linux/security/selinux/ss/services.c
<<
>>
Prefs
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *           James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *      Support for enhanced MLS infrastructure.
  10 *      Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *      Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *      This program is free software; you can redistribute it and/or modify
  39 *      it under the terms of the GNU General Public License as published by
  40 *      the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
  72
  73int selinux_policycap_netpeer;
  74int selinux_policycap_openperm;
  75int selinux_policycap_alwaysnetwork;
  76
  77static DEFINE_RWLOCK(policy_rwlock);
  78
  79static struct sidtab sidtab;
  80struct policydb policydb;
  81int ss_initialized;
  82
  83/*
  84 * The largest sequence number that has been used when
  85 * providing an access decision to the access vector cache.
  86 * The sequence number only changes when a policy change
  87 * occurs.
  88 */
  89static u32 latest_granting;
  90
  91/* Forward declaration. */
  92static int context_struct_to_string(struct context *context, char **scontext,
  93                                    u32 *scontext_len);
  94
  95static void context_struct_compute_av(struct context *scontext,
  96                                        struct context *tcontext,
  97                                        u16 tclass,
  98                                        struct av_decision *avd,
  99                                        struct extended_perms *xperms);
 100
 101struct selinux_mapping {
 102        u16 value; /* policy value */
 103        unsigned num_perms;
 104        u32 perms[sizeof(u32) * 8];
 105};
 106
 107static struct selinux_mapping *current_mapping;
 108static u16 current_mapping_size;
 109
 110static int selinux_set_mapping(struct policydb *pol,
 111                               struct security_class_mapping *map,
 112                               struct selinux_mapping **out_map_p,
 113                               u16 *out_map_size)
 114{
 115        struct selinux_mapping *out_map = NULL;
 116        size_t size = sizeof(struct selinux_mapping);
 117        u16 i, j;
 118        unsigned k;
 119        bool print_unknown_handle = false;
 120
 121        /* Find number of classes in the input mapping */
 122        if (!map)
 123                return -EINVAL;
 124        i = 0;
 125        while (map[i].name)
 126                i++;
 127
 128        /* Allocate space for the class records, plus one for class zero */
 129        out_map = kcalloc(++i, size, GFP_ATOMIC);
 130        if (!out_map)
 131                return -ENOMEM;
 132
 133        /* Store the raw class and permission values */
 134        j = 0;
 135        while (map[j].name) {
 136                struct security_class_mapping *p_in = map + (j++);
 137                struct selinux_mapping *p_out = out_map + j;
 138
 139                /* An empty class string skips ahead */
 140                if (!strcmp(p_in->name, "")) {
 141                        p_out->num_perms = 0;
 142                        continue;
 143                }
 144
 145                p_out->value = string_to_security_class(pol, p_in->name);
 146                if (!p_out->value) {
 147                        printk(KERN_INFO
 148                               "SELinux:  Class %s not defined in policy.\n",
 149                               p_in->name);
 150                        if (pol->reject_unknown)
 151                                goto err;
 152                        p_out->num_perms = 0;
 153                        print_unknown_handle = true;
 154                        continue;
 155                }
 156
 157                k = 0;
 158                while (p_in->perms && p_in->perms[k]) {
 159                        /* An empty permission string skips ahead */
 160                        if (!*p_in->perms[k]) {
 161                                k++;
 162                                continue;
 163                        }
 164                        p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 165                                                            p_in->perms[k]);
 166                        if (!p_out->perms[k]) {
 167                                printk(KERN_INFO
 168                                       "SELinux:  Permission %s in class %s not defined in policy.\n",
 169                                       p_in->perms[k], p_in->name);
 170                                if (pol->reject_unknown)
 171                                        goto err;
 172                                print_unknown_handle = true;
 173                        }
 174
 175                        k++;
 176                }
 177                p_out->num_perms = k;
 178        }
 179
 180        if (print_unknown_handle)
 181                printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 182                       pol->allow_unknown ? "allowed" : "denied");
 183
 184        *out_map_p = out_map;
 185        *out_map_size = i;
 186        return 0;
 187err:
 188        kfree(out_map);
 189        return -EINVAL;
 190}
 191
 192/*
 193 * Get real, policy values from mapped values
 194 */
 195
 196static u16 unmap_class(u16 tclass)
 197{
 198        if (tclass < current_mapping_size)
 199                return current_mapping[tclass].value;
 200
 201        return tclass;
 202}
 203
 204/*
 205 * Get kernel value for class from its policy value
 206 */
 207static u16 map_class(u16 pol_value)
 208{
 209        u16 i;
 210
 211        for (i = 1; i < current_mapping_size; i++) {
 212                if (current_mapping[i].value == pol_value)
 213                        return i;
 214        }
 215
 216        return SECCLASS_NULL;
 217}
 218
 219static void map_decision(u16 tclass, struct av_decision *avd,
 220                         int allow_unknown)
 221{
 222        if (tclass < current_mapping_size) {
 223                unsigned i, n = current_mapping[tclass].num_perms;
 224                u32 result;
 225
 226                for (i = 0, result = 0; i < n; i++) {
 227                        if (avd->allowed & current_mapping[tclass].perms[i])
 228                                result |= 1<<i;
 229                        if (allow_unknown && !current_mapping[tclass].perms[i])
 230                                result |= 1<<i;
 231                }
 232                avd->allowed = result;
 233
 234                for (i = 0, result = 0; i < n; i++)
 235                        if (avd->auditallow & current_mapping[tclass].perms[i])
 236                                result |= 1<<i;
 237                avd->auditallow = result;
 238
 239                for (i = 0, result = 0; i < n; i++) {
 240                        if (avd->auditdeny & current_mapping[tclass].perms[i])
 241                                result |= 1<<i;
 242                        if (!allow_unknown && !current_mapping[tclass].perms[i])
 243                                result |= 1<<i;
 244                }
 245                /*
 246                 * In case the kernel has a bug and requests a permission
 247                 * between num_perms and the maximum permission number, we
 248                 * should audit that denial
 249                 */
 250                for (; i < (sizeof(u32)*8); i++)
 251                        result |= 1<<i;
 252                avd->auditdeny = result;
 253        }
 254}
 255
 256int security_mls_enabled(void)
 257{
 258        return policydb.mls_enabled;
 259}
 260
 261/*
 262 * Return the boolean value of a constraint expression
 263 * when it is applied to the specified source and target
 264 * security contexts.
 265 *
 266 * xcontext is a special beast...  It is used by the validatetrans rules
 267 * only.  For these rules, scontext is the context before the transition,
 268 * tcontext is the context after the transition, and xcontext is the context
 269 * of the process performing the transition.  All other callers of
 270 * constraint_expr_eval should pass in NULL for xcontext.
 271 */
 272static int constraint_expr_eval(struct context *scontext,
 273                                struct context *tcontext,
 274                                struct context *xcontext,
 275                                struct constraint_expr *cexpr)
 276{
 277        u32 val1, val2;
 278        struct context *c;
 279        struct role_datum *r1, *r2;
 280        struct mls_level *l1, *l2;
 281        struct constraint_expr *e;
 282        int s[CEXPR_MAXDEPTH];
 283        int sp = -1;
 284
 285        for (e = cexpr; e; e = e->next) {
 286                switch (e->expr_type) {
 287                case CEXPR_NOT:
 288                        BUG_ON(sp < 0);
 289                        s[sp] = !s[sp];
 290                        break;
 291                case CEXPR_AND:
 292                        BUG_ON(sp < 1);
 293                        sp--;
 294                        s[sp] &= s[sp + 1];
 295                        break;
 296                case CEXPR_OR:
 297                        BUG_ON(sp < 1);
 298                        sp--;
 299                        s[sp] |= s[sp + 1];
 300                        break;
 301                case CEXPR_ATTR:
 302                        if (sp == (CEXPR_MAXDEPTH - 1))
 303                                return 0;
 304                        switch (e->attr) {
 305                        case CEXPR_USER:
 306                                val1 = scontext->user;
 307                                val2 = tcontext->user;
 308                                break;
 309                        case CEXPR_TYPE:
 310                                val1 = scontext->type;
 311                                val2 = tcontext->type;
 312                                break;
 313                        case CEXPR_ROLE:
 314                                val1 = scontext->role;
 315                                val2 = tcontext->role;
 316                                r1 = policydb.role_val_to_struct[val1 - 1];
 317                                r2 = policydb.role_val_to_struct[val2 - 1];
 318                                switch (e->op) {
 319                                case CEXPR_DOM:
 320                                        s[++sp] = ebitmap_get_bit(&r1->dominates,
 321                                                                  val2 - 1);
 322                                        continue;
 323                                case CEXPR_DOMBY:
 324                                        s[++sp] = ebitmap_get_bit(&r2->dominates,
 325                                                                  val1 - 1);
 326                                        continue;
 327                                case CEXPR_INCOMP:
 328                                        s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 329                                                                    val2 - 1) &&
 330                                                   !ebitmap_get_bit(&r2->dominates,
 331                                                                    val1 - 1));
 332                                        continue;
 333                                default:
 334                                        break;
 335                                }
 336                                break;
 337                        case CEXPR_L1L2:
 338                                l1 = &(scontext->range.level[0]);
 339                                l2 = &(tcontext->range.level[0]);
 340                                goto mls_ops;
 341                        case CEXPR_L1H2:
 342                                l1 = &(scontext->range.level[0]);
 343                                l2 = &(tcontext->range.level[1]);
 344                                goto mls_ops;
 345                        case CEXPR_H1L2:
 346                                l1 = &(scontext->range.level[1]);
 347                                l2 = &(tcontext->range.level[0]);
 348                                goto mls_ops;
 349                        case CEXPR_H1H2:
 350                                l1 = &(scontext->range.level[1]);
 351                                l2 = &(tcontext->range.level[1]);
 352                                goto mls_ops;
 353                        case CEXPR_L1H1:
 354                                l1 = &(scontext->range.level[0]);
 355                                l2 = &(scontext->range.level[1]);
 356                                goto mls_ops;
 357                        case CEXPR_L2H2:
 358                                l1 = &(tcontext->range.level[0]);
 359                                l2 = &(tcontext->range.level[1]);
 360                                goto mls_ops;
 361mls_ops:
 362                        switch (e->op) {
 363                        case CEXPR_EQ:
 364                                s[++sp] = mls_level_eq(l1, l2);
 365                                continue;
 366                        case CEXPR_NEQ:
 367                                s[++sp] = !mls_level_eq(l1, l2);
 368                                continue;
 369                        case CEXPR_DOM:
 370                                s[++sp] = mls_level_dom(l1, l2);
 371                                continue;
 372                        case CEXPR_DOMBY:
 373                                s[++sp] = mls_level_dom(l2, l1);
 374                                continue;
 375                        case CEXPR_INCOMP:
 376                                s[++sp] = mls_level_incomp(l2, l1);
 377                                continue;
 378                        default:
 379                                BUG();
 380                                return 0;
 381                        }
 382                        break;
 383                        default:
 384                                BUG();
 385                                return 0;
 386                        }
 387
 388                        switch (e->op) {
 389                        case CEXPR_EQ:
 390                                s[++sp] = (val1 == val2);
 391                                break;
 392                        case CEXPR_NEQ:
 393                                s[++sp] = (val1 != val2);
 394                                break;
 395                        default:
 396                                BUG();
 397                                return 0;
 398                        }
 399                        break;
 400                case CEXPR_NAMES:
 401                        if (sp == (CEXPR_MAXDEPTH-1))
 402                                return 0;
 403                        c = scontext;
 404                        if (e->attr & CEXPR_TARGET)
 405                                c = tcontext;
 406                        else if (e->attr & CEXPR_XTARGET) {
 407                                c = xcontext;
 408                                if (!c) {
 409                                        BUG();
 410                                        return 0;
 411                                }
 412                        }
 413                        if (e->attr & CEXPR_USER)
 414                                val1 = c->user;
 415                        else if (e->attr & CEXPR_ROLE)
 416                                val1 = c->role;
 417                        else if (e->attr & CEXPR_TYPE)
 418                                val1 = c->type;
 419                        else {
 420                                BUG();
 421                                return 0;
 422                        }
 423
 424                        switch (e->op) {
 425                        case CEXPR_EQ:
 426                                s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 427                                break;
 428                        case CEXPR_NEQ:
 429                                s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 430                                break;
 431                        default:
 432                                BUG();
 433                                return 0;
 434                        }
 435                        break;
 436                default:
 437                        BUG();
 438                        return 0;
 439                }
 440        }
 441
 442        BUG_ON(sp != 0);
 443        return s[0];
 444}
 445
 446/*
 447 * security_dump_masked_av - dumps masked permissions during
 448 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 449 */
 450static int dump_masked_av_helper(void *k, void *d, void *args)
 451{
 452        struct perm_datum *pdatum = d;
 453        char **permission_names = args;
 454
 455        BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 456
 457        permission_names[pdatum->value - 1] = (char *)k;
 458
 459        return 0;
 460}
 461
 462static void security_dump_masked_av(struct context *scontext,
 463                                    struct context *tcontext,
 464                                    u16 tclass,
 465                                    u32 permissions,
 466                                    const char *reason)
 467{
 468        struct common_datum *common_dat;
 469        struct class_datum *tclass_dat;
 470        struct audit_buffer *ab;
 471        char *tclass_name;
 472        char *scontext_name = NULL;
 473        char *tcontext_name = NULL;
 474        char *permission_names[32];
 475        int index;
 476        u32 length;
 477        bool need_comma = false;
 478
 479        if (!permissions)
 480                return;
 481
 482        tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
 483        tclass_dat = policydb.class_val_to_struct[tclass - 1];
 484        common_dat = tclass_dat->comdatum;
 485
 486        /* init permission_names */
 487        if (common_dat &&
 488            hashtab_map(common_dat->permissions.table,
 489                        dump_masked_av_helper, permission_names) < 0)
 490                goto out;
 491
 492        if (hashtab_map(tclass_dat->permissions.table,
 493                        dump_masked_av_helper, permission_names) < 0)
 494                goto out;
 495
 496        /* get scontext/tcontext in text form */
 497        if (context_struct_to_string(scontext,
 498                                     &scontext_name, &length) < 0)
 499                goto out;
 500
 501        if (context_struct_to_string(tcontext,
 502                                     &tcontext_name, &length) < 0)
 503                goto out;
 504
 505        /* audit a message */
 506        ab = audit_log_start(current->audit_context,
 507                             GFP_ATOMIC, AUDIT_SELINUX_ERR);
 508        if (!ab)
 509                goto out;
 510
 511        audit_log_format(ab, "op=security_compute_av reason=%s "
 512                         "scontext=%s tcontext=%s tclass=%s perms=",
 513                         reason, scontext_name, tcontext_name, tclass_name);
 514
 515        for (index = 0; index < 32; index++) {
 516                u32 mask = (1 << index);
 517
 518                if ((mask & permissions) == 0)
 519                        continue;
 520
 521                audit_log_format(ab, "%s%s",
 522                                 need_comma ? "," : "",
 523                                 permission_names[index]
 524                                 ? permission_names[index] : "????");
 525                need_comma = true;
 526        }
 527        audit_log_end(ab);
 528out:
 529        /* release scontext/tcontext */
 530        kfree(tcontext_name);
 531        kfree(scontext_name);
 532
 533        return;
 534}
 535
 536/*
 537 * security_boundary_permission - drops violated permissions
 538 * on boundary constraint.
 539 */
 540static void type_attribute_bounds_av(struct context *scontext,
 541                                     struct context *tcontext,
 542                                     u16 tclass,
 543                                     struct av_decision *avd)
 544{
 545        struct context lo_scontext;
 546        struct context lo_tcontext, *tcontextp = tcontext;
 547        struct av_decision lo_avd;
 548        struct type_datum *source;
 549        struct type_datum *target;
 550        u32 masked = 0;
 551
 552        source = flex_array_get_ptr(policydb.type_val_to_struct_array,
 553                                    scontext->type - 1);
 554        BUG_ON(!source);
 555
 556        if (!source->bounds)
 557                return;
 558
 559        target = flex_array_get_ptr(policydb.type_val_to_struct_array,
 560                                    tcontext->type - 1);
 561        BUG_ON(!target);
 562
 563        memset(&lo_avd, 0, sizeof(lo_avd));
 564
 565        memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 566        lo_scontext.type = source->bounds;
 567
 568        if (target->bounds) {
 569                memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 570                lo_tcontext.type = target->bounds;
 571                tcontextp = &lo_tcontext;
 572        }
 573
 574        context_struct_compute_av(&lo_scontext,
 575                                  tcontextp,
 576                                  tclass,
 577                                  &lo_avd,
 578                                  NULL);
 579
 580        masked = ~lo_avd.allowed & avd->allowed;
 581
 582        if (likely(!masked))
 583                return;         /* no masked permission */
 584
 585        /* mask violated permissions */
 586        avd->allowed &= ~masked;
 587
 588        /* audit masked permissions */
 589        security_dump_masked_av(scontext, tcontext,
 590                                tclass, masked, "bounds");
 591}
 592
 593/*
 594 * flag which drivers have permissions
 595 * only looking for ioctl based extended permssions
 596 */
 597void services_compute_xperms_drivers(
 598                struct extended_perms *xperms,
 599                struct avtab_node *node)
 600{
 601        unsigned int i;
 602
 603        if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 604                /* if one or more driver has all permissions allowed */
 605                for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 606                        xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 607        } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 608                /* if allowing permissions within a driver */
 609                security_xperm_set(xperms->drivers.p,
 610                                        node->datum.u.xperms->driver);
 611        }
 612
 613        /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 614        if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 615                xperms->len = 1;
 616}
 617
 618/*
 619 * Compute access vectors and extended permissions based on a context
 620 * structure pair for the permissions in a particular class.
 621 */
 622static void context_struct_compute_av(struct context *scontext,
 623                                        struct context *tcontext,
 624                                        u16 tclass,
 625                                        struct av_decision *avd,
 626                                        struct extended_perms *xperms)
 627{
 628        struct constraint_node *constraint;
 629        struct role_allow *ra;
 630        struct avtab_key avkey;
 631        struct avtab_node *node;
 632        struct class_datum *tclass_datum;
 633        struct ebitmap *sattr, *tattr;
 634        struct ebitmap_node *snode, *tnode;
 635        unsigned int i, j;
 636
 637        avd->allowed = 0;
 638        avd->auditallow = 0;
 639        avd->auditdeny = 0xffffffff;
 640        if (xperms) {
 641                memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 642                xperms->len = 0;
 643        }
 644
 645        if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
 646                if (printk_ratelimit())
 647                        printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 648                return;
 649        }
 650
 651        tclass_datum = policydb.class_val_to_struct[tclass - 1];
 652
 653        /*
 654         * If a specific type enforcement rule was defined for
 655         * this permission check, then use it.
 656         */
 657        avkey.target_class = tclass;
 658        avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 659        sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
 660        BUG_ON(!sattr);
 661        tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
 662        BUG_ON(!tattr);
 663        ebitmap_for_each_positive_bit(sattr, snode, i) {
 664                ebitmap_for_each_positive_bit(tattr, tnode, j) {
 665                        avkey.source_type = i + 1;
 666                        avkey.target_type = j + 1;
 667                        for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 668                             node;
 669                             node = avtab_search_node_next(node, avkey.specified)) {
 670                                if (node->key.specified == AVTAB_ALLOWED)
 671                                        avd->allowed |= node->datum.u.data;
 672                                else if (node->key.specified == AVTAB_AUDITALLOW)
 673                                        avd->auditallow |= node->datum.u.data;
 674                                else if (node->key.specified == AVTAB_AUDITDENY)
 675                                        avd->auditdeny &= node->datum.u.data;
 676                                else if (xperms && (node->key.specified & AVTAB_XPERMS))
 677                                        services_compute_xperms_drivers(xperms, node);
 678                        }
 679
 680                        /* Check conditional av table for additional permissions */
 681                        cond_compute_av(&policydb.te_cond_avtab, &avkey,
 682                                        avd, xperms);
 683
 684                }
 685        }
 686
 687        /*
 688         * Remove any permissions prohibited by a constraint (this includes
 689         * the MLS policy).
 690         */
 691        constraint = tclass_datum->constraints;
 692        while (constraint) {
 693                if ((constraint->permissions & (avd->allowed)) &&
 694                    !constraint_expr_eval(scontext, tcontext, NULL,
 695                                          constraint->expr)) {
 696                        avd->allowed &= ~(constraint->permissions);
 697                }
 698                constraint = constraint->next;
 699        }
 700
 701        /*
 702         * If checking process transition permission and the
 703         * role is changing, then check the (current_role, new_role)
 704         * pair.
 705         */
 706        if (tclass == policydb.process_class &&
 707            (avd->allowed & policydb.process_trans_perms) &&
 708            scontext->role != tcontext->role) {
 709                for (ra = policydb.role_allow; ra; ra = ra->next) {
 710                        if (scontext->role == ra->role &&
 711                            tcontext->role == ra->new_role)
 712                                break;
 713                }
 714                if (!ra)
 715                        avd->allowed &= ~policydb.process_trans_perms;
 716        }
 717
 718        /*
 719         * If the given source and target types have boundary
 720         * constraint, lazy checks have to mask any violated
 721         * permission and notice it to userspace via audit.
 722         */
 723        type_attribute_bounds_av(scontext, tcontext,
 724                                 tclass, avd);
 725}
 726
 727static int security_validtrans_handle_fail(struct context *ocontext,
 728                                           struct context *ncontext,
 729                                           struct context *tcontext,
 730                                           u16 tclass)
 731{
 732        char *o = NULL, *n = NULL, *t = NULL;
 733        u32 olen, nlen, tlen;
 734
 735        if (context_struct_to_string(ocontext, &o, &olen))
 736                goto out;
 737        if (context_struct_to_string(ncontext, &n, &nlen))
 738                goto out;
 739        if (context_struct_to_string(tcontext, &t, &tlen))
 740                goto out;
 741        audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 742                  "op=security_validate_transition seresult=denied"
 743                  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 744                  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 745out:
 746        kfree(o);
 747        kfree(n);
 748        kfree(t);
 749
 750        if (!selinux_enforcing)
 751                return 0;
 752        return -EPERM;
 753}
 754
 755static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
 756                                          u16 orig_tclass, bool user)
 757{
 758        struct context *ocontext;
 759        struct context *ncontext;
 760        struct context *tcontext;
 761        struct class_datum *tclass_datum;
 762        struct constraint_node *constraint;
 763        u16 tclass;
 764        int rc = 0;
 765
 766        if (!ss_initialized)
 767                return 0;
 768
 769        read_lock(&policy_rwlock);
 770
 771        if (!user)
 772                tclass = unmap_class(orig_tclass);
 773        else
 774                tclass = orig_tclass;
 775
 776        if (!tclass || tclass > policydb.p_classes.nprim) {
 777                rc = -EINVAL;
 778                goto out;
 779        }
 780        tclass_datum = policydb.class_val_to_struct[tclass - 1];
 781
 782        ocontext = sidtab_search(&sidtab, oldsid);
 783        if (!ocontext) {
 784                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 785                        __func__, oldsid);
 786                rc = -EINVAL;
 787                goto out;
 788        }
 789
 790        ncontext = sidtab_search(&sidtab, newsid);
 791        if (!ncontext) {
 792                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 793                        __func__, newsid);
 794                rc = -EINVAL;
 795                goto out;
 796        }
 797
 798        tcontext = sidtab_search(&sidtab, tasksid);
 799        if (!tcontext) {
 800                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 801                        __func__, tasksid);
 802                rc = -EINVAL;
 803                goto out;
 804        }
 805
 806        constraint = tclass_datum->validatetrans;
 807        while (constraint) {
 808                if (!constraint_expr_eval(ocontext, ncontext, tcontext,
 809                                          constraint->expr)) {
 810                        if (user)
 811                                rc = -EPERM;
 812                        else
 813                                rc = security_validtrans_handle_fail(ocontext,
 814                                                                     ncontext,
 815                                                                     tcontext,
 816                                                                     tclass);
 817                        goto out;
 818                }
 819                constraint = constraint->next;
 820        }
 821
 822out:
 823        read_unlock(&policy_rwlock);
 824        return rc;
 825}
 826
 827int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
 828                                        u16 tclass)
 829{
 830        return security_compute_validatetrans(oldsid, newsid, tasksid,
 831                                                tclass, true);
 832}
 833
 834int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 835                                 u16 orig_tclass)
 836{
 837        return security_compute_validatetrans(oldsid, newsid, tasksid,
 838                                                orig_tclass, false);
 839}
 840
 841/*
 842 * security_bounded_transition - check whether the given
 843 * transition is directed to bounded, or not.
 844 * It returns 0, if @newsid is bounded by @oldsid.
 845 * Otherwise, it returns error code.
 846 *
 847 * @oldsid : current security identifier
 848 * @newsid : destinated security identifier
 849 */
 850int security_bounded_transition(u32 old_sid, u32 new_sid)
 851{
 852        struct context *old_context, *new_context;
 853        struct type_datum *type;
 854        int index;
 855        int rc;
 856
 857        read_lock(&policy_rwlock);
 858
 859        rc = -EINVAL;
 860        old_context = sidtab_search(&sidtab, old_sid);
 861        if (!old_context) {
 862                printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 863                       __func__, old_sid);
 864                goto out;
 865        }
 866
 867        rc = -EINVAL;
 868        new_context = sidtab_search(&sidtab, new_sid);
 869        if (!new_context) {
 870                printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 871                       __func__, new_sid);
 872                goto out;
 873        }
 874
 875        rc = 0;
 876        /* type/domain unchanged */
 877        if (old_context->type == new_context->type)
 878                goto out;
 879
 880        index = new_context->type;
 881        while (true) {
 882                type = flex_array_get_ptr(policydb.type_val_to_struct_array,
 883                                          index - 1);
 884                BUG_ON(!type);
 885
 886                /* not bounded anymore */
 887                rc = -EPERM;
 888                if (!type->bounds)
 889                        break;
 890
 891                /* @newsid is bounded by @oldsid */
 892                rc = 0;
 893                if (type->bounds == old_context->type)
 894                        break;
 895
 896                index = type->bounds;
 897        }
 898
 899        if (rc) {
 900                char *old_name = NULL;
 901                char *new_name = NULL;
 902                u32 length;
 903
 904                if (!context_struct_to_string(old_context,
 905                                              &old_name, &length) &&
 906                    !context_struct_to_string(new_context,
 907                                              &new_name, &length)) {
 908                        audit_log(current->audit_context,
 909                                  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 910                                  "op=security_bounded_transition "
 911                                  "seresult=denied "
 912                                  "oldcontext=%s newcontext=%s",
 913                                  old_name, new_name);
 914                }
 915                kfree(new_name);
 916                kfree(old_name);
 917        }
 918out:
 919        read_unlock(&policy_rwlock);
 920
 921        return rc;
 922}
 923
 924static void avd_init(struct av_decision *avd)
 925{
 926        avd->allowed = 0;
 927        avd->auditallow = 0;
 928        avd->auditdeny = 0xffffffff;
 929        avd->seqno = latest_granting;
 930        avd->flags = 0;
 931}
 932
 933void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 934                                        struct avtab_node *node)
 935{
 936        unsigned int i;
 937
 938        if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 939                if (xpermd->driver != node->datum.u.xperms->driver)
 940                        return;
 941        } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 942                if (!security_xperm_test(node->datum.u.xperms->perms.p,
 943                                        xpermd->driver))
 944                        return;
 945        } else {
 946                BUG();
 947        }
 948
 949        if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 950                xpermd->used |= XPERMS_ALLOWED;
 951                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 952                        memset(xpermd->allowed->p, 0xff,
 953                                        sizeof(xpermd->allowed->p));
 954                }
 955                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 956                        for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 957                                xpermd->allowed->p[i] |=
 958                                        node->datum.u.xperms->perms.p[i];
 959                }
 960        } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 961                xpermd->used |= XPERMS_AUDITALLOW;
 962                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 963                        memset(xpermd->auditallow->p, 0xff,
 964                                        sizeof(xpermd->auditallow->p));
 965                }
 966                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 967                        for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 968                                xpermd->auditallow->p[i] |=
 969                                        node->datum.u.xperms->perms.p[i];
 970                }
 971        } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 972                xpermd->used |= XPERMS_DONTAUDIT;
 973                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 974                        memset(xpermd->dontaudit->p, 0xff,
 975                                        sizeof(xpermd->dontaudit->p));
 976                }
 977                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 978                        for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
 979                                xpermd->dontaudit->p[i] |=
 980                                        node->datum.u.xperms->perms.p[i];
 981                }
 982        } else {
 983                BUG();
 984        }
 985}
 986
 987void security_compute_xperms_decision(u32 ssid,
 988                                u32 tsid,
 989                                u16 orig_tclass,
 990                                u8 driver,
 991                                struct extended_perms_decision *xpermd)
 992{
 993        u16 tclass;
 994        struct context *scontext, *tcontext;
 995        struct avtab_key avkey;
 996        struct avtab_node *node;
 997        struct ebitmap *sattr, *tattr;
 998        struct ebitmap_node *snode, *tnode;
 999        unsigned int i, j;
1000
1001        xpermd->driver = driver;
1002        xpermd->used = 0;
1003        memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1004        memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1005        memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1006
1007        read_lock(&policy_rwlock);
1008        if (!ss_initialized)
1009                goto allow;
1010
1011        scontext = sidtab_search(&sidtab, ssid);
1012        if (!scontext) {
1013                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1014                       __func__, ssid);
1015                goto out;
1016        }
1017
1018        tcontext = sidtab_search(&sidtab, tsid);
1019        if (!tcontext) {
1020                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1021                       __func__, tsid);
1022                goto out;
1023        }
1024
1025        tclass = unmap_class(orig_tclass);
1026        if (unlikely(orig_tclass && !tclass)) {
1027                if (policydb.allow_unknown)
1028                        goto allow;
1029                goto out;
1030        }
1031
1032
1033        if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
1034                pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1035                goto out;
1036        }
1037
1038        avkey.target_class = tclass;
1039        avkey.specified = AVTAB_XPERMS;
1040        sattr = flex_array_get(policydb.type_attr_map_array,
1041                                scontext->type - 1);
1042        BUG_ON(!sattr);
1043        tattr = flex_array_get(policydb.type_attr_map_array,
1044                                tcontext->type - 1);
1045        BUG_ON(!tattr);
1046        ebitmap_for_each_positive_bit(sattr, snode, i) {
1047                ebitmap_for_each_positive_bit(tattr, tnode, j) {
1048                        avkey.source_type = i + 1;
1049                        avkey.target_type = j + 1;
1050                        for (node = avtab_search_node(&policydb.te_avtab, &avkey);
1051                             node;
1052                             node = avtab_search_node_next(node, avkey.specified))
1053                                services_compute_xperms_decision(xpermd, node);
1054
1055                        cond_compute_xperms(&policydb.te_cond_avtab,
1056                                                &avkey, xpermd);
1057                }
1058        }
1059out:
1060        read_unlock(&policy_rwlock);
1061        return;
1062allow:
1063        memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1064        goto out;
1065}
1066
1067/**
1068 * security_compute_av - Compute access vector decisions.
1069 * @ssid: source security identifier
1070 * @tsid: target security identifier
1071 * @tclass: target security class
1072 * @avd: access vector decisions
1073 * @xperms: extended permissions
1074 *
1075 * Compute a set of access vector decisions based on the
1076 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1077 */
1078void security_compute_av(u32 ssid,
1079                         u32 tsid,
1080                         u16 orig_tclass,
1081                         struct av_decision *avd,
1082                         struct extended_perms *xperms)
1083{
1084        u16 tclass;
1085        struct context *scontext = NULL, *tcontext = NULL;
1086
1087        read_lock(&policy_rwlock);
1088        avd_init(avd);
1089        xperms->len = 0;
1090        if (!ss_initialized)
1091                goto allow;
1092
1093        scontext = sidtab_search(&sidtab, ssid);
1094        if (!scontext) {
1095                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1096                       __func__, ssid);
1097                goto out;
1098        }
1099
1100        /* permissive domain? */
1101        if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1102                avd->flags |= AVD_FLAGS_PERMISSIVE;
1103
1104        tcontext = sidtab_search(&sidtab, tsid);
1105        if (!tcontext) {
1106                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1107                       __func__, tsid);
1108                goto out;
1109        }
1110
1111        tclass = unmap_class(orig_tclass);
1112        if (unlikely(orig_tclass && !tclass)) {
1113                if (policydb.allow_unknown)
1114                        goto allow;
1115                goto out;
1116        }
1117        context_struct_compute_av(scontext, tcontext, tclass, avd, xperms);
1118        map_decision(orig_tclass, avd, policydb.allow_unknown);
1119out:
1120        read_unlock(&policy_rwlock);
1121        return;
1122allow:
1123        avd->allowed = 0xffffffff;
1124        goto out;
1125}
1126
1127void security_compute_av_user(u32 ssid,
1128                              u32 tsid,
1129                              u16 tclass,
1130                              struct av_decision *avd)
1131{
1132        struct context *scontext = NULL, *tcontext = NULL;
1133
1134        read_lock(&policy_rwlock);
1135        avd_init(avd);
1136        if (!ss_initialized)
1137                goto allow;
1138
1139        scontext = sidtab_search(&sidtab, ssid);
1140        if (!scontext) {
1141                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1142                       __func__, ssid);
1143                goto out;
1144        }
1145
1146        /* permissive domain? */
1147        if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1148                avd->flags |= AVD_FLAGS_PERMISSIVE;
1149
1150        tcontext = sidtab_search(&sidtab, tsid);
1151        if (!tcontext) {
1152                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1153                       __func__, tsid);
1154                goto out;
1155        }
1156
1157        if (unlikely(!tclass)) {
1158                if (policydb.allow_unknown)
1159                        goto allow;
1160                goto out;
1161        }
1162
1163        context_struct_compute_av(scontext, tcontext, tclass, avd, NULL);
1164 out:
1165        read_unlock(&policy_rwlock);
1166        return;
1167allow:
1168        avd->allowed = 0xffffffff;
1169        goto out;
1170}
1171
1172/*
1173 * Write the security context string representation of
1174 * the context structure `context' into a dynamically
1175 * allocated string of the correct size.  Set `*scontext'
1176 * to point to this string and set `*scontext_len' to
1177 * the length of the string.
1178 */
1179static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1180{
1181        char *scontextp;
1182
1183        if (scontext)
1184                *scontext = NULL;
1185        *scontext_len = 0;
1186
1187        if (context->len) {
1188                *scontext_len = context->len;
1189                if (scontext) {
1190                        *scontext = kstrdup(context->str, GFP_ATOMIC);
1191                        if (!(*scontext))
1192                                return -ENOMEM;
1193                }
1194                return 0;
1195        }
1196
1197        /* Compute the size of the context. */
1198        *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1199        *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1200        *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1201        *scontext_len += mls_compute_context_len(context);
1202
1203        if (!scontext)
1204                return 0;
1205
1206        /* Allocate space for the context; caller must free this space. */
1207        scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1208        if (!scontextp)
1209                return -ENOMEM;
1210        *scontext = scontextp;
1211
1212        /*
1213         * Copy the user name, role name and type name into the context.
1214         */
1215        scontextp += sprintf(scontextp, "%s:%s:%s",
1216                sym_name(&policydb, SYM_USERS, context->user - 1),
1217                sym_name(&policydb, SYM_ROLES, context->role - 1),
1218                sym_name(&policydb, SYM_TYPES, context->type - 1));
1219
1220        mls_sid_to_context(context, &scontextp);
1221
1222        *scontextp = 0;
1223
1224        return 0;
1225}
1226
1227#include "initial_sid_to_string.h"
1228
1229const char *security_get_initial_sid_context(u32 sid)
1230{
1231        if (unlikely(sid > SECINITSID_NUM))
1232                return NULL;
1233        return initial_sid_to_string[sid];
1234}
1235
1236static int security_sid_to_context_core(u32 sid, char **scontext,
1237                                        u32 *scontext_len, int force)
1238{
1239        struct context *context;
1240        int rc = 0;
1241
1242        if (scontext)
1243                *scontext = NULL;
1244        *scontext_len  = 0;
1245
1246        if (!ss_initialized) {
1247                if (sid <= SECINITSID_NUM) {
1248                        char *scontextp;
1249
1250                        *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1251                        if (!scontext)
1252                                goto out;
1253                        scontextp = kmemdup(initial_sid_to_string[sid],
1254                                            *scontext_len, GFP_ATOMIC);
1255                        if (!scontextp) {
1256                                rc = -ENOMEM;
1257                                goto out;
1258                        }
1259                        *scontext = scontextp;
1260                        goto out;
1261                }
1262                printk(KERN_ERR "SELinux: %s:  called before initial "
1263                       "load_policy on unknown SID %d\n", __func__, sid);
1264                rc = -EINVAL;
1265                goto out;
1266        }
1267        read_lock(&policy_rwlock);
1268        if (force)
1269                context = sidtab_search_force(&sidtab, sid);
1270        else
1271                context = sidtab_search(&sidtab, sid);
1272        if (!context) {
1273                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1274                        __func__, sid);
1275                rc = -EINVAL;
1276                goto out_unlock;
1277        }
1278        rc = context_struct_to_string(context, scontext, scontext_len);
1279out_unlock:
1280        read_unlock(&policy_rwlock);
1281out:
1282        return rc;
1283
1284}
1285
1286/**
1287 * security_sid_to_context - Obtain a context for a given SID.
1288 * @sid: security identifier, SID
1289 * @scontext: security context
1290 * @scontext_len: length in bytes
1291 *
1292 * Write the string representation of the context associated with @sid
1293 * into a dynamically allocated string of the correct size.  Set @scontext
1294 * to point to this string and set @scontext_len to the length of the string.
1295 */
1296int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1297{
1298        return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1299}
1300
1301int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1302{
1303        return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1304}
1305
1306/*
1307 * Caveat:  Mutates scontext.
1308 */
1309static int string_to_context_struct(struct policydb *pol,
1310                                    struct sidtab *sidtabp,
1311                                    char *scontext,
1312                                    u32 scontext_len,
1313                                    struct context *ctx,
1314                                    u32 def_sid)
1315{
1316        struct role_datum *role;
1317        struct type_datum *typdatum;
1318        struct user_datum *usrdatum;
1319        char *scontextp, *p, oldc;
1320        int rc = 0;
1321
1322        context_init(ctx);
1323
1324        /* Parse the security context. */
1325
1326        rc = -EINVAL;
1327        scontextp = (char *) scontext;
1328
1329        /* Extract the user. */
1330        p = scontextp;
1331        while (*p && *p != ':')
1332                p++;
1333
1334        if (*p == 0)
1335                goto out;
1336
1337        *p++ = 0;
1338
1339        usrdatum = hashtab_search(pol->p_users.table, scontextp);
1340        if (!usrdatum)
1341                goto out;
1342
1343        ctx->user = usrdatum->value;
1344
1345        /* Extract role. */
1346        scontextp = p;
1347        while (*p && *p != ':')
1348                p++;
1349
1350        if (*p == 0)
1351                goto out;
1352
1353        *p++ = 0;
1354
1355        role = hashtab_search(pol->p_roles.table, scontextp);
1356        if (!role)
1357                goto out;
1358        ctx->role = role->value;
1359
1360        /* Extract type. */
1361        scontextp = p;
1362        while (*p && *p != ':')
1363                p++;
1364        oldc = *p;
1365        *p++ = 0;
1366
1367        typdatum = hashtab_search(pol->p_types.table, scontextp);
1368        if (!typdatum || typdatum->attribute)
1369                goto out;
1370
1371        ctx->type = typdatum->value;
1372
1373        rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1374        if (rc)
1375                goto out;
1376
1377        rc = -EINVAL;
1378        if ((p - scontext) < scontext_len)
1379                goto out;
1380
1381        /* Check the validity of the new context. */
1382        if (!policydb_context_isvalid(pol, ctx))
1383                goto out;
1384        rc = 0;
1385out:
1386        if (rc)
1387                context_destroy(ctx);
1388        return rc;
1389}
1390
1391static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1392                                        u32 *sid, u32 def_sid, gfp_t gfp_flags,
1393                                        int force)
1394{
1395        char *scontext2, *str = NULL;
1396        struct context context;
1397        int rc = 0;
1398
1399        /* An empty security context is never valid. */
1400        if (!scontext_len)
1401                return -EINVAL;
1402
1403        if (!ss_initialized) {
1404                int i;
1405
1406                for (i = 1; i < SECINITSID_NUM; i++) {
1407                        if (!strcmp(initial_sid_to_string[i], scontext)) {
1408                                *sid = i;
1409                                return 0;
1410                        }
1411                }
1412                *sid = SECINITSID_KERNEL;
1413                return 0;
1414        }
1415        *sid = SECSID_NULL;
1416
1417        /* Copy the string so that we can modify the copy as we parse it. */
1418        scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1419        if (!scontext2)
1420                return -ENOMEM;
1421        memcpy(scontext2, scontext, scontext_len);
1422        scontext2[scontext_len] = 0;
1423
1424        if (force) {
1425                /* Save another copy for storing in uninterpreted form */
1426                rc = -ENOMEM;
1427                str = kstrdup(scontext2, gfp_flags);
1428                if (!str)
1429                        goto out;
1430        }
1431
1432        read_lock(&policy_rwlock);
1433        rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1434                                      scontext_len, &context, def_sid);
1435        if (rc == -EINVAL && force) {
1436                context.str = str;
1437                context.len = scontext_len;
1438                str = NULL;
1439        } else if (rc)
1440                goto out_unlock;
1441        rc = sidtab_context_to_sid(&sidtab, &context, sid);
1442        context_destroy(&context);
1443out_unlock:
1444        read_unlock(&policy_rwlock);
1445out:
1446        kfree(scontext2);
1447        kfree(str);
1448        return rc;
1449}
1450
1451/**
1452 * security_context_to_sid - Obtain a SID for a given security context.
1453 * @scontext: security context
1454 * @scontext_len: length in bytes
1455 * @sid: security identifier, SID
1456 * @gfp: context for the allocation
1457 *
1458 * Obtains a SID associated with the security context that
1459 * has the string representation specified by @scontext.
1460 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1461 * memory is available, or 0 on success.
1462 */
1463int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1464                            gfp_t gfp)
1465{
1466        return security_context_to_sid_core(scontext, scontext_len,
1467                                            sid, SECSID_NULL, gfp, 0);
1468}
1469
1470int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1471{
1472        return security_context_to_sid(scontext, strlen(scontext), sid, gfp);
1473}
1474
1475/**
1476 * security_context_to_sid_default - Obtain a SID for a given security context,
1477 * falling back to specified default if needed.
1478 *
1479 * @scontext: security context
1480 * @scontext_len: length in bytes
1481 * @sid: security identifier, SID
1482 * @def_sid: default SID to assign on error
1483 *
1484 * Obtains a SID associated with the security context that
1485 * has the string representation specified by @scontext.
1486 * The default SID is passed to the MLS layer to be used to allow
1487 * kernel labeling of the MLS field if the MLS field is not present
1488 * (for upgrading to MLS without full relabel).
1489 * Implicitly forces adding of the context even if it cannot be mapped yet.
1490 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1491 * memory is available, or 0 on success.
1492 */
1493int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1494                                    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1495{
1496        return security_context_to_sid_core(scontext, scontext_len,
1497                                            sid, def_sid, gfp_flags, 1);
1498}
1499
1500int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1501                                  u32 *sid)
1502{
1503        return security_context_to_sid_core(scontext, scontext_len,
1504                                            sid, SECSID_NULL, GFP_KERNEL, 1);
1505}
1506
1507static int compute_sid_handle_invalid_context(
1508        struct context *scontext,
1509        struct context *tcontext,
1510        u16 tclass,
1511        struct context *newcontext)
1512{
1513        char *s = NULL, *t = NULL, *n = NULL;
1514        u32 slen, tlen, nlen;
1515
1516        if (context_struct_to_string(scontext, &s, &slen))
1517                goto out;
1518        if (context_struct_to_string(tcontext, &t, &tlen))
1519                goto out;
1520        if (context_struct_to_string(newcontext, &n, &nlen))
1521                goto out;
1522        audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1523                  "op=security_compute_sid invalid_context=%s"
1524                  " scontext=%s"
1525                  " tcontext=%s"
1526                  " tclass=%s",
1527                  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1528out:
1529        kfree(s);
1530        kfree(t);
1531        kfree(n);
1532        if (!selinux_enforcing)
1533                return 0;
1534        return -EACCES;
1535}
1536
1537static void filename_compute_type(struct policydb *p, struct context *newcontext,
1538                                  u32 stype, u32 ttype, u16 tclass,
1539                                  const char *objname)
1540{
1541        struct filename_trans ft;
1542        struct filename_trans_datum *otype;
1543
1544        /*
1545         * Most filename trans rules are going to live in specific directories
1546         * like /dev or /var/run.  This bitmap will quickly skip rule searches
1547         * if the ttype does not contain any rules.
1548         */
1549        if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1550                return;
1551
1552        ft.stype = stype;
1553        ft.ttype = ttype;
1554        ft.tclass = tclass;
1555        ft.name = objname;
1556
1557        otype = hashtab_search(p->filename_trans, &ft);
1558        if (otype)
1559                newcontext->type = otype->otype;
1560}
1561
1562static int security_compute_sid(u32 ssid,
1563                                u32 tsid,
1564                                u16 orig_tclass,
1565                                u32 specified,
1566                                const char *objname,
1567                                u32 *out_sid,
1568                                bool kern)
1569{
1570        struct class_datum *cladatum = NULL;
1571        struct context *scontext = NULL, *tcontext = NULL, newcontext;
1572        struct role_trans *roletr = NULL;
1573        struct avtab_key avkey;
1574        struct avtab_datum *avdatum;
1575        struct avtab_node *node;
1576        u16 tclass;
1577        int rc = 0;
1578        bool sock;
1579
1580        if (!ss_initialized) {
1581                switch (orig_tclass) {
1582                case SECCLASS_PROCESS: /* kernel value */
1583                        *out_sid = ssid;
1584                        break;
1585                default:
1586                        *out_sid = tsid;
1587                        break;
1588                }
1589                goto out;
1590        }
1591
1592        context_init(&newcontext);
1593
1594        read_lock(&policy_rwlock);
1595
1596        if (kern) {
1597                tclass = unmap_class(orig_tclass);
1598                sock = security_is_socket_class(orig_tclass);
1599        } else {
1600                tclass = orig_tclass;
1601                sock = security_is_socket_class(map_class(tclass));
1602        }
1603
1604        scontext = sidtab_search(&sidtab, ssid);
1605        if (!scontext) {
1606                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1607                       __func__, ssid);
1608                rc = -EINVAL;
1609                goto out_unlock;
1610        }
1611        tcontext = sidtab_search(&sidtab, tsid);
1612        if (!tcontext) {
1613                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1614                       __func__, tsid);
1615                rc = -EINVAL;
1616                goto out_unlock;
1617        }
1618
1619        if (tclass && tclass <= policydb.p_classes.nprim)
1620                cladatum = policydb.class_val_to_struct[tclass - 1];
1621
1622        /* Set the user identity. */
1623        switch (specified) {
1624        case AVTAB_TRANSITION:
1625        case AVTAB_CHANGE:
1626                if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1627                        newcontext.user = tcontext->user;
1628                } else {
1629                        /* notice this gets both DEFAULT_SOURCE and unset */
1630                        /* Use the process user identity. */
1631                        newcontext.user = scontext->user;
1632                }
1633                break;
1634        case AVTAB_MEMBER:
1635                /* Use the related object owner. */
1636                newcontext.user = tcontext->user;
1637                break;
1638        }
1639
1640        /* Set the role to default values. */
1641        if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1642                newcontext.role = scontext->role;
1643        } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1644                newcontext.role = tcontext->role;
1645        } else {
1646                if ((tclass == policydb.process_class) || (sock == true))
1647                        newcontext.role = scontext->role;
1648                else
1649                        newcontext.role = OBJECT_R_VAL;
1650        }
1651
1652        /* Set the type to default values. */
1653        if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1654                newcontext.type = scontext->type;
1655        } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1656                newcontext.type = tcontext->type;
1657        } else {
1658                if ((tclass == policydb.process_class) || (sock == true)) {
1659                        /* Use the type of process. */
1660                        newcontext.type = scontext->type;
1661                } else {
1662                        /* Use the type of the related object. */
1663                        newcontext.type = tcontext->type;
1664                }
1665        }
1666
1667        /* Look for a type transition/member/change rule. */
1668        avkey.source_type = scontext->type;
1669        avkey.target_type = tcontext->type;
1670        avkey.target_class = tclass;
1671        avkey.specified = specified;
1672        avdatum = avtab_search(&policydb.te_avtab, &avkey);
1673
1674        /* If no permanent rule, also check for enabled conditional rules */
1675        if (!avdatum) {
1676                node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1677                for (; node; node = avtab_search_node_next(node, specified)) {
1678                        if (node->key.specified & AVTAB_ENABLED) {
1679                                avdatum = &node->datum;
1680                                break;
1681                        }
1682                }
1683        }
1684
1685        if (avdatum) {
1686                /* Use the type from the type transition/member/change rule. */
1687                newcontext.type = avdatum->u.data;
1688        }
1689
1690        /* if we have a objname this is a file trans check so check those rules */
1691        if (objname)
1692                filename_compute_type(&policydb, &newcontext, scontext->type,
1693                                      tcontext->type, tclass, objname);
1694
1695        /* Check for class-specific changes. */
1696        if (specified & AVTAB_TRANSITION) {
1697                /* Look for a role transition rule. */
1698                for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1699                        if ((roletr->role == scontext->role) &&
1700                            (roletr->type == tcontext->type) &&
1701                            (roletr->tclass == tclass)) {
1702                                /* Use the role transition rule. */
1703                                newcontext.role = roletr->new_role;
1704                                break;
1705                        }
1706                }
1707        }
1708
1709        /* Set the MLS attributes.
1710           This is done last because it may allocate memory. */
1711        rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1712                             &newcontext, sock);
1713        if (rc)
1714                goto out_unlock;
1715
1716        /* Check the validity of the context. */
1717        if (!policydb_context_isvalid(&policydb, &newcontext)) {
1718                rc = compute_sid_handle_invalid_context(scontext,
1719                                                        tcontext,
1720                                                        tclass,
1721                                                        &newcontext);
1722                if (rc)
1723                        goto out_unlock;
1724        }
1725        /* Obtain the sid for the context. */
1726        rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1727out_unlock:
1728        read_unlock(&policy_rwlock);
1729        context_destroy(&newcontext);
1730out:
1731        return rc;
1732}
1733
1734/**
1735 * security_transition_sid - Compute the SID for a new subject/object.
1736 * @ssid: source security identifier
1737 * @tsid: target security identifier
1738 * @tclass: target security class
1739 * @out_sid: security identifier for new subject/object
1740 *
1741 * Compute a SID to use for labeling a new subject or object in the
1742 * class @tclass based on a SID pair (@ssid, @tsid).
1743 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1744 * if insufficient memory is available, or %0 if the new SID was
1745 * computed successfully.
1746 */
1747int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1748                            const struct qstr *qstr, u32 *out_sid)
1749{
1750        return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1751                                    qstr ? qstr->name : NULL, out_sid, true);
1752}
1753
1754int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1755                                 const char *objname, u32 *out_sid)
1756{
1757        return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1758                                    objname, out_sid, false);
1759}
1760
1761/**
1762 * security_member_sid - Compute the SID for member selection.
1763 * @ssid: source security identifier
1764 * @tsid: target security identifier
1765 * @tclass: target security class
1766 * @out_sid: security identifier for selected member
1767 *
1768 * Compute a SID to use when selecting a member of a polyinstantiated
1769 * object of class @tclass based on a SID pair (@ssid, @tsid).
1770 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1771 * if insufficient memory is available, or %0 if the SID was
1772 * computed successfully.
1773 */
1774int security_member_sid(u32 ssid,
1775                        u32 tsid,
1776                        u16 tclass,
1777                        u32 *out_sid)
1778{
1779        return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1780                                    out_sid, false);
1781}
1782
1783/**
1784 * security_change_sid - Compute the SID for object relabeling.
1785 * @ssid: source security identifier
1786 * @tsid: target security identifier
1787 * @tclass: target security class
1788 * @out_sid: security identifier for selected member
1789 *
1790 * Compute a SID to use for relabeling an object of class @tclass
1791 * based on a SID pair (@ssid, @tsid).
1792 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1793 * if insufficient memory is available, or %0 if the SID was
1794 * computed successfully.
1795 */
1796int security_change_sid(u32 ssid,
1797                        u32 tsid,
1798                        u16 tclass,
1799                        u32 *out_sid)
1800{
1801        return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1802                                    out_sid, false);
1803}
1804
1805/* Clone the SID into the new SID table. */
1806static int clone_sid(u32 sid,
1807                     struct context *context,
1808                     void *arg)
1809{
1810        struct sidtab *s = arg;
1811
1812        if (sid > SECINITSID_NUM)
1813                return sidtab_insert(s, sid, context);
1814        else
1815                return 0;
1816}
1817
1818static inline int convert_context_handle_invalid_context(struct context *context)
1819{
1820        char *s;
1821        u32 len;
1822
1823        if (selinux_enforcing)
1824                return -EINVAL;
1825
1826        if (!context_struct_to_string(context, &s, &len)) {
1827                printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1828                kfree(s);
1829        }
1830        return 0;
1831}
1832
1833struct convert_context_args {
1834        struct policydb *oldp;
1835        struct policydb *newp;
1836};
1837
1838/*
1839 * Convert the values in the security context
1840 * structure `c' from the values specified
1841 * in the policy `p->oldp' to the values specified
1842 * in the policy `p->newp'.  Verify that the
1843 * context is valid under the new policy.
1844 */
1845static int convert_context(u32 key,
1846                           struct context *c,
1847                           void *p)
1848{
1849        struct convert_context_args *args;
1850        struct context oldc;
1851        struct ocontext *oc;
1852        struct mls_range *range;
1853        struct role_datum *role;
1854        struct type_datum *typdatum;
1855        struct user_datum *usrdatum;
1856        char *s;
1857        u32 len;
1858        int rc = 0;
1859
1860        if (key <= SECINITSID_NUM)
1861                goto out;
1862
1863        args = p;
1864
1865        if (c->str) {
1866                struct context ctx;
1867
1868                rc = -ENOMEM;
1869                s = kstrdup(c->str, GFP_KERNEL);
1870                if (!s)
1871                        goto out;
1872
1873                rc = string_to_context_struct(args->newp, NULL, s,
1874                                              c->len, &ctx, SECSID_NULL);
1875                kfree(s);
1876                if (!rc) {
1877                        printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1878                               c->str);
1879                        /* Replace string with mapped representation. */
1880                        kfree(c->str);
1881                        memcpy(c, &ctx, sizeof(*c));
1882                        goto out;
1883                } else if (rc == -EINVAL) {
1884                        /* Retain string representation for later mapping. */
1885                        rc = 0;
1886                        goto out;
1887                } else {
1888                        /* Other error condition, e.g. ENOMEM. */
1889                        printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1890                               c->str, -rc);
1891                        goto out;
1892                }
1893        }
1894
1895        rc = context_cpy(&oldc, c);
1896        if (rc)
1897                goto out;
1898
1899        /* Convert the user. */
1900        rc = -EINVAL;
1901        usrdatum = hashtab_search(args->newp->p_users.table,
1902                                  sym_name(args->oldp, SYM_USERS, c->user - 1));
1903        if (!usrdatum)
1904                goto bad;
1905        c->user = usrdatum->value;
1906
1907        /* Convert the role. */
1908        rc = -EINVAL;
1909        role = hashtab_search(args->newp->p_roles.table,
1910                              sym_name(args->oldp, SYM_ROLES, c->role - 1));
1911        if (!role)
1912                goto bad;
1913        c->role = role->value;
1914
1915        /* Convert the type. */
1916        rc = -EINVAL;
1917        typdatum = hashtab_search(args->newp->p_types.table,
1918                                  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1919        if (!typdatum)
1920                goto bad;
1921        c->type = typdatum->value;
1922
1923        /* Convert the MLS fields if dealing with MLS policies */
1924        if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1925                rc = mls_convert_context(args->oldp, args->newp, c);
1926                if (rc)
1927                        goto bad;
1928        } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1929                /*
1930                 * Switching between MLS and non-MLS policy:
1931                 * free any storage used by the MLS fields in the
1932                 * context for all existing entries in the sidtab.
1933                 */
1934                mls_context_destroy(c);
1935        } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1936                /*
1937                 * Switching between non-MLS and MLS policy:
1938                 * ensure that the MLS fields of the context for all
1939                 * existing entries in the sidtab are filled in with a
1940                 * suitable default value, likely taken from one of the
1941                 * initial SIDs.
1942                 */
1943                oc = args->newp->ocontexts[OCON_ISID];
1944                while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1945                        oc = oc->next;
1946                rc = -EINVAL;
1947                if (!oc) {
1948                        printk(KERN_ERR "SELinux:  unable to look up"
1949                                " the initial SIDs list\n");
1950                        goto bad;
1951                }
1952                range = &oc->context[0].range;
1953                rc = mls_range_set(c, range);
1954                if (rc)
1955                        goto bad;
1956        }
1957
1958        /* Check the validity of the new context. */
1959        if (!policydb_context_isvalid(args->newp, c)) {
1960                rc = convert_context_handle_invalid_context(&oldc);
1961                if (rc)
1962                        goto bad;
1963        }
1964
1965        context_destroy(&oldc);
1966
1967        rc = 0;
1968out:
1969        return rc;
1970bad:
1971        /* Map old representation to string and save it. */
1972        rc = context_struct_to_string(&oldc, &s, &len);
1973        if (rc)
1974                return rc;
1975        context_destroy(&oldc);
1976        context_destroy(c);
1977        c->str = s;
1978        c->len = len;
1979        printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1980               c->str);
1981        rc = 0;
1982        goto out;
1983}
1984
1985static void security_load_policycaps(void)
1986{
1987        selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1988                                                  POLICYDB_CAPABILITY_NETPEER);
1989        selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1990                                                  POLICYDB_CAPABILITY_OPENPERM);
1991        selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
1992                                                  POLICYDB_CAPABILITY_ALWAYSNETWORK);
1993}
1994
1995static int security_preserve_bools(struct policydb *p);
1996
1997/**
1998 * security_load_policy - Load a security policy configuration.
1999 * @data: binary policy data
2000 * @len: length of data in bytes
2001 *
2002 * Load a new set of security policy configuration data,
2003 * validate it and convert the SID table as necessary.
2004 * This function will flush the access vector cache after
2005 * loading the new policy.
2006 */
2007int security_load_policy(void *data, size_t len)
2008{
2009        struct policydb *oldpolicydb, *newpolicydb;
2010        struct sidtab oldsidtab, newsidtab;
2011        struct selinux_mapping *oldmap, *map = NULL;
2012        struct convert_context_args args;
2013        u32 seqno;
2014        u16 map_size;
2015        int rc = 0;
2016        struct policy_file file = { data, len }, *fp = &file;
2017
2018        oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2019        if (!oldpolicydb) {
2020                rc = -ENOMEM;
2021                goto out;
2022        }
2023        newpolicydb = oldpolicydb + 1;
2024
2025        if (!ss_initialized) {
2026                avtab_cache_init();
2027                rc = policydb_read(&policydb, fp);
2028                if (rc) {
2029                        avtab_cache_destroy();
2030                        goto out;
2031                }
2032
2033                policydb.len = len;
2034                rc = selinux_set_mapping(&policydb, secclass_map,
2035                                         &current_mapping,
2036                                         &current_mapping_size);
2037                if (rc) {
2038                        policydb_destroy(&policydb);
2039                        avtab_cache_destroy();
2040                        goto out;
2041                }
2042
2043                rc = policydb_load_isids(&policydb, &sidtab);
2044                if (rc) {
2045                        policydb_destroy(&policydb);
2046                        avtab_cache_destroy();
2047                        goto out;
2048                }
2049
2050                security_load_policycaps();
2051                ss_initialized = 1;
2052                seqno = ++latest_granting;
2053                selinux_complete_init();
2054                avc_ss_reset(seqno);
2055                selnl_notify_policyload(seqno);
2056                selinux_status_update_policyload(seqno);
2057                selinux_netlbl_cache_invalidate();
2058                selinux_xfrm_notify_policyload();
2059                goto out;
2060        }
2061
2062#if 0
2063        sidtab_hash_eval(&sidtab, "sids");
2064#endif
2065
2066        rc = policydb_read(newpolicydb, fp);
2067        if (rc)
2068                goto out;
2069
2070        newpolicydb->len = len;
2071        /* If switching between different policy types, log MLS status */
2072        if (policydb.mls_enabled && !newpolicydb->mls_enabled)
2073                printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2074        else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
2075                printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2076
2077        rc = policydb_load_isids(newpolicydb, &newsidtab);
2078        if (rc) {
2079                printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
2080                policydb_destroy(newpolicydb);
2081                goto out;
2082        }
2083
2084        rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
2085        if (rc)
2086                goto err;
2087
2088        rc = security_preserve_bools(newpolicydb);
2089        if (rc) {
2090                printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
2091                goto err;
2092        }
2093
2094        /* Clone the SID table. */
2095        sidtab_shutdown(&sidtab);
2096
2097        rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
2098        if (rc)
2099                goto err;
2100
2101        /*
2102         * Convert the internal representations of contexts
2103         * in the new SID table.
2104         */
2105        args.oldp = &policydb;
2106        args.newp = newpolicydb;
2107        rc = sidtab_map(&newsidtab, convert_context, &args);
2108        if (rc) {
2109                printk(KERN_ERR "SELinux:  unable to convert the internal"
2110                        " representation of contexts in the new SID"
2111                        " table\n");
2112                goto err;
2113        }
2114
2115        /* Save the old policydb and SID table to free later. */
2116        memcpy(oldpolicydb, &policydb, sizeof(policydb));
2117        sidtab_set(&oldsidtab, &sidtab);
2118
2119        /* Install the new policydb and SID table. */
2120        write_lock_irq(&policy_rwlock);
2121        memcpy(&policydb, newpolicydb, sizeof(policydb));
2122        sidtab_set(&sidtab, &newsidtab);
2123        security_load_policycaps();
2124        oldmap = current_mapping;
2125        current_mapping = map;
2126        current_mapping_size = map_size;
2127        seqno = ++latest_granting;
2128        write_unlock_irq(&policy_rwlock);
2129
2130        /* Free the old policydb and SID table. */
2131        policydb_destroy(oldpolicydb);
2132        sidtab_destroy(&oldsidtab);
2133        kfree(oldmap);
2134
2135        avc_ss_reset(seqno);
2136        selnl_notify_policyload(seqno);
2137        selinux_status_update_policyload(seqno);
2138        selinux_netlbl_cache_invalidate();
2139        selinux_xfrm_notify_policyload();
2140
2141        rc = 0;
2142        goto out;
2143
2144err:
2145        kfree(map);
2146        sidtab_destroy(&newsidtab);
2147        policydb_destroy(newpolicydb);
2148
2149out:
2150        kfree(oldpolicydb);
2151        return rc;
2152}
2153
2154size_t security_policydb_len(void)
2155{
2156        size_t len;
2157
2158        read_lock(&policy_rwlock);
2159        len = policydb.len;
2160        read_unlock(&policy_rwlock);
2161
2162        return len;
2163}
2164
2165/**
2166 * security_port_sid - Obtain the SID for a port.
2167 * @protocol: protocol number
2168 * @port: port number
2169 * @out_sid: security identifier
2170 */
2171int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2172{
2173        struct ocontext *c;
2174        int rc = 0;
2175
2176        read_lock(&policy_rwlock);
2177
2178        c = policydb.ocontexts[OCON_PORT];
2179        while (c) {
2180                if (c->u.port.protocol == protocol &&
2181                    c->u.port.low_port <= port &&
2182                    c->u.port.high_port >= port)
2183                        break;
2184                c = c->next;
2185        }
2186
2187        if (c) {
2188                if (!c->sid[0]) {
2189                        rc = sidtab_context_to_sid(&sidtab,
2190                                                   &c->context[0],
2191                                                   &c->sid[0]);
2192                        if (rc)
2193                                goto out;
2194                }
2195                *out_sid = c->sid[0];
2196        } else {
2197                *out_sid = SECINITSID_PORT;
2198        }
2199
2200out:
2201        read_unlock(&policy_rwlock);
2202        return rc;
2203}
2204
2205/**
2206 * security_netif_sid - Obtain the SID for a network interface.
2207 * @name: interface name
2208 * @if_sid: interface SID
2209 */
2210int security_netif_sid(char *name, u32 *if_sid)
2211{
2212        int rc = 0;
2213        struct ocontext *c;
2214
2215        read_lock(&policy_rwlock);
2216
2217        c = policydb.ocontexts[OCON_NETIF];
2218        while (c) {
2219                if (strcmp(name, c->u.name) == 0)
2220                        break;
2221                c = c->next;
2222        }
2223
2224        if (c) {
2225                if (!c->sid[0] || !c->sid[1]) {
2226                        rc = sidtab_context_to_sid(&sidtab,
2227                                                  &c->context[0],
2228                                                  &c->sid[0]);
2229                        if (rc)
2230                                goto out;
2231                        rc = sidtab_context_to_sid(&sidtab,
2232                                                   &c->context[1],
2233                                                   &c->sid[1]);
2234                        if (rc)
2235                                goto out;
2236                }
2237                *if_sid = c->sid[0];
2238        } else
2239                *if_sid = SECINITSID_NETIF;
2240
2241out:
2242        read_unlock(&policy_rwlock);
2243        return rc;
2244}
2245
2246static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2247{
2248        int i, fail = 0;
2249
2250        for (i = 0; i < 4; i++)
2251                if (addr[i] != (input[i] & mask[i])) {
2252                        fail = 1;
2253                        break;
2254                }
2255
2256        return !fail;
2257}
2258
2259/**
2260 * security_node_sid - Obtain the SID for a node (host).
2261 * @domain: communication domain aka address family
2262 * @addrp: address
2263 * @addrlen: address length in bytes
2264 * @out_sid: security identifier
2265 */
2266int security_node_sid(u16 domain,
2267                      void *addrp,
2268                      u32 addrlen,
2269                      u32 *out_sid)
2270{
2271        int rc;
2272        struct ocontext *c;
2273
2274        read_lock(&policy_rwlock);
2275
2276        switch (domain) {
2277        case AF_INET: {
2278                u32 addr;
2279
2280                rc = -EINVAL;
2281                if (addrlen != sizeof(u32))
2282                        goto out;
2283
2284                addr = *((u32 *)addrp);
2285
2286                c = policydb.ocontexts[OCON_NODE];
2287                while (c) {
2288                        if (c->u.node.addr == (addr & c->u.node.mask))
2289                                break;
2290                        c = c->next;
2291                }
2292                break;
2293        }
2294
2295        case AF_INET6:
2296                rc = -EINVAL;
2297                if (addrlen != sizeof(u64) * 2)
2298                        goto out;
2299                c = policydb.ocontexts[OCON_NODE6];
2300                while (c) {
2301                        if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2302                                                c->u.node6.mask))
2303                                break;
2304                        c = c->next;
2305                }
2306                break;
2307
2308        default:
2309                rc = 0;
2310                *out_sid = SECINITSID_NODE;
2311                goto out;
2312        }
2313
2314        if (c) {
2315                if (!c->sid[0]) {
2316                        rc = sidtab_context_to_sid(&sidtab,
2317                                                   &c->context[0],
2318                                                   &c->sid[0]);
2319                        if (rc)
2320                                goto out;
2321                }
2322                *out_sid = c->sid[0];
2323        } else {
2324                *out_sid = SECINITSID_NODE;
2325        }
2326
2327        rc = 0;
2328out:
2329        read_unlock(&policy_rwlock);
2330        return rc;
2331}
2332
2333#define SIDS_NEL 25
2334
2335/**
2336 * security_get_user_sids - Obtain reachable SIDs for a user.
2337 * @fromsid: starting SID
2338 * @username: username
2339 * @sids: array of reachable SIDs for user
2340 * @nel: number of elements in @sids
2341 *
2342 * Generate the set of SIDs for legal security contexts
2343 * for a given user that can be reached by @fromsid.
2344 * Set *@sids to point to a dynamically allocated
2345 * array containing the set of SIDs.  Set *@nel to the
2346 * number of elements in the array.
2347 */
2348
2349int security_get_user_sids(u32 fromsid,
2350                           char *username,
2351                           u32 **sids,
2352                           u32 *nel)
2353{
2354        struct context *fromcon, usercon;
2355        u32 *mysids = NULL, *mysids2, sid;
2356        u32 mynel = 0, maxnel = SIDS_NEL;
2357        struct user_datum *user;
2358        struct role_datum *role;
2359        struct ebitmap_node *rnode, *tnode;
2360        int rc = 0, i, j;
2361
2362        *sids = NULL;
2363        *nel = 0;
2364
2365        if (!ss_initialized)
2366                goto out;
2367
2368        read_lock(&policy_rwlock);
2369
2370        context_init(&usercon);
2371
2372        rc = -EINVAL;
2373        fromcon = sidtab_search(&sidtab, fromsid);
2374        if (!fromcon)
2375                goto out_unlock;
2376
2377        rc = -EINVAL;
2378        user = hashtab_search(policydb.p_users.table, username);
2379        if (!user)
2380                goto out_unlock;
2381
2382        usercon.user = user->value;
2383
2384        rc = -ENOMEM;
2385        mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2386        if (!mysids)
2387                goto out_unlock;
2388
2389        ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2390                role = policydb.role_val_to_struct[i];
2391                usercon.role = i + 1;
2392                ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2393                        usercon.type = j + 1;
2394
2395                        if (mls_setup_user_range(fromcon, user, &usercon))
2396                                continue;
2397
2398                        rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2399                        if (rc)
2400                                goto out_unlock;
2401                        if (mynel < maxnel) {
2402                                mysids[mynel++] = sid;
2403                        } else {
2404                                rc = -ENOMEM;
2405                                maxnel += SIDS_NEL;
2406                                mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2407                                if (!mysids2)
2408                                        goto out_unlock;
2409                                memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2410                                kfree(mysids);
2411                                mysids = mysids2;
2412                                mysids[mynel++] = sid;
2413                        }
2414                }
2415        }
2416        rc = 0;
2417out_unlock:
2418        read_unlock(&policy_rwlock);
2419        if (rc || !mynel) {
2420                kfree(mysids);
2421                goto out;
2422        }
2423
2424        rc = -ENOMEM;
2425        mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2426        if (!mysids2) {
2427                kfree(mysids);
2428                goto out;
2429        }
2430        for (i = 0, j = 0; i < mynel; i++) {
2431                struct av_decision dummy_avd;
2432                rc = avc_has_perm_noaudit(fromsid, mysids[i],
2433                                          SECCLASS_PROCESS, /* kernel value */
2434                                          PROCESS__TRANSITION, AVC_STRICT,
2435                                          &dummy_avd);
2436                if (!rc)
2437                        mysids2[j++] = mysids[i];
2438                cond_resched();
2439        }
2440        rc = 0;
2441        kfree(mysids);
2442        *sids = mysids2;
2443        *nel = j;
2444out:
2445        return rc;
2446}
2447
2448/**
2449 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2450 * @fstype: filesystem type
2451 * @path: path from root of mount
2452 * @sclass: file security class
2453 * @sid: SID for path
2454 *
2455 * Obtain a SID to use for a file in a filesystem that
2456 * cannot support xattr or use a fixed labeling behavior like
2457 * transition SIDs or task SIDs.
2458 *
2459 * The caller must acquire the policy_rwlock before calling this function.
2460 */
2461static inline int __security_genfs_sid(const char *fstype,
2462                                       char *path,
2463                                       u16 orig_sclass,
2464                                       u32 *sid)
2465{
2466        int len;
2467        u16 sclass;
2468        struct genfs *genfs;
2469        struct ocontext *c;
2470        int rc, cmp = 0;
2471
2472        while (path[0] == '/' && path[1] == '/')
2473                path++;
2474
2475        sclass = unmap_class(orig_sclass);
2476        *sid = SECINITSID_UNLABELED;
2477
2478        for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2479                cmp = strcmp(fstype, genfs->fstype);
2480                if (cmp <= 0)
2481                        break;
2482        }
2483
2484        rc = -ENOENT;
2485        if (!genfs || cmp)
2486                goto out;
2487
2488        for (c = genfs->head; c; c = c->next) {
2489                len = strlen(c->u.name);
2490                if ((!c->v.sclass || sclass == c->v.sclass) &&
2491                    (strncmp(c->u.name, path, len) == 0))
2492                        break;
2493        }
2494
2495        rc = -ENOENT;
2496        if (!c)
2497                goto out;
2498
2499        if (!c->sid[0]) {
2500                rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2501                if (rc)
2502                        goto out;
2503        }
2504
2505        *sid = c->sid[0];
2506        rc = 0;
2507out:
2508        return rc;
2509}
2510
2511/**
2512 * security_genfs_sid - Obtain a SID for a file in a filesystem
2513 * @fstype: filesystem type
2514 * @path: path from root of mount
2515 * @sclass: file security class
2516 * @sid: SID for path
2517 *
2518 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2519 * it afterward.
2520 */
2521int security_genfs_sid(const char *fstype,
2522                       char *path,
2523                       u16 orig_sclass,
2524                       u32 *sid)
2525{
2526        int retval;
2527
2528        read_lock(&policy_rwlock);
2529        retval = __security_genfs_sid(fstype, path, orig_sclass, sid);
2530        read_unlock(&policy_rwlock);
2531        return retval;
2532}
2533
2534/**
2535 * security_fs_use - Determine how to handle labeling for a filesystem.
2536 * @sb: superblock in question
2537 */
2538int security_fs_use(struct super_block *sb)
2539{
2540        int rc = 0;
2541        struct ocontext *c;
2542        struct superblock_security_struct *sbsec = sb->s_security;
2543        const char *fstype = sb->s_type->name;
2544
2545        read_lock(&policy_rwlock);
2546
2547        c = policydb.ocontexts[OCON_FSUSE];
2548        while (c) {
2549                if (strcmp(fstype, c->u.name) == 0)
2550                        break;
2551                c = c->next;
2552        }
2553
2554        if (c) {
2555                sbsec->behavior = c->v.behavior;
2556                if (!c->sid[0]) {
2557                        rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2558                                                   &c->sid[0]);
2559                        if (rc)
2560                                goto out;
2561                }
2562                sbsec->sid = c->sid[0];
2563        } else {
2564                rc = __security_genfs_sid(fstype, "/", SECCLASS_DIR,
2565                                          &sbsec->sid);
2566                if (rc) {
2567                        sbsec->behavior = SECURITY_FS_USE_NONE;
2568                        rc = 0;
2569                } else {
2570                        sbsec->behavior = SECURITY_FS_USE_GENFS;
2571                }
2572        }
2573
2574out:
2575        read_unlock(&policy_rwlock);
2576        return rc;
2577}
2578
2579int security_get_bools(int *len, char ***names, int **values)
2580{
2581        int i, rc;
2582
2583        read_lock(&policy_rwlock);
2584        *names = NULL;
2585        *values = NULL;
2586
2587        rc = 0;
2588        *len = policydb.p_bools.nprim;
2589        if (!*len)
2590                goto out;
2591
2592        rc = -ENOMEM;
2593        *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2594        if (!*names)
2595                goto err;
2596
2597        rc = -ENOMEM;
2598        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2599        if (!*values)
2600                goto err;
2601
2602        for (i = 0; i < *len; i++) {
2603                (*values)[i] = policydb.bool_val_to_struct[i]->state;
2604
2605                rc = -ENOMEM;
2606                (*names)[i] = kstrdup(sym_name(&policydb, SYM_BOOLS, i), GFP_ATOMIC);
2607                if (!(*names)[i])
2608                        goto err;
2609        }
2610        rc = 0;
2611out:
2612        read_unlock(&policy_rwlock);
2613        return rc;
2614err:
2615        if (*names) {
2616                for (i = 0; i < *len; i++)
2617                        kfree((*names)[i]);
2618        }
2619        kfree(*values);
2620        goto out;
2621}
2622
2623
2624int security_set_bools(int len, int *values)
2625{
2626        int i, rc;
2627        int lenp, seqno = 0;
2628        struct cond_node *cur;
2629
2630        write_lock_irq(&policy_rwlock);
2631
2632        rc = -EFAULT;
2633        lenp = policydb.p_bools.nprim;
2634        if (len != lenp)
2635                goto out;
2636
2637        for (i = 0; i < len; i++) {
2638                if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2639                        audit_log(current->audit_context, GFP_ATOMIC,
2640                                AUDIT_MAC_CONFIG_CHANGE,
2641                                "bool=%s val=%d old_val=%d auid=%u ses=%u",
2642                                sym_name(&policydb, SYM_BOOLS, i),
2643                                !!values[i],
2644                                policydb.bool_val_to_struct[i]->state,
2645                                from_kuid(&init_user_ns, audit_get_loginuid(current)),
2646                                audit_get_sessionid(current));
2647                }
2648                if (values[i])
2649                        policydb.bool_val_to_struct[i]->state = 1;
2650                else
2651                        policydb.bool_val_to_struct[i]->state = 0;
2652        }
2653
2654        for (cur = policydb.cond_list; cur; cur = cur->next) {
2655                rc = evaluate_cond_node(&policydb, cur);
2656                if (rc)
2657                        goto out;
2658        }
2659
2660        seqno = ++latest_granting;
2661        rc = 0;
2662out:
2663        write_unlock_irq(&policy_rwlock);
2664        if (!rc) {
2665                avc_ss_reset(seqno);
2666                selnl_notify_policyload(seqno);
2667                selinux_status_update_policyload(seqno);
2668                selinux_xfrm_notify_policyload();
2669        }
2670        return rc;
2671}
2672
2673int security_get_bool_value(int index)
2674{
2675        int rc;
2676        int len;
2677
2678        read_lock(&policy_rwlock);
2679
2680        rc = -EFAULT;
2681        len = policydb.p_bools.nprim;
2682        if (index >= len)
2683                goto out;
2684
2685        rc = policydb.bool_val_to_struct[index]->state;
2686out:
2687        read_unlock(&policy_rwlock);
2688        return rc;
2689}
2690
2691static int security_preserve_bools(struct policydb *p)
2692{
2693        int rc, nbools = 0, *bvalues = NULL, i;
2694        char **bnames = NULL;
2695        struct cond_bool_datum *booldatum;
2696        struct cond_node *cur;
2697
2698        rc = security_get_bools(&nbools, &bnames, &bvalues);
2699        if (rc)
2700                goto out;
2701        for (i = 0; i < nbools; i++) {
2702                booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2703                if (booldatum)
2704                        booldatum->state = bvalues[i];
2705        }
2706        for (cur = p->cond_list; cur; cur = cur->next) {
2707                rc = evaluate_cond_node(p, cur);
2708                if (rc)
2709                        goto out;
2710        }
2711
2712out:
2713        if (bnames) {
2714                for (i = 0; i < nbools; i++)
2715                        kfree(bnames[i]);
2716        }
2717        kfree(bnames);
2718        kfree(bvalues);
2719        return rc;
2720}
2721
2722/*
2723 * security_sid_mls_copy() - computes a new sid based on the given
2724 * sid and the mls portion of mls_sid.
2725 */
2726int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2727{
2728        struct context *context1;
2729        struct context *context2;
2730        struct context newcon;
2731        char *s;
2732        u32 len;
2733        int rc;
2734
2735        rc = 0;
2736        if (!ss_initialized || !policydb.mls_enabled) {
2737                *new_sid = sid;
2738                goto out;
2739        }
2740
2741        context_init(&newcon);
2742
2743        read_lock(&policy_rwlock);
2744
2745        rc = -EINVAL;
2746        context1 = sidtab_search(&sidtab, sid);
2747        if (!context1) {
2748                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2749                        __func__, sid);
2750                goto out_unlock;
2751        }
2752
2753        rc = -EINVAL;
2754        context2 = sidtab_search(&sidtab, mls_sid);
2755        if (!context2) {
2756                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2757                        __func__, mls_sid);
2758                goto out_unlock;
2759        }
2760
2761        newcon.user = context1->user;
2762        newcon.role = context1->role;
2763        newcon.type = context1->type;
2764        rc = mls_context_cpy(&newcon, context2);
2765        if (rc)
2766                goto out_unlock;
2767
2768        /* Check the validity of the new context. */
2769        if (!policydb_context_isvalid(&policydb, &newcon)) {
2770                rc = convert_context_handle_invalid_context(&newcon);
2771                if (rc) {
2772                        if (!context_struct_to_string(&newcon, &s, &len)) {
2773                                audit_log(current->audit_context,
2774                                          GFP_ATOMIC, AUDIT_SELINUX_ERR,
2775                                          "op=security_sid_mls_copy "
2776                                          "invalid_context=%s", s);
2777                                kfree(s);
2778                        }
2779                        goto out_unlock;
2780                }
2781        }
2782
2783        rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2784out_unlock:
2785        read_unlock(&policy_rwlock);
2786        context_destroy(&newcon);
2787out:
2788        return rc;
2789}
2790
2791/**
2792 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2793 * @nlbl_sid: NetLabel SID
2794 * @nlbl_type: NetLabel labeling protocol type
2795 * @xfrm_sid: XFRM SID
2796 *
2797 * Description:
2798 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2799 * resolved into a single SID it is returned via @peer_sid and the function
2800 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2801 * returns a negative value.  A table summarizing the behavior is below:
2802 *
2803 *                                 | function return |      @sid
2804 *   ------------------------------+-----------------+-----------------
2805 *   no peer labels                |        0        |    SECSID_NULL
2806 *   single peer label             |        0        |    <peer_label>
2807 *   multiple, consistent labels   |        0        |    <peer_label>
2808 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2809 *
2810 */
2811int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2812                                 u32 xfrm_sid,
2813                                 u32 *peer_sid)
2814{
2815        int rc;
2816        struct context *nlbl_ctx;
2817        struct context *xfrm_ctx;
2818
2819        *peer_sid = SECSID_NULL;
2820
2821        /* handle the common (which also happens to be the set of easy) cases
2822         * right away, these two if statements catch everything involving a
2823         * single or absent peer SID/label */
2824        if (xfrm_sid == SECSID_NULL) {
2825                *peer_sid = nlbl_sid;
2826                return 0;
2827        }
2828        /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2829         * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2830         * is present */
2831        if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2832                *peer_sid = xfrm_sid;
2833                return 0;
2834        }
2835
2836        /* we don't need to check ss_initialized here since the only way both
2837         * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2838         * security server was initialized and ss_initialized was true */
2839        if (!policydb.mls_enabled)
2840                return 0;
2841
2842        read_lock(&policy_rwlock);
2843
2844        rc = -EINVAL;
2845        nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2846        if (!nlbl_ctx) {
2847                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2848                       __func__, nlbl_sid);
2849                goto out;
2850        }
2851        rc = -EINVAL;
2852        xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2853        if (!xfrm_ctx) {
2854                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2855                       __func__, xfrm_sid);
2856                goto out;
2857        }
2858        rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2859        if (rc)
2860                goto out;
2861
2862        /* at present NetLabel SIDs/labels really only carry MLS
2863         * information so if the MLS portion of the NetLabel SID
2864         * matches the MLS portion of the labeled XFRM SID/label
2865         * then pass along the XFRM SID as it is the most
2866         * expressive */
2867        *peer_sid = xfrm_sid;
2868out:
2869        read_unlock(&policy_rwlock);
2870        return rc;
2871}
2872
2873static int get_classes_callback(void *k, void *d, void *args)
2874{
2875        struct class_datum *datum = d;
2876        char *name = k, **classes = args;
2877        int value = datum->value - 1;
2878
2879        classes[value] = kstrdup(name, GFP_ATOMIC);
2880        if (!classes[value])
2881                return -ENOMEM;
2882
2883        return 0;
2884}
2885
2886int security_get_classes(char ***classes, int *nclasses)
2887{
2888        int rc;
2889
2890        read_lock(&policy_rwlock);
2891
2892        rc = -ENOMEM;
2893        *nclasses = policydb.p_classes.nprim;
2894        *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2895        if (!*classes)
2896                goto out;
2897
2898        rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2899                        *classes);
2900        if (rc) {
2901                int i;
2902                for (i = 0; i < *nclasses; i++)
2903                        kfree((*classes)[i]);
2904                kfree(*classes);
2905        }
2906
2907out:
2908        read_unlock(&policy_rwlock);
2909        return rc;
2910}
2911
2912static int get_permissions_callback(void *k, void *d, void *args)
2913{
2914        struct perm_datum *datum = d;
2915        char *name = k, **perms = args;
2916        int value = datum->value - 1;
2917
2918        perms[value] = kstrdup(name, GFP_ATOMIC);
2919        if (!perms[value])
2920                return -ENOMEM;
2921
2922        return 0;
2923}
2924
2925int security_get_permissions(char *class, char ***perms, int *nperms)
2926{
2927        int rc, i;
2928        struct class_datum *match;
2929
2930        read_lock(&policy_rwlock);
2931
2932        rc = -EINVAL;
2933        match = hashtab_search(policydb.p_classes.table, class);
2934        if (!match) {
2935                printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2936                        __func__, class);
2937                goto out;
2938        }
2939
2940        rc = -ENOMEM;
2941        *nperms = match->permissions.nprim;
2942        *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2943        if (!*perms)
2944                goto out;
2945
2946        if (match->comdatum) {
2947                rc = hashtab_map(match->comdatum->permissions.table,
2948                                get_permissions_callback, *perms);
2949                if (rc)
2950                        goto err;
2951        }
2952
2953        rc = hashtab_map(match->permissions.table, get_permissions_callback,
2954                        *perms);
2955        if (rc)
2956                goto err;
2957
2958out:
2959        read_unlock(&policy_rwlock);
2960        return rc;
2961
2962err:
2963        read_unlock(&policy_rwlock);
2964        for (i = 0; i < *nperms; i++)
2965                kfree((*perms)[i]);
2966        kfree(*perms);
2967        return rc;
2968}
2969
2970int security_get_reject_unknown(void)
2971{
2972        return policydb.reject_unknown;
2973}
2974
2975int security_get_allow_unknown(void)
2976{
2977        return policydb.allow_unknown;
2978}
2979
2980/**
2981 * security_policycap_supported - Check for a specific policy capability
2982 * @req_cap: capability
2983 *
2984 * Description:
2985 * This function queries the currently loaded policy to see if it supports the
2986 * capability specified by @req_cap.  Returns true (1) if the capability is
2987 * supported, false (0) if it isn't supported.
2988 *
2989 */
2990int security_policycap_supported(unsigned int req_cap)
2991{
2992        int rc;
2993
2994        read_lock(&policy_rwlock);
2995        rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2996        read_unlock(&policy_rwlock);
2997
2998        return rc;
2999}
3000
3001struct selinux_audit_rule {
3002        u32 au_seqno;
3003        struct context au_ctxt;
3004};
3005
3006void selinux_audit_rule_free(void *vrule)
3007{
3008        struct selinux_audit_rule *rule = vrule;
3009
3010        if (rule) {
3011                context_destroy(&rule->au_ctxt);
3012                kfree(rule);
3013        }
3014}
3015
3016int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3017{
3018        struct selinux_audit_rule *tmprule;
3019        struct role_datum *roledatum;
3020        struct type_datum *typedatum;
3021        struct user_datum *userdatum;
3022        struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3023        int rc = 0;
3024
3025        *rule = NULL;
3026
3027        if (!ss_initialized)
3028                return -EOPNOTSUPP;
3029
3030        switch (field) {
3031        case AUDIT_SUBJ_USER:
3032        case AUDIT_SUBJ_ROLE:
3033        case AUDIT_SUBJ_TYPE:
3034        case AUDIT_OBJ_USER:
3035        case AUDIT_OBJ_ROLE:
3036        case AUDIT_OBJ_TYPE:
3037                /* only 'equals' and 'not equals' fit user, role, and type */
3038                if (op != Audit_equal && op != Audit_not_equal)
3039                        return -EINVAL;
3040                break;
3041        case AUDIT_SUBJ_SEN:
3042        case AUDIT_SUBJ_CLR:
3043        case AUDIT_OBJ_LEV_LOW:
3044        case AUDIT_OBJ_LEV_HIGH:
3045                /* we do not allow a range, indicated by the presence of '-' */
3046                if (strchr(rulestr, '-'))
3047                        return -EINVAL;
3048                break;
3049        default:
3050                /* only the above fields are valid */
3051                return -EINVAL;
3052        }
3053
3054        tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3055        if (!tmprule)
3056                return -ENOMEM;
3057
3058        context_init(&tmprule->au_ctxt);
3059
3060        read_lock(&policy_rwlock);
3061
3062        tmprule->au_seqno = latest_granting;
3063
3064        switch (field) {
3065        case AUDIT_SUBJ_USER:
3066        case AUDIT_OBJ_USER:
3067                rc = -EINVAL;
3068                userdatum = hashtab_search(policydb.p_users.table, rulestr);
3069                if (!userdatum)
3070                        goto out;
3071                tmprule->au_ctxt.user = userdatum->value;
3072                break;
3073        case AUDIT_SUBJ_ROLE:
3074        case AUDIT_OBJ_ROLE:
3075                rc = -EINVAL;
3076                roledatum = hashtab_search(policydb.p_roles.table, rulestr);
3077                if (!roledatum)
3078                        goto out;
3079                tmprule->au_ctxt.role = roledatum->value;
3080                break;
3081        case AUDIT_SUBJ_TYPE:
3082        case AUDIT_OBJ_TYPE:
3083                rc = -EINVAL;
3084                typedatum = hashtab_search(policydb.p_types.table, rulestr);
3085                if (!typedatum)
3086                        goto out;
3087                tmprule->au_ctxt.type = typedatum->value;
3088                break;
3089        case AUDIT_SUBJ_SEN:
3090        case AUDIT_SUBJ_CLR:
3091        case AUDIT_OBJ_LEV_LOW:
3092        case AUDIT_OBJ_LEV_HIGH:
3093                rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
3094                if (rc)
3095                        goto out;
3096                break;
3097        }
3098        rc = 0;
3099out:
3100        read_unlock(&policy_rwlock);
3101
3102        if (rc) {
3103                selinux_audit_rule_free(tmprule);
3104                tmprule = NULL;
3105        }
3106
3107        *rule = tmprule;
3108
3109        return rc;
3110}
3111
3112/* Check to see if the rule contains any selinux fields */
3113int selinux_audit_rule_known(struct audit_krule *rule)
3114{
3115        int i;
3116
3117        for (i = 0; i < rule->field_count; i++) {
3118                struct audit_field *f = &rule->fields[i];
3119                switch (f->type) {
3120                case AUDIT_SUBJ_USER:
3121                case AUDIT_SUBJ_ROLE:
3122                case AUDIT_SUBJ_TYPE:
3123                case AUDIT_SUBJ_SEN:
3124                case AUDIT_SUBJ_CLR:
3125                case AUDIT_OBJ_USER:
3126                case AUDIT_OBJ_ROLE:
3127                case AUDIT_OBJ_TYPE:
3128                case AUDIT_OBJ_LEV_LOW:
3129                case AUDIT_OBJ_LEV_HIGH:
3130                        return 1;
3131                }
3132        }
3133
3134        return 0;
3135}
3136
3137int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3138                             struct audit_context *actx)
3139{
3140        struct context *ctxt;
3141        struct mls_level *level;
3142        struct selinux_audit_rule *rule = vrule;
3143        int match = 0;
3144
3145        if (unlikely(!rule)) {
3146                WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3147                return -ENOENT;
3148        }
3149
3150        read_lock(&policy_rwlock);
3151
3152        if (rule->au_seqno < latest_granting) {
3153                match = -ESTALE;
3154                goto out;
3155        }
3156
3157        ctxt = sidtab_search(&sidtab, sid);
3158        if (unlikely(!ctxt)) {
3159                WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3160                          sid);
3161                match = -ENOENT;
3162                goto out;
3163        }
3164
3165        /* a field/op pair that is not caught here will simply fall through
3166           without a match */
3167        switch (field) {
3168        case AUDIT_SUBJ_USER:
3169        case AUDIT_OBJ_USER:
3170                switch (op) {
3171                case Audit_equal:
3172                        match = (ctxt->user == rule->au_ctxt.user);
3173                        break;
3174                case Audit_not_equal:
3175                        match = (ctxt->user != rule->au_ctxt.user);
3176                        break;
3177                }
3178                break;
3179        case AUDIT_SUBJ_ROLE:
3180        case AUDIT_OBJ_ROLE:
3181                switch (op) {
3182                case Audit_equal:
3183                        match = (ctxt->role == rule->au_ctxt.role);
3184                        break;
3185                case Audit_not_equal:
3186                        match = (ctxt->role != rule->au_ctxt.role);
3187                        break;
3188                }
3189                break;
3190        case AUDIT_SUBJ_TYPE:
3191        case AUDIT_OBJ_TYPE:
3192                switch (op) {
3193                case Audit_equal:
3194                        match = (ctxt->type == rule->au_ctxt.type);
3195                        break;
3196                case Audit_not_equal:
3197                        match = (ctxt->type != rule->au_ctxt.type);
3198                        break;
3199                }
3200                break;
3201        case AUDIT_SUBJ_SEN:
3202        case AUDIT_SUBJ_CLR:
3203        case AUDIT_OBJ_LEV_LOW:
3204        case AUDIT_OBJ_LEV_HIGH:
3205                level = ((field == AUDIT_SUBJ_SEN ||
3206                          field == AUDIT_OBJ_LEV_LOW) ?
3207                         &ctxt->range.level[0] : &ctxt->range.level[1]);
3208                switch (op) {
3209                case Audit_equal:
3210                        match = mls_level_eq(&rule->au_ctxt.range.level[0],
3211                                             level);
3212                        break;
3213                case Audit_not_equal:
3214                        match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3215                                              level);
3216                        break;
3217                case Audit_lt:
3218                        match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3219                                               level) &&
3220                                 !mls_level_eq(&rule->au_ctxt.range.level[0],
3221                                               level));
3222                        break;
3223                case Audit_le:
3224                        match = mls_level_dom(&rule->au_ctxt.range.level[0],
3225                                              level);
3226                        break;
3227                case Audit_gt:
3228                        match = (mls_level_dom(level,
3229                                              &rule->au_ctxt.range.level[0]) &&
3230                                 !mls_level_eq(level,
3231                                               &rule->au_ctxt.range.level[0]));
3232                        break;
3233                case Audit_ge:
3234                        match = mls_level_dom(level,
3235                                              &rule->au_ctxt.range.level[0]);
3236                        break;
3237                }
3238        }
3239
3240out:
3241        read_unlock(&policy_rwlock);
3242        return match;
3243}
3244
3245static int (*aurule_callback)(void) = audit_update_lsm_rules;
3246
3247static int aurule_avc_callback(u32 event)
3248{
3249        int err = 0;
3250
3251        if (event == AVC_CALLBACK_RESET && aurule_callback)
3252                err = aurule_callback();
3253        return err;
3254}
3255
3256static int __init aurule_init(void)
3257{
3258        int err;
3259
3260        err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3261        if (err)
3262                panic("avc_add_callback() failed, error %d\n", err);
3263
3264        return err;
3265}
3266__initcall(aurule_init);
3267
3268#ifdef CONFIG_NETLABEL
3269/**
3270 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3271 * @secattr: the NetLabel packet security attributes
3272 * @sid: the SELinux SID
3273 *
3274 * Description:
3275 * Attempt to cache the context in @ctx, which was derived from the packet in
3276 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3277 * already been initialized.
3278 *
3279 */
3280static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3281                                      u32 sid)
3282{
3283        u32 *sid_cache;
3284
3285        sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3286        if (sid_cache == NULL)
3287                return;
3288        secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3289        if (secattr->cache == NULL) {
3290                kfree(sid_cache);
3291                return;
3292        }
3293
3294        *sid_cache = sid;
3295        secattr->cache->free = kfree;
3296        secattr->cache->data = sid_cache;
3297        secattr->flags |= NETLBL_SECATTR_CACHE;
3298}
3299
3300/**
3301 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3302 * @secattr: the NetLabel packet security attributes
3303 * @sid: the SELinux SID
3304 *
3305 * Description:
3306 * Convert the given NetLabel security attributes in @secattr into a
3307 * SELinux SID.  If the @secattr field does not contain a full SELinux
3308 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3309 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3310 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3311 * conversion for future lookups.  Returns zero on success, negative values on
3312 * failure.
3313 *
3314 */
3315int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3316                                   u32 *sid)
3317{
3318        int rc;
3319        struct context *ctx;
3320        struct context ctx_new;
3321
3322        if (!ss_initialized) {
3323                *sid = SECSID_NULL;
3324                return 0;
3325        }
3326
3327        read_lock(&policy_rwlock);
3328
3329        if (secattr->flags & NETLBL_SECATTR_CACHE)
3330                *sid = *(u32 *)secattr->cache->data;
3331        else if (secattr->flags & NETLBL_SECATTR_SECID)
3332                *sid = secattr->attr.secid;
3333        else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3334                rc = -EIDRM;
3335                ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3336                if (ctx == NULL)
3337                        goto out;
3338
3339                context_init(&ctx_new);
3340                ctx_new.user = ctx->user;
3341                ctx_new.role = ctx->role;
3342                ctx_new.type = ctx->type;
3343                mls_import_netlbl_lvl(&ctx_new, secattr);
3344                if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3345                        rc = mls_import_netlbl_cat(&ctx_new, secattr);
3346                        if (rc)
3347                                goto out;
3348                }
3349                rc = -EIDRM;
3350                if (!mls_context_isvalid(&policydb, &ctx_new))
3351                        goto out_free;
3352
3353                rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3354                if (rc)
3355                        goto out_free;
3356
3357                security_netlbl_cache_add(secattr, *sid);
3358
3359                ebitmap_destroy(&ctx_new.range.level[0].cat);
3360        } else
3361                *sid = SECSID_NULL;
3362
3363        read_unlock(&policy_rwlock);
3364        return 0;
3365out_free:
3366        ebitmap_destroy(&ctx_new.range.level[0].cat);
3367out:
3368        read_unlock(&policy_rwlock);
3369        return rc;
3370}
3371
3372/**
3373 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3374 * @sid: the SELinux SID
3375 * @secattr: the NetLabel packet security attributes
3376 *
3377 * Description:
3378 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3379 * Returns zero on success, negative values on failure.
3380 *
3381 */
3382int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3383{
3384        int rc;
3385        struct context *ctx;
3386
3387        if (!ss_initialized)
3388                return 0;
3389
3390        read_lock(&policy_rwlock);
3391
3392        rc = -ENOENT;
3393        ctx = sidtab_search(&sidtab, sid);
3394        if (ctx == NULL)
3395                goto out;
3396
3397        rc = -ENOMEM;
3398        secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3399                                  GFP_ATOMIC);
3400        if (secattr->domain == NULL)
3401                goto out;
3402
3403        secattr->attr.secid = sid;
3404        secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3405        mls_export_netlbl_lvl(ctx, secattr);
3406        rc = mls_export_netlbl_cat(ctx, secattr);
3407out:
3408        read_unlock(&policy_rwlock);
3409        return rc;
3410}
3411#endif /* CONFIG_NETLABEL */
3412
3413/**
3414 * security_read_policy - read the policy.
3415 * @data: binary policy data
3416 * @len: length of data in bytes
3417 *
3418 */
3419int security_read_policy(void **data, size_t *len)
3420{
3421        int rc;
3422        struct policy_file fp;
3423
3424        if (!ss_initialized)
3425                return -EINVAL;
3426
3427        *len = security_policydb_len();
3428
3429        *data = vmalloc_user(*len);
3430        if (!*data)
3431                return -ENOMEM;
3432
3433        fp.data = *data;
3434        fp.len = *len;
3435
3436        read_lock(&policy_rwlock);
3437        rc = policydb_write(&policydb, &fp);
3438        read_unlock(&policy_rwlock);
3439
3440        if (rc)
3441                return rc;
3442
3443        *len = (unsigned long)fp.data - (unsigned long)*data;
3444        return 0;
3445
3446}
3447