linux/security/keys/keyring.c
<<
>>
Prefs
   1/* Keyring handling
   2 *
   3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/sched.h>
  15#include <linux/slab.h>
  16#include <linux/security.h>
  17#include <linux/seq_file.h>
  18#include <linux/err.h>
  19#include <keys/keyring-type.h>
  20#include <keys/user-type.h>
  21#include <linux/assoc_array_priv.h>
  22#include <linux/uaccess.h>
  23#include "internal.h"
  24
  25/*
  26 * When plumbing the depths of the key tree, this sets a hard limit
  27 * set on how deep we're willing to go.
  28 */
  29#define KEYRING_SEARCH_MAX_DEPTH 6
  30
  31/*
  32 * We keep all named keyrings in a hash to speed looking them up.
  33 */
  34#define KEYRING_NAME_HASH_SIZE  (1 << 5)
  35
  36/*
  37 * We mark pointers we pass to the associative array with bit 1 set if
  38 * they're keyrings and clear otherwise.
  39 */
  40#define KEYRING_PTR_SUBTYPE     0x2UL
  41
  42static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
  43{
  44        return (unsigned long)x & KEYRING_PTR_SUBTYPE;
  45}
  46static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
  47{
  48        void *object = assoc_array_ptr_to_leaf(x);
  49        return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
  50}
  51static inline void *keyring_key_to_ptr(struct key *key)
  52{
  53        if (key->type == &key_type_keyring)
  54                return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
  55        return key;
  56}
  57
  58static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
  59static DEFINE_RWLOCK(keyring_name_lock);
  60
  61static inline unsigned keyring_hash(const char *desc)
  62{
  63        unsigned bucket = 0;
  64
  65        for (; *desc; desc++)
  66                bucket += (unsigned char)*desc;
  67
  68        return bucket & (KEYRING_NAME_HASH_SIZE - 1);
  69}
  70
  71/*
  72 * The keyring key type definition.  Keyrings are simply keys of this type and
  73 * can be treated as ordinary keys in addition to having their own special
  74 * operations.
  75 */
  76static int keyring_preparse(struct key_preparsed_payload *prep);
  77static void keyring_free_preparse(struct key_preparsed_payload *prep);
  78static int keyring_instantiate(struct key *keyring,
  79                               struct key_preparsed_payload *prep);
  80static void keyring_revoke(struct key *keyring);
  81static void keyring_destroy(struct key *keyring);
  82static void keyring_describe(const struct key *keyring, struct seq_file *m);
  83static long keyring_read(const struct key *keyring,
  84                         char __user *buffer, size_t buflen);
  85
  86struct key_type key_type_keyring = {
  87        .name           = "keyring",
  88        .def_datalen    = 0,
  89        .preparse       = keyring_preparse,
  90        .free_preparse  = keyring_free_preparse,
  91        .instantiate    = keyring_instantiate,
  92        .revoke         = keyring_revoke,
  93        .destroy        = keyring_destroy,
  94        .describe       = keyring_describe,
  95        .read           = keyring_read,
  96};
  97EXPORT_SYMBOL(key_type_keyring);
  98
  99/*
 100 * Semaphore to serialise link/link calls to prevent two link calls in parallel
 101 * introducing a cycle.
 102 */
 103static DECLARE_RWSEM(keyring_serialise_link_sem);
 104
 105/*
 106 * Publish the name of a keyring so that it can be found by name (if it has
 107 * one).
 108 */
 109static void keyring_publish_name(struct key *keyring)
 110{
 111        int bucket;
 112
 113        if (keyring->description) {
 114                bucket = keyring_hash(keyring->description);
 115
 116                write_lock(&keyring_name_lock);
 117
 118                if (!keyring_name_hash[bucket].next)
 119                        INIT_LIST_HEAD(&keyring_name_hash[bucket]);
 120
 121                list_add_tail(&keyring->name_link,
 122                              &keyring_name_hash[bucket]);
 123
 124                write_unlock(&keyring_name_lock);
 125        }
 126}
 127
 128/*
 129 * Preparse a keyring payload
 130 */
 131static int keyring_preparse(struct key_preparsed_payload *prep)
 132{
 133        return prep->datalen != 0 ? -EINVAL : 0;
 134}
 135
 136/*
 137 * Free a preparse of a user defined key payload
 138 */
 139static void keyring_free_preparse(struct key_preparsed_payload *prep)
 140{
 141}
 142
 143/*
 144 * Initialise a keyring.
 145 *
 146 * Returns 0 on success, -EINVAL if given any data.
 147 */
 148static int keyring_instantiate(struct key *keyring,
 149                               struct key_preparsed_payload *prep)
 150{
 151        assoc_array_init(&keyring->keys);
 152        /* make the keyring available by name if it has one */
 153        keyring_publish_name(keyring);
 154        return 0;
 155}
 156
 157/*
 158 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
 159 * fold the carry back too, but that requires inline asm.
 160 */
 161static u64 mult_64x32_and_fold(u64 x, u32 y)
 162{
 163        u64 hi = (u64)(u32)(x >> 32) * y;
 164        u64 lo = (u64)(u32)(x) * y;
 165        return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
 166}
 167
 168/*
 169 * Hash a key type and description.
 170 */
 171static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
 172{
 173        const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
 174        const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
 175        const char *description = index_key->description;
 176        unsigned long hash, type;
 177        u32 piece;
 178        u64 acc;
 179        int n, desc_len = index_key->desc_len;
 180
 181        type = (unsigned long)index_key->type;
 182
 183        acc = mult_64x32_and_fold(type, desc_len + 13);
 184        acc = mult_64x32_and_fold(acc, 9207);
 185        for (;;) {
 186                n = desc_len;
 187                if (n <= 0)
 188                        break;
 189                if (n > 4)
 190                        n = 4;
 191                piece = 0;
 192                memcpy(&piece, description, n);
 193                description += n;
 194                desc_len -= n;
 195                acc = mult_64x32_and_fold(acc, piece);
 196                acc = mult_64x32_and_fold(acc, 9207);
 197        }
 198
 199        /* Fold the hash down to 32 bits if need be. */
 200        hash = acc;
 201        if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
 202                hash ^= acc >> 32;
 203
 204        /* Squidge all the keyrings into a separate part of the tree to
 205         * ordinary keys by making sure the lowest level segment in the hash is
 206         * zero for keyrings and non-zero otherwise.
 207         */
 208        if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
 209                return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
 210        if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
 211                return (hash + (hash << level_shift)) & ~fan_mask;
 212        return hash;
 213}
 214
 215/*
 216 * Build the next index key chunk.
 217 *
 218 * On 32-bit systems the index key is laid out as:
 219 *
 220 *      0       4       5       9...
 221 *      hash    desclen typeptr desc[]
 222 *
 223 * On 64-bit systems:
 224 *
 225 *      0       8       9       17...
 226 *      hash    desclen typeptr desc[]
 227 *
 228 * We return it one word-sized chunk at a time.
 229 */
 230static unsigned long keyring_get_key_chunk(const void *data, int level)
 231{
 232        const struct keyring_index_key *index_key = data;
 233        unsigned long chunk = 0;
 234        long offset = 0;
 235        int desc_len = index_key->desc_len, n = sizeof(chunk);
 236
 237        level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
 238        switch (level) {
 239        case 0:
 240                return hash_key_type_and_desc(index_key);
 241        case 1:
 242                return ((unsigned long)index_key->type << 8) | desc_len;
 243        case 2:
 244                if (desc_len == 0)
 245                        return (u8)((unsigned long)index_key->type >>
 246                                    (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
 247                n--;
 248                offset = 1;
 249        default:
 250                offset += sizeof(chunk) - 1;
 251                offset += (level - 3) * sizeof(chunk);
 252                if (offset >= desc_len)
 253                        return 0;
 254                desc_len -= offset;
 255                if (desc_len > n)
 256                        desc_len = n;
 257                offset += desc_len;
 258                do {
 259                        chunk <<= 8;
 260                        chunk |= ((u8*)index_key->description)[--offset];
 261                } while (--desc_len > 0);
 262
 263                if (level == 2) {
 264                        chunk <<= 8;
 265                        chunk |= (u8)((unsigned long)index_key->type >>
 266                                      (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
 267                }
 268                return chunk;
 269        }
 270}
 271
 272static unsigned long keyring_get_object_key_chunk(const void *object, int level)
 273{
 274        const struct key *key = keyring_ptr_to_key(object);
 275        return keyring_get_key_chunk(&key->index_key, level);
 276}
 277
 278static bool keyring_compare_object(const void *object, const void *data)
 279{
 280        const struct keyring_index_key *index_key = data;
 281        const struct key *key = keyring_ptr_to_key(object);
 282
 283        return key->index_key.type == index_key->type &&
 284                key->index_key.desc_len == index_key->desc_len &&
 285                memcmp(key->index_key.description, index_key->description,
 286                       index_key->desc_len) == 0;
 287}
 288
 289/*
 290 * Compare the index keys of a pair of objects and determine the bit position
 291 * at which they differ - if they differ.
 292 */
 293static int keyring_diff_objects(const void *object, const void *data)
 294{
 295        const struct key *key_a = keyring_ptr_to_key(object);
 296        const struct keyring_index_key *a = &key_a->index_key;
 297        const struct keyring_index_key *b = data;
 298        unsigned long seg_a, seg_b;
 299        int level, i;
 300
 301        level = 0;
 302        seg_a = hash_key_type_and_desc(a);
 303        seg_b = hash_key_type_and_desc(b);
 304        if ((seg_a ^ seg_b) != 0)
 305                goto differ;
 306
 307        /* The number of bits contributed by the hash is controlled by a
 308         * constant in the assoc_array headers.  Everything else thereafter we
 309         * can deal with as being machine word-size dependent.
 310         */
 311        level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
 312        seg_a = a->desc_len;
 313        seg_b = b->desc_len;
 314        if ((seg_a ^ seg_b) != 0)
 315                goto differ;
 316
 317        /* The next bit may not work on big endian */
 318        level++;
 319        seg_a = (unsigned long)a->type;
 320        seg_b = (unsigned long)b->type;
 321        if ((seg_a ^ seg_b) != 0)
 322                goto differ;
 323
 324        level += sizeof(unsigned long);
 325        if (a->desc_len == 0)
 326                goto same;
 327
 328        i = 0;
 329        if (((unsigned long)a->description | (unsigned long)b->description) &
 330            (sizeof(unsigned long) - 1)) {
 331                do {
 332                        seg_a = *(unsigned long *)(a->description + i);
 333                        seg_b = *(unsigned long *)(b->description + i);
 334                        if ((seg_a ^ seg_b) != 0)
 335                                goto differ_plus_i;
 336                        i += sizeof(unsigned long);
 337                } while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
 338        }
 339
 340        for (; i < a->desc_len; i++) {
 341                seg_a = *(unsigned char *)(a->description + i);
 342                seg_b = *(unsigned char *)(b->description + i);
 343                if ((seg_a ^ seg_b) != 0)
 344                        goto differ_plus_i;
 345        }
 346
 347same:
 348        return -1;
 349
 350differ_plus_i:
 351        level += i;
 352differ:
 353        i = level * 8 + __ffs(seg_a ^ seg_b);
 354        return i;
 355}
 356
 357/*
 358 * Free an object after stripping the keyring flag off of the pointer.
 359 */
 360static void keyring_free_object(void *object)
 361{
 362        key_put(keyring_ptr_to_key(object));
 363}
 364
 365/*
 366 * Operations for keyring management by the index-tree routines.
 367 */
 368static const struct assoc_array_ops keyring_assoc_array_ops = {
 369        .get_key_chunk          = keyring_get_key_chunk,
 370        .get_object_key_chunk   = keyring_get_object_key_chunk,
 371        .compare_object         = keyring_compare_object,
 372        .diff_objects           = keyring_diff_objects,
 373        .free_object            = keyring_free_object,
 374};
 375
 376/*
 377 * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
 378 * and dispose of its data.
 379 *
 380 * The garbage collector detects the final key_put(), removes the keyring from
 381 * the serial number tree and then does RCU synchronisation before coming here,
 382 * so we shouldn't need to worry about code poking around here with the RCU
 383 * readlock held by this time.
 384 */
 385static void keyring_destroy(struct key *keyring)
 386{
 387        if (keyring->description) {
 388                write_lock(&keyring_name_lock);
 389
 390                if (keyring->name_link.next != NULL &&
 391                    !list_empty(&keyring->name_link))
 392                        list_del(&keyring->name_link);
 393
 394                write_unlock(&keyring_name_lock);
 395        }
 396
 397        assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
 398}
 399
 400/*
 401 * Describe a keyring for /proc.
 402 */
 403static void keyring_describe(const struct key *keyring, struct seq_file *m)
 404{
 405        if (keyring->description)
 406                seq_puts(m, keyring->description);
 407        else
 408                seq_puts(m, "[anon]");
 409
 410        if (key_is_instantiated(keyring)) {
 411                if (keyring->keys.nr_leaves_on_tree != 0)
 412                        seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
 413                else
 414                        seq_puts(m, ": empty");
 415        }
 416}
 417
 418struct keyring_read_iterator_context {
 419        size_t                  qty;
 420        size_t                  count;
 421        key_serial_t __user     *buffer;
 422};
 423
 424static int keyring_read_iterator(const void *object, void *data)
 425{
 426        struct keyring_read_iterator_context *ctx = data;
 427        const struct key *key = keyring_ptr_to_key(object);
 428        int ret;
 429
 430        kenter("{%s,%d},,{%zu/%zu}",
 431               key->type->name, key->serial, ctx->count, ctx->qty);
 432
 433        if (ctx->count >= ctx->qty)
 434                return 1;
 435
 436        ret = put_user(key->serial, ctx->buffer);
 437        if (ret < 0)
 438                return ret;
 439        ctx->buffer++;
 440        ctx->count += sizeof(key->serial);
 441        return 0;
 442}
 443
 444/*
 445 * Read a list of key IDs from the keyring's contents in binary form
 446 *
 447 * The keyring's semaphore is read-locked by the caller.  This prevents someone
 448 * from modifying it under us - which could cause us to read key IDs multiple
 449 * times.
 450 */
 451static long keyring_read(const struct key *keyring,
 452                         char __user *buffer, size_t buflen)
 453{
 454        struct keyring_read_iterator_context ctx;
 455        unsigned long nr_keys;
 456        int ret;
 457
 458        kenter("{%d},,%zu", key_serial(keyring), buflen);
 459
 460        if (buflen & (sizeof(key_serial_t) - 1))
 461                return -EINVAL;
 462
 463        nr_keys = keyring->keys.nr_leaves_on_tree;
 464        if (nr_keys == 0)
 465                return 0;
 466
 467        /* Calculate how much data we could return */
 468        ctx.qty = nr_keys * sizeof(key_serial_t);
 469
 470        if (!buffer || !buflen)
 471                return ctx.qty;
 472
 473        if (buflen > ctx.qty)
 474                ctx.qty = buflen;
 475
 476        /* Copy the IDs of the subscribed keys into the buffer */
 477        ctx.buffer = (key_serial_t __user *)buffer;
 478        ctx.count = 0;
 479        ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx);
 480        if (ret < 0) {
 481                kleave(" = %d [iterate]", ret);
 482                return ret;
 483        }
 484
 485        kleave(" = %zu [ok]", ctx.count);
 486        return ctx.count;
 487}
 488
 489/*
 490 * Allocate a keyring and link into the destination keyring.
 491 */
 492struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
 493                          const struct cred *cred, key_perm_t perm,
 494                          unsigned long flags,
 495                          int (*restrict_link)(struct key *,
 496                                               const struct key_type *,
 497                                               const union key_payload *),
 498                          struct key *dest)
 499{
 500        struct key *keyring;
 501        int ret;
 502
 503        keyring = key_alloc(&key_type_keyring, description,
 504                            uid, gid, cred, perm, flags, restrict_link);
 505        if (!IS_ERR(keyring)) {
 506                ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
 507                if (ret < 0) {
 508                        key_put(keyring);
 509                        keyring = ERR_PTR(ret);
 510                }
 511        }
 512
 513        return keyring;
 514}
 515EXPORT_SYMBOL(keyring_alloc);
 516
 517/**
 518 * restrict_link_reject - Give -EPERM to restrict link
 519 * @keyring: The keyring being added to.
 520 * @type: The type of key being added.
 521 * @payload: The payload of the key intended to be added.
 522 *
 523 * Reject the addition of any links to a keyring.  It can be overridden by
 524 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
 525 * adding a key to a keyring.
 526 *
 527 * This is meant to be passed as the restrict_link parameter to
 528 * keyring_alloc().
 529 */
 530int restrict_link_reject(struct key *keyring,
 531                         const struct key_type *type,
 532                         const union key_payload *payload)
 533{
 534        return -EPERM;
 535}
 536
 537/*
 538 * By default, we keys found by getting an exact match on their descriptions.
 539 */
 540bool key_default_cmp(const struct key *key,
 541                     const struct key_match_data *match_data)
 542{
 543        return strcmp(key->description, match_data->raw_data) == 0;
 544}
 545
 546/*
 547 * Iteration function to consider each key found.
 548 */
 549static int keyring_search_iterator(const void *object, void *iterator_data)
 550{
 551        struct keyring_search_context *ctx = iterator_data;
 552        const struct key *key = keyring_ptr_to_key(object);
 553        unsigned long kflags = key->flags;
 554
 555        kenter("{%d}", key->serial);
 556
 557        /* ignore keys not of this type */
 558        if (key->type != ctx->index_key.type) {
 559                kleave(" = 0 [!type]");
 560                return 0;
 561        }
 562
 563        /* skip invalidated, revoked and expired keys */
 564        if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
 565                if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
 566                              (1 << KEY_FLAG_REVOKED))) {
 567                        ctx->result = ERR_PTR(-EKEYREVOKED);
 568                        kleave(" = %d [invrev]", ctx->skipped_ret);
 569                        goto skipped;
 570                }
 571
 572                if (key->expiry && ctx->now.tv_sec >= key->expiry) {
 573                        if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
 574                                ctx->result = ERR_PTR(-EKEYEXPIRED);
 575                        kleave(" = %d [expire]", ctx->skipped_ret);
 576                        goto skipped;
 577                }
 578        }
 579
 580        /* keys that don't match */
 581        if (!ctx->match_data.cmp(key, &ctx->match_data)) {
 582                kleave(" = 0 [!match]");
 583                return 0;
 584        }
 585
 586        /* key must have search permissions */
 587        if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
 588            key_task_permission(make_key_ref(key, ctx->possessed),
 589                                ctx->cred, KEY_NEED_SEARCH) < 0) {
 590                ctx->result = ERR_PTR(-EACCES);
 591                kleave(" = %d [!perm]", ctx->skipped_ret);
 592                goto skipped;
 593        }
 594
 595        if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
 596                /* we set a different error code if we pass a negative key */
 597                if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
 598                        smp_rmb();
 599                        ctx->result = ERR_PTR(key->reject_error);
 600                        kleave(" = %d [neg]", ctx->skipped_ret);
 601                        goto skipped;
 602                }
 603        }
 604
 605        /* Found */
 606        ctx->result = make_key_ref(key, ctx->possessed);
 607        kleave(" = 1 [found]");
 608        return 1;
 609
 610skipped:
 611        return ctx->skipped_ret;
 612}
 613
 614/*
 615 * Search inside a keyring for a key.  We can search by walking to it
 616 * directly based on its index-key or we can iterate over the entire
 617 * tree looking for it, based on the match function.
 618 */
 619static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
 620{
 621        if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
 622                const void *object;
 623
 624                object = assoc_array_find(&keyring->keys,
 625                                          &keyring_assoc_array_ops,
 626                                          &ctx->index_key);
 627                return object ? ctx->iterator(object, ctx) : 0;
 628        }
 629        return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
 630}
 631
 632/*
 633 * Search a tree of keyrings that point to other keyrings up to the maximum
 634 * depth.
 635 */
 636static bool search_nested_keyrings(struct key *keyring,
 637                                   struct keyring_search_context *ctx)
 638{
 639        struct {
 640                struct key *keyring;
 641                struct assoc_array_node *node;
 642                int slot;
 643        } stack[KEYRING_SEARCH_MAX_DEPTH];
 644
 645        struct assoc_array_shortcut *shortcut;
 646        struct assoc_array_node *node;
 647        struct assoc_array_ptr *ptr;
 648        struct key *key;
 649        int sp = 0, slot;
 650
 651        kenter("{%d},{%s,%s}",
 652               keyring->serial,
 653               ctx->index_key.type->name,
 654               ctx->index_key.description);
 655
 656#define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
 657        BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
 658               (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
 659
 660        if (ctx->index_key.description)
 661                ctx->index_key.desc_len = strlen(ctx->index_key.description);
 662
 663        /* Check to see if this top-level keyring is what we are looking for
 664         * and whether it is valid or not.
 665         */
 666        if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
 667            keyring_compare_object(keyring, &ctx->index_key)) {
 668                ctx->skipped_ret = 2;
 669                switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
 670                case 1:
 671                        goto found;
 672                case 2:
 673                        return false;
 674                default:
 675                        break;
 676                }
 677        }
 678
 679        ctx->skipped_ret = 0;
 680
 681        /* Start processing a new keyring */
 682descend_to_keyring:
 683        kdebug("descend to %d", keyring->serial);
 684        if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
 685                              (1 << KEY_FLAG_REVOKED)))
 686                goto not_this_keyring;
 687
 688        /* Search through the keys in this keyring before its searching its
 689         * subtrees.
 690         */
 691        if (search_keyring(keyring, ctx))
 692                goto found;
 693
 694        /* Then manually iterate through the keyrings nested in this one.
 695         *
 696         * Start from the root node of the index tree.  Because of the way the
 697         * hash function has been set up, keyrings cluster on the leftmost
 698         * branch of the root node (root slot 0) or in the root node itself.
 699         * Non-keyrings avoid the leftmost branch of the root entirely (root
 700         * slots 1-15).
 701         */
 702        ptr = ACCESS_ONCE(keyring->keys.root);
 703        if (!ptr)
 704                goto not_this_keyring;
 705
 706        if (assoc_array_ptr_is_shortcut(ptr)) {
 707                /* If the root is a shortcut, either the keyring only contains
 708                 * keyring pointers (everything clusters behind root slot 0) or
 709                 * doesn't contain any keyring pointers.
 710                 */
 711                shortcut = assoc_array_ptr_to_shortcut(ptr);
 712                smp_read_barrier_depends();
 713                if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
 714                        goto not_this_keyring;
 715
 716                ptr = ACCESS_ONCE(shortcut->next_node);
 717                node = assoc_array_ptr_to_node(ptr);
 718                goto begin_node;
 719        }
 720
 721        node = assoc_array_ptr_to_node(ptr);
 722        smp_read_barrier_depends();
 723
 724        ptr = node->slots[0];
 725        if (!assoc_array_ptr_is_meta(ptr))
 726                goto begin_node;
 727
 728descend_to_node:
 729        /* Descend to a more distal node in this keyring's content tree and go
 730         * through that.
 731         */
 732        kdebug("descend");
 733        if (assoc_array_ptr_is_shortcut(ptr)) {
 734                shortcut = assoc_array_ptr_to_shortcut(ptr);
 735                smp_read_barrier_depends();
 736                ptr = ACCESS_ONCE(shortcut->next_node);
 737                BUG_ON(!assoc_array_ptr_is_node(ptr));
 738        }
 739        node = assoc_array_ptr_to_node(ptr);
 740
 741begin_node:
 742        kdebug("begin_node");
 743        smp_read_barrier_depends();
 744        slot = 0;
 745ascend_to_node:
 746        /* Go through the slots in a node */
 747        for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 748                ptr = ACCESS_ONCE(node->slots[slot]);
 749
 750                if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
 751                        goto descend_to_node;
 752
 753                if (!keyring_ptr_is_keyring(ptr))
 754                        continue;
 755
 756                key = keyring_ptr_to_key(ptr);
 757
 758                if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
 759                        if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
 760                                ctx->result = ERR_PTR(-ELOOP);
 761                                return false;
 762                        }
 763                        goto not_this_keyring;
 764                }
 765
 766                /* Search a nested keyring */
 767                if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
 768                    key_task_permission(make_key_ref(key, ctx->possessed),
 769                                        ctx->cred, KEY_NEED_SEARCH) < 0)
 770                        continue;
 771
 772                /* stack the current position */
 773                stack[sp].keyring = keyring;
 774                stack[sp].node = node;
 775                stack[sp].slot = slot;
 776                sp++;
 777
 778                /* begin again with the new keyring */
 779                keyring = key;
 780                goto descend_to_keyring;
 781        }
 782
 783        /* We've dealt with all the slots in the current node, so now we need
 784         * to ascend to the parent and continue processing there.
 785         */
 786        ptr = ACCESS_ONCE(node->back_pointer);
 787        slot = node->parent_slot;
 788
 789        if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
 790                shortcut = assoc_array_ptr_to_shortcut(ptr);
 791                smp_read_barrier_depends();
 792                ptr = ACCESS_ONCE(shortcut->back_pointer);
 793                slot = shortcut->parent_slot;
 794        }
 795        if (!ptr)
 796                goto not_this_keyring;
 797        node = assoc_array_ptr_to_node(ptr);
 798        smp_read_barrier_depends();
 799        slot++;
 800
 801        /* If we've ascended to the root (zero backpointer), we must have just
 802         * finished processing the leftmost branch rather than the root slots -
 803         * so there can't be any more keyrings for us to find.
 804         */
 805        if (node->back_pointer) {
 806                kdebug("ascend %d", slot);
 807                goto ascend_to_node;
 808        }
 809
 810        /* The keyring we're looking at was disqualified or didn't contain a
 811         * matching key.
 812         */
 813not_this_keyring:
 814        kdebug("not_this_keyring %d", sp);
 815        if (sp <= 0) {
 816                kleave(" = false");
 817                return false;
 818        }
 819
 820        /* Resume the processing of a keyring higher up in the tree */
 821        sp--;
 822        keyring = stack[sp].keyring;
 823        node = stack[sp].node;
 824        slot = stack[sp].slot + 1;
 825        kdebug("ascend to %d [%d]", keyring->serial, slot);
 826        goto ascend_to_node;
 827
 828        /* We found a viable match */
 829found:
 830        key = key_ref_to_ptr(ctx->result);
 831        key_check(key);
 832        if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
 833                key->last_used_at = ctx->now.tv_sec;
 834                keyring->last_used_at = ctx->now.tv_sec;
 835                while (sp > 0)
 836                        stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
 837        }
 838        kleave(" = true");
 839        return true;
 840}
 841
 842/**
 843 * keyring_search_aux - Search a keyring tree for a key matching some criteria
 844 * @keyring_ref: A pointer to the keyring with possession indicator.
 845 * @ctx: The keyring search context.
 846 *
 847 * Search the supplied keyring tree for a key that matches the criteria given.
 848 * The root keyring and any linked keyrings must grant Search permission to the
 849 * caller to be searchable and keys can only be found if they too grant Search
 850 * to the caller. The possession flag on the root keyring pointer controls use
 851 * of the possessor bits in permissions checking of the entire tree.  In
 852 * addition, the LSM gets to forbid keyring searches and key matches.
 853 *
 854 * The search is performed as a breadth-then-depth search up to the prescribed
 855 * limit (KEYRING_SEARCH_MAX_DEPTH).
 856 *
 857 * Keys are matched to the type provided and are then filtered by the match
 858 * function, which is given the description to use in any way it sees fit.  The
 859 * match function may use any attributes of a key that it wishes to to
 860 * determine the match.  Normally the match function from the key type would be
 861 * used.
 862 *
 863 * RCU can be used to prevent the keyring key lists from disappearing without
 864 * the need to take lots of locks.
 865 *
 866 * Returns a pointer to the found key and increments the key usage count if
 867 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
 868 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
 869 * specified keyring wasn't a keyring.
 870 *
 871 * In the case of a successful return, the possession attribute from
 872 * @keyring_ref is propagated to the returned key reference.
 873 */
 874key_ref_t keyring_search_aux(key_ref_t keyring_ref,
 875                             struct keyring_search_context *ctx)
 876{
 877        struct key *keyring;
 878        long err;
 879
 880        ctx->iterator = keyring_search_iterator;
 881        ctx->possessed = is_key_possessed(keyring_ref);
 882        ctx->result = ERR_PTR(-EAGAIN);
 883
 884        keyring = key_ref_to_ptr(keyring_ref);
 885        key_check(keyring);
 886
 887        if (keyring->type != &key_type_keyring)
 888                return ERR_PTR(-ENOTDIR);
 889
 890        if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
 891                err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
 892                if (err < 0)
 893                        return ERR_PTR(err);
 894        }
 895
 896        rcu_read_lock();
 897        ctx->now = current_kernel_time();
 898        if (search_nested_keyrings(keyring, ctx))
 899                __key_get(key_ref_to_ptr(ctx->result));
 900        rcu_read_unlock();
 901        return ctx->result;
 902}
 903
 904/**
 905 * keyring_search - Search the supplied keyring tree for a matching key
 906 * @keyring: The root of the keyring tree to be searched.
 907 * @type: The type of keyring we want to find.
 908 * @description: The name of the keyring we want to find.
 909 *
 910 * As keyring_search_aux() above, but using the current task's credentials and
 911 * type's default matching function and preferred search method.
 912 */
 913key_ref_t keyring_search(key_ref_t keyring,
 914                         struct key_type *type,
 915                         const char *description)
 916{
 917        struct keyring_search_context ctx = {
 918                .index_key.type         = type,
 919                .index_key.description  = description,
 920                .cred                   = current_cred(),
 921                .match_data.cmp         = key_default_cmp,
 922                .match_data.raw_data    = description,
 923                .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
 924                .flags                  = KEYRING_SEARCH_DO_STATE_CHECK,
 925        };
 926        key_ref_t key;
 927        int ret;
 928
 929        if (type->match_preparse) {
 930                ret = type->match_preparse(&ctx.match_data);
 931                if (ret < 0)
 932                        return ERR_PTR(ret);
 933        }
 934
 935        key = keyring_search_aux(keyring, &ctx);
 936
 937        if (type->match_free)
 938                type->match_free(&ctx.match_data);
 939        return key;
 940}
 941EXPORT_SYMBOL(keyring_search);
 942
 943/*
 944 * Search the given keyring for a key that might be updated.
 945 *
 946 * The caller must guarantee that the keyring is a keyring and that the
 947 * permission is granted to modify the keyring as no check is made here.  The
 948 * caller must also hold a lock on the keyring semaphore.
 949 *
 950 * Returns a pointer to the found key with usage count incremented if
 951 * successful and returns NULL if not found.  Revoked and invalidated keys are
 952 * skipped over.
 953 *
 954 * If successful, the possession indicator is propagated from the keyring ref
 955 * to the returned key reference.
 956 */
 957key_ref_t find_key_to_update(key_ref_t keyring_ref,
 958                             const struct keyring_index_key *index_key)
 959{
 960        struct key *keyring, *key;
 961        const void *object;
 962
 963        keyring = key_ref_to_ptr(keyring_ref);
 964
 965        kenter("{%d},{%s,%s}",
 966               keyring->serial, index_key->type->name, index_key->description);
 967
 968        object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
 969                                  index_key);
 970
 971        if (object)
 972                goto found;
 973
 974        kleave(" = NULL");
 975        return NULL;
 976
 977found:
 978        key = keyring_ptr_to_key(object);
 979        if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
 980                          (1 << KEY_FLAG_REVOKED))) {
 981                kleave(" = NULL [x]");
 982                return NULL;
 983        }
 984        __key_get(key);
 985        kleave(" = {%d}", key->serial);
 986        return make_key_ref(key, is_key_possessed(keyring_ref));
 987}
 988
 989/*
 990 * Find a keyring with the specified name.
 991 *
 992 * All named keyrings in the current user namespace are searched, provided they
 993 * grant Search permission directly to the caller (unless this check is
 994 * skipped).  Keyrings whose usage points have reached zero or who have been
 995 * revoked are skipped.
 996 *
 997 * Returns a pointer to the keyring with the keyring's refcount having being
 998 * incremented on success.  -ENOKEY is returned if a key could not be found.
 999 */
1000struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
1001{
1002        struct key *keyring;
1003        int bucket;
1004
1005        if (!name)
1006                return ERR_PTR(-EINVAL);
1007
1008        bucket = keyring_hash(name);
1009
1010        read_lock(&keyring_name_lock);
1011
1012        if (keyring_name_hash[bucket].next) {
1013                /* search this hash bucket for a keyring with a matching name
1014                 * that's readable and that hasn't been revoked */
1015                list_for_each_entry(keyring,
1016                                    &keyring_name_hash[bucket],
1017                                    name_link
1018                                    ) {
1019                        if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
1020                                continue;
1021
1022                        if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1023                                continue;
1024
1025                        if (strcmp(keyring->description, name) != 0)
1026                                continue;
1027
1028                        if (!skip_perm_check &&
1029                            key_permission(make_key_ref(keyring, 0),
1030                                           KEY_NEED_SEARCH) < 0)
1031                                continue;
1032
1033                        /* we've got a match but we might end up racing with
1034                         * key_cleanup() if the keyring is currently 'dead'
1035                         * (ie. it has a zero usage count) */
1036                        if (!atomic_inc_not_zero(&keyring->usage))
1037                                continue;
1038                        keyring->last_used_at = current_kernel_time().tv_sec;
1039                        goto out;
1040                }
1041        }
1042
1043        keyring = ERR_PTR(-ENOKEY);
1044out:
1045        read_unlock(&keyring_name_lock);
1046        return keyring;
1047}
1048
1049static int keyring_detect_cycle_iterator(const void *object,
1050                                         void *iterator_data)
1051{
1052        struct keyring_search_context *ctx = iterator_data;
1053        const struct key *key = keyring_ptr_to_key(object);
1054
1055        kenter("{%d}", key->serial);
1056
1057        /* We might get a keyring with matching index-key that is nonetheless a
1058         * different keyring. */
1059        if (key != ctx->match_data.raw_data)
1060                return 0;
1061
1062        ctx->result = ERR_PTR(-EDEADLK);
1063        return 1;
1064}
1065
1066/*
1067 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1068 * tree A at the topmost level (ie: as a direct child of A).
1069 *
1070 * Since we are adding B to A at the top level, checking for cycles should just
1071 * be a matter of seeing if node A is somewhere in tree B.
1072 */
1073static int keyring_detect_cycle(struct key *A, struct key *B)
1074{
1075        struct keyring_search_context ctx = {
1076                .index_key              = A->index_key,
1077                .match_data.raw_data    = A,
1078                .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1079                .iterator               = keyring_detect_cycle_iterator,
1080                .flags                  = (KEYRING_SEARCH_NO_STATE_CHECK |
1081                                           KEYRING_SEARCH_NO_UPDATE_TIME |
1082                                           KEYRING_SEARCH_NO_CHECK_PERM |
1083                                           KEYRING_SEARCH_DETECT_TOO_DEEP),
1084        };
1085
1086        rcu_read_lock();
1087        search_nested_keyrings(B, &ctx);
1088        rcu_read_unlock();
1089        return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1090}
1091
1092/*
1093 * Preallocate memory so that a key can be linked into to a keyring.
1094 */
1095int __key_link_begin(struct key *keyring,
1096                     const struct keyring_index_key *index_key,
1097                     struct assoc_array_edit **_edit)
1098        __acquires(&keyring->sem)
1099        __acquires(&keyring_serialise_link_sem)
1100{
1101        struct assoc_array_edit *edit;
1102        int ret;
1103
1104        kenter("%d,%s,%s,",
1105               keyring->serial, index_key->type->name, index_key->description);
1106
1107        BUG_ON(index_key->desc_len == 0);
1108
1109        if (keyring->type != &key_type_keyring)
1110                return -ENOTDIR;
1111
1112        down_write(&keyring->sem);
1113
1114        ret = -EKEYREVOKED;
1115        if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1116                goto error_krsem;
1117
1118        /* serialise link/link calls to prevent parallel calls causing a cycle
1119         * when linking two keyring in opposite orders */
1120        if (index_key->type == &key_type_keyring)
1121                down_write(&keyring_serialise_link_sem);
1122
1123        /* Create an edit script that will insert/replace the key in the
1124         * keyring tree.
1125         */
1126        edit = assoc_array_insert(&keyring->keys,
1127                                  &keyring_assoc_array_ops,
1128                                  index_key,
1129                                  NULL);
1130        if (IS_ERR(edit)) {
1131                ret = PTR_ERR(edit);
1132                goto error_sem;
1133        }
1134
1135        /* If we're not replacing a link in-place then we're going to need some
1136         * extra quota.
1137         */
1138        if (!edit->dead_leaf) {
1139                ret = key_payload_reserve(keyring,
1140                                          keyring->datalen + KEYQUOTA_LINK_BYTES);
1141                if (ret < 0)
1142                        goto error_cancel;
1143        }
1144
1145        *_edit = edit;
1146        kleave(" = 0");
1147        return 0;
1148
1149error_cancel:
1150        assoc_array_cancel_edit(edit);
1151error_sem:
1152        if (index_key->type == &key_type_keyring)
1153                up_write(&keyring_serialise_link_sem);
1154error_krsem:
1155        up_write(&keyring->sem);
1156        kleave(" = %d", ret);
1157        return ret;
1158}
1159
1160/*
1161 * Check already instantiated keys aren't going to be a problem.
1162 *
1163 * The caller must have called __key_link_begin(). Don't need to call this for
1164 * keys that were created since __key_link_begin() was called.
1165 */
1166int __key_link_check_live_key(struct key *keyring, struct key *key)
1167{
1168        if (key->type == &key_type_keyring)
1169                /* check that we aren't going to create a cycle by linking one
1170                 * keyring to another */
1171                return keyring_detect_cycle(keyring, key);
1172        return 0;
1173}
1174
1175/*
1176 * Link a key into to a keyring.
1177 *
1178 * Must be called with __key_link_begin() having being called.  Discards any
1179 * already extant link to matching key if there is one, so that each keyring
1180 * holds at most one link to any given key of a particular type+description
1181 * combination.
1182 */
1183void __key_link(struct key *key, struct assoc_array_edit **_edit)
1184{
1185        __key_get(key);
1186        assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1187        assoc_array_apply_edit(*_edit);
1188        *_edit = NULL;
1189}
1190
1191/*
1192 * Finish linking a key into to a keyring.
1193 *
1194 * Must be called with __key_link_begin() having being called.
1195 */
1196void __key_link_end(struct key *keyring,
1197                    const struct keyring_index_key *index_key,
1198                    struct assoc_array_edit *edit)
1199        __releases(&keyring->sem)
1200        __releases(&keyring_serialise_link_sem)
1201{
1202        BUG_ON(index_key->type == NULL);
1203        kenter("%d,%s,", keyring->serial, index_key->type->name);
1204
1205        if (index_key->type == &key_type_keyring)
1206                up_write(&keyring_serialise_link_sem);
1207
1208        if (edit) {
1209                if (!edit->dead_leaf) {
1210                        key_payload_reserve(keyring,
1211                                keyring->datalen - KEYQUOTA_LINK_BYTES);
1212                }
1213                assoc_array_cancel_edit(edit);
1214        }
1215        up_write(&keyring->sem);
1216}
1217
1218/*
1219 * Check addition of keys to restricted keyrings.
1220 */
1221static int __key_link_check_restriction(struct key *keyring, struct key *key)
1222{
1223        if (!keyring->restrict_link)
1224                return 0;
1225        return keyring->restrict_link(keyring, key->type, &key->payload);
1226}
1227
1228/**
1229 * key_link - Link a key to a keyring
1230 * @keyring: The keyring to make the link in.
1231 * @key: The key to link to.
1232 *
1233 * Make a link in a keyring to a key, such that the keyring holds a reference
1234 * on that key and the key can potentially be found by searching that keyring.
1235 *
1236 * This function will write-lock the keyring's semaphore and will consume some
1237 * of the user's key data quota to hold the link.
1238 *
1239 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1240 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1241 * full, -EDQUOT if there is insufficient key data quota remaining to add
1242 * another link or -ENOMEM if there's insufficient memory.
1243 *
1244 * It is assumed that the caller has checked that it is permitted for a link to
1245 * be made (the keyring should have Write permission and the key Link
1246 * permission).
1247 */
1248int key_link(struct key *keyring, struct key *key)
1249{
1250        struct assoc_array_edit *edit;
1251        int ret;
1252
1253        kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1254
1255        key_check(keyring);
1256        key_check(key);
1257
1258        ret = __key_link_begin(keyring, &key->index_key, &edit);
1259        if (ret == 0) {
1260                kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1261                ret = __key_link_check_restriction(keyring, key);
1262                if (ret == 0)
1263                        ret = __key_link_check_live_key(keyring, key);
1264                if (ret == 0)
1265                        __key_link(key, &edit);
1266                __key_link_end(keyring, &key->index_key, edit);
1267        }
1268
1269        kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
1270        return ret;
1271}
1272EXPORT_SYMBOL(key_link);
1273
1274/**
1275 * key_unlink - Unlink the first link to a key from a keyring.
1276 * @keyring: The keyring to remove the link from.
1277 * @key: The key the link is to.
1278 *
1279 * Remove a link from a keyring to a key.
1280 *
1281 * This function will write-lock the keyring's semaphore.
1282 *
1283 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1284 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1285 * memory.
1286 *
1287 * It is assumed that the caller has checked that it is permitted for a link to
1288 * be removed (the keyring should have Write permission; no permissions are
1289 * required on the key).
1290 */
1291int key_unlink(struct key *keyring, struct key *key)
1292{
1293        struct assoc_array_edit *edit;
1294        int ret;
1295
1296        key_check(keyring);
1297        key_check(key);
1298
1299        if (keyring->type != &key_type_keyring)
1300                return -ENOTDIR;
1301
1302        down_write(&keyring->sem);
1303
1304        edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1305                                  &key->index_key);
1306        if (IS_ERR(edit)) {
1307                ret = PTR_ERR(edit);
1308                goto error;
1309        }
1310        ret = -ENOENT;
1311        if (edit == NULL)
1312                goto error;
1313
1314        assoc_array_apply_edit(edit);
1315        key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1316        ret = 0;
1317
1318error:
1319        up_write(&keyring->sem);
1320        return ret;
1321}
1322EXPORT_SYMBOL(key_unlink);
1323
1324/**
1325 * keyring_clear - Clear a keyring
1326 * @keyring: The keyring to clear.
1327 *
1328 * Clear the contents of the specified keyring.
1329 *
1330 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1331 */
1332int keyring_clear(struct key *keyring)
1333{
1334        struct assoc_array_edit *edit;
1335        int ret;
1336
1337        if (keyring->type != &key_type_keyring)
1338                return -ENOTDIR;
1339
1340        down_write(&keyring->sem);
1341
1342        edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1343        if (IS_ERR(edit)) {
1344                ret = PTR_ERR(edit);
1345        } else {
1346                if (edit)
1347                        assoc_array_apply_edit(edit);
1348                key_payload_reserve(keyring, 0);
1349                ret = 0;
1350        }
1351
1352        up_write(&keyring->sem);
1353        return ret;
1354}
1355EXPORT_SYMBOL(keyring_clear);
1356
1357/*
1358 * Dispose of the links from a revoked keyring.
1359 *
1360 * This is called with the key sem write-locked.
1361 */
1362static void keyring_revoke(struct key *keyring)
1363{
1364        struct assoc_array_edit *edit;
1365
1366        edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1367        if (!IS_ERR(edit)) {
1368                if (edit)
1369                        assoc_array_apply_edit(edit);
1370                key_payload_reserve(keyring, 0);
1371        }
1372}
1373
1374static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1375{
1376        struct key *key = keyring_ptr_to_key(object);
1377        time_t *limit = iterator_data;
1378
1379        if (key_is_dead(key, *limit))
1380                return false;
1381        key_get(key);
1382        return true;
1383}
1384
1385static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1386{
1387        const struct key *key = keyring_ptr_to_key(object);
1388        time_t *limit = iterator_data;
1389
1390        key_check(key);
1391        return key_is_dead(key, *limit);
1392}
1393
1394/*
1395 * Garbage collect pointers from a keyring.
1396 *
1397 * Not called with any locks held.  The keyring's key struct will not be
1398 * deallocated under us as only our caller may deallocate it.
1399 */
1400void keyring_gc(struct key *keyring, time_t limit)
1401{
1402        int result;
1403
1404        kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1405
1406        if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1407                              (1 << KEY_FLAG_REVOKED)))
1408                goto dont_gc;
1409
1410        /* scan the keyring looking for dead keys */
1411        rcu_read_lock();
1412        result = assoc_array_iterate(&keyring->keys,
1413                                     keyring_gc_check_iterator, &limit);
1414        rcu_read_unlock();
1415        if (result == true)
1416                goto do_gc;
1417
1418dont_gc:
1419        kleave(" [no gc]");
1420        return;
1421
1422do_gc:
1423        down_write(&keyring->sem);
1424        assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1425                       keyring_gc_select_iterator, &limit);
1426        up_write(&keyring->sem);
1427        kleave(" [gc]");
1428}
1429