linux/arch/arm/include/asm/bitops.h
<<
>>
Prefs
   1/*
   2 * Copyright 1995, Russell King.
   3 * Various bits and pieces copyrights include:
   4 *  Linus Torvalds (test_bit).
   5 * Big endian support: Copyright 2001, Nicolas Pitre
   6 *  reworked by rmk.
   7 *
   8 * bit 0 is the LSB of an "unsigned long" quantity.
   9 *
  10 * Please note that the code in this file should never be included
  11 * from user space.  Many of these are not implemented in assembler
  12 * since they would be too costly.  Also, they require privileged
  13 * instructions (which are not available from user mode) to ensure
  14 * that they are atomic.
  15 */
  16
  17#ifndef __ASM_ARM_BITOPS_H
  18#define __ASM_ARM_BITOPS_H
  19
  20#ifdef __KERNEL__
  21
  22#ifndef _LINUX_BITOPS_H
  23#error only <linux/bitops.h> can be included directly
  24#endif
  25
  26#include <linux/compiler.h>
  27#include <linux/irqflags.h>
  28#include <asm/barrier.h>
  29
  30/*
  31 * These functions are the basis of our bit ops.
  32 *
  33 * First, the atomic bitops. These use native endian.
  34 */
  35static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
  36{
  37        unsigned long flags;
  38        unsigned long mask = BIT_MASK(bit);
  39
  40        p += BIT_WORD(bit);
  41
  42        raw_local_irq_save(flags);
  43        *p |= mask;
  44        raw_local_irq_restore(flags);
  45}
  46
  47static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
  48{
  49        unsigned long flags;
  50        unsigned long mask = BIT_MASK(bit);
  51
  52        p += BIT_WORD(bit);
  53
  54        raw_local_irq_save(flags);
  55        *p &= ~mask;
  56        raw_local_irq_restore(flags);
  57}
  58
  59static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
  60{
  61        unsigned long flags;
  62        unsigned long mask = BIT_MASK(bit);
  63
  64        p += BIT_WORD(bit);
  65
  66        raw_local_irq_save(flags);
  67        *p ^= mask;
  68        raw_local_irq_restore(flags);
  69}
  70
  71static inline int
  72____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
  73{
  74        unsigned long flags;
  75        unsigned int res;
  76        unsigned long mask = BIT_MASK(bit);
  77
  78        p += BIT_WORD(bit);
  79
  80        raw_local_irq_save(flags);
  81        res = *p;
  82        *p = res | mask;
  83        raw_local_irq_restore(flags);
  84
  85        return (res & mask) != 0;
  86}
  87
  88static inline int
  89____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
  90{
  91        unsigned long flags;
  92        unsigned int res;
  93        unsigned long mask = BIT_MASK(bit);
  94
  95        p += BIT_WORD(bit);
  96
  97        raw_local_irq_save(flags);
  98        res = *p;
  99        *p = res & ~mask;
 100        raw_local_irq_restore(flags);
 101
 102        return (res & mask) != 0;
 103}
 104
 105static inline int
 106____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
 107{
 108        unsigned long flags;
 109        unsigned int res;
 110        unsigned long mask = BIT_MASK(bit);
 111
 112        p += BIT_WORD(bit);
 113
 114        raw_local_irq_save(flags);
 115        res = *p;
 116        *p = res ^ mask;
 117        raw_local_irq_restore(flags);
 118
 119        return (res & mask) != 0;
 120}
 121
 122#include <asm-generic/bitops/non-atomic.h>
 123
 124/*
 125 *  A note about Endian-ness.
 126 *  -------------------------
 127 *
 128 * When the ARM is put into big endian mode via CR15, the processor
 129 * merely swaps the order of bytes within words, thus:
 130 *
 131 *          ------------ physical data bus bits -----------
 132 *          D31 ... D24  D23 ... D16  D15 ... D8  D7 ... D0
 133 * little     byte 3       byte 2       byte 1      byte 0
 134 * big        byte 0       byte 1       byte 2      byte 3
 135 *
 136 * This means that reading a 32-bit word at address 0 returns the same
 137 * value irrespective of the endian mode bit.
 138 *
 139 * Peripheral devices should be connected with the data bus reversed in
 140 * "Big Endian" mode.  ARM Application Note 61 is applicable, and is
 141 * available from http://www.arm.com/.
 142 *
 143 * The following assumes that the data bus connectivity for big endian
 144 * mode has been followed.
 145 *
 146 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
 147 */
 148
 149/*
 150 * Native endian assembly bitops.  nr = 0 -> word 0 bit 0.
 151 */
 152extern void _set_bit(int nr, volatile unsigned long * p);
 153extern void _clear_bit(int nr, volatile unsigned long * p);
 154extern void _change_bit(int nr, volatile unsigned long * p);
 155extern int _test_and_set_bit(int nr, volatile unsigned long * p);
 156extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
 157extern int _test_and_change_bit(int nr, volatile unsigned long * p);
 158
 159/*
 160 * Little endian assembly bitops.  nr = 0 -> byte 0 bit 0.
 161 */
 162extern int _find_first_zero_bit_le(const void * p, unsigned size);
 163extern int _find_next_zero_bit_le(const void * p, int size, int offset);
 164extern int _find_first_bit_le(const unsigned long *p, unsigned size);
 165extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
 166
 167/*
 168 * Big endian assembly bitops.  nr = 0 -> byte 3 bit 0.
 169 */
 170extern int _find_first_zero_bit_be(const void * p, unsigned size);
 171extern int _find_next_zero_bit_be(const void * p, int size, int offset);
 172extern int _find_first_bit_be(const unsigned long *p, unsigned size);
 173extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
 174
 175#ifndef CONFIG_SMP
 176/*
 177 * The __* form of bitops are non-atomic and may be reordered.
 178 */
 179#define ATOMIC_BITOP(name,nr,p)                 \
 180        (__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
 181#else
 182#define ATOMIC_BITOP(name,nr,p)         _##name(nr,p)
 183#endif
 184
 185/*
 186 * Native endian atomic definitions.
 187 */
 188#define set_bit(nr,p)                   ATOMIC_BITOP(set_bit,nr,p)
 189#define clear_bit(nr,p)                 ATOMIC_BITOP(clear_bit,nr,p)
 190#define change_bit(nr,p)                ATOMIC_BITOP(change_bit,nr,p)
 191#define test_and_set_bit(nr,p)          ATOMIC_BITOP(test_and_set_bit,nr,p)
 192#define test_and_clear_bit(nr,p)        ATOMIC_BITOP(test_and_clear_bit,nr,p)
 193#define test_and_change_bit(nr,p)       ATOMIC_BITOP(test_and_change_bit,nr,p)
 194
 195#ifndef __ARMEB__
 196/*
 197 * These are the little endian, atomic definitions.
 198 */
 199#define find_first_zero_bit(p,sz)       _find_first_zero_bit_le(p,sz)
 200#define find_next_zero_bit(p,sz,off)    _find_next_zero_bit_le(p,sz,off)
 201#define find_first_bit(p,sz)            _find_first_bit_le(p,sz)
 202#define find_next_bit(p,sz,off)         _find_next_bit_le(p,sz,off)
 203
 204#else
 205/*
 206 * These are the big endian, atomic definitions.
 207 */
 208#define find_first_zero_bit(p,sz)       _find_first_zero_bit_be(p,sz)
 209#define find_next_zero_bit(p,sz,off)    _find_next_zero_bit_be(p,sz,off)
 210#define find_first_bit(p,sz)            _find_first_bit_be(p,sz)
 211#define find_next_bit(p,sz,off)         _find_next_bit_be(p,sz,off)
 212
 213#endif
 214
 215#if __LINUX_ARM_ARCH__ < 5
 216
 217#include <asm-generic/bitops/ffz.h>
 218#include <asm-generic/bitops/__fls.h>
 219#include <asm-generic/bitops/__ffs.h>
 220#include <asm-generic/bitops/fls.h>
 221#include <asm-generic/bitops/ffs.h>
 222
 223#else
 224
 225static inline int constant_fls(int x)
 226{
 227        int r = 32;
 228
 229        if (!x)
 230                return 0;
 231        if (!(x & 0xffff0000u)) {
 232                x <<= 16;
 233                r -= 16;
 234        }
 235        if (!(x & 0xff000000u)) {
 236                x <<= 8;
 237                r -= 8;
 238        }
 239        if (!(x & 0xf0000000u)) {
 240                x <<= 4;
 241                r -= 4;
 242        }
 243        if (!(x & 0xc0000000u)) {
 244                x <<= 2;
 245                r -= 2;
 246        }
 247        if (!(x & 0x80000000u)) {
 248                x <<= 1;
 249                r -= 1;
 250        }
 251        return r;
 252}
 253
 254/*
 255 * On ARMv5 and above those functions can be implemented around the
 256 * clz instruction for much better code efficiency.  __clz returns
 257 * the number of leading zeros, zero input will return 32, and
 258 * 0x80000000 will return 0.
 259 */
 260static inline unsigned int __clz(unsigned int x)
 261{
 262        unsigned int ret;
 263
 264        asm("clz\t%0, %1" : "=r" (ret) : "r" (x));
 265
 266        return ret;
 267}
 268
 269/*
 270 * fls() returns zero if the input is zero, otherwise returns the bit
 271 * position of the last set bit, where the LSB is 1 and MSB is 32.
 272 */
 273static inline int fls(int x)
 274{
 275        if (__builtin_constant_p(x))
 276               return constant_fls(x);
 277
 278        return 32 - __clz(x);
 279}
 280
 281/*
 282 * __fls() returns the bit position of the last bit set, where the
 283 * LSB is 0 and MSB is 31.  Zero input is undefined.
 284 */
 285static inline unsigned long __fls(unsigned long x)
 286{
 287        return fls(x) - 1;
 288}
 289
 290/*
 291 * ffs() returns zero if the input was zero, otherwise returns the bit
 292 * position of the first set bit, where the LSB is 1 and MSB is 32.
 293 */
 294static inline int ffs(int x)
 295{
 296        return fls(x & -x);
 297}
 298
 299/*
 300 * __ffs() returns the bit position of the first bit set, where the
 301 * LSB is 0 and MSB is 31.  Zero input is undefined.
 302 */
 303static inline unsigned long __ffs(unsigned long x)
 304{
 305        return ffs(x) - 1;
 306}
 307
 308#define ffz(x) __ffs( ~(x) )
 309
 310#endif
 311
 312#include <asm-generic/bitops/fls64.h>
 313
 314#include <asm-generic/bitops/sched.h>
 315#include <asm-generic/bitops/hweight.h>
 316#include <asm-generic/bitops/lock.h>
 317
 318#ifdef __ARMEB__
 319
 320static inline int find_first_zero_bit_le(const void *p, unsigned size)
 321{
 322        return _find_first_zero_bit_le(p, size);
 323}
 324#define find_first_zero_bit_le find_first_zero_bit_le
 325
 326static inline int find_next_zero_bit_le(const void *p, int size, int offset)
 327{
 328        return _find_next_zero_bit_le(p, size, offset);
 329}
 330#define find_next_zero_bit_le find_next_zero_bit_le
 331
 332static inline int find_next_bit_le(const void *p, int size, int offset)
 333{
 334        return _find_next_bit_le(p, size, offset);
 335}
 336#define find_next_bit_le find_next_bit_le
 337
 338#endif
 339
 340#include <asm-generic/bitops/le.h>
 341
 342/*
 343 * Ext2 is defined to use little-endian byte ordering.
 344 */
 345#include <asm-generic/bitops/ext2-atomic-setbit.h>
 346
 347#endif /* __KERNEL__ */
 348
 349#endif /* _ARM_BITOPS_H */
 350