FLAGS
 157#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 158#endif
 159
 160#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
 161                                <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
 162
 163#if FREELIST_BYTE_INDEX
 164typedef unsigned char freelist_idx_t;
 165#else
 166typedef unsigned short freelist_idx_t;
 167#endif
 168
 169#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
 170
 171/*
 172 * struct array_cache
 173 *
 174 * Purpose:
 175 * - LIFO ordering, to hand out cache-warm objects from _alloc
 176 * - reduce the number of linked list operations
 177 * - reduce spinlock operations
 178 *
 179 * The limit is stored in the per-cpu structure to reduce the data cache
 180 * footprint.
 181 *
 182 */
 183struct array_cache {
 184        unsigned int avail;
 185        unsigned int limit;
 186        unsigned int batchcount;
 187        unsigned int touched;
 188        void *entry[];  /*
 189                         * Must have this definition in here for the proper
 190                         * alignment of array_cache. Also simplifies accessing
 191                         * the entries.
 192                         */
 193};
 194
 195struct alien_cache {
 196        spinlock_t lock;
 197        struct array_cache ac;
 198};
 199
 200/*
 201 * Need this for bootstrapping a per node allocator.
 202 */
 203#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
 204static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
 205#define CACHE_CACHE 0
 206#define SIZE_NODE (MAX_NUMNODES)
 207
 208static int drain_freelist(struct kmem_cache *cache,
 209                        struct kmem_cache_node *n, int tofree);
 210static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 211                        int node, struct list_head *list);
 212static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
 213static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 214static void cache_reap(struct work_struct *unused);
 215
 216static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
 217                                                void **list);
 218static inline void fixup_slab_list(struct kmem_cache *cachep,
 219                                struct kmem_cache_node *n, struct page *page,
 220                                void **list);
 221static int slab_early_init = 1;
 222
 223#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
 224
 225static void kmem_cache_node_init(struct kmem_cache_node *parent)
 226{
 227        INIT_LIST_HEAD(&parent->slabs_full);
 228        INIT_LIST_HEAD(&parent->slabs_partial);
 229        INIT_LIST_HEAD(&parent->slabs_free);
 230        parent->total_slabs = 0;
 231        parent->free_slabs = 0;
 232        parent->shared = NULL;
 233        parent->alien = NULL;
 234        parent->colour_next = 0;
 235        spin_lock_init(&parent->list_lock);
 236        parent->free_objects = 0;
 237        parent->free_touched = 0;
 238}
 239
 240#define MAKE_LIST(cachep, listp, slab, nodeid)                          \
 241        do {                                                            \
 242                INIT_LIST_HEAD(listp);                                  \
 243                list_splice(&get_node(cachep, nodeid)->slab, listp);    \
 244        } while (0)
 245
 246#define MAKE_ALL_LISTS(cachep, ptr, nodeid)                             \
 247        do {                                                            \
 248        MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);  \
 249        MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 250        MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);  \
 251        } while (0)
 252
 253#define CFLGS_OBJFREELIST_SLAB  (0x40000000UL)
 254#define CFLGS_OFF_SLAB          (0x80000000UL)
 255#define OBJFREELIST_SLAB(x)     ((x)->flags & CFLGS_OBJFREELIST_SLAB)
 256#define OFF_SLAB(x)     ((x)->flags & CFLGS_OFF_SLAB)
 257
 258#define BATCHREFILL_LIMIT       16
 259/*
 260 * Optimization question: fewer reaps means less probability for unnessary
 261 * cpucache drain/refill cycles.
 262 *
 263 * OTOH the cpuarrays can contain lots of objects,
 264 * which could lock up otherwise freeable slabs.
 265 */
 266#define REAPTIMEOUT_AC          (2*HZ)
 267#define REAPTIMEOUT_NODE        (4*HZ)
 268
 269#if STATS
 270#define STATS_INC_ACTIVE(x)     ((x)->num_active++)
 271#define STATS_DEC_ACTIVE(x)     ((x)->num_active--)
 272#define STATS_INC_ALLOCED(x)    ((x)->num_allocations++)
 273#define STATS_INC_GROWN(x)      ((x)->grown++)
 274#define STATS_ADD_REAPED(x,y)   ((x)->reaped += (y))
 275#define STATS_SET_HIGH(x)                                               \
 276        do {                                                            \
 277                if ((x)->num_active > (x)->high_mark)                   \
 278                        (x)->high_mark = (x)->num_active;               \
 279        } while (0)
 280#define STATS_INC_ERR(x)        ((x)->errors++)
 281#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
 282#define STATS_INC_NODEFREES(x)  ((x)->node_frees++)
 283#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 284#define STATS_SET_FREEABLE(x, i)                                        \
 285        do {                                                            \
 286                if ((x)->max_freeable < i)                              \
 287                        (x)->max_freeable = i;                          \
 288        } while (0)
 289#define STATS_INC_ALLOCHIT(x)   atomic_inc(&(x)->allochit)
 290#define STATS_INC_ALLOCMISS(x)  atomic_inc(&(x)->allocmiss)
 291#define STATS_INC_FREEHIT(x)    atomic_inc(&(x)->freehit)
 292#define STATS_INC_FREEMISS(x)   atomic_inc(&(x)->freemiss)
 293#else
 294#define STATS_INC_ACTIVE(x)     do { } while (0)
 295#define STATS_DEC_ACTIVE(x)     do { } while (0)
 296#define STATS_INC_ALLOCED(x)    do { } while (0)
 297#define STATS_INC_GROWN(x)      do { } while (0)
 298#define STATS_ADD_REAPED(x,y)   do { (void)(y); } while (0)
 299#define STATS_SET_HIGH(x)       do { } while (0)
 300#define STATS_INC_ERR(x)        do { } while (0)
 301#define STATS_INC_NODEALLOCS(x) do { } while (0)
 302#define STATS_INC_NODEFREES(x)  do { } while (0)
 303#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 304#define STATS_SET_FREEABLE(x, i) do { } while (0)
 305#define STATS_INC_ALLOCHIT(x)   do { } while (0)
 306#define STATS_INC_ALLOCMISS(x)  do { } while (0)
 307#define STATS_INC_FREEHIT(x)    do { } while (0)
 308#define STATS_INC_FREEMISS(x)   do { } while (0)
 309#endif
 310
 311#if DEBUG
 312
 313/*
 314 * memory layout of objects:
 315 * 0            : objp
 316 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 317 *              the end of an object is aligned with the end of the real
 318 *              allocation. Catches writes behind the end of the allocation.
 319 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 320 *              redzone word.
 321 * cachep->obj_offset: The real object.
 322 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 323 * cachep->size - 1* BYTES_PER_WORD: last caller address
 324 *                                      [BYTES_PER_WORD long]
 325 */
 326static int obj_offset(struct kmem_cache *cachep)
 327{
 328        return cachep->obj_offset;
 329}
 330
 331static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 332{
 333        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 334        return (unsigned long long*) (objp + obj_offset(cachep) -
 335                                      sizeof(unsigned long long));
 336}
 337
 338static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 339{
 340        BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 341        if (cachep->flags & SLAB_STORE_USER)
 342                return (unsigned long long *)(objp + cachep->size -
 343                                              sizeof(unsigned long long) -
 344                                              REDZONE_ALIGN);
 345        return (unsigned long long *) (objp + cachep->size -
 346                                       sizeof(unsigned long long));
 347}
 348
 349static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 350{
 351        BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 352        return (void **)(objp + cachep->size - BYTES_PER_WORD);
 353}
 354
 355#else
 356
 357#define obj_offset(x)                   0
 358#define dbg_redzone1(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 359#define dbg_redzone2(cachep, objp)      ({BUG(); (unsigned long long *)NULL;})
 360#define dbg_userword(cachep, objp)      ({BUG(); (void **)NULL;})
 361
 362#endif
 363
 364#ifdef CONFIG_DEBUG_SLAB_LEAK
 365
 366static inline bool is_store_user_clean(struct kmem_cache *cachep)
 367{
 368        return atomic_read(&cachep->store_user_clean) == 1;
 369}
 370
 371static inline void set_store_user_clean(struct kmem_cache *cachep)
 372{
 373        atomic_set(&cachep->store_user_clean, 1);
 374}
 375
 376static inline void set_store_user_dirty(struct kmem_cache *cachep)
 377{
 378        if (is_store_user_clean(cachep))
 379                atomic_set(&cachep->store_user_clean, 0);
 380}
 381
 382#else
 383static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
 384
 385#endif
 386
 387/*
 388 * Do not go above this order unless 0 objects fit into the slab or
 389 * overridden on the command line.
 390 */
 391#define SLAB_MAX_ORDER_HI       1
 392#define SLAB_MAX_ORDER_LO       0
 393static int slab_max_order = SLAB_MAX_ORDER_LO;
 394static bool slab_max_order_set __initdata;
 395
 396static inline struct kmem_cache *virt_to_cache(const void *obj)
 397{
 398        struct page *page = virt_to_head_page(obj);
 399        return page->slab_cache;
 400}
 401
 402static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
 403                                 unsigned int idx)
 404{
 405        return page->s_mem + cache->size * idx;
 406}
 407
 408/*
 409 * We want to avoid an expensive divide : (offset / cache->size)
 410 *   Using the fact that size is a constant for a particular cache,
 411 *   we can replace (offset / cache->size) by
 412 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 413 */
 414static inline unsigned int obj_to_index(const struct kmem_cache *cache,
 415                                        const struct page *page, void *obj)
 416{
 417        u32 offset = (obj - page->s_mem);
 418        return reciprocal_divide(offset, cache->reciprocal_buffer_size);
 419}
 420
 421#define BOOT_CPUCACHE_ENTRIES   1
 422/* internal cache of cache description objs */
 423static struct kmem_cache kmem_cache_boot = {
 424        .batchcount = 1,
 425        .limit = BOOT_CPUCACHE_ENTRIES,
 426        .shared = 1,
 427        .size = sizeof(struct kmem_cache),
 428        .name = "kmem_cache",
 429};
 430
 431static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 432
 433static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 434{
 435        return this_cpu_ptr(cachep->cpu_cache);
 436}
 437
 438/*
 439 * Calculate the number of objects and left-over bytes for a given buffer size.
 440 */
 441static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
 442                unsigned long flags, size_t *left_over)
 443{
 444        unsigned int num;
 445        size_t slab_size = PAGE_SIZE << gfporder;
 446
 447        /*
 448         * The slab management structure can be either off the slab or
 449         * on it. For the latter case, the memory allocated for a
 450         * slab is used for:
 451         *
 452         * - @buffer_size bytes for each object
 453         * - One freelist_idx_t for each object
 454         *
 455         * We don't need to consider alignment of freelist because
 456         * freelist will be at the end of slab page. The objects will be
 457         * at the correct alignment.
 458         *
 459         * If the slab management structure is off the slab, then the
 460         * alignment will already be calculated into the size. Because
 461         * the slabs are all pages aligned, the objects will be at the
 462         * correct alignment when allocated.
 463         */
 464        if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
 465                num = slab_size / buffer_size;
 466                *left_over = slab_size % buffer_size;
 467        } else {
 468                num = slab_size / (buffer_size + sizeof(freelist_idx_t));
 469                *left_over = slab_size %
 470                        (buffer_size + sizeof(freelist_idx_t));
 471        }
 472
 473        return num;
 474}
 475
 476#if DEBUG
 477#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 478
 479static void __slab_error(const char *function, struct kmem_cache *cachep,
 480                        char *msg)
 481{
 482        pr_err("slab error in %s(): cache `%s': %s\n",
 483               function, cachep->name, msg);
 484        dump_stack();
 485        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 486}
 487#endif
 488
 489/*
 490 * By default on NUMA we use alien caches to stage the freeing of
 491 * objects allocated from other nodes. This causes massive memory
 492 * inefficiencies when using fake NUMA setup to split memory into a
 493 * large number of small nodes, so it can be disabled on the command
 494 * line
 495  */
 496
 497static int use_alien_caches __read_mostly = 1;
 498static int __init noaliencache_setup(char *s)
 499{
 500        use_alien_caches = 0;
 501        return 1;
 502}
 503__setup("noaliencache", noaliencache_setup);
 504
 505static int __init slab_max_order_setup(char *str)
 506{
 507        get_option(&str, &slab_max_order);
 508        slab_max_order = slab_max_order < 0 ? 0 :
 509                                min(slab_max_order, MAX_ORDER - 1);
 510        slab_max_order_set = true;
 511
 512        return 1;
 513}
 514__setup("slab_max_order=", slab_max_order_setup);
 515
 516#ifdef CONFIG_NUMA
 517/*
 518 * Special reaping functions for NUMA systems called from cache_reap().
 519 * These take care of doing round robin flushing of alien caches (containing
 520 * objects freed on different nodes from which they were allocated) and the
 521 * flushing of remote pcps by calling drain_node_pages.
 522 */
 523static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 524
 525static void init_reap_node(int cpu)
 526{
 527        per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
 528                                                    node_online_map);
 529}
 530
 531static void next_reap_node(void)
 532{
 533        int node = __this_cpu_read(slab_reap_node);
 534
 535        node = next_node_in(node, node_online_map);
 536        __this_cpu_write(slab_reap_node, node);
 537}
 538
 539#else
 540#define init_reap_node(cpu) do { } while (0)
 541#define next_reap_node(void) do { } while (0)
 542#endif
 543
 544/*
 545 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 546 * via the workqueue/eventd.
 547 * Add the CPU number into the expiration time to minimize the possibility of
 548 * the CPUs getting into lockstep and contending for the global cache chain
 549 * lock.
 550 */
 551static void start_cpu_timer(int cpu)
 552{
 553        struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 554
 555        if (reap_work->work.func == NULL) {
 556                init_reap_node(cpu);
 557                INIT_DEFERRABLE_WORK(reap_work, cache_reap);
 558                schedule_delayed_work_on(cpu, reap_work,
 559                                        __round_jiffies_relative(HZ, cpu));
 560        }
 561}
 562
 563static void init_arraycache(struct array_cache *ac, int limit, int batch)
 564{
 565        /*
 566         * The array_cache structures contain pointers to free object.
 567         * However, when such objects are allocated or transferred to another
 568         * cache the pointers are not cleared and they could be counted as
 569         * valid references during a kmemleak scan. Therefore, kmemleak must
 570         * not scan such objects.
 571         */
 572        kmemleak_no_scan(ac);
 573        if (ac) {
 574                ac->avail = 0;
 575                ac->limit = limit;
 576                ac->batchcount = batch;
 577                ac->touched = 0;
 578        }
 579}
 580
 581static struct array_cache *alloc_arraycache(int node, int entries,
 582                                            int batchcount, gfp_t gfp)
 583{
 584        size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 585        struct array_cache *ac = NULL;
 586
 587        ac = kmalloc_node(memsize, gfp, node);
 588        init_arraycache(ac, entries, batchcount);
 589        return ac;
 590}
 591
 592static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
 593                                        struct page *page, void *objp)
 594{
 595        struct kmem_cache_node *n;
 596        int page_node;
 597        LIST_HEAD(list);
 598
 599        page_node = page_to_nid(page);
 600        n = get_node(cachep, page_node);
 601
 602        spin_lock(&n->list_lock);
 603        free_block(cachep, &objp, 1, page_node, &list);
 604        spin_unlock(&n->list_lock);
 605
 606        slabs_destroy(cachep, &list);
 607}
 608
 609/*
 610 * Transfer objects in one arraycache to another.
 611 * Locking must be handled by the caller.
 612 *
 613 * Return the number of entries transferred.
 614 */
 615static int transfer_objects(struct array_cache *to,
 616                struct array_cache *from, unsigned int max)
 617{
 618        /* Figure out how many entries to transfer */
 619        int nr = min3(from->avail, max, to->limit - to->avail);
 620
 621        if (!nr)
 622                return 0;
 623
 624        memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 625                        sizeof(void *) *nr);
 626
 627        from->avail -= nr;
 628        to->avail += nr;
 629        return nr;
 630}
 631
 632#ifndef CONFIG_NUMA
 633
 634#define drain_alien_cache(cachep, alien) do { } while (0)
 635#define reap_alien(cachep, n) do { } while (0)
 636
 637static inline struct alien_cache **alloc_alien_cache(int node,
 638                                                int limit, gfp_t gfp)
 639{
 640        return NULL;
 641}
 642
 643static inline void free_alien_cache(struct alien_cache **ac_ptr)
 644{
 645}
 646
 647static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 648{
 649        return 0;
 650}
 651
 652static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 653                gfp_t flags)
 654{
 655        return NULL;
 656}
 657
 658static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 659                 gfp_t flags, int nodeid)
 660{
 661        return NULL;
 662}
 663
 664static inline gfp_t gfp_exact_node(gfp_t flags)
 665{
 666        return flags & ~__GFP_NOFAIL;
 667}
 668
 669#else   /* CONFIG_NUMA */
 670
 671static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 672static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 673
 674static struct alien_cache *__alloc_alien_cache(int node, int entries,
 675                                                int batch, gfp_t gfp)
 676{
 677        size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
 678        struct alien_cache *alc = NULL;
 679
 680        alc = kmalloc_node(memsize, gfp, node);
 681        init_arraycache(&alc->ac, entries, batch);
 682        spin_lock_init(&alc->lock);
 683        return alc;
 684}
 685
 686static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 687{
 688        struct alien_cache **alc_ptr;
 689        size_t memsize = sizeof(void *) * nr_node_ids;
 690        int i;
 691
 692        if (limit > 1)
 693                limit = 12;
 694        alc_ptr = kzalloc_node(memsize, gfp, node);
 695        if (!alc_ptr)
 696                return NULL;
 697
 698        for_each_node(i) {
 699                if (i == node || !node_online(i))
 700                        continue;
 701                alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
 702                if (!alc_ptr[i]) {
 703                        for (i--; i >= 0; i--)
 704                                kfree(alc_ptr[i]);
 705                        kfree(alc_ptr);
 706                        return NULL;
 707                }
 708        }
 709        return alc_ptr;
 710}
 711
 712static void free_alien_cache(struct alien_cache **alc_ptr)
 713{
 714        int i;
 715
 716        if (!alc_ptr)
 717                return;
 718        for_each_node(i)
 719            kfree(alc_ptr[i]);
 720        kfree(alc_ptr);
 721}
 722
 723static void __drain_alien_cache(struct kmem_cache *cachep,
 724                                struct array_cache *ac, int node,
 725                                struct list_head *list)
 726{
 727        struct kmem_cache_node *n = get_node(cachep, node);
 728
 729        if (ac->avail) {
 730                spin_lock(&n->list_lock);
 731                /*
 732                 * Stuff objects into the remote nodes shared array first.
 733                 * That way we could avoid the overhead of putting the objects
 734                 * into the free lists and getting them back later.
 735                 */
 736                if (n->shared)
 737                        transfer_objects(n->shared, ac, ac->limit);
 738
 739                free_block(cachep, ac->entry, ac->avail, node, list);
 740                ac->avail = 0;
 741                spin_unlock(&n->list_lock);
 742        }
 743}
 744
 745/*
 746 * Called from cache_reap() to regularly drain alien caches round robin.
 747 */
 748static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
 749{
 750        int node = __this_cpu_read(slab_reap_node);
 751
 752        if (n->alien) {
 753                struct alien_cache *alc = n->alien[node];
 754                struct array_cache *ac;
 755
 756                if (alc) {
 757                        ac = &alc->ac;
 758                        if (ac->avail && spin_trylock_irq(&alc->lock)) {
 759                                LIST_HEAD(list);
 760
 761                                __drain_alien_cache(cachep, ac, node, &list);
 762                                spin_unlock_irq(&alc->lock);
 763                                slabs_destroy(cachep, &list);
 764                        }
 765                }
 766        }
 767}
 768
 769static void drain_alien_cache(struct kmem_cache *cachep,
 770                                struct alien_cache **alien)
 771{
 772        int i = 0;
 773        struct alien_cache *alc;
 774        struct array_cache *ac;
 775        unsigned long flags;
 776
 777        for_each_online_node(i) {
 778                alc = alien[i];
 779                if (alc) {
 780                        LIST_HEAD(list);
 781
 782                        ac = &alc->ac;
 783                        spin_lock_irqsave(&alc->lock, flags);
 784                        __drain_alien_cache(cachep, ac, i, &list);
 785                        spin_unlock_irqrestore(&alc->lock, flags);
 786                        slabs_destroy(cachep, &list);
 787                }
 788        }
 789}
 790
 791static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
 792                                int node, int page_node)
 793{
 794        struct kmem_cache_node *n;
 795        struct alien_cache *alien = NULL;
 796        struct array_cache *ac;
 797        LIST_HEAD(list);
 798
 799        n = get_node(cachep, node);
 800        STATS_INC_NODEFREES(cachep);
 801        if (n->alien && n->alien[page_node]) {
 802                alien = n->alien[page_node];
 803                ac = &alien->ac;
 804                spin_lock(&alien->lock);
 805                if (unlikely(ac->avail == ac->limit)) {
 806                        STATS_INC_ACOVERFLOW(cachep);
 807                        __drain_alien_cache(cachep, ac, page_node, &list);
 808                }
 809                ac->entry[ac->avail++] = objp;
 810                spin_unlock(&alien->lock);
 811                slabs_destroy(cachep, &list);
 812        } else {
 813                n = get_node(cachep, page_node);
 814                spin_lock(&n->list_lock);
 815                free_block(cachep, &objp, 1, page_node, &list);
 816                spin_unlock(&n->list_lock);
 817                slabs_destroy(cachep, &list);
 818        }
 819        return 1;
 820}
 821
 822static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 823{
 824        int page_node = page_to_nid(virt_to_page(objp));
 825        int node = numa_mem_id();
 826        /*
 827         * Make sure we are not freeing a object from another node to the array
 828         * cache on this cpu.
 829         */
 830        if (likely(node == page_node))
 831                return 0;
 832
 833        return __cache_free_alien(cachep, objp, node, page_node);
 834}
 835
 836/*
 837 * Construct gfp mask to allocate from a specific node but do not reclaim or
 838 * warn about failures.
 839 */
 840static inline gfp_t gfp_exact_node(gfp_t flags)
 841{
 842        return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
 843}
 844#endif
 845
 846static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
 847{
 848        struct kmem_cache_node *n;
 849
 850        /*
 851         * Set up the kmem_cache_node for cpu before we can
 852         * begin anything. Make sure some other cpu on this
 853         * node has not already allocated this
 854         */
 855        n = get_node(cachep, node);
 856        if (n) {
 857                spin_lock_irq(&n->list_lock);
 858                n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
 859                                cachep->num;
 860                spin_unlock_irq(&n->list_lock);
 861
 862                return 0;
 863        }
 864
 865        n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
 866        if (!n)
 867                return -ENOMEM;
 868
 869        kmem_cache_node_init(n);
 870        n->next_reap = jiffies + REAPTIMEOUT_NODE +
 871                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
 872
 873        n->free_limit =
 874                (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
 875
 876        /*
 877         * The kmem_cache_nodes don't come and go as CPUs
 878         * come and go.  slab_mutex is sufficient
 879         * protection here.
 880         */
 881        cachep->node[node] = n;
 882
 883        return 0;
 884}
 885
 886#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
 887/*
 888 * Allocates and initializes node for a node on each slab cache, used for
 889 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
 890 * will be allocated off-node since memory is not yet online for the new node.
 891 * When hotplugging memory or a cpu, existing node are not replaced if
 892 * already in use.
 893 *
 894 * Must hold slab_mutex.
 895 */
 896static int init_cache_node_node(int node)
 897{
 898        int ret;
 899        struct kmem_cache *cachep;
 900
 901        list_for_each_entry(cachep, &slab_caches, list) {
 902                ret = init_cache_node(cachep, node, GFP_KERNEL);
 903                if (ret)
 904                        return ret;
 905        }
 906
 907        return 0;
 908}
 909#endif
 910
 911static int setup_kmem_cache_node(struct kmem_cache *cachep,
 912                                int node, gfp_t gfp, bool force_change)
 913{
 914        int ret = -ENOMEM;
 915        struct kmem_cache_node *n;
 916        struct array_cache *old_shared = NULL;
 917        struct array_cache *new_shared = NULL;
 918        struct alien_cache **new_alien = NULL;
 919        LIST_HEAD(list);
 920
 921        if (use_alien_caches) {
 922                new_alien = alloc_alien_cache(node, cachep->limit, gfp);
 923                if (!new_alien)
 924                        goto fail;
 925        }
 926
 927        if (cachep->shared) {
 928                new_shared = alloc_arraycache(node,
 929                        cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
 930                if (!new_shared)
 931                        goto fail;
 932        }
 933
 934        ret = init_cache_node(cachep, node, gfp);
 935        if (ret)
 936                goto fail;
 937
 938        n = get_node(cachep, node);
 939        spin_lock_irq(&n->list_lock);
 940        if (n->shared && force_change) {
 941                free_block(cachep, n->shared->entry,
 942                                n->shared->avail, node, &list);
 943                n->shared->avail = 0;
 944        }
 945
 946        if (!n->shared || force_change) {
 947                old_shared = n->shared;
 948                n->shared = new_shared;
 949                new_shared = NULL;
 950        }
 951
 952        if (!n->alien) {
 953                n->alien = new_alien;
 954                new_alien = NULL;
 955        }
 956
 957        spin_unlock_irq(&n->list_lock);
 958        slabs_destroy(cachep, &list);
 959
 960        /*
 961         * To protect lockless access to n->shared during irq disabled context.
 962         * If n->shared isn't NULL in irq disabled context, accessing to it is
 963         * guaranteed to be valid until irq is re-enabled, because it will be
 964         * freed after synchronize_sched().
 965         */
 966        if (old_shared && force_change)
 967                synchronize_sched();
 968
 969fail:
 970        kfree(old_shared);
 971        kfree(new_shared);
 972        free_alien_cache(new_alien);
 973
 974        return ret;
 975}
 976
 977#ifdef CONFIG_SMP
 978
 979static void cpuup_canceled(long cpu)
 980{
 981        struct kmem_cache *cachep;
 982        struct kmem_cache_node *n = NULL;
 983        int node = cpu_to_mem(cpu);
 984        const struct cpumask *mask = cpumask_of_node(node);
 985
 986        list_for_each_entry(cachep, &slab_caches, list) {
 987                struct array_cache *nc;
 988                struct array_cache *shared;
 989                struct alien_cache **alien;
 990                LIST_HEAD(list);
 991
 992                n = get_node(cachep, node);
 993                if (!n)
 994                        continue;
 995
 996                spin_lock_irq(&n->list_lock);
 997
 998                /* Free limit for this kmem_cache_node */
 999                n->free_limit -= cachep->batchcount;
1000
1001                /* cpu is dead; no one can alloc from it. */
1002                nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1003                if (nc) {
1004                        free_block(cachep, nc->entry, nc->avail, node, &list);
1005                        nc->avail = 0;
1006                }
1007
1008                if (!cpumask_empty(mask)) {
1009                        spin_unlock_irq(&n->list_lock);
1010                        goto free_slab;
1011                }
1012
1013                shared = n->shared;
1014                if (shared) {
1015                        free_block(cachep, shared->entry,
1016                                   shared->avail, node, &list);
1017                        n->shared = NULL;
1018                }
1019
1020                alien = n->alien;
1021                n->alien = NULL;
1022
1023                spin_unlock_irq(&n->list_lock);
1024
1025                kfree(shared);
1026                if (alien) {
1027                        drain_alien_cache(cachep, alien);
1028                        free_alien_cache(alien);
1029                }
1030
1031free_slab:
1032                slabs_destroy(cachep, &list);
1033        }
1034        /*
1035         * In the previous loop, all the objects were freed to
1036         * the respective cache's slabs,  now we can go ahead and
1037         * shrink each nodelist to its limit.
1038         */
1039        list_for_each_entry(cachep, &slab_caches, list) {
1040                n = get_node(cachep, node);
1041                if (!n)
1042                        continue;
1043                drain_freelist(cachep, n, INT_MAX);
1044        }
1045}
1046
1047static int cpuup_prepare(long cpu)
1048{
1049        struct kmem_cache *cachep;
1050        int node = cpu_to_mem(cpu);
1051        int err;
1052
1053        /*
1054         * We need to do this right in the beginning since
1055         * alloc_arraycache's are going to use this list.
1056         * kmalloc_node allows us to add the slab to the right
1057         * kmem_cache_node and not this cpu's kmem_cache_node
1058         */
1059        err = init_cache_node_node(node);
1060        if (err < 0)
1061                goto bad;
1062
1063        /*
1064         * Now we can go ahead with allocating the shared arrays and
1065         * array caches
1066         */
1067        list_for_each_entry(cachep, &slab_caches, list) {
1068                err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1069                if (err)
1070                        goto bad;
1071        }
1072
1073        return 0;
1074bad:
1075        cpuup_canceled(cpu);
1076        return -ENOMEM;
1077}
1078
1079int slab_prepare_cpu(unsigned int cpu)
1080{
1081        int err;
1082
1083        mutex_lock(&slab_mutex);
1084        err = cpuup_prepare(cpu);
1085        mutex_unlock(&slab_mutex);
1086        return err;
1087}
1088
1089/*
1090 * This is called for a failed online attempt and for a successful
1091 * offline.
1092 *
1093 * Even if all the cpus of a node are down, we don't free the
1094 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1095 * a kmalloc allocation from another cpu for memory from the node of
1096 * the cpu going down.  The list3 structure is usually allocated from
1097 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1098 */
1099int slab_dead_cpu(unsigned int cpu)
1100{
1101        mutex_lock(&slab_mutex);
1102        cpuup_canceled(cpu);
1103        mutex_unlock(&slab_mutex);
1104        return 0;
1105}
1106#endif
1107
1108static int slab_online_cpu(unsigned int cpu)
1109{
1110        start_cpu_timer(cpu);
1111        return 0;
1112}
1113
1114static int slab_offline_cpu(unsigned int cpu)
1115{
1116        /*
1117         * Shutdown cache reaper. Note that the slab_mutex is held so
1118         * that if cache_reap() is invoked it cannot do anything
1119         * expensive but will only modify reap_work and reschedule the
1120         * timer.
1121         */
1122        cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1123        /* Now the cache_reaper is guaranteed to be not running. */
1124        per_cpu(slab_reap_work, cpu).work.func = NULL;
1125        return 0;
1126}
1127
1128#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1129/*
1130 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1131 * Returns -EBUSY if all objects cannot be drained so that the node is not
1132 * removed.
1133 *
1134 * Must hold slab_mutex.
1135 */
1136static int __meminit drain_cache_node_node(int node)
1137{
1138        struct kmem_cache *cachep;
1139        int ret = 0;
1140
1141        list_for_each_entry(cachep, &slab_caches, list) {
1142                struct kmem_cache_node *n;
1143
1144                n = get_node(cachep, node);
1145                if (!n)
1146                        continue;
1147
1148                drain_freelist(cachep, n, INT_MAX);
1149
1150                if (!list_empty(&n->slabs_full) ||
1151                    !list_empty(&n->slabs_partial)) {
1152                        ret = -EBUSY;
1153                        break;
1154                }
1155        }
1156        return ret;
1157}
1158
1159static int __meminit slab_memory_callback(struct notifier_block *self,
1160                                        unsigned long action, void *arg)
1161{
1162        struct memory_notify *mnb = arg;
1163        int ret = 0;
1164        int nid;
1165
1166        nid = mnb->status_change_nid;
1167        if (nid < 0)
1168                goto out;
1169
1170        switch (action) {
1171        case MEM_GOING_ONLINE:
1172                mutex_lock(&slab_mutex);
1173                ret = init_cache_node_node(nid);
1174                mutex_unlock(&slab_mutex);
1175                break;
1176        case MEM_GOING_OFFLINE:
1177                mutex_lock(&slab_mutex);
1178                ret = drain_cache_node_node(nid);
1179                mutex_unlock(&slab_mutex);
1180                break;
1181        case MEM_ONLINE:
1182        case MEM_OFFLINE:
1183        case MEM_CANCEL_ONLINE:
1184        case MEM_CANCEL_OFFLINE:
1185                break;
1186        }
1187out:
1188        return notifier_from_errno(ret);
1189}
1190#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1191
1192/*
1193 * swap the static kmem_cache_node with kmalloced memory
1194 */
1195static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1196                                int nodeid)
1197{
1198        struct kmem_cache_node *ptr;
1199
1200        ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1201        BUG_ON(!ptr);
1202
1203        memcpy(ptr, list, sizeof(struct kmem_cache_node));
1204        /*
1205         * Do not assume that spinlocks can be initialized via memcpy:
1206         */
1207        spin_lock_init(&ptr->list_lock);
1208
1209        MAKE_ALL_LISTS(cachep, ptr, nodeid);
1210        cachep->node[nodeid] = ptr;
1211}
1212
1213/*
1214 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1215 * size of kmem_cache_node.
1216 */
1217static void __init set_up_node(struct kmem_cache *cachep, int index)
1218{
1219        int node;
1220
1221        for_each_online_node(node) {
1222                cachep->node[node] = &init_kmem_cache_node[index + node];
1223                cachep->node[node]->next_reap = jiffies +
1224                    REAPTIMEOUT_NODE +
1225                    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1226        }
1227}
1228
1229/*
1230 * Initialisation.  Called after the page allocator have been initialised and
1231 * before smp_init().
1232 */
1233void __init kmem_cache_init(void)
1234{
1235        int i;
1236
1237        BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1238                                        sizeof(struct rcu_head));
1239        kmem_cache = &kmem_cache_boot;
1240
1241        if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1242                use_alien_caches = 0;
1243
1244        for (i = 0; i < NUM_INIT_LISTS; i++)
1245                kmem_cache_node_init(&init_kmem_cache_node[i]);
1246
1247        /*
1248         * Fragmentation resistance on low memory - only use bigger
1249         * page orders on machines with more than 32MB of memory if
1250         * not overridden on the command line.
1251         */
1252        if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1253                slab_max_order = SLAB_MAX_ORDER_HI;
1254
1255        /* Bootstrap is tricky, because several objects are allocated
1256         * from caches that do not exist yet:
1257         * 1) initialize the kmem_cache cache: it contains the struct
1258         *    kmem_cache structures of all caches, except kmem_cache itself:
1259         *    kmem_cache is statically allocated.
1260         *    Initially an __init data area is used for the head array and the
1261         *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1262         *    array at the end of the bootstrap.
1263         * 2) Create the first kmalloc cache.
1264         *    The struct kmem_cache for the new cache is allocated normally.
1265         *    An __init data area is used for the head array.
1266         * 3) Create the remaining kmalloc caches, with minimally sized
1267         *    head arrays.
1268         * 4) Replace the __init data head arrays for kmem_cache and the first
1269         *    kmalloc cache with kmalloc allocated arrays.
1270         * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1271         *    the other cache's with kmalloc allocated memory.
1272         * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1273         */
1274
1275        /* 1) create the kmem_cache */
1276
1277        /*
1278         * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1279         */
1280        create_boot_cache(kmem_cache, "kmem_cache",
1281                offsetof(struct kmem_cache, node) +
1282                                  nr_node_ids * sizeof(struct kmem_cache_node *),
1283                                  SLAB_HWCACHE_ALIGN);
1284        list_add(&kmem_cache->list, &slab_caches);
1285        slab_state = PARTIAL;
1286
1287        /*
1288         * Initialize the caches that provide memory for the  kmem_cache_node
1289         * structures first.  Without this, further allocations will bug.
1290         */
1291        kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1292                                kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1293        slab_state = PARTIAL_NODE;
1294        setup_kmalloc_cache_index_table();
1295
1296        slab_early_init = 0;
1297
1298        /* 5) Replace the bootstrap kmem_cache_node */
1299        {
1300                int nid;
1301
1302                for_each_online_node(nid) {
1303                        init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1304
1305                        init_list(kmalloc_caches[INDEX_NODE],
1306                                          &init_kmem_cache_node[SIZE_NODE + nid], nid);
1307                }
1308        }
1309
1310        create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1311}
1312
1313void __init kmem_cache_init_late(void)
1314{
1315        struct kmem_cache *cachep;
1316
1317        slab_state = UP;
1318
1319        /* 6) resize the head arrays to their final sizes */
1320        mutex_lock(&slab_mutex);
1321        list_for_each_entry(cachep, &slab_caches, list)
1322                if (enable_cpucache(cachep, GFP_NOWAIT))
1323                        BUG();
1324        mutex_unlock(&slab_mutex);
1325
1326        /* Done! */
1327        slab_state = FULL;
1328
1329#ifdef CONFIG_NUMA
1330        /*
1331         * Register a memory hotplug callback that initializes and frees
1332         * node.
1333         */
1334        hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1335#endif
1336
1337        /*
1338         * The reap timers are started later, with a module init call: That part
1339         * of the kernel is not yet operational.
1340         */
1341}
1342
1343static int __init cpucache_init(void)
1344{
1345        int ret;
1346
1347        /*
1348         * Register the timers that return unneeded pages to the page allocator
1349         */
1350        ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1351                                slab_online_cpu, slab_offline_cpu);
1352        WARN_ON(ret < 0);
1353
1354        /* Done! */
1355        slab_state = FULL;
1356        return 0;
1357}
1358__initcall(cpucache_init);
1359
1360static noinline void
1361slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1362{
1363#if DEBUG
1364        struct kmem_cache_node *n;
1365        unsigned long flags;
1366        int node;
1367        static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1368                                      DEFAULT_RATELIMIT_BURST);
1369
1370        if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1371                return;
1372
1373        pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1374                nodeid, gfpflags, &gfpflags);
1375        pr_warn("  cache: %s, object size: %d, order: %d\n",
1376                cachep->name, cachep->size, cachep->gfporder);
1377
1378        for_each_kmem_cache_node(cachep, node, n) {
1379                unsigned long total_slabs, free_slabs, free_objs;
1380
1381                spin_lock_irqsave(&n->list_lock, flags);
1382                total_slabs = n->total_slabs;
1383                free_slabs = n->free_slabs;
1384                free_objs = n->free_objects;
1385                spin_unlock_irqrestore(&n->list_lock, flags);
1386
1387                pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1388                        node, total_slabs - free_slabs, total_slabs,
1389                        (total_slabs * cachep->num) - free_objs,
1390                        total_slabs * cachep->num);
1391        }
1392#endif
1393}
1394
1395/*
1396 * Interface to system's page allocator. No need to hold the
1397 * kmem_cache_node ->list_lock.
1398 *
1399 * If we requested dmaable memory, we will get it. Even if we
1400 * did not request dmaable memory, we might get it, but that
1401 * would be relatively rare and ignorable.
1402 */
1403static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1404                                                                int nodeid)
1405{
1406        struct page *page;
1407        int nr_pages;
1408
1409        flags |= cachep->allocflags;
1410        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1411                flags |= __GFP_RECLAIMABLE;
1412
1413        page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1414        if (!page) {
1415                slab_out_of_memory(cachep, flags, nodeid);
1416                return NULL;
1417        }
1418
1419        if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1420                __free_pages(page, cachep->gfporder);
1421                return NULL;
1422        }
1423
1424        nr_pages = (1 << cachep->gfporder);
1425        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1426                add_zone_page_state(page_zone(page),
1427                        NR_SLAB_RECLAIMABLE, nr_pages);
1428        else
1429                add_zone_page_state(page_zone(page),
1430                        NR_SLAB_UNRECLAIMABLE, nr_pages);
1431
1432        __SetPageSlab(page);
1433        /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1434        if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1435                SetPageSlabPfmemalloc(page);
1436
1437        if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1438                kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1439
1440                if (cachep->ctor)
1441                        kmemcheck_mark_uninitialized_pages(page, nr_pages);
1442                else
1443                        kmemcheck_mark_unallocated_pages(page, nr_pages);
1444        }
1445
1446        return page;
1447}
1448
1449/*
1450 * Interface to system's page release.
1451 */
1452static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1453{
1454        int order = cachep->gfporder;
1455        unsigned long nr_freed = (1 << order);
1456
1457        kmemcheck_free_shadow(page, order);
1458
1459        if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1460                sub_zone_page_state(page_zone(page),
1461                                NR_SLAB_RECLAIMABLE, nr_freed);
1462        else
1463                sub_zone_page_state(page_zone(page),
1464                                NR_SLAB_UNRECLAIMABLE, nr_freed);
1465
1466        BUG_ON(!PageSlab(page));
1467        __ClearPageSlabPfmemalloc(page);
1468        __ClearPageSlab(page);
1469        page_mapcount_reset(page);
1470        page->mapping = NULL;
1471
1472        if (current->reclaim_state)
1473                current->reclaim_state->reclaimed_slab += nr_freed;
1474        memcg_uncharge_slab(page, order, cachep);
1475        __free_pages(page, order);
1476}
1477
1478static void kmem_rcu_free(struct rcu_head *head)
1479{
1480        struct kmem_cache *cachep;
1481        struct page *page;
1482
1483        page = container_of(head, struct page, rcu_head);
1484        cachep = page->slab_cache;
1485
1486        kmem_freepages(cachep, page);
1487}
1488
1489#if DEBUG
1490static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1491{
1492        if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1493                (cachep->size % PAGE_SIZE) == 0)
1494                return true;
1495
1496        return false;
1497}
1498
1499#ifdef CONFIG_DEBUG_PAGEALLOC
1500static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1501                            unsigned long caller)
1502{
1503        int size = cachep->object_size;
1504
1505        addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1506
1507        if (size < 5 * sizeof(unsigned long))
1508                return;
1509
1510        *addr++ = 0x12345678;
1511        *addr++ = caller;
1512        *addr++ = smp_processor_id();
1513        size -= 3 * sizeof(unsigned long);
1514        {
1515                unsigned long *sptr = &caller;
1516                unsigned long svalue;
1517
1518                while (!kstack_end(sptr)) {
1519                        svalue = *sptr++;
1520                        if (kernel_text_address(svalue)) {
1521                                *addr++ = svalue;
1522                                size -= sizeof(unsigned long);
1523                                if (size <= sizeof(unsigned long))
1524                                        break;
1525                        }
1526                }
1527
1528        }
1529        *addr++ = 0x87654321;
1530}
1531
1532static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1533                                int map, unsigned long caller)
1534{
1535        if (!is_debug_pagealloc_cache(cachep))
1536                return;
1537
1538        if (caller)
1539                store_stackinfo(cachep, objp, caller);
1540
1541        kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1542}
1543
1544#else
1545static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1546                                int map, unsigned long caller) {}
1547
1548#endif
1549
1550static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1551{
1552        int size = cachep->object_size;
1553        addr = &((char *)addr)[obj_offset(cachep)];
1554
1555        memset(addr, val, size);
1556        *(unsigned char *)(addr + size - 1) = POISON_END;
1557}
1558
1559static void dump_line(char *data, int offset, int limit)
1560{
1561        int i;
1562        unsigned char error = 0;
1563        int bad_count = 0;
1564
1565        pr_err("%03x: ", offset);
1566        for (i = 0; i < limit; i++) {
1567                if (data[offset + i] != POISON_FREE) {
1568                        error = data[offset + i];
1569                        bad_count++;
1570                }
1571        }
1572        print_hex_dump(KERN_CONT, "", 0, 16, 1,
1573                        &data[offset], limit, 1);
1574
1575        if (bad_count == 1) {
1576                error ^= POISON_FREE;
1577                if (!(error & (error - 1))) {
1578                        pr_err("Single bit error detected. Probably bad RAM.\n");
1579#ifdef CONFIG_X86
1580                        pr_err("Run memtest86+ or a similar memory test tool.\n");
1581#else
1582                        pr_err("Run a memory test tool.\n");
1583#endif
1584                }
1585        }
1586}
1587#endif
1588
1589#if DEBUG
1590
1591static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1592{
1593        int i, size;
1594        char *realobj;
1595
1596        if (cachep->flags & SLAB_RED_ZONE) {
1597                pr_err("Redzone: 0x%llx/0x%llx\n",
1598                       *dbg_redzone1(cachep, objp),
1599                       *dbg_redzone2(cachep, objp));
1600        }
1601
1602        if (cachep->flags & SLAB_STORE_USER) {
1603                pr_err("Last user: [<%p>](%pSR)\n",
1604                       *dbg_userword(cachep, objp),
1605                       *dbg_userword(cachep, objp));
1606        }
1607        realobj = (char *)objp + obj_offset(cachep);
1608        size = cachep->object_size;
1609        for (i = 0; i < size && lines; i += 16, lines--) {
1610                int limit;
1611                limit = 16;
1612                if (i + limit > size)
1613                        limit = size - i;
1614                dump_line(realobj, i, limit);
1615        }
1616}
1617
1618static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1619{
1620        char *realobj;
1621        int size, i;
1622        int lines = 0;
1623
1624        if (is_debug_pagealloc_cache(cachep))
1625                return;
1626
1627        realobj = (char *)objp + obj_offset(cachep);
1628        size = cachep->object_size;
1629
1630        for (i = 0; i < size; i++) {
1631                char exp = POISON_FREE;
1632                if (i == size - 1)
1633                        exp = POISON_END;
1634                if (realobj[i] != exp) {
1635                        int limit;
1636                        /* Mismatch ! */
1637                        /* Print header */
1638                        if (lines == 0) {
1639                                pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1640                                       print_tainted(), cachep->name,
1641                                       realobj, size);
1642                                print_objinfo(cachep, objp, 0);
1643                        }
1644                        /* Hexdump the affected line */
1645                        i = (i / 16) * 16;
1646                        limit = 16;
1647                        if (i + limit > size)
1648                                limit = size - i;
1649                        dump_line(realobj, i, limit);
1650                        i += 16;
1651                        lines++;
1652                        /* Limit to 5 lines */
1653                        if (lines > 5)
1654                                break;
1655                }
1656        }
1657        if (lines != 0) {
1658                /* Print some data about the neighboring objects, if they
1659                 * exist:
1660                 */
1661                struct page *page = virt_to_head_page(objp);
1662                unsigned int objnr;
1663
1664                objnr = obj_to_index(cachep, page, objp);
1665                if (objnr) {
1666                        objp = index_to_obj(cachep, page, objnr - 1);
1667                        realobj = (char *)objp + obj_offset(cachep);
1668                        pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1669                        print_objinfo(cachep, objp, 2);
1670                }
1671                if (objnr + 1 < cachep->num) {
1672                        objp = index_to_obj(cachep, page, objnr + 1);
1673                        realobj = (char *)objp + obj_offset(cachep);
1674                        pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1675                        print_objinfo(cachep, objp, 2);
1676                }
1677        }
1678}
1679#endif
1680
1681#if DEBUG
1682static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1683                                                struct page *page)
1684{
1685        int i;
1686
1687        if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1688                poison_obj(cachep, page->freelist - obj_offset(cachep),
1689                        POISON_FREE);
1690        }
1691
1692        for (i = 0; i < cachep->num; i++) {
1693                void *objp = index_to_obj(cachep, page, i);
1694
1695                if (cachep->flags & SLAB_POISON) {
1696                        check_poison_obj(cachep, objp);
1697                        slab_kernel_map(cachep, objp, 1, 0);
1698                }
1699                if (cachep->flags & SLAB_RED_ZONE) {
1700                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1701                                slab_error(cachep, "start of a freed object was overwritten");
1702                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1703                                slab_error(cachep, "end of a freed object was overwritten");
1704                }
1705        }
1706}
1707#else
1708static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1709                                                struct page *page)
1710{
1711}
1712#endif
1713
1714/**
1715 * slab_destroy - destroy and release all objects in a slab
1716 * @cachep: cache pointer being destroyed
1717 * @page: page pointer being destroyed
1718 *
1719 * Destroy all the objs in a slab page, and release the mem back to the system.
1720 * Before calling the slab page must have been unlinked from the cache. The
1721 * kmem_cache_node ->list_lock is not held/needed.
1722 */
1723static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1724{
1725        void *freelist;
1726
1727        freelist = page->freelist;
1728        slab_destroy_debugcheck(cachep, page);
1729        if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
1730                call_rcu(&page->rcu_head, kmem_rcu_free);
1731        else
1732                kmem_freepages(cachep, page);
1733
1734        /*
1735         * From now on, we don't use freelist
1736         * although actual page can be freed in rcu context
1737         */
1738        if (OFF_SLAB(cachep))
1739                kmem_cache_free(cachep->freelist_cache, freelist);
1740}
1741
1742static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1743{
1744        struct page *page, *n;
1745
1746        list_for_each_entry_safe(page, n, list, lru) {
1747                list_del(&page->lru);
1748                slab_destroy(cachep, page);
1749        }
1750}
1751
1752/**
1753 * calculate_slab_order - calculate size (page order) of slabs
1754 * @cachep: pointer to the cache that is being created
1755 * @size: size of objects to be created in this cache.
1756 * @flags: slab allocation flags
1757 *
1758 * Also calculates the number of objects per slab.
1759 *
1760 * This could be made much more intelligent.  For now, try to avoid using
1761 * high order pages for slabs.  When the gfp() functions are more friendly
1762 * towards high-order requests, this should be changed.
1763 */
1764static size_t calculate_slab_order(struct kmem_cache *cachep,
1765                                size_t size, unsigned long flags)
1766{
1767        size_t left_over = 0;
1768        int gfporder;
1769
1770        for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1771                unsigned int num;
1772                size_t remainder;
1773
1774                num = cache_estimate(gfporder, size, flags, &remainder);
1775                if (!num)
1776                        continue;
1777
1778                /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1779                if (num > SLAB_OBJ_MAX_NUM)
1780                        break;
1781
1782                if (flags & CFLGS_OFF_SLAB) {
1783                        struct kmem_cache *freelist_cache;
1784                        size_t freelist_size;
1785
1786                        freelist_size = num * sizeof(freelist_idx_t);
1787                        freelist_cache = kmalloc_slab(freelist_size, 0u);
1788                        if (!freelist_cache)
1789                                continue;
1790
1791                        /*
1792                         * Needed to avoid possible looping condition
1793                         * in cache_grow_begin()
1794                         */
1795                        if (OFF_SLAB(freelist_cache))
1796                                continue;
1797
1798                        /* check if off slab has enough benefit */
1799                        if (freelist_cache->size > cachep->size / 2)
1800                                continue;
1801                }
1802
1803                /* Found something acceptable - save it away */
1804                cachep->num = num;
1805                cachep->gfporder = gfporder;
1806                left_over = remainder;
1807
1808                /*
1809                 * A VFS-reclaimable slab tends to have most allocations
1810                 * as GFP_NOFS and we really don't want to have to be allocating
1811                 * higher-order pages when we are unable to shrink dcache.
1812                 */
1813                if (flags & SLAB_RECLAIM_ACCOUNT)
1814                        break;
1815
1816                /*
1817                 * Large number of objects is good, but very large slabs are
1818                 * currently bad for the gfp()s.
1819                 */
1820                if (gfporder >= slab_max_order)
1821                        break;
1822
1823                /*
1824                 * Acceptable internal fragmentation?
1825                 */
1826                if (left_over * 8 <= (PAGE_SIZE << gfporder))
1827                        break;
1828        }
1829        return left_over;
1830}
1831
1832static struct array_cache __percpu *alloc_kmem_cache_cpus(
1833                struct kmem_cache *cachep, int entries, int batchcount)
1834{
1835        int cpu;
1836        size_t size;
1837        struct array_cache __percpu *cpu_cache;
1838
1839        size = sizeof(void *) * entries + sizeof(struct array_cache);
1840        cpu_cache = __alloc_percpu(size, sizeof(void *));
1841
1842        if (!cpu_cache)
1843                return NULL;
1844
1845        for_each_possible_cpu(cpu) {
1846                init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1847                                entries, batchcount);
1848        }
1849
1850        return cpu_cache;
1851}
1852
1853static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1854{
1855        if (slab_state >= FULL)
1856                return enable_cpucache(cachep, gfp);
1857
1858        cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1859        if (!cachep->cpu_cache)
1860                return 1;
1861
1862        if (slab_state == DOWN) {
1863                /* Creation of first cache (kmem_cache). */
1864                set_up_node(kmem_cache, CACHE_CACHE);
1865        } else if (slab_state == PARTIAL) {
1866                /* For kmem_cache_node */
1867                set_up_node(cachep, SIZE_NODE);
1868        } else {
1869                int node;
1870
1871                for_each_online_node(node) {
1872                        cachep->node[node] = kmalloc_node(
1873                                sizeof(struct kmem_cache_node), gfp, node);
1874                        BUG_ON(!cachep->node[node]);
1875                        kmem_cache_node_init(cachep->node[node]);
1876                }
1877        }
1878
1879        cachep->node[numa_mem_id()]->next_reap =
1880                        jiffies + REAPTIMEOUT_NODE +
1881                        ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1882
1883        cpu_cache_get(cachep)->avail = 0;
1884        cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1885        cpu_cache_get(cachep)->batchcount = 1;
1886        cpu_cache_get(cachep)->touched = 0;
1887        cachep->batchcount = 1;
1888        cachep->limit = BOOT_CPUCACHE_ENTRIES;
1889        return 0;
1890}
1891
1892unsigned long kmem_cache_flags(unsigned long object_size,
1893        unsigned long flags, const char *name,
1894        void (*ctor)(void *))
1895{
1896        return flags;
1897}
1898
1899struct kmem_cache *
1900__kmem_cache_alias(const char *name, size_t size, size_t align,
1901                   unsigned long flags, void (*ctor)(void *))
1902{
1903        struct kmem_cache *cachep;
1904
1905        cachep = find_mergeable(size, align, flags, name, ctor);
1906        if (cachep) {
1907                cachep->refcount++;
1908
1909                /*
1910                 * Adjust the object sizes so that we clear
1911                 * the complete object on kzalloc.
1912                 */
1913                cachep->object_size = max_t(int, cachep->object_size, size);
1914        }
1915        return cachep;
1916}
1917
1918static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1919                        size_t size, unsigned long flags)
1920{
1921        size_t left;
1922
1923        cachep->num = 0;
1924
1925        if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
1926                return false;
1927
1928        left = calculate_slab_order(cachep, size,
1929                        flags | CFLGS_OBJFREELIST_SLAB);
1930        if (!cachep->num)
1931                return false;
1932
1933        if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1934                return false;
1935
1936        cachep->colour = left / cachep->colour_off;
1937
1938        return true;
1939}
1940
1941static bool set_off_slab_cache(struct kmem_cache *cachep,
1942                        size_t size, unsigned long flags)
1943{
1944        size_t left;
1945
1946        cachep->num = 0;
1947
1948        /*
1949         * Always use on-slab management when SLAB_NOLEAKTRACE
1950         * to avoid recursive calls into kmemleak.
1951         */
1952        if (flags & SLAB_NOLEAKTRACE)
1953                return false;
1954
1955        /*
1956         * Size is large, assume best to place the slab management obj
1957         * off-slab (should allow better packing of objs).
1958         */
1959        left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1960        if (!cachep->num)
1961                return false;
1962
1963        /*
1964         * If the slab has been placed off-slab, and we have enough space then
1965         * move it on-slab. This is at the expense of any extra colouring.
1966         */
1967        if (left >= cachep->num * sizeof(freelist_idx_t))
1968                return false;
1969
1970        cachep->colour = left / cachep->colour_off;
1971
1972        return true;
1973}
1974
1975static bool set_on_slab_cache(struct kmem_cache *cachep,
1976                        size_t size, unsigned long flags)
1977{
1978        size_t left;
1979
1980        cachep->num = 0;
1981
1982        left = calculate_slab_order(cachep, size, flags);
1983        if (!cachep->num)
1984                return false;
1985
1986        cachep->colour = left / cachep->colour_off;
1987
1988        return true;
1989}
1990
1991/**
1992 * __kmem_cache_create - Create a cache.
1993 * @cachep: cache management descriptor
1994 * @flags: SLAB flags
1995 *
1996 * Returns a ptr to the cache on success, NULL on failure.
1997 * Cannot be called within a int, but can be interrupted.
1998 * The @ctor is run when new pages are allocated by the cache.
1999 *
2000 * The flags are
2001 *
2002 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2003 * to catch references to uninitialised memory.
2004 *
2005 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2006 * for buffer overruns.
2007 *
2008 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2009 * cacheline.  This can be beneficial if you're counting cycles as closely
2010 * as davem.
2011 */
2012int
2013__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2014{
2015        size_t ralign = BYTES_PER_WORD;
2016        gfp_t gfp;
2017        int err;
2018        size_t size = cachep->size;
2019
2020#if DEBUG
2021#if FORCED_DEBUG
2022        /*
2023         * Enable redzoning and last user accounting, except for caches with
2024         * large objects, if the increased size would increase the object size
2025         * above the next power of two: caches with object sizes just above a
2026         * power of two have a significant amount of internal fragmentation.
2027         */
2028        if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2029                                                2 * sizeof(unsigned long long)))
2030                flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2031        if (!(flags & SLAB_DESTROY_BY_RCU))
2032                flags |= SLAB_POISON;
2033#endif
2034#endif
2035
2036        /*
2037         * Check that size is in terms of words.  This is needed to avoid
2038         * unaligned accesses for some archs when redzoning is used, and makes
2039         * sure any on-slab bufctl's are also correctly aligned.
2040         */
2041        if (size & (BYTES_PER_WORD - 1)) {
2042                size += (BYTES_PER_WORD - 1);
2043                size &= ~(BYTES_PER_WORD - 1);
2044        }
2045
2046        if (flags & SLAB_RED_ZONE) {
2047                ralign = REDZONE_ALIGN;
2048                /* If redzoning, ensure that the second redzone is suitably
2049                 * aligned, by adjusting the object size accordingly. */
2050                size += REDZONE_ALIGN - 1;
2051                size &= ~(REDZONE_ALIGN - 1);
2052        }
2053
2054        /* 3) caller mandated alignment */
2055        if (ralign < cachep->align) {
2056                ralign = cachep->align;
2057        }
2058        /* disable debug if necessary */
2059        if (ralign > __alignof__(unsigned long long))
2060                flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2061        /*
2062         * 4) Store it.
2063         */
2064        cachep->align = ralign;
2065        cachep->colour_off = cache_line_size();
2066        /* Offset must be a multiple of the alignment. */
2067        if (cachep->colour_off < cachep->align)
2068                cachep->colour_off = cachep->align;
2069
2070        if (slab_is_available())
2071                gfp = GFP_KERNEL;
2072        else
2073                gfp = GFP_NOWAIT;
2074
2075#if DEBUG
2076
2077        /*
2078         * Both debugging options require word-alignment which is calculated
2079         * into align above.
2080         */
2081        if (flags & SLAB_RED_ZONE) {
2082                /* add space for red zone words */
2083                cachep->obj_offset += sizeof(unsigned long long);
2084                size += 2 * sizeof(unsigned long long);
2085        }
2086        if (flags & SLAB_STORE_USER) {
2087                /* user store requires one word storage behind the end of
2088                 * the real object. But if the second red zone needs to be
2089                 * aligned to 64 bits, we must allow that much space.
2090                 */
2091                if (flags & SLAB_RED_ZONE)
2092                        size += REDZONE_ALIGN;
2093                else
2094                        size += BYTES_PER_WORD;
2095        }
2096#endif
2097
2098        kasan_cache_create(cachep, &size, &flags);
2099
2100        size = ALIGN(size, cachep->align);
2101        /*
2102         * We should restrict the number of objects in a slab to implement
2103         * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2104         */
2105        if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2106                size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2107
2108#if DEBUG
2109        /*
2110         * To activate debug pagealloc, off-slab management is necessary
2111         * requirement. In early phase of initialization, small sized slab
2112         * doesn't get initialized so it would not be possible. So, we need
2113         * to check size >= 256. It guarantees that all necessary small
2114         * sized slab is initialized in current slab initialization sequence.
2115         */
2116        if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2117                size >= 256 && cachep->object_size > cache_line_size()) {
2118                if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2119                        size_t tmp_size = ALIGN(size, PAGE_SIZE);
2120
2121                        if (set_off_slab_cache(cachep, tmp_size, flags)) {
2122                                flags |= CFLGS_OFF_SLAB;
2123                                cachep->obj_offset += tmp_size - size;
2124                                size = tmp_size;
2125                                goto done;
2126                        }
2127                }
2128        }
2129#endif
2130
2131        if (set_objfreelist_slab_cache(cachep, size, flags)) {
2132                flags |= CFLGS_OBJFREELIST_SLAB;
2133                goto done;
2134        }
2135
2136        if (set_off_slab_cache(cachep, size, flags)) {
2137                flags |= CFLGS_OFF_SLAB;
2138                goto done;
2139        }
2140
2141        if (set_on_slab_cache(cachep, size, flags))
2142                goto done;
2143
2144        return -E2BIG;
2145
2146done:
2147        cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2148        cachep->flags = flags;
2149        cachep->allocflags = __GFP_COMP;
2150        if (flags & SLAB_CACHE_DMA)
2151                cachep->allocflags |= GFP_DMA;
2152        cachep->size = size;
2153        cachep->reciprocal_buffer_size = reciprocal_value(size);
2154
2155#if DEBUG
2156        /*
2157         * If we're going to use the generic kernel_map_pages()
2158         * poisoning, then it's going to smash the contents of
2159         * the redzone and userword anyhow, so switch them off.
2160         */
2161        if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2162                (cachep->flags & SLAB_POISON) &&
2163                is_debug_pagealloc_cache(cachep))
2164                cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2165#endif
2166
2167        if (OFF_SLAB(cachep)) {
2168                cachep->freelist_cache =
2169                        kmalloc_slab(cachep->freelist_size, 0u);
2170        }
2171
2172        err = setup_cpu_cache(cachep, gfp);
2173        if (err) {
2174                __kmem_cache_release(cachep);
2175                return err;
2176        }
2177
2178        return 0;
2179}
2180
2181#if DEBUG
2182static void check_irq_off(void)
2183{
2184        BUG_ON(!irqs_disabled());
2185}
2186
2187static void check_irq_on(void)
2188{
2189        BUG_ON(irqs_disabled());
2190}
2191
2192static void check_mutex_acquired(void)
2193{
2194        BUG_ON(!mutex_is_locked(&slab_mutex));
2195}
2196
2197static void check_spinlock_acquired(struct kmem_cache *cachep)
2198{
2199#ifdef CONFIG_SMP
2200        check_irq_off();
2201        assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2202#endif
2203}
2204
2205static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2206{
2207#ifdef CONFIG_SMP
2208        check_irq_off();
2209        assert_spin_locked(&get_node(cachep, node)->list_lock);
2210#endif
2211}
2212
2213#else
2214#define check_irq_off() do { } while(0)
2215#define check_irq_on()  do { } while(0)
2216#define check_mutex_acquired()  do { } while(0)
2217#define check_spinlock_acquired(x) do { } while(0)
2218#define check_spinlock_acquired_node(x, y) do { } while(0)
2219#endif
2220
2221static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2222                                int node, bool free_all, struct list_head *list)
2223{
2224        int tofree;
2225
2226        if (!ac || !ac->avail)
2227                return;
2228
2229        tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2230        if (tofree > ac->avail)
2231                tofree = (ac->avail + 1) / 2;
2232
2233        free_block(cachep, ac->entry, tofree, node, list);
2234        ac->avail -= tofree;
2235        memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2236}
2237
2238static void do_drain(void *arg)
2239{
2240        struct kmem_cache *cachep = arg;
2241        struct array_cache *ac;
2242        int node = numa_mem_id();
2243        struct kmem_cache_node *n;
2244        LIST_HEAD(list);
2245
2246        check_irq_off();
2247        ac = cpu_cache_get(cachep);
2248        n = get_node(cachep, node);
2249        spin_lock(&n->list_lock);
2250        free_block(cachep, ac->entry, ac->avail, node, &list);
2251        spin_unlock(&n->list_lock);
2252        slabs_destroy(cachep, &list);
2253        ac->avail = 0;
2254}
2255
2256static void drain_cpu_caches(struct kmem_cache *cachep)
2257{
2258        struct kmem_cache_node *n;
2259        int node;
2260        LIST_HEAD(list);
2261
2262        on_each_cpu(do_drain, cachep, 1);
2263        check_irq_on();
2264        for_each_kmem_cache_node(cachep, node, n)
2265                if (n->alien)
2266                        drain_alien_cache(cachep, n->alien);
2267
2268        for_each_kmem_cache_node(cachep, node, n) {
2269                spin_lock_irq(&n->list_lock);
2270                drain_array_locked(cachep, n->shared, node, true, &list);
2271                spin_unlock_irq(&n->list_lock);
2272
2273                slabs_destroy(cachep, &list);
2274        }
2275}
2276
2277/*
2278 * Remove slabs from the list of free slabs.
2279 * Specify the number of slabs to drain in tofree.
2280 *
2281 * Returns the actual number of slabs released.
2282 */
2283static int drain_freelist(struct kmem_cache *cache,
2284                        struct kmem_cache_node *n, int tofree)
2285{
2286        struct list_head *p;
2287        int nr_freed;
2288        struct page *page;
2289
2290        nr_freed = 0;
2291        while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2292
2293                spin_lock_irq(&n->list_lock);
2294                p = n->slabs_free.prev;
2295                if (p == &n->slabs_free) {
2296                        spin_unlock_irq(&n->list_lock);
2297                        goto out;
2298                }
2299
2300                page = list_entry(p, struct page, lru);
2301                list_del(&page->lru);
2302                n->free_slabs--;
2303                n->total_slabs--;
2304                /*
2305                 * Safe to drop the lock. The slab is no longer linked
2306                 * to the cache.
2307                 */
2308                n->free_objects -= cache->num;
2309                spin_unlock_irq(&n->list_lock);
2310                slab_destroy(cache, page);
2311                nr_freed++;
2312        }
2313out:
2314        return nr_freed;
2315}
2316
2317int __kmem_cache_shrink(struct kmem_cache *cachep)
2318{
2319        int ret = 0;
2320        int node;
2321        struct kmem_cache_node *n;
2322
2323        drain_cpu_caches(cachep);
2324
2325        check_irq_on();
2326        for_each_kmem_cache_node(cachep, node, n) {
2327                drain_freelist(cachep, n, INT_MAX);
2328
2329                ret += !list_empty(&n->slabs_full) ||
2330                        !list_empty(&n->slabs_partial);
2331        }
2332        return (ret ? 1 : 0);
2333}
2334
2335int __kmem_cache_shutdown(struct kmem_cache *cachep)
2336{
2337        return __kmem_cache_shrink(cachep);
2338}
2339
2340void __kmem_cache_release(struct kmem_cache *cachep)
2341{
2342        int i;
2343        struct kmem_cache_node *n;
2344
2345        cache_random_seq_destroy(cachep);
2346
2347        free_percpu(cachep->cpu_cache);
2348
2349        /* NUMA: free the node structures */
2350        for_each_kmem_cache_node(cachep, i, n) {
2351                kfree(n->shared);
2352                free_alien_cache(n->alien);
2353                kfree(n);
2354                cachep->node[i] = NULL;
2355        }
2356}
2357
2358/*
2359 * Get the memory for a slab management obj.
2360 *
2361 * For a slab cache when the slab descriptor is off-slab, the
2362 * slab descriptor can't come from the same cache which is being created,
2363 * Because if it is the case, that means we defer the creation of
2364 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2365 * And we eventually call down to __kmem_cache_create(), which
2366 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2367 * This is a "chicken-and-egg" problem.
2368 *
2369 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2370 * which are all initialized during kmem_cache_init().
2371 */
2372static void *alloc_slabmgmt(struct kmem_cache *cachep,
2373                                   struct page *page, int colour_off,
2374                                   gfp_t local_flags, int nodeid)
2375{
2376        void *freelist;
2377        void *addr = page_address(page);
2378
2379        page->s_mem = addr + colour_off;
2380        page->active = 0;
2381
2382        if (OBJFREELIST_SLAB(cachep))
2383                freelist = NULL;
2384        else if (OFF_SLAB(cachep)) {
2385                /* Slab management obj is off-slab. */
2386                freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2387                                              local_flags, nodeid);
2388                if (!freelist)
2389                        return NULL;
2390        } else {
2391                /* We will use last bytes at the slab for freelist */
2392                freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2393                                cachep->freelist_size;
2394        }
2395
2396        return freelist;
2397}
2398
2399static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2400{
2401        return ((freelist_idx_t *)page->freelist)[idx];
2402}
2403
2404static inline void set_free_obj(struct page *page,
2405                                        unsigned int idx, freelist_idx_t val)
2406{
2407        ((freelist_idx_t *)(page->freelist))[idx] = val;
2408}
2409
2410static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2411{
2412#if DEBUG
2413        int i;
2414
2415        for (i = 0; i < cachep->num; i++) {
2416                void *objp = index_to_obj(cachep, page, i);
2417
2418                if (cachep->flags & SLAB_STORE_USER)
2419                        *dbg_userword(cachep, objp) = NULL;
2420
2421                if (cachep->flags & SLAB_RED_ZONE) {
2422                        *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2423                        *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2424                }
2425                /*
2426                 * Constructors are not allowed to allocate memory from the same
2427                 * cache which they are a constructor for.  Otherwise, deadlock.
2428                 * They must also be threaded.
2429                 */
2430                if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2431                        kasan_unpoison_object_data(cachep,
2432                                                   objp + obj_offset(cachep));
2433                        cachep->ctor(objp + obj_offset(cachep));
2434                        kasan_poison_object_data(
2435                                cachep, objp + obj_offset(cachep));
2436                }
2437
2438                if (cachep->flags & SLAB_RED_ZONE) {
2439                        if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2440                                slab_error(cachep, "constructor overwrote the end of an object");
2441                        if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2442                                slab_error(cachep, "constructor overwrote the start of an object");
2443                }
2444                /* need to poison the objs? */
2445                if (cachep->flags & SLAB_POISON) {
2446                        poison_obj(cachep, objp, POISON_FREE);
2447                        slab_kernel_map(cachep, objp, 0, 0);
2448                }
2449        }
2450#endif
2451}
2452
2453#ifdef CONFIG_SLAB_FREELIST_RANDOM
2454/* Hold information during a freelist initialization */
2455union freelist_init_state {
2456        struct {
2457                unsigned int pos;
2458                unsigned int *list;
2459                unsigned int count;
2460        };
2461        struct rnd_state rnd_state;
2462};
2463
2464/*
2465 * Initialize the state based on the randomization methode available.
2466 * return true if the pre-computed list is available, false otherwize.
2467 */
2468static bool freelist_state_initialize(union freelist_init_state *state,
2469                                struct kmem_cache *cachep,
2470                                unsigned int count)
2471{
2472        bool ret;
2473        unsigned int rand;
2474
2475        /* Use best entropy available to define a random shift */
2476        rand = get_random_int();
2477
2478        /* Use a random state if the pre-computed list is not available */
2479        if (!cachep->random_seq) {
2480                prandom_seed_state(&state->rnd_state, rand);
2481                ret = false;
2482        } else {
2483                state->list = cachep->random_seq;
2484                state->count = count;
2485                state->pos = rand % count;
2486                ret = true;
2487        }
2488        return ret;
2489}
2490
2491/* Get the next entry on the list and randomize it using a random shift */
2492static freelist_idx_t next_random_slot(union freelist_init_state *state)
2493{
2494        if (state->pos >= state->count)
2495                state->pos = 0;
2496        return state->list[state->pos++];
2497}
2498
2499/* Swap two freelist entries */
2500static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2501{
2502        swap(((freelist_idx_t *)page->freelist)[a],
2503                ((freelist_idx_t *)page->freelist)[b]);
2504}
2505
2506/*
2507 * Shuffle the freelist initialization state based on pre-computed lists.
2508 * return true if the list was successfully shuffled, false otherwise.
2509 */
2510static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2511{
2512        unsigned int objfreelist = 0, i, rand, count = cachep->num;
2513        union freelist_init_state state;
2514        bool precomputed;
2515
2516        if (count < 2)
2517                return false;
2518
2519        precomputed = freelist_state_initialize(&state, cachep, count);
2520
2521        /* Take a random entry as the objfreelist */
2522        if (OBJFREELIST_SLAB(cachep)) {
2523                if (!precomputed)
2524                        objfreelist = count - 1;
2525                else
2526                        objfreelist = next_random_slot(&state);
2527                page->freelist = index_to_obj(cachep, page, objfreelist) +
2528                                                obj_offset(cachep);
2529                count--;
2530        }
2531
2532        /*
2533         * On early boot, generate the list dynamically.
2534         * Later use a pre-computed list for speed.
2535         */
2536        if (!precomputed) {
2537                for (i = 0; i < count; i++)
2538                        set_free_obj(page, i, i);
2539
2540                /* Fisher-Yates shuffle */
2541                for (i = count - 1; i > 0; i--) {
2542                        rand = prandom_u32_state(&state.rnd_state);
2543                        rand %= (i + 1);
2544                        swap_free_obj(page, i, rand);
2545                }
2546        } else {
2547                for (i = 0; i < count; i++)
2548                        set_free_obj(page, i, next_random_slot(&state));
2549        }
2550
2551        if (OBJFREELIST_SLAB(cachep))
2552                set_free_obj(page, cachep->num - 1, objfreelist);
2553
2554        return true;
2555}
2556#else
2557static inline bool shuffle_freelist(struct kmem_cache *cachep,
2558                                struct page *page)
2559{
2560        return false;
2561}
2562#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2563
2564static void cache_init_objs(struct kmem_cache *cachep,
2565                            struct page *page)
2566{
2567        int i;
2568        void *objp;
2569        bool shuffled;
2570
2571        cache_init_objs_debug(cachep, page);
2572
2573        /* Try to randomize the freelist if enabled */
2574        shuffled = shuffle_freelist(cachep, page);
2575
2576        if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2577                page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2578                                                obj_offset(cachep);
2579        }
2580
2581        for (i = 0; i < cachep->num; i++) {
2582                objp = index_to_obj(cachep, page, i);
2583                kasan_init_slab_obj(cachep, objp);
2584
2585                /* constructor could break poison info */
2586                if (DEBUG == 0 && cachep->ctor) {
2587                        kasan_unpoison_object_data(cachep, objp);
2588                        cachep->ctor(objp);
2589                        kasan_poison_object_data(cachep, objp);
2590                }
2591
2592                if (!shuffled)
2593                        set_free_obj(page, i, i);
2594        }
2595}
2596
2597static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2598{
2599        void *objp;
2600
2601        objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2602        page->active++;
2603
2604#if DEBUG
2605        if (cachep->flags & SLAB_STORE_USER)
2606                set_store_user_dirty(cachep);
2607#endif
2608
2609        return objp;
2610}
2611
2612static void slab_put_obj(struct kmem_cache *cachep,
2613                        struct page *page, void *objp)
2614{
2615        unsigned int objnr = obj_to_index(cachep, page, objp);
2616#if DEBUG
2617        unsigned int i;
2618
2619        /* Verify double free bug */
2620        for (i = page->active; i < cachep->num; i++) {
2621                if (get_free_obj(page, i) == objnr) {
2622                        pr_err("slab: double free detected in cache '%s', objp %p\n",
2623                               cachep->name, objp);
2624                        BUG();
2625                }
2626        }
2627#endif
2628        page->active--;
2629        if (!page->freelist)
2630                page->freelist = objp + obj_offset(cachep);
2631
2632        set_free_obj(page, page->active, objnr);
2633}
2634
2635/*
2636 * Map pages beginning at addr to the given cache and slab. This is required
2637 * for the slab allocator to be able to lookup the cache and slab of a
2638 * virtual address for kfree, ksize, and slab debugging.
2639 */
2640static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2641                           void *freelist)
2642{
2643        page->slab_cache = cache;
2644        page->freelist = freelist;
2645}
2646
2647/*
2648 * Grow (by 1) the number of slabs within a cache.  This is called by
2649 * kmem_cache_alloc() when there are no active objs left in a cache.
2650 */
2651static struct page *cache_grow_begin(struct kmem_cache *cachep,
2652                                gfp_t flags, int nodeid)
2653{
2654        void *freelist;
2655        size_t offset;
2656        gfp_t local_flags;
2657        int page_node;
2658        struct kmem_cache_node *n;
2659        struct page *page;
2660
2661        /*
2662         * Be lazy and only check for valid flags here,  keeping it out of the
2663         * critical path in kmem_cache_alloc().
2664         */
2665        if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2666                gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2667                flags &= ~GFP_SLAB_BUG_MASK;
2668                pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2669                                invalid_mask, &invalid_mask, flags, &flags);
2670                dump_stack();
2671        }
2672        local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2673
2674        check_irq_off();
2675        if (gfpflags_allow_blocking(local_flags))
2676                local_irq_enable();
2677
2678        /*
2679         * Get mem for the objs.  Attempt to allocate a physical page from
2680         * 'nodeid'.
2681         */
2682        page = kmem_getpages(cachep, local_flags, nodeid);
2683        if (!page)
2684                goto failed;
2685
2686        page_node = page_to_nid(page);
2687        n = get_node(cachep, page_node);
2688
2689        /* Get colour for the slab, and cal the next value. */
2690        n->colour_next++;
2691        if (n->colour_next >= cachep->colour)
2692                n->colour_next = 0;
2693
2694        offset = n->colour_next;
2695        if (offset >= cachep->colour)
2696                offset = 0;
2697
2698        offset *= cachep->colour_off;
2699
2700        /* Get slab management. */
2701        freelist = alloc_slabmgmt(cachep, page, offset,
2702                        local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2703        if (OFF_SLAB(cachep) && !freelist)
2704                goto opps1;
2705
2706        slab_map_pages(cachep, page, freelist);
2707
2708        kasan_poison_slab(page);
2709        cache_init_objs(cachep, page);
2710
2711        if (gfpflags_allow_blocking(local_flags))
2712                local_irq_disable();
2713
2714        return page;
2715
2716opps1:
2717        kmem_freepages(cachep, page);
2718failed:
2719        if (gfpflags_allow_blocking(local_flags))
2720                local_irq_disable();
2721        return NULL;
2722}
2723
2724static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2725{
2726        struct kmem_cache_node *n;
2727        void *list = NULL;
2728
2729        check_irq_off();
2730
2731        if (!page)
2732                return;
2733
2734        INIT_LIST_HEAD(&page->lru);
2735        n = get_node(cachep, page_to_nid(page));
2736
2737        spin_lock(&n->list_lock);
2738        n->total_slabs++;
2739        if (!page->active) {
2740                list_add_tail(&page->lru, &(n->slabs_free));
2741                n->free_slabs++;
2742        } else
2743                fixup_slab_list(cachep, n, page, &list);
2744
2745        STATS_INC_GROWN(cachep);
2746        n->free_objects += cachep->num - page->active;
2747        spin_unlock(&n->list_lock);
2748
2749        fixup_objfreelist_debug(cachep, &list);
2750}
2751
2752#if DEBUG
2753
2754/*
2755 * Perform extra freeing checks:
2756 * - detect bad pointers.
2757 * - POISON/RED_ZONE checking
2758 */
2759static void kfree_debugcheck(const void *objp)
2760{
2761        if (!virt_addr_valid(objp)) {
2762                pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2763                       (unsigned long)objp);
2764                BUG();
2765        }
2766}
2767
2768static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2769{
2770        unsigned long long redzone1, redzone2;
2771
2772        redzone1 = *dbg_redzone1(cache, obj);
2773        redzone2 = *dbg_redzone2(cache, obj);
2774
2775        /*
2776         * Redzone is ok.
2777         */
2778        if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2779                return;
2780
2781        if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2782                slab_error(cache, "double free detected");
2783        else
2784                slab_error(cache, "memory outside object was overwritten");
2785
2786        pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2787               obj, redzone1, redzone2);
2788}
2789
2790static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2791                                   unsigned long caller)
2792{
2793        unsigned int objnr;
2794        struct page *page;
2795
2796        BUG_ON(virt_to_cache(objp) != cachep);
2797
2798        objp -= obj_offset(cachep);
2799        kfree_debugcheck(objp);
2800        page = virt_to_head_page(objp);
2801
2802        if (cachep->flags & SLAB_RED_ZONE) {
2803                verify_redzone_free(cachep, objp);
2804                *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2805                *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2806        }
2807        if (cachep->flags & SLAB_STORE_USER) {
2808                set_store_user_dirty(cachep);
2809                *dbg_userword(cachep, objp) = (void *)caller;
2810        }
2811
2812        objnr = obj_to_index(cachep, page, objp);
2813
2814        BUG_ON(objnr >= cachep->num);
2815        BUG_ON(objp != index_to_obj(cachep, page, objnr));
2816
2817        if (cachep->flags & SLAB_POISON) {
2818                poison_obj(cachep, objp, POISON_FREE);
2819                slab_kernel_map(cachep, objp, 0, caller);
2820        }
2821        return objp;
2822}
2823
2824#else
2825#define kfree_debugcheck(x) do { } while(0)
2826#define cache_free_debugcheck(x,objp,z) (objp)
2827#endif
2828
2829static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2830                                                void **list)
2831{
2832#if DEBUG
2833        void *next = *list;
2834        void *objp;
2835
2836        while (next) {
2837                objp = next - obj_offset(cachep);
2838                next = *(void **)next;
2839                poison_obj(cachep, objp, POISON_FREE);
2840        }
2841#endif
2842}
2843
2844static inline void fixup_slab_list(struct kmem_cache *cachep,
2845                                struct kmem_cache_node *n, struct page *page,
2846                                void **list)
2847{
2848        /* move slabp to correct slabp list: */
2849        list_del(&page->lru);
2850        if (page->active == cachep->num) {
2851                list_add(&page->lru, &n->slabs_full);
2852                if (OBJFREELIST_SLAB(cachep)) {
2853#if DEBUG
2854                        /* Poisoning will be done without holding the lock */
2855                        if (cachep->flags & SLAB_POISON) {
2856                                void **objp = page->freelist;
2857
2858                                *objp = *list;
2859                                *list = objp;
2860                        }
2861#endif
2862                        page->freelist = NULL;
2863                }
2864        } else
2865                list_add(&page->lru, &n->slabs_partial);
2866}
2867
2868/* Try to find non-pfmemalloc slab if needed */
2869static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2870                                        struct page *page, bool pfmemalloc)
2871{
2872        if (!page)
2873                return NULL;
2874
2875        if (pfmemalloc)
2876                return page;
2877
2878        if (!PageSlabPfmemalloc(page))
2879                return page;
2880
2881        /* No need to keep pfmemalloc slab if we have enough free objects */
2882        if (n->free_objects > n->free_limit) {
2883                ClearPageSlabPfmemalloc(page);
2884                return page;
2885        }
2886
2887        /* Move pfmemalloc slab to the end of list to speed up next search */
2888        list_del(&page->lru);
2889        if (!page->active) {
2890                list_add_tail(&page->lru, &n->slabs_free);
2891                n->free_slabs++;
2892        } else
2893                list_add_tail(&page->lru, &n->slabs_partial);
2894
2895        list_for_each_entry(page, &n->slabs_partial, lru) {
2896                if (!PageSlabPfmemalloc(page))
2897                        return page;
2898        }
2899
2900        n->free_touched = 1;
2901        list_for_each_entry(page, &n->slabs_free, lru) {
2902                if (!PageSlabPfmemalloc(page)) {
2903                        n->free_slabs--;
2904                        return page;
2905                }
2906        }
2907
2908        return NULL;
2909}
2910
2911static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2912{
2913        struct page *page;
2914
2915        assert_spin_locked(&n->list_lock);
2916        page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2917        if (!page) {
2918                n->free_touched = 1;
2919                page = list_first_entry_or_null(&n->slabs_free, struct page,
2920                                                lru);
2921                if (page)
2922                        n->free_slabs--;
2923        }
2924
2925        if (sk_memalloc_socks())
2926                page = get_valid_first_slab(n, page, pfmemalloc);
2927
2928        return page;
2929}
2930
2931static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2932                                struct kmem_cache_node *n, gfp_t flags)
2933{
2934        struct page *page;
2935        void *obj;
2936        void *list = NULL;
2937
2938        if (!gfp_pfmemalloc_allowed(flags))
2939                return NULL;
2940
2941        spin_lock(&n->list_lock);
2942        page = get_first_slab(n, true);
2943        if (!page) {
2944                spin_unlock(&n->list_lock);
2945                return NULL;
2946        }
2947
2948        obj = slab_get_obj(cachep, page);
2949        n->free_objects--;
2950
2951        fixup_slab_list(cachep, n, page, &list);
2952
2953        spin_unlock(&n->list_lock);
2954        fixup_objfreelist_debug(cachep, &list);
2955
2956        return obj;
2957}
2958
2959/*
2960 * Slab list should be fixed up by fixup_slab_list() for existing slab
2961 * or cache_grow_end() for new slab
2962 */
2963static __always_inline int alloc_block(struct kmem_cache *cachep,
2964                struct array_cache *ac, struct page *page, int batchcount)
2965{
2966        /*
2967         * There must be at least one object available for
2968         * allocation.
2969         */
2970        BUG_ON(page->active >= cachep->num);
2971
2972        while (page->active < cachep->num && batchcount--) {
2973                STATS_INC_ALLOCED(cachep);
2974                STATS_INC_ACTIVE(cachep);
2975                STATS_SET_HIGH(cachep);
2976
2977                ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2978        }
2979
2980        return batchcount;
2981}
2982
2983static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2984{
2985        int batchcount;
2986        struct kmem_cache_node *n;
2987        struct array_cache *ac, *shared;
2988        int node;
2989        void *list = NULL;
2990        struct page *page;
2991
2992        check_irq_off();
2993        node = numa_mem_id();
2994
2995        ac = cpu_cache_get(cachep);
2996        batchcount = ac->batchcount;
2997        if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2998                /*
2999                 * If there was little recent activity on this cache, then
3000                 * perform only a partial refill.  Otherwise we could generate
3001                 * refill bouncing.
3002                 */
3003                batchcount = BATCHREFILL_LIMIT;
3004        }
3005        n = get_node(cachep, node);
3006
3007        BUG_ON(ac->avail > 0 || !n);
3008        shared = READ_ONCE(n->shared);
3009        if (!n->free_objects && (!shared || !shared->avail))
3010                goto direct_grow;
3011
3012        spin_lock(&n->list_lock);
3013        shared = READ_ONCE(n->shared);
3014
3015        /* See if we can refill from the shared array */
3016        if (shared && transfer_objects(ac, shared, batchcount)) {
3017                shared->touched = 1;
3018                goto alloc_done;
3019        }
3020
3021        while (batchcount > 0) {
3022                /* Get slab alloc is to come from. */
3023                page = get_first_slab(n, false);
3024                if (!page)
3025                        goto must_grow;
3026
3027                check_spinlock_acquired(cachep);
3028
3029                batchcount = alloc_block(cachep, ac, page, batchcount);
3030                fixup_slab_list(cachep, n, page, &list);
3031        }
3032
3033must_grow:
3034        n->free_objects -= ac->avail;
3035alloc_done:
3036        spin_unlock(&n->list_lock);
3037        fixup_objfreelist_debug(cachep, &list);
3038
3039direct_grow:
3040        if (unlikely(!ac->avail)) {
3041                /* Check if we can use obj in pfmemalloc slab */
3042                if (sk_memalloc_socks()) {
3043                        void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3044
3045                        if (obj)
3046                                return obj;
3047                }
3048
3049                page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3050
3051                /*
3052                 * cache_grow_begin() can reenable interrupts,
3053                 * then ac could change.
3054                 */
3055                ac = cpu_cache_get(cachep);
3056                if (!ac->avail && page)
3057                        alloc_block(cachep, ac, page, batchcount);
3058                cache_grow_end(cachep, page);
3059
3060                if (!ac->avail)
3061                        return NULL;
3062        }
3063        ac->touched = 1;
3064
3065        return ac->entry[--ac->avail];
3066}
3067
3068static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3069                                                gfp_t flags)
3070{
3071        might_sleep_if(gfpflags_allow_blocking(flags));
3072}
3073
3074#if DEBUG
3075static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3076                                gfp_t flags, void *objp, unsigned long caller)
3077{
3078        if (!objp)
3079                return objp;
3080        if (cachep->flags & SLAB_POISON) {
3081                check_poison_obj(cachep, objp);
3082                slab_kernel_map(cachep, objp, 1, 0);
3083                poison_obj(cachep, objp, POISON_INUSE);
3084        }
3085        if (cachep->flags & SLAB_STORE_USER)
3086                *dbg_userword(cachep, objp) = (void *)caller;
3087
3088        if (cachep->flags & SLAB_RED_ZONE) {
3089                if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3090                                *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3091                        slab_error(cachep, "double free, or memory outside object was overwritten");
3092                        pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3093                               objp, *dbg_redzone1(cachep, objp),
3094                               *dbg_redzone2(cachep, objp));
3095                }
3096                *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3097                *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3098        }
3099
3100        objp += obj_offset(cachep);
3101        if (cachep->ctor && cachep->flags & SLAB_POISON)
3102                cachep->ctor(objp);
3103        if (ARCH_SLAB_MINALIGN &&
3104            ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3105                pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3106                       objp, (int)ARCH_SLAB_MINALIGN);
3107        }
3108        return objp;
3109}
3110#else
3111#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3112#endif
3113
3114static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3115{
3116        void *objp;
3117        struct array_cache *ac;
3118
3119        check_irq_off();
3120
3121        ac = cpu_cache_get(cachep);
3122        if (likely(ac->avail)) {
3123                ac->touched = 1;
3124                objp = ac->entry[--ac->avail];
3125
3126                STATS_INC_ALLOCHIT(cachep);
3127                goto out;
3128        }
3129
3130        STATS_INC_ALLOCMISS(cachep);
3131        objp = cache_alloc_refill(cachep, flags);
3132        /*
3133         * the 'ac' may be updated by cache_alloc_refill(),
3134         * and kmemleak_erase() requires its correct value.
3135         */
3136        ac = cpu_cache_get(cachep);
3137
3138out:
3139        /*
3140         * To avoid a false negative, if an object that is in one of the
3141         * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3142         * treat the array pointers as a reference to the object.
3143         */
3144        if (objp)
3145                kmemleak_erase(&ac->entry[ac->avail]);
3146        return objp;
3147}
3148
3149#ifdef CONFIG_NUMA
3150/*
3151 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3152 *
3153 * If we are in_interrupt, then process context, including cpusets and
3154 * mempolicy, may not apply and should not be used for allocation policy.
3155 */
3156static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3157{
3158        int nid_alloc, nid_here;
3159
3160        if (in_interrupt() || (flags & __GFP_THISNODE))
3161                return NULL;
3162        nid_alloc = nid_here = numa_mem_id();
3163        if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3164                nid_alloc = cpuset_slab_spread_node();
3165        else if (current->mempolicy)
3166                nid_alloc = mempolicy_slab_node();
3167        if (nid_alloc != nid_here)
3168                return ____cache_alloc_node(cachep, flags, nid_alloc);
3169        return NULL;
3170}
3171
3172/*
3173 * Fallback function if there was no memory available and no objects on a
3174 * certain node and fall back is permitted. First we scan all the
3175 * available node for available objects. If that fails then we
3176 * perform an allocation without specifying a node. This allows the page
3177 * allocator to do its reclaim / fallback magic. We then insert the
3178 * slab into the proper nodelist and then allocate from it.
3179 */
3180static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3181{
3182        struct zonelist *zonelist;
3183        struct zoneref *z;
3184        struct zone *zone;
3185        enum zone_type high_zoneidx = gfp_zone(flags);
3186        void *obj = NULL;
3187        struct page *page;
3188        int nid;
3189        unsigned int cpuset_mems_cookie;
3190
3191        if (flags & __GFP_THISNODE)
3192                return NULL;
3193
3194retry_cpuset:
3195        cpuset_mems_cookie = read_mems_allowed_begin();
3196        zonelist = node_zonelist(mempolicy_slab_node(), flags);
3197
3198retry:
3199        /*
3200         * Look through allowed nodes for objects available
3201         * from existing per node queues.
3202         */
3203        for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3204                nid = zone_to_nid(zone);
3205
3206                if (cpuset_zone_allowed(zone, flags) &&
3207                        get_node(cache, nid) &&
3208                        get_node(cache, nid)->free_objects) {
3209                                obj = ____cache_alloc_node(cache,
3210                                        gfp_exact_node(flags), nid);
3211                                if (obj)
3212                                        break;
3213                }
3214        }
3215
3216        if (!obj) {
3217                /*
3218                 * This allocation will be performed within the constraints
3219                 * of the current cpuset / memory policy requirements.
3220                 * We may trigger various forms of reclaim on the allowed
3221                 * set and go into memory reserves if necessary.
3222                 */
3223                page = cache_grow_begin(cache, flags, numa_mem_id());
3224                cache_grow_end(cache, page);
3225                if (page) {
3226                        nid = page_to_nid(page);
3227                        obj = ____cache_alloc_node(cache,
3228                                gfp_exact_node(flags), nid);
3229
3230                        /*
3231                         * Another processor may allocate the objects in
3232                         * the slab since we are not holding any locks.
3233                         */
3234                        if (!obj)
3235                                goto retry;
3236                }
3237        }
3238
3239        if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3240                goto retry_cpuset;
3241        return obj;
3242}
3243
3244/*
3245 * A interface to enable slab creation on nodeid
3246 */
3247static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3248                                int nodeid)
3249{
3250        struct page *page;
3251        struct kmem_cache_node *n;
3252        void *obj = NULL;
3253        void *list = NULL;
3254
3255        VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3256        n = get_node(cachep, nodeid);
3257        BUG_ON(!n);
3258
3259        check_irq_off();
3260        spin_lock(&n->list_lock);
3261        page = get_first_slab(n, false);
3262        if (!page)
3263                goto must_grow;
3264
3265        check_spinlock_acquired_node(cachep, nodeid);
3266
3267        STATS_INC_NODEALLOCS(cachep);
3268        STATS_INC_ACTIVE(cachep);
3269        STATS_SET_HIGH(cachep);
3270
3271        BUG_ON(page->active == cachep->num);
3272
3273        obj = slab_get_obj(cachep, page);
3274        n->free_objects--;
3275
3276        fixup_slab_list(cachep, n, page, &list);
3277
3278        spin_unlock(&n->list_lock);
3279        fixup_objfreelist_debug(cachep, &list);
3280        return obj;
3281
3282must_grow:
3283        spin_unlock(&n->list_lock);
3284        page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3285        if (page) {
3286                /* This slab isn't counted yet so don't update free_objects */
3287                obj = slab_get_obj(cachep, page);
3288        }
3289        cache_grow_end(cachep, page);
3290
3291        return obj ? obj : fallback_alloc(cachep, flags);
3292}
3293
3294static __always_inline void *
3295slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3296                   unsigned long caller)
3297{
3298        unsigned long save_flags;
3299        void *ptr;
3300        int slab_node = numa_mem_id();
3301
3302        flags &= gfp_allowed_mask;
3303        cachep = slab_pre_alloc_hook(cachep, flags);
3304        if (unlikely(!cachep))
3305                return NULL;
3306
3307        cache_alloc_debugcheck_before(cachep, flags);
3308        local_irq_save(save_flags);
3309
3310        if (nodeid == NUMA_NO_NODE)
3311                nodeid = slab_node;
3312
3313        if (unlikely(!get_node(cachep, nodeid))) {
3314                /* Node not bootstrapped yet */
3315                ptr = fallback_alloc(cachep, flags);
3316                goto out;
3317        }
3318
3319        if (nodeid == slab_node) {
3320                /*
3321                 * Use the locally cached objects if possible.
3322                 * However ____cache_alloc does not allow fallback
3323                 * to other nodes. It may fail while we still have
3324                 * objects on other nodes available.
3325                 */
3326                ptr = ____cache_alloc(cachep, flags);
3327                if (ptr)
3328                        goto out;
3329        }
3330        /* ___cache_alloc_node can fall back to other nodes */
3331        ptr = ____cache_alloc_node(cachep, flags, nodeid);
3332  out:
3333        local_irq_restore(save_flags);
3334        ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3335
3336        if (unlikely(flags & __GFP_ZERO) && ptr)
3337                memset(ptr, 0, cachep->object_size);
3338
3339        slab_post_alloc_hook(cachep, flags, 1, &ptr);
3340        return ptr;
3341}
3342
3343static __always_inline void *
3344__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3345{
3346        void *objp;
3347
3348        if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3349                objp = alternate_node_alloc(cache, flags);
3350                if (objp)
3351                        goto out;
3352        }
3353        objp = ____cache_alloc(cache, flags);
3354
3355        /*
3356         * We may just have run out of memory on the local node.
3357         * ____cache_alloc_node() knows how to locate memory on other nodes
3358         */
3359        if (!objp)
3360                objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3361
3362  out:
3363        return objp;
3364}
3365#else
3366
3367static __always_inline void *
3368__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3369{
3370        return ____cache_alloc(cachep, flags);
3371}
3372
3373#endif /* CONFIG_NUMA */
3374
3375static __always_inline void *
3376slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3377{
3378        unsigned long save_flags;
3379        void *objp;
3380
3381        flags &= gfp_allowed_mask;
3382        cachep = slab_pre_alloc_hook(cachep, flags);
3383        if (unlikely(!cachep))
3384                return NULL;
3385
3386        cache_alloc_debugcheck_before(cachep, flags);
3387        local_irq_save(save_flags);
3388        objp = __do_cache_alloc(cachep, flags);
3389        local_irq_restore(save_flags);
3390        objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3391        prefetchw(objp);
3392
3393        if (unlikely(flags & __GFP_ZERO) && objp)
3394                memset(objp, 0, cachep->object_size);
3395
3396        slab_post_alloc_hook(cachep, flags, 1, &objp);
3397        return objp;
3398}
3399
3400/*
3401 * Caller needs to acquire correct kmem_cache_node's list_lock
3402 * @list: List of detached free slabs should be freed by caller
3403 */
3404static void free_block(struct kmem_cache *cachep, void **objpp,
3405                        int nr_objects, int node, struct list_head *list)
3406{
3407        int i;
3408        struct kmem_cache_node *n = get_node(cachep, node);
3409        struct page *page;
3410
3411        n->free_objects += nr_objects;
3412
3413        for (i = 0; i < nr_objects; i++) {
3414                void *objp;
3415                struct page *page;
3416
3417                objp = objpp[i];
3418
3419                page = virt_to_head_page(objp);
3420                list_del(&page->lru);
3421                check_spinlock_acquired_node(cachep, node);
3422                slab_put_obj(cachep, page, objp);
3423                STATS_DEC_ACTIVE(cachep);
3424
3425                /* fixup slab chains */
3426                if (page->active == 0) {
3427                        list_add(&page->lru, &n->slabs_free);
3428                        n->free_slabs++;
3429                } else {
3430                        /* Unconditionally move a slab to the end of the
3431                         * partial list on free - maximum time for the
3432                         * other objects to be freed, too.
3433                         */
3434                        list_add_tail(&page->lru, &n->slabs_partial);
3435                }
3436        }
3437
3438        while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3439                n->free_objects -= cachep->num;
3440
3441                page = list_last_entry(&n->slabs_free, struct page, lru);
3442                list_move(&page->lru, list);
3443                n->free_slabs--;
3444                n->total_slabs--;
3445        }
3446}
3447
3448static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3449{
3450        int batchcount;
3451        struct kmem_cache_node *n;
3452        int node = numa_mem_id();
3453        LIST_HEAD(list);
3454
3455        batchcount = ac->batchcount;
3456
3457        check_irq_off();
3458        n = get_node(cachep, node);
3459        spin_lock(&n->list_lock);
3460        if (n->shared) {
3461                struct array_cache *shared_array = n->shared;
3462                int max = shared_array->limit - shared_array->avail;
3463                if (max) {
3464                        if (batchcount > max)
3465                                batchcount = max;
3466                        memcpy(&(shared_array->entry[shared_array->avail]),
3467                               ac->entry, sizeof(void *) * batchcount);
3468                        shared_array->avail += batchcount;
3469                        goto free_done;
3470                }
3471        }
3472
3473        free_block(cachep, ac->entry, batchcount, node, &list);
3474free_done:
3475#if STATS
3476        {
3477                int i = 0;
3478                struct page *page;
3479
3480                list_for_each_entry(page, &n->slabs_free, lru) {
3481                        BUG_ON(page->active);
3482
3483                        i++;
3484                }
3485                STATS_SET_FREEABLE(cachep, i);
3486        }
3487#endif
3488        spin_unlock(&n->list_lock);
3489        slabs_destroy(cachep, &list);
3490        ac->avail -= batchcount;
3491        memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3492}
3493
3494/*
3495 * Release an obj back to its cache. If the obj has a constructed state, it must
3496 * be in this state _before_ it is released.  Called with disabled ints.
3497 */
3498static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3499                                unsigned long caller)
3500{
3501        /* Put the object into the quarantine, don't touch it for now. */
3502        if (kasan_slab_free(cachep, objp))
3503                return;
3504
3505        ___cache_free(cachep, objp, caller);
3506}
3507
3508void ___cache_free(struct kmem_cache *cachep, void *objp,
3509                unsigned long caller)
3510{
3511        struct array_cache *ac = cpu_cache_get(cachep);
3512
3513        check_irq_off();
3514        kmemleak_free_recursive(objp, cachep->flags);
3515        objp = cache_free_debugcheck(cachep, objp, caller);
3516
3517        kmemcheck_slab_free(cachep, objp, cachep->object_size);
3518
3519        /*
3520         * Skip calling cache_free_alien() when the platform is not numa.
3521         * This will avoid cache misses that happen while accessing slabp (which
3522         * is per page memory  reference) to get nodeid. Instead use a global
3523         * variable to skip the call, which is mostly likely to be present in
3524         * the cache.
3525         */
3526        if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3527                return;
3528
3529        if (ac->avail < ac->limit) {
3530                STATS_INC_FREEHIT(cachep);
3531        } else {
3532                STATS_INC_FREEMISS(cachep);
3533                cache_flusharray(cachep, ac);
3534        }
3535
3536        if (sk_memalloc_socks()) {
3537                struct page *page = virt_to_head_page(objp);
3538
3539                if (unlikely(PageSlabPfmemalloc(page))) {
3540                        cache_free_pfmemalloc(cachep, page, objp);
3541                        return;
3542                }
3543        }
3544
3545        ac->entry[ac->avail++] = objp;
3546}
3547
3548/**
3549 * kmem_cache_alloc - Allocate an object
3550 * @cachep: The cache to allocate from.
3551 * @flags: See kmalloc().
3552 *
3553 * Allocate an object from this cache.  The flags are only relevant
3554 * if the cache has no available objects.
3555 */
3556void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3557{
3558        void *ret = slab_alloc(cachep, flags, _RET_IP_);
3559
3560        kasan_slab_alloc(cachep, ret, flags);
3561        trace_kmem_cache_alloc(_RET_IP_, ret,
3562                               cachep->object_size, cachep->size, flags);
3563
3564        return ret;
3565}
3566EXPORT_SYMBOL(kmem_cache_alloc);
3567
3568static __always_inline void
3569cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3570                                  size_t size, void **p, unsigned long caller)
3571{
3572        size_t i;
3573
3574        for (i = 0; i < size; i++)
3575                p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3576}
3577
3578int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3579                          void **p)
3580{
3581        size_t i;
3582
3583        s = slab_pre_alloc_hook(s, flags);
3584        if (!s)
3585                return 0;
3586
3587        cache_alloc_debugcheck_before(s, flags);
3588
3589        local_irq_disable();
3590        for (i = 0; i < size; i++) {
3591                void *objp = __do_cache_alloc(s, flags);
3592
3593                if (unlikely(!objp))
3594                        goto error;
3595                p[i] = objp;
3596        }
3597        local_irq_enable();
3598
3599        cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3600
3601        /* Clear memory outside IRQ disabled section */
3602        if (unlikely(flags & __GFP_ZERO))
3603                for (i = 0; i < size; i++)
3604                        memset(p[i], 0, s->object_size);
3605
3606        slab_post_alloc_hook(s, flags, size, p);
3607        /* FIXME: Trace call missing. Christoph would like a bulk variant */
3608        return size;
3609error:
3610        local_irq_enable();
3611        cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3612        slab_post_alloc_hook(s, flags, i, p);
3613        __kmem_cache_free_bulk(s, i, p);
3614        return 0;
3615}
3616EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3617
3618#ifdef CONFIG_TRACING
3619void *
3620kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3621{
3622        void *ret;
3623
3624        ret = slab_alloc(cachep, flags, _RET_IP_);
3625
3626        kasan_kmalloc(cachep, ret, size, flags);
3627        trace_kmalloc(_RET_IP_, ret,
3628                      size, cachep->size, flags);
3629        return ret;
3630}
3631EXPORT_SYMBOL(kmem_cache_alloc_trace);
3632#endif
3633
3634#ifdef CONFIG_NUMA
3635/**
3636 * kmem_cache_alloc_node - Allocate an object on the specified node
3637 * @cachep: The cache to allocate from.
3638 * @flags: See kmalloc().
3639 * @nodeid: node number of the target node.
3640 *
3641 * Identical to kmem_cache_alloc but it will allocate memory on the given
3642 * node, which can improve the performance for cpu bound structures.
3643 *
3644 * Fallback to other node is possible if __GFP_THISNODE is not set.
3645 */
3646void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3647{
3648        void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3649
3650        kasan_slab_alloc(cachep, ret, flags);
3651        trace_kmem_cache_alloc_node(_RET_IP_, ret,
3652                                    cachep->object_size, cachep->size,
3653                                    flags, nodeid);
3654
3655        return ret;
3656}
3657EXPORT_SYMBOL(kmem_cache_alloc_node);
3658
3659#ifdef CONFIG_TRACING
3660void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3661                                  gfp_t flags,
3662                                  int nodeid,
3663                                  size_t size)
3664{
3665        void *ret;
3666
3667        ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3668
3669        kasan_kmalloc(cachep, ret, size, flags);
3670        trace_kmalloc_node(_RET_IP_, ret,
3671                           size, cachep->size,
3672                           flags, nodeid);
3673        return ret;
3674}
3675EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3676#endif
3677
3678static __always_inline void *
3679__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3680{
3681        struct kmem_cache *cachep;
3682        void *ret;
3683
3684        cachep = kmalloc_slab(size, flags);
3685        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3686                return cachep;
3687        ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3688        kasan_kmalloc(cachep, ret, size, flags);
3689
3690        return ret;
3691}
3692
3693void *__kmalloc_node(size_t size, gfp_t flags, int node)
3694{
3695        return __do_kmalloc_node(size, flags, node, _RET_IP_);
3696}
3697EXPORT_SYMBOL(__kmalloc_node);
3698
3699void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3700                int node, unsigned long caller)
3701{
3702        return __do_kmalloc_node(size, flags, node, caller);
3703}
3704EXPORT_SYMBOL(__kmalloc_node_track_caller);
3705#endif /* CONFIG_NUMA */
3706
3707/**
3708 * __do_kmalloc - allocate memory
3709 * @size: how many bytes of memory are required.
3710 * @flags: the type of memory to allocate (see kmalloc).
3711 * @caller: function caller for debug tracking of the caller
3712 */
3713static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3714                                          unsigned long caller)
3715{
3716        struct kmem_cache *cachep;
3717        void *ret;
3718
3719        cachep = kmalloc_slab(size, flags);
3720        if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3721                return cachep;
3722        ret = slab_alloc(cachep, flags, caller);
3723
3724        kasan_kmalloc(cachep, ret, size, flags);
3725        trace_kmalloc(caller, ret,
3726                      size, cachep->size, flags);
3727
3728        return ret;
3729}
3730
3731void *__kmalloc(size_t size, gfp_t flags)
3732{
3733        return __do_kmalloc(size, flags, _RET_IP_);
3734}
3735EXPORT_SYMBOL(__kmalloc);
3736
3737void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3738{
3739        return __do_kmalloc(size, flags, caller);
3740}
3741EXPORT_SYMBOL(__kmalloc_track_caller);
3742
3743/**
3744 * kmem_cache_free - Deallocate an object
3745 * @cachep: The cache the allocation was from.
3746 * @objp: The previously allocated object.
3747 *
3748 * Free an object which was previously allocated from this
3749 * cache.
3750 */
3751void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3752{
3753        unsigned long flags;
3754        cachep = cache_from_obj(cachep, objp);
3755        if (!cachep)
3756                return;
3757
3758        local_irq_save(flags);
3759        debug_check_no_locks_freed(objp, cachep->object_size);
3760        if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3761                debug_check_no_obj_freed(objp, cachep->object_size);
3762        __cache_free(cachep, objp, _RET_IP_);
3763        local_irq_restore(flags);
3764
3765        trace_kmem_cache_free(_RET_IP_, objp);
3766}
3767EXPORT_SYMBOL(kmem_cache_free);
3768
3769void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3770{
3771        struct kmem_cache *s;
3772        size_t i;
3773
3774        local_irq_disable();
3775        for (i = 0; i < size; i++) {
3776                void *objp = p[i];
3777
3778                if (!orig_s) /* called via kfree_bulk */
3779                        s = virt_to_cache(objp);
3780                else
3781                        s = cache_from_obj(orig_s, objp);
3782
3783                debug_check_no_locks_freed(objp, s->object_size);
3784                if (!(s->flags & SLAB_DEBUG_OBJECTS))
3785                        debug_check_no_obj_freed(objp, s->object_size);
3786
3787                __cache_free(s, objp, _RET_IP_);
3788        }
3789        local_irq_enable();
3790
3791        /* FIXME: add tracing */
3792}
3793EXPORT_SYMBOL(kmem_cache_free_bulk);
3794
3795/**
3796 * kfree - free previously allocated memory
3797 * @objp: pointer returned by kmalloc.
3798 *
3799 * If @objp is NULL, no operation is performed.
3800 *
3801 * Don't free memory not originally allocated by kmalloc()
3802 * or you will run into trouble.
3803 */
3804void kfree(const void *objp)
3805{
3806        struct kmem_cache *c;
3807        unsigned long flags;
3808
3809        trace_kfree(_RET_IP_, objp);
3810
3811        if (unlikely(ZERO_OR_NULL_PTR(objp)))
3812                return;
3813        local_irq_save(flags);
3814        kfree_debugcheck(objp);
3815        c = virt_to_cache(objp);
3816        debug_check_no_locks_freed(objp, c->object_size);
3817
3818        debug_check_no_obj_freed(objp, c->object_size);
3819        __cache_free(c, (void *)objp, _RET_IP_);
3820        local_irq_restore(flags);
3821}
3822EXPORT_SYMBOL(kfree);
3823
3824/*
3825 * This initializes kmem_cache_node or resizes various caches for all nodes.
3826 */
3827static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3828{
3829        int ret;
3830        int node;
3831        struct kmem_cache_node *n;
3832
3833        for_each_online_node(node) {
3834                ret = setup_kmem_cache_node(cachep, node, gfp, true);
3835                if (ret)
3836                        goto fail;
3837
3838        }
3839
3840        return 0;
3841
3842fail:
3843        if (!cachep->list.next) {
3844                /* Cache is not active yet. Roll back what we did */
3845                node--;
3846                while (node >= 0) {
3847                        n = get_node(cachep, node);
3848                        if (n) {
3849                                kfree(n->shared);
3850                                free_alien_cache(n->alien);
3851                                kfree(n);
3852                                cachep->node[node] = NULL;
3853                        }
3854                        node--;
3855                }
3856        }
3857        return -ENOMEM;
3858}
3859
3860/* Always called with the slab_mutex held */
3861static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3862                                int batchcount, int shared, gfp_t gfp)
3863{
3864        struct array_cache __percpu *cpu_cache, *prev;
3865        int cpu;
3866
3867        cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3868        if (!cpu_cache)
3869                return -ENOMEM;
3870
3871        prev = cachep->cpu_cache;
3872        cachep->cpu_cache = cpu_cache;
3873        kick_all_cpus_sync();
3874
3875        check_irq_on();
3876        cachep->batchcount = batchcount;
3877        cachep->limit = limit;
3878        cachep->shared = shared;
3879
3880        if (!prev)
3881                goto setup_node;
3882
3883        for_each_online_cpu(cpu) {
3884                LIST_HEAD(list);
3885                int node;
3886                struct kmem_cache_node *n;
3887                struct array_cache *ac = per_cpu_ptr(prev, cpu);
3888
3889                node = cpu_to_mem(cpu);
3890                n = get_node(cachep, node);
3891                spin_lock_irq(&n->list_lock);
3892                free_block(cachep, ac->entry, ac->avail, node, &list);
3893                spin_unlock_irq(&n->list_lock);
3894                slabs_destroy(cachep, &list);
3895        }
3896        free_percpu(prev);
3897
3898setup_node:
3899        return setup_kmem_cache_nodes(cachep, gfp);
3900}
3901
3902static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3903                                int batchcount, int shared, gfp_t gfp)
3904{
3905        int ret;
3906        struct kmem_cache *c;
3907
3908        ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3909
3910        if (slab_state < FULL)
3911                return ret;
3912
3913        if ((ret < 0) || !is_root_cache(cachep))
3914                return ret;
3915
3916        lockdep_assert_held(&slab_mutex);
3917        for_each_memcg_cache(c, cachep) {
3918                /* return value determined by the root cache only */
3919                __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3920        }
3921
3922        return ret;
3923}
3924
3925/* Called with slab_mutex held always */
3926static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3927{
3928        int err;
3929        int limit = 0;
3930        int shared = 0;
3931        int batchcount = 0;
3932
3933        err = cache_random_seq_create(cachep, cachep->num, gfp);
3934        if (err)
3935                goto end;
3936
3937        if (!is_root_cache(cachep)) {
3938                struct kmem_cache *root = memcg_root_cache(cachep);
3939                limit = root->limit;
3940                shared = root->shared;
3941                batchcount = root->batchcount;
3942        }
3943
3944        if (limit && shared && batchcount)
3945                goto skip_setup;
3946        /*
3947         * The head array serves three purposes:
3948         * - create a LIFO ordering, i.e. return objects that are cache-warm
3949         * - reduce the number of spinlock operations.
3950         * - reduce the number of linked list operations on the slab and
3951         *   bufctl chains: array operations are cheaper.
3952         * The numbers are guessed, we should auto-tune as described by
3953         * Bonwick.
3954         */
3955        if (cachep->size > 131072)
3956                limit = 1;
3957        else if (cachep->size > PAGE_SIZE)
3958                limit = 8;
3959        else if (cachep->size > 1024)
3960                limit = 24;
3961        else if (cachep->size > 256)
3962                limit = 54;
3963        else
3964                limit = 120;
3965
3966        /*
3967         * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3968         * allocation behaviour: Most allocs on one cpu, most free operations
3969         * on another cpu. For these cases, an efficient object passing between
3970         * cpus is necessary. This is provided by a shared array. The array
3971         * replaces Bonwick's magazine layer.
3972         * On uniprocessor, it's functionally equivalent (but less efficient)
3973         * to a larger limit. Thus disabled by default.
3974         */
3975        shared = 0;
3976        if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3977                shared = 8;
3978
3979#if DEBUG
3980        /*
3981         * With debugging enabled, large batchcount lead to excessively long
3982         * periods with disabled local interrupts. Limit the batchcount
3983         */
3984        if (limit > 32)
3985                limit = 32;
3986#endif
3987        batchcount = (limit + 1) / 2;
3988skip_setup:
3989        err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3990end:
3991        if (err)
3992                pr_err("enable_cpucache failed for %s, error %d\n",
3993                       cachep->name, -err);
3994        return err;
3995}
3996
3997/*
3998 * Drain an array if it contains any elements taking the node lock only if
3999 * necessary. Note that the node listlock also protects the array_cache
4000 * if drain_array() is used on the shared array.
4001 */
4002static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4003                         struct array_cache *ac, int node)
4004{
4005        LIST_HEAD(list);
4006
4007        /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4008        check_mutex_acquired();
4009
4010        if (!ac || !ac->avail)
4011                return;
4012
4013        if (ac->touched) {
4014                ac->touched = 0;
4015                return;
4016        }
4017
4018        spin_lock_irq(&n->list_lock);
4019        drain_array_locked(cachep, ac, node, false, &list);
4020        spin_unlock_irq(&n->list_lock);
4021
4022        slabs_destroy(cachep, &list);
4023}
4024
4025/**
4026 * cache_reap - Reclaim memory from caches.
4027 * @w: work descriptor
4028 *
4029 * Called from workqueue/eventd every few seconds.
4030 * Purpose:
4031 * - clear the per-cpu caches for this CPU.
4032 * - return freeable pages to the main free memory pool.
4033 *
4034 * If we cannot acquire the cache chain mutex then just give up - we'll try
4035 * again on the next iteration.
4036 */
4037static void cache_reap(struct work_struct *w)
4038{
4039        struct kmem_cache *searchp;
4040        struct kmem_cache_node *n;
4041        int node = numa_mem_id();
4042        struct delayed_work *work = to_delayed_work(w);
4043
4044        if (!mutex_trylock(&slab_mutex))
4045                /* Give up. Setup the next iteration. */
4046                goto out;
4047
4048        list_for_each_entry(searchp, &slab_caches, list) {
4049                check_irq_on();
4050
4051                /*
4052                 * We only take the node lock if absolutely necessary and we
4053                 * have established with reasonable certainty that
4054                 * we can do some work if the lock was obtained.
4055                 */
4056                n = get_node(searchp, node);
4057
4058                reap_alien(searchp, n);
4059
4060                drain_array(searchp, n, cpu_cache_get(searchp), node);
4061
4062                /*
4063                 * These are racy checks but it does not matter
4064                 * if we skip one check or scan twice.
4065                 */
4066                if (time_after(n->next_reap, jiffies))
4067                        goto next;
4068
4069                n->next_reap = jiffies + REAPTIMEOUT_NODE;
4070
4071                drain_array(searchp, n, n->shared, node);
4072
4073                if (n->free_touched)
4074                        n->free_touched = 0;
4075                else {
4076                        int freed;
4077
4078                        freed = drain_freelist(searchp, n, (n->free_limit +
4079                                5 * searchp->num - 1) / (5 * searchp->num));
4080                        STATS_ADD_REAPED(searchp, freed);
4081                }
4082next:
4083                cond_resched();
4084        }
4085        check_irq_on();
4086        mutex_unlock(&slab_mutex);
4087        next_reap_node();
4088out:
4089        /* Set up the next iteration */
4090        schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
4091}
4092
4093#ifdef CONFIG_SLABINFO
4094void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4095{
4096        unsigned long active_objs, num_objs, active_slabs;
4097        unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4098        unsigned long free_slabs = 0;
4099        int node;
4100        struct kmem_cache_node *n;
4101
4102        for_each_kmem_cache_node(cachep, node, n) {
4103                check_irq_on();
4104                spin_lock_irq(&n->list_lock);
4105
4106                total_slabs += n->total_slabs;
4107                free_slabs += n->free_slabs;
4108                free_objs += n->free_objects;
4109
4110                if (n->shared)
4111                        shared_avail += n->shared->avail;
4112
4113                spin_unlock_irq(&n->list_lock);
4114        }
4115        num_objs = total_slabs * cachep->num;
4116        active_slabs = total_slabs - free_slabs;
4117        active_objs = num_objs - free_objs;
4118
4119        sinfo->active_objs = active_objs;
4120        sinfo->num_objs = num_objs;
4121        sinfo->active_slabs = active_slabs;
4122        sinfo->num_slabs = total_slabs;
4123        sinfo->shared_avail = shared_avail;
4124        sinfo->limit = cachep->limit;
4125        sinfo->batchcount = cachep->batchcount;
4126        sinfo->shared = cachep->shared;
4127        sinfo->objects_per_slab = cachep->num;
4128        sinfo->cache_order = cachep->gfporder;
4129}
4130
4131void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4132{
4133#if STATS
4134        {                       /* node stats */
4135                unsigned long high = cachep->high_mark;
4136                unsigned long allocs = cachep->num_allocations;
4137                unsigned long grown = cachep->grown;
4138                unsigned long reaped = cachep->reaped;
4139                unsigned long errors = cachep->errors;
4140                unsigned long max_freeable = cachep->max_freeable;
4141                unsigned long node_allocs = cachep->node_allocs;
4142                unsigned long node_frees = cachep->node_frees;
4143                unsigned long overflows = cachep->node_overflow;
4144
4145                seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4146                           allocs, high, grown,
4147                           reaped, errors, max_freeable, node_allocs,
4148                           node_frees, overflows);
4149        }
4150        /* cpu stats */
4151        {
4152                unsigned long allochit = atomic_read(&cachep->allochit);
4153                unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4154                unsigned long freehit = atomic_read(&cachep->freehit);
4155                unsigned long freemiss = atomic_read(&cachep->freemiss);
4156
4157                seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4158                           allochit, allocmiss, freehit, freemiss);
4159        }
4160#endif
4161}
4162
4163#define MAX_SLABINFO_WRITE 128
4164/**
4165 * slabinfo_write - Tuning for the slab allocator
4166 * @file: unused
4167 * @buffer: user buffer
4168 * @count: data length
4169 * @ppos: unused
4170 */
4171ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4172                       size_t count, loff_t *ppos)
4173{
4174        char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4175        int limit, batchcount, shared, res;
4176        struct kmem_cache *cachep;
4177
4178        if (count > MAX_SLABINFO_WRITE)
4179                return -EINVAL;
4180        if (copy_from_user(&kbuf, buffer, count))
4181                return -EFAULT;
4182        kbuf[MAX_SLABINFO_WRITE] = '\0';
4183
4184        tmp = strchr(kbuf, ' ');
4185        if (!tmp)
4186                return -EINVAL;
4187        *tmp = '\0';
4188        tmp++;
4189        if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4190                return -EINVAL;
4191
4192        /* Find the cache in the chain of caches. */
4193        mutex_lock(&slab_mutex);
4194        res = -EINVAL;
4195        list_for_each_entry(cachep, &slab_caches, list) {
4196                if (!strcmp(cachep->name, kbuf)) {
4197                        if (limit < 1 || batchcount < 1 ||
4198                                        batchcount > limit || shared < 0) {
4199                                res = 0;
4200                        } else {
4201                                res = do_tune_cpucache(cachep, limit,
4202                                                       batchcount, shared,
4203                                                       GFP_KERNEL);
4204                        }
4205                        break;
4206                }
4207        }
4208        mutex_unlock(&slab_mutex);
4209        if (res >= 0)
4210                res = count;
4211        return res;
4212}
4213
4214#ifdef CONFIG_DEBUG_SLAB_LEAK
4215
4216static inline int add_caller(unsigned long *n, unsigned long v)
4217{
4218        unsigned long *p;
4219        int l;
4220        if (!v)
4221                return 1;
4222        l = n[1];
4223        p = n + 2;
4224        while (l) {
4225                int i = l/2;
4226                unsigned long *q = p + 2 * i;
4227                if (*q == v) {
4228                        q[1]++;
4229                        return 1;
4230                }
4231                if (*q > v) {
4232                        l = i;
4233                } else {
4234                        p = q + 2;
4235                        l -= i + 1;
4236                }
4237        }
4238        if (++n[1] == n[0])
4239                return 0;
4240        memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4241        p[0] = v;
4242        p[1] = 1;
4243        return 1;
4244}
4245
4246static void handle_slab(unsigned long *n, struct kmem_cache *c,
4247                                                struct page *page)
4248{
4249        void *p;
4250        int i, j;
4251        unsigned long v;
4252
4253        if (n[0] == n[1])
4254                return;
4255        for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4256                bool active = true;
4257
4258                for (j = page->active; j < c->num; j++) {
4259                        if (get_free_obj(page, j) == i) {
4260                                active = false;
4261                                break;
4262                        }
4263                }
4264
4265                if (!active)
4266                        continue;
4267
4268                /*
4269                 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4270                 * mapping is established when actual object allocation and
4271                 * we could mistakenly access the unmapped object in the cpu
4272                 * cache.
4273                 */
4274                if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4275                        continue;
4276
4277                if (!add_caller(n, v))
4278                        return;
4279        }
4280}
4281
4282static void show_symbol(struct seq_file *m, unsigned long address)
4283{
4284#ifdef CONFIG_KALLSYMS
4285        unsigned long offset, size;
4286        char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4287
4288        if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4289                seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4290                if (modname[0])
4291                        seq_printf(m, " [%s]", modname);
4292                return;
4293        }
4294#endif
4295        seq_printf(m, "%p", (void *)address);
4296}
4297
4298static int leaks_show(struct seq_file *m, void *p)
4299{
4300        struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4301        struct page *page;
4302        struct kmem_cache_node *n;
4303        const char *name;
4304        unsigned long *x = m->private;
4305        int node;
4306        int i;
4307
4308        if (!(cachep->flags & SLAB_STORE_USER))
4309                return 0;
4310        if (!(cachep->flags & SLAB_RED_ZONE))
4311                return 0;
4312
4313        /*
4314         * Set store_user_clean and start to grab stored user information
4315         * for all objects on this cache. If some alloc/free requests comes
4316         * during the processing, information would be wrong so restart
4317         * whole processing.
4318         */
4319        do {
4320                set_store_user_clean(cachep);
4321                drain_cpu_caches(cachep);
4322
4323                x[1] = 0;
4324
4325                for_each_kmem_cache_node(cachep, node, n) {
4326
4327                        check_irq_on();
4328                        spin_lock_irq(&n->list_lock);
4329
4330                        list_for_each_entry(page, &n->slabs_full, lru)
4331                                handle_slab(x, cachep, page);
4332                        list_for_each_entry(page, &n->slabs_partial, lru)
4333                                handle_slab(x, cachep, page);
4334                        spin_unlock_irq(&n->list_lock);
4335                }
4336        } while (!is_store_user_clean(cachep));
4337
4338        name = cachep->name;
4339        if (x[0] == x[1]) {
4340                /* Increase the buffer size */
4341                mutex_unlock(&slab_mutex);
4342                m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4343                if (!m->private) {
4344                        /* Too bad, we are really out */
4345                        m->private = x;
4346                        mutex_lock(&slab_mutex);
4347                        return -ENOMEM;
4348                }
4349                *(unsigned long *)m->private = x[0] * 2;
4350                kfree(x);
4351                mutex_lock(&slab_mutex);
4352                /* Now make sure this entry will be retried */
4353                m->count = m->size;
4354                return 0;
4355        }
4356        for (i = 0; i < x[1]; i++) {
4357                seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4358                show_symbol(m, x[2*i+2]);
4359                seq_putc(m, '\n');
4360        }
4361
4362        return 0;
4363}
4364
4365static const struct seq_operations slabstats_op = {
4366        .start = slab_start,
4367        .next = slab_next,
4368        .stop = slab_stop,
4369        .show = leaks_show,
4370};
4371
4372static int slabstats_open(struct inode *inode, struct file *file)
4373{
4374        unsigned long *n;
4375
4376        n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4377        if (!n)
4378                return -ENOMEM;
4379
4380        *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4381
4382        return 0;
4383}
4384
4385static const struct file_operations proc_slabstats_operations = {
4386        .open           = slabstats_open,
4387        .read           = seq_read,
4388        .llseek         = seq_lseek,
4389        .release        = seq_release_private,
4390};
4391#endif
4392
4393static int __init slab_proc_init(void)
4394{
4395#ifdef CONFIG_DEBUG_SLAB_LEAK
4396        proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4397#endif
4398        return 0;
4399}
4400module_init(slab_proc_init);
4401#endif
4402
4403#ifdef CONFIG_HARDENED_USERCOPY
4404/*
4405 * Rejects objects that are incorrectly sized.
4406 *
4407 * Returns NULL if check passes, otherwise const char * to name of cache
4408 * to indicate an error.
4409 */
4410const char *__check_heap_object(const void *ptr, unsigned long n,
4411                                struct page *page)
4412{
4413        struct kmem_cache *cachep;
4414        unsigned int objnr;
4415        unsigned long offset;
4416
4417        /* Find and validate object. */
4418        cachep = page->slab_cache;
4419        objnr = obj_to_index(cachep, page, (void *)ptr);
4420        BUG_ON(objnr >= cachep->num);
4421
4422        /* Find offset within object. */
4423        offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4424
4425        /* Allow address range falling entirely within object size. */
4426        if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4427                return NULL;
4428
4429        return cachep->name;
4430}
4431#endif /* CONFIG_HARDENED_USERCOPY */
4432
4433/**
4434 * ksize - get the actual amount of memory allocated for a given object
4435 * @objp: Pointer to the object
4436 *
4437 * kmalloc may internally round up allocations and return more memory
4438 * than requested. ksize() can be used to determine the actual amount of
4439 * memory allocated. The caller may use this additional memory, even though
4440 * a smaller amount of memory was initially specified with the kmalloc call.
4441 * The caller must guarantee that objp points to a valid object previously
4442 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4443 * must not be freed during the duration of the call.
4444 */
4445size_t ksize(const void *objp)
4446{
4447        size_t size;
4448
4449        BUG_ON(!objp);
4450        if (unlikely(objp == ZERO_SIZE_PTR))
4451                return 0;
4452
4453        size = virt_to_cache(objp)->object_size;
4454        /* We assume that ksize callers could use the whole allocated area,
4455         * so we need to unpoison this area.
4456         */
4457        kasan_unpoison_shadow(objp, size);
4458
4459        return size;
4460}
4461EXPORT_SYMBOL(ksize);
4462