linux/arch/arm/mm/mmu.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/mm/mmu.c
   3 *
   4 *  Copyright (C) 1995-2005 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/errno.h>
  13#include <linux/init.h>
  14#include <linux/mman.h>
  15#include <linux/nodemask.h>
  16#include <linux/memblock.h>
  17#include <linux/fs.h>
  18#include <linux/vmalloc.h>
  19#include <linux/sizes.h>
  20
  21#include <asm/cp15.h>
  22#include <asm/cputype.h>
  23#include <asm/sections.h>
  24#include <asm/cachetype.h>
  25#include <asm/fixmap.h>
  26#include <asm/sections.h>
  27#include <asm/setup.h>
  28#include <asm/smp_plat.h>
  29#include <asm/tlb.h>
  30#include <asm/highmem.h>
  31#include <asm/system_info.h>
  32#include <asm/traps.h>
  33#include <asm/procinfo.h>
  34#include <asm/memory.h>
  35
  36#include <asm/mach/arch.h>
  37#include <asm/mach/map.h>
  38#include <asm/mach/pci.h>
  39#include <asm/fixmap.h>
  40
  41#include "fault.h"
  42#include "mm.h"
  43#include "tcm.h"
  44
  45/*
  46 * empty_zero_page is a special page that is used for
  47 * zero-initialized data and COW.
  48 */
  49struct page *empty_zero_page;
  50EXPORT_SYMBOL(empty_zero_page);
  51
  52/*
  53 * The pmd table for the upper-most set of pages.
  54 */
  55pmd_t *top_pmd;
  56
  57pmdval_t user_pmd_table = _PAGE_USER_TABLE;
  58
  59#define CPOLICY_UNCACHED        0
  60#define CPOLICY_BUFFERED        1
  61#define CPOLICY_WRITETHROUGH    2
  62#define CPOLICY_WRITEBACK       3
  63#define CPOLICY_WRITEALLOC      4
  64
  65static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  66static unsigned int ecc_mask __initdata = 0;
  67pgprot_t pgprot_user;
  68pgprot_t pgprot_kernel;
  69pgprot_t pgprot_hyp_device;
  70pgprot_t pgprot_s2;
  71pgprot_t pgprot_s2_device;
  72
  73EXPORT_SYMBOL(pgprot_user);
  74EXPORT_SYMBOL(pgprot_kernel);
  75
  76struct cachepolicy {
  77        const char      policy[16];
  78        unsigned int    cr_mask;
  79        pmdval_t        pmd;
  80        pteval_t        pte;
  81        pteval_t        pte_s2;
  82};
  83
  84#ifdef CONFIG_ARM_LPAE
  85#define s2_policy(policy)       policy
  86#else
  87#define s2_policy(policy)       0
  88#endif
  89
  90static struct cachepolicy cache_policies[] __initdata = {
  91        {
  92                .policy         = "uncached",
  93                .cr_mask        = CR_W|CR_C,
  94                .pmd            = PMD_SECT_UNCACHED,
  95                .pte            = L_PTE_MT_UNCACHED,
  96                .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
  97        }, {
  98                .policy         = "buffered",
  99                .cr_mask        = CR_C,
 100                .pmd            = PMD_SECT_BUFFERED,
 101                .pte            = L_PTE_MT_BUFFERABLE,
 102                .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
 103        }, {
 104                .policy         = "writethrough",
 105                .cr_mask        = 0,
 106                .pmd            = PMD_SECT_WT,
 107                .pte            = L_PTE_MT_WRITETHROUGH,
 108                .pte_s2         = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
 109        }, {
 110                .policy         = "writeback",
 111                .cr_mask        = 0,
 112                .pmd            = PMD_SECT_WB,
 113                .pte            = L_PTE_MT_WRITEBACK,
 114                .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
 115        }, {
 116                .policy         = "writealloc",
 117                .cr_mask        = 0,
 118                .pmd            = PMD_SECT_WBWA,
 119                .pte            = L_PTE_MT_WRITEALLOC,
 120                .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
 121        }
 122};
 123
 124#ifdef CONFIG_CPU_CP15
 125static unsigned long initial_pmd_value __initdata = 0;
 126
 127/*
 128 * Initialise the cache_policy variable with the initial state specified
 129 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 130 * the C code sets the page tables up with the same policy as the head
 131 * assembly code, which avoids an illegal state where the TLBs can get
 132 * confused.  See comments in early_cachepolicy() for more information.
 133 */
 134void __init init_default_cache_policy(unsigned long pmd)
 135{
 136        int i;
 137
 138        initial_pmd_value = pmd;
 139
 140        pmd &= PMD_SECT_CACHE_MASK;
 141
 142        for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
 143                if (cache_policies[i].pmd == pmd) {
 144                        cachepolicy = i;
 145                        break;
 146                }
 147
 148        if (i == ARRAY_SIZE(cache_policies))
 149                pr_err("ERROR: could not find cache policy\n");
 150}
 151
 152/*
 153 * These are useful for identifying cache coherency problems by allowing
 154 * the cache or the cache and writebuffer to be turned off.  (Note: the
 155 * write buffer should not be on and the cache off).
 156 */
 157static int __init early_cachepolicy(char *p)
 158{
 159        int i, selected = -1;
 160
 161        for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 162                int len = strlen(cache_policies[i].policy);
 163
 164                if (memcmp(p, cache_policies[i].policy, len) == 0) {
 165                        selected = i;
 166                        break;
 167                }
 168        }
 169
 170        if (selected == -1)
 171                pr_err("ERROR: unknown or unsupported cache policy\n");
 172
 173        /*
 174         * This restriction is partly to do with the way we boot; it is
 175         * unpredictable to have memory mapped using two different sets of
 176         * memory attributes (shared, type, and cache attribs).  We can not
 177         * change these attributes once the initial assembly has setup the
 178         * page tables.
 179         */
 180        if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
 181                pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
 182                        cache_policies[cachepolicy].policy);
 183                return 0;
 184        }
 185
 186        if (selected != cachepolicy) {
 187                unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
 188                cachepolicy = selected;
 189                flush_cache_all();
 190                set_cr(cr);
 191        }
 192        return 0;
 193}
 194early_param("cachepolicy", early_cachepolicy);
 195
 196static int __init early_nocache(char *__unused)
 197{
 198        char *p = "buffered";
 199        pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
 200        early_cachepolicy(p);
 201        return 0;
 202}
 203early_param("nocache", early_nocache);
 204
 205static int __init early_nowrite(char *__unused)
 206{
 207        char *p = "uncached";
 208        pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
 209        early_cachepolicy(p);
 210        return 0;
 211}
 212early_param("nowb", early_nowrite);
 213
 214#ifndef CONFIG_ARM_LPAE
 215static int __init early_ecc(char *p)
 216{
 217        if (memcmp(p, "on", 2) == 0)
 218                ecc_mask = PMD_PROTECTION;
 219        else if (memcmp(p, "off", 3) == 0)
 220                ecc_mask = 0;
 221        return 0;
 222}
 223early_param("ecc", early_ecc);
 224#endif
 225
 226#else /* ifdef CONFIG_CPU_CP15 */
 227
 228static int __init early_cachepolicy(char *p)
 229{
 230        pr_warn("cachepolicy kernel parameter not supported without cp15\n");
 231}
 232early_param("cachepolicy", early_cachepolicy);
 233
 234static int __init noalign_setup(char *__unused)
 235{
 236        pr_warn("noalign kernel parameter not supported without cp15\n");
 237}
 238__setup("noalign", noalign_setup);
 239
 240#endif /* ifdef CONFIG_CPU_CP15 / else */
 241
 242#define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 243#define PROT_PTE_S2_DEVICE      PROT_PTE_DEVICE
 244#define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 245
 246static struct mem_type mem_types[] __ro_after_init = {
 247        [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
 248                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 249                                  L_PTE_SHARED,
 250                .prot_pte_s2    = s2_policy(PROT_PTE_S2_DEVICE) |
 251                                  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
 252                                  L_PTE_SHARED,
 253                .prot_l1        = PMD_TYPE_TABLE,
 254                .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
 255                .domain         = DOMAIN_IO,
 256        },
 257        [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 258                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 259                .prot_l1        = PMD_TYPE_TABLE,
 260                .prot_sect      = PROT_SECT_DEVICE,
 261                .domain         = DOMAIN_IO,
 262        },
 263        [MT_DEVICE_CACHED] = {    /* ioremap_cached */
 264                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 265                .prot_l1        = PMD_TYPE_TABLE,
 266                .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
 267                .domain         = DOMAIN_IO,
 268        },
 269        [MT_DEVICE_WC] = {      /* ioremap_wc */
 270                .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 271                .prot_l1        = PMD_TYPE_TABLE,
 272                .prot_sect      = PROT_SECT_DEVICE,
 273                .domain         = DOMAIN_IO,
 274        },
 275        [MT_UNCACHED] = {
 276                .prot_pte       = PROT_PTE_DEVICE,
 277                .prot_l1        = PMD_TYPE_TABLE,
 278                .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
 279                .domain         = DOMAIN_IO,
 280        },
 281        [MT_CACHECLEAN] = {
 282                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 283                .domain    = DOMAIN_KERNEL,
 284        },
 285#ifndef CONFIG_ARM_LPAE
 286        [MT_MINICLEAN] = {
 287                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 288                .domain    = DOMAIN_KERNEL,
 289        },
 290#endif
 291        [MT_LOW_VECTORS] = {
 292                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 293                                L_PTE_RDONLY,
 294                .prot_l1   = PMD_TYPE_TABLE,
 295                .domain    = DOMAIN_VECTORS,
 296        },
 297        [MT_HIGH_VECTORS] = {
 298                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 299                                L_PTE_USER | L_PTE_RDONLY,
 300                .prot_l1   = PMD_TYPE_TABLE,
 301                .domain    = DOMAIN_VECTORS,
 302        },
 303        [MT_MEMORY_RWX] = {
 304                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 305                .prot_l1   = PMD_TYPE_TABLE,
 306                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 307                .domain    = DOMAIN_KERNEL,
 308        },
 309        [MT_MEMORY_RW] = {
 310                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 311                             L_PTE_XN,
 312                .prot_l1   = PMD_TYPE_TABLE,
 313                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 314                .domain    = DOMAIN_KERNEL,
 315        },
 316        [MT_ROM] = {
 317                .prot_sect = PMD_TYPE_SECT,
 318                .domain    = DOMAIN_KERNEL,
 319        },
 320        [MT_MEMORY_RWX_NONCACHED] = {
 321                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 322                                L_PTE_MT_BUFFERABLE,
 323                .prot_l1   = PMD_TYPE_TABLE,
 324                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 325                .domain    = DOMAIN_KERNEL,
 326        },
 327        [MT_MEMORY_RW_DTCM] = {
 328                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 329                                L_PTE_XN,
 330                .prot_l1   = PMD_TYPE_TABLE,
 331                .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 332                .domain    = DOMAIN_KERNEL,
 333        },
 334        [MT_MEMORY_RWX_ITCM] = {
 335                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 336                .prot_l1   = PMD_TYPE_TABLE,
 337                .domain    = DOMAIN_KERNEL,
 338        },
 339        [MT_MEMORY_RW_SO] = {
 340                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 341                                L_PTE_MT_UNCACHED | L_PTE_XN,
 342                .prot_l1   = PMD_TYPE_TABLE,
 343                .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
 344                                PMD_SECT_UNCACHED | PMD_SECT_XN,
 345                .domain    = DOMAIN_KERNEL,
 346        },
 347        [MT_MEMORY_DMA_READY] = {
 348                .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 349                                L_PTE_XN,
 350                .prot_l1   = PMD_TYPE_TABLE,
 351                .domain    = DOMAIN_KERNEL,
 352        },
 353};
 354
 355const struct mem_type *get_mem_type(unsigned int type)
 356{
 357        return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 358}
 359EXPORT_SYMBOL(get_mem_type);
 360
 361static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
 362
 363static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
 364        __aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
 365
 366static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
 367{
 368        return &bm_pte[pte_index(addr)];
 369}
 370
 371static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
 372{
 373        return pte_offset_kernel(dir, addr);
 374}
 375
 376static inline pmd_t * __init fixmap_pmd(unsigned long addr)
 377{
 378        pgd_t *pgd = pgd_offset_k(addr);
 379        pud_t *pud = pud_offset(pgd, addr);
 380        pmd_t *pmd = pmd_offset(pud, addr);
 381
 382        return pmd;
 383}
 384
 385void __init early_fixmap_init(void)
 386{
 387        pmd_t *pmd;
 388
 389        /*
 390         * The early fixmap range spans multiple pmds, for which
 391         * we are not prepared:
 392         */
 393        BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
 394                     != FIXADDR_TOP >> PMD_SHIFT);
 395
 396        pmd = fixmap_pmd(FIXADDR_TOP);
 397        pmd_populate_kernel(&init_mm, pmd, bm_pte);
 398
 399        pte_offset_fixmap = pte_offset_early_fixmap;
 400}
 401
 402/*
 403 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 404 * As a result, this can only be called with preemption disabled, as under
 405 * stop_machine().
 406 */
 407void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
 408{
 409        unsigned long vaddr = __fix_to_virt(idx);
 410        pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
 411
 412        /* Make sure fixmap region does not exceed available allocation. */
 413        BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
 414                     FIXADDR_END);
 415        BUG_ON(idx >= __end_of_fixed_addresses);
 416
 417        if (pgprot_val(prot))
 418                set_pte_at(NULL, vaddr, pte,
 419                        pfn_pte(phys >> PAGE_SHIFT, prot));
 420        else
 421                pte_clear(NULL, vaddr, pte);
 422        local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
 423}
 424
 425/*
 426 * Adjust the PMD section entries according to the CPU in use.
 427 */
 428static void __init build_mem_type_table(void)
 429{
 430        struct cachepolicy *cp;
 431        unsigned int cr = get_cr();
 432        pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
 433        pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
 434        int cpu_arch = cpu_architecture();
 435        int i;
 436
 437        if (cpu_arch < CPU_ARCH_ARMv6) {
 438#if defined(CONFIG_CPU_DCACHE_DISABLE)
 439                if (cachepolicy > CPOLICY_BUFFERED)
 440                        cachepolicy = CPOLICY_BUFFERED;
 441#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 442                if (cachepolicy > CPOLICY_WRITETHROUGH)
 443                        cachepolicy = CPOLICY_WRITETHROUGH;
 444#endif
 445        }
 446        if (cpu_arch < CPU_ARCH_ARMv5) {
 447                if (cachepolicy >= CPOLICY_WRITEALLOC)
 448                        cachepolicy = CPOLICY_WRITEBACK;
 449                ecc_mask = 0;
 450        }
 451
 452        if (is_smp()) {
 453                if (cachepolicy != CPOLICY_WRITEALLOC) {
 454                        pr_warn("Forcing write-allocate cache policy for SMP\n");
 455                        cachepolicy = CPOLICY_WRITEALLOC;
 456                }
 457                if (!(initial_pmd_value & PMD_SECT_S)) {
 458                        pr_warn("Forcing shared mappings for SMP\n");
 459                        initial_pmd_value |= PMD_SECT_S;
 460                }
 461        }
 462
 463        /*
 464         * Strip out features not present on earlier architectures.
 465         * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 466         * without extended page tables don't have the 'Shared' bit.
 467         */
 468        if (cpu_arch < CPU_ARCH_ARMv5)
 469                for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 470                        mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 471        if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 472                for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 473                        mem_types[i].prot_sect &= ~PMD_SECT_S;
 474
 475        /*
 476         * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 477         * "update-able on write" bit on ARM610).  However, Xscale and
 478         * Xscale3 require this bit to be cleared.
 479         */
 480        if (cpu_is_xscale_family()) {
 481                for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 482                        mem_types[i].prot_sect &= ~PMD_BIT4;
 483                        mem_types[i].prot_l1 &= ~PMD_BIT4;
 484                }
 485        } else if (cpu_arch < CPU_ARCH_ARMv6) {
 486                for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 487                        if (mem_types[i].prot_l1)
 488                                mem_types[i].prot_l1 |= PMD_BIT4;
 489                        if (mem_types[i].prot_sect)
 490                                mem_types[i].prot_sect |= PMD_BIT4;
 491                }
 492        }
 493
 494        /*
 495         * Mark the device areas according to the CPU/architecture.
 496         */
 497        if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 498                if (!cpu_is_xsc3()) {
 499                        /*
 500                         * Mark device regions on ARMv6+ as execute-never
 501                         * to prevent speculative instruction fetches.
 502                         */
 503                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 504                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 505                        mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 506                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 507
 508                        /* Also setup NX memory mapping */
 509                        mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
 510                }
 511                if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 512                        /*
 513                         * For ARMv7 with TEX remapping,
 514                         * - shared device is SXCB=1100
 515                         * - nonshared device is SXCB=0100
 516                         * - write combine device mem is SXCB=0001
 517                         * (Uncached Normal memory)
 518                         */
 519                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 520                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 521                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 522                } else if (cpu_is_xsc3()) {
 523                        /*
 524                         * For Xscale3,
 525                         * - shared device is TEXCB=00101
 526                         * - nonshared device is TEXCB=01000
 527                         * - write combine device mem is TEXCB=00100
 528                         * (Inner/Outer Uncacheable in xsc3 parlance)
 529                         */
 530                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 531                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 532                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 533                } else {
 534                        /*
 535                         * For ARMv6 and ARMv7 without TEX remapping,
 536                         * - shared device is TEXCB=00001
 537                         * - nonshared device is TEXCB=01000
 538                         * - write combine device mem is TEXCB=00100
 539                         * (Uncached Normal in ARMv6 parlance).
 540                         */
 541                        mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 542                        mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 543                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 544                }
 545        } else {
 546                /*
 547                 * On others, write combining is "Uncached/Buffered"
 548                 */
 549                mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 550        }
 551
 552        /*
 553         * Now deal with the memory-type mappings
 554         */
 555        cp = &cache_policies[cachepolicy];
 556        vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 557        s2_pgprot = cp->pte_s2;
 558        hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
 559        s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
 560
 561#ifndef CONFIG_ARM_LPAE
 562        /*
 563         * We don't use domains on ARMv6 (since this causes problems with
 564         * v6/v7 kernels), so we must use a separate memory type for user
 565         * r/o, kernel r/w to map the vectors page.
 566         */
 567        if (cpu_arch == CPU_ARCH_ARMv6)
 568                vecs_pgprot |= L_PTE_MT_VECTORS;
 569
 570        /*
 571         * Check is it with support for the PXN bit
 572         * in the Short-descriptor translation table format descriptors.
 573         */
 574        if (cpu_arch == CPU_ARCH_ARMv7 &&
 575                (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
 576                user_pmd_table |= PMD_PXNTABLE;
 577        }
 578#endif
 579
 580        /*
 581         * ARMv6 and above have extended page tables.
 582         */
 583        if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 584#ifndef CONFIG_ARM_LPAE
 585                /*
 586                 * Mark cache clean areas and XIP ROM read only
 587                 * from SVC mode and no access from userspace.
 588                 */
 589                mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 590                mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 591                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 592#endif
 593
 594                /*
 595                 * If the initial page tables were created with the S bit
 596                 * set, then we need to do the same here for the same
 597                 * reasons given in early_cachepolicy().
 598                 */
 599                if (initial_pmd_value & PMD_SECT_S) {
 600                        user_pgprot |= L_PTE_SHARED;
 601                        kern_pgprot |= L_PTE_SHARED;
 602                        vecs_pgprot |= L_PTE_SHARED;
 603                        s2_pgprot |= L_PTE_SHARED;
 604                        mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 605                        mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 606                        mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 607                        mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 608                        mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
 609                        mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
 610                        mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
 611                        mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
 612                        mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 613                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
 614                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
 615                }
 616        }
 617
 618        /*
 619         * Non-cacheable Normal - intended for memory areas that must
 620         * not cause dirty cache line writebacks when used
 621         */
 622        if (cpu_arch >= CPU_ARCH_ARMv6) {
 623                if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 624                        /* Non-cacheable Normal is XCB = 001 */
 625                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 626                                PMD_SECT_BUFFERED;
 627                } else {
 628                        /* For both ARMv6 and non-TEX-remapping ARMv7 */
 629                        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 630                                PMD_SECT_TEX(1);
 631                }
 632        } else {
 633                mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 634        }
 635
 636#ifdef CONFIG_ARM_LPAE
 637        /*
 638         * Do not generate access flag faults for the kernel mappings.
 639         */
 640        for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 641                mem_types[i].prot_pte |= PTE_EXT_AF;
 642                if (mem_types[i].prot_sect)
 643                        mem_types[i].prot_sect |= PMD_SECT_AF;
 644        }
 645        kern_pgprot |= PTE_EXT_AF;
 646        vecs_pgprot |= PTE_EXT_AF;
 647
 648        /*
 649         * Set PXN for user mappings
 650         */
 651        user_pgprot |= PTE_EXT_PXN;
 652#endif
 653
 654        for (i = 0; i < 16; i++) {
 655                pteval_t v = pgprot_val(protection_map[i]);
 656                protection_map[i] = __pgprot(v | user_pgprot);
 657        }
 658
 659        mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 660        mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 661
 662        pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 663        pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 664                                 L_PTE_DIRTY | kern_pgprot);
 665        pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
 666        pgprot_s2_device  = __pgprot(s2_device_pgprot);
 667        pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
 668
 669        mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 670        mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 671        mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
 672        mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
 673        mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
 674        mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
 675        mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
 676        mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
 677        mem_types[MT_ROM].prot_sect |= cp->pmd;
 678
 679        switch (cp->pmd) {
 680        case PMD_SECT_WT:
 681                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 682                break;
 683        case PMD_SECT_WB:
 684        case PMD_SECT_WBWA:
 685                mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 686                break;
 687        }
 688        pr_info("Memory policy: %sData cache %s\n",
 689                ecc_mask ? "ECC enabled, " : "", cp->policy);
 690
 691        for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 692                struct mem_type *t = &mem_types[i];
 693                if (t->prot_l1)
 694                        t->prot_l1 |= PMD_DOMAIN(t->domain);
 695                if (t->prot_sect)
 696                        t->prot_sect |= PMD_DOMAIN(t->domain);
 697        }
 698}
 699
 700#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 701pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 702                              unsigned long size, pgprot_t vma_prot)
 703{
 704        if (!pfn_valid(pfn))
 705                return pgprot_noncached(vma_prot);
 706        else if (file->f_flags & O_SYNC)
 707                return pgprot_writecombine(vma_prot);
 708        return vma_prot;
 709}
 710EXPORT_SYMBOL(phys_mem_access_prot);
 711#endif
 712
 713#define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
 714
 715static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
 716{
 717        void *ptr = __va(memblock_alloc(sz, align));
 718        memset(ptr, 0, sz);
 719        return ptr;
 720}
 721
 722static void __init *early_alloc(unsigned long sz)
 723{
 724        return early_alloc_aligned(sz, sz);
 725}
 726
 727static void *__init late_alloc(unsigned long sz)
 728{
 729        void *ptr = (void *)__get_free_pages(PGALLOC_GFP, get_order(sz));
 730
 731        if (!ptr || !pgtable_page_ctor(virt_to_page(ptr)))
 732                BUG();
 733        return ptr;
 734}
 735
 736static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
 737                                unsigned long prot,
 738                                void *(*alloc)(unsigned long sz))
 739{
 740        if (pmd_none(*pmd)) {
 741                pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 742                __pmd_populate(pmd, __pa(pte), prot);
 743        }
 744        BUG_ON(pmd_bad(*pmd));
 745        return pte_offset_kernel(pmd, addr);
 746}
 747
 748static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
 749                                      unsigned long prot)
 750{
 751        return arm_pte_alloc(pmd, addr, prot, early_alloc);
 752}
 753
 754static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 755                                  unsigned long end, unsigned long pfn,
 756                                  const struct mem_type *type,
 757                                  void *(*alloc)(unsigned long sz),
 758                                  bool ng)
 759{
 760        pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
 761        do {
 762                set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
 763                            ng ? PTE_EXT_NG : 0);
 764                pfn++;
 765        } while (pte++, addr += PAGE_SIZE, addr != end);
 766}
 767
 768static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
 769                        unsigned long end, phys_addr_t phys,
 770                        const struct mem_type *type, bool ng)
 771{
 772        pmd_t *p = pmd;
 773
 774#ifndef CONFIG_ARM_LPAE
 775        /*
 776         * In classic MMU format, puds and pmds are folded in to
 777         * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
 778         * group of L1 entries making up one logical pointer to
 779         * an L2 table (2MB), where as PMDs refer to the individual
 780         * L1 entries (1MB). Hence increment to get the correct
 781         * offset for odd 1MB sections.
 782         * (See arch/arm/include/asm/pgtable-2level.h)
 783         */
 784        if (addr & SECTION_SIZE)
 785                pmd++;
 786#endif
 787        do {
 788                *pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
 789                phys += SECTION_SIZE;
 790        } while (pmd++, addr += SECTION_SIZE, addr != end);
 791
 792        flush_pmd_entry(p);
 793}
 794
 795static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
 796                                      unsigned long end, phys_addr_t phys,
 797                                      const struct mem_type *type,
 798                                      void *(*alloc)(unsigned long sz), bool ng)
 799{
 800        pmd_t *pmd = pmd_offset(pud, addr);
 801        unsigned long next;
 802
 803        do {
 804                /*
 805                 * With LPAE, we must loop over to map
 806                 * all the pmds for the given range.
 807                 */
 808                next = pmd_addr_end(addr, end);
 809
 810                /*
 811                 * Try a section mapping - addr, next and phys must all be
 812                 * aligned to a section boundary.
 813                 */
 814                if (type->prot_sect &&
 815                                ((addr | next | phys) & ~SECTION_MASK) == 0) {
 816                        __map_init_section(pmd, addr, next, phys, type, ng);
 817                } else {
 818                        alloc_init_pte(pmd, addr, next,
 819                                       __phys_to_pfn(phys), type, alloc, ng);
 820                }
 821
 822                phys += next - addr;
 823
 824        } while (pmd++, addr = next, addr != end);
 825}
 826
 827static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
 828                                  unsigned long end, phys_addr_t phys,
 829                                  const struct mem_type *type,
 830                                  void *(*alloc)(unsigned long sz), bool ng)
 831{
 832        pud_t *pud = pud_offset(pgd, addr);
 833        unsigned long next;
 834
 835        do {
 836                next = pud_addr_end(addr, end);
 837                alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
 838                phys += next - addr;
 839        } while (pud++, addr = next, addr != end);
 840}
 841
 842#ifndef CONFIG_ARM_LPAE
 843static void __init create_36bit_mapping(struct mm_struct *mm,
 844                                        struct map_desc *md,
 845                                        const struct mem_type *type,
 846                                        bool ng)
 847{
 848        unsigned long addr, length, end;
 849        phys_addr_t phys;
 850        pgd_t *pgd;
 851
 852        addr = md->virtual;
 853        phys = __pfn_to_phys(md->pfn);
 854        length = PAGE_ALIGN(md->length);
 855
 856        if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 857                pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
 858                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 859                return;
 860        }
 861
 862        /* N.B. ARMv6 supersections are only defined to work with domain 0.
 863         *      Since domain assignments can in fact be arbitrary, the
 864         *      'domain == 0' check below is required to insure that ARMv6
 865         *      supersections are only allocated for domain 0 regardless
 866         *      of the actual domain assignments in use.
 867         */
 868        if (type->domain) {
 869                pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
 870                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 871                return;
 872        }
 873
 874        if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 875                pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
 876                       (long long)__pfn_to_phys((u64)md->pfn), addr);
 877                return;
 878        }
 879
 880        /*
 881         * Shift bits [35:32] of address into bits [23:20] of PMD
 882         * (See ARMv6 spec).
 883         */
 884        phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 885
 886        pgd = pgd_offset(mm, addr);
 887        end = addr + length;
 888        do {
 889                pud_t *pud = pud_offset(pgd, addr);
 890                pmd_t *pmd = pmd_offset(pud, addr);
 891                int i;
 892
 893                for (i = 0; i < 16; i++)
 894                        *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
 895                                       (ng ? PMD_SECT_nG : 0));
 896
 897                addr += SUPERSECTION_SIZE;
 898                phys += SUPERSECTION_SIZE;
 899                pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 900        } while (addr != end);
 901}
 902#endif  /* !CONFIG_ARM_LPAE */
 903
 904static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
 905                                    void *(*alloc)(unsigned long sz),
 906                                    bool ng)
 907{
 908        unsigned long addr, length, end;
 909        phys_addr_t phys;
 910        const struct mem_type *type;
 911        pgd_t *pgd;
 912
 913        type = &mem_types[md->type];
 914
 915#ifndef CONFIG_ARM_LPAE
 916        /*
 917         * Catch 36-bit addresses
 918         */
 919        if (md->pfn >= 0x100000) {
 920                create_36bit_mapping(mm, md, type, ng);
 921                return;
 922        }
 923#endif
 924
 925        addr = md->virtual & PAGE_MASK;
 926        phys = __pfn_to_phys(md->pfn);
 927        length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 928
 929        if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 930                pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
 931                        (long long)__pfn_to_phys(md->pfn), addr);
 932                return;
 933        }
 934
 935        pgd = pgd_offset(mm, addr);
 936        end = addr + length;
 937        do {
 938                unsigned long next = pgd_addr_end(addr, end);
 939
 940                alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
 941
 942                phys += next - addr;
 943                addr = next;
 944        } while (pgd++, addr != end);
 945}
 946
 947/*
 948 * Create the page directory entries and any necessary
 949 * page tables for the mapping specified by `md'.  We
 950 * are able to cope here with varying sizes and address
 951 * offsets, and we take full advantage of sections and
 952 * supersections.
 953 */
 954static void __init create_mapping(struct map_desc *md)
 955{
 956        if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 957                pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
 958                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 959                return;
 960        }
 961
 962        if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
 963            md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
 964            (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
 965                pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
 966                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 967        }
 968
 969        __create_mapping(&init_mm, md, early_alloc, false);
 970}
 971
 972void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
 973                                bool ng)
 974{
 975#ifdef CONFIG_ARM_LPAE
 976        pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
 977        if (WARN_ON(!pud))
 978                return;
 979        pmd_alloc(mm, pud, 0);
 980#endif
 981        __create_mapping(mm, md, late_alloc, ng);
 982}
 983
 984/*
 985 * Create the architecture specific mappings
 986 */
 987void __init iotable_init(struct map_desc *io_desc, int nr)
 988{
 989        struct map_desc *md;
 990        struct vm_struct *vm;
 991        struct static_vm *svm;
 992
 993        if (!nr)
 994                return;
 995
 996        svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
 997
 998        for (md = io_desc; nr; md++, nr--) {
 999                create_mapping(md);
1000
1001                vm = &svm->vm;
1002                vm->addr = (void *)(md->virtual & PAGE_MASK);
1003                vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1004                vm->phys_addr = __pfn_to_phys(md->pfn);
1005                vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1006                vm->flags |= VM_ARM_MTYPE(md->type);
1007                vm->caller = iotable_init;
1008                add_static_vm_early(svm++);
1009        }
1010}
1011
1012void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1013                                  void *caller)
1014{
1015        struct vm_struct *vm;
1016        struct static_vm *svm;
1017
1018        svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
1019
1020        vm = &svm->vm;
1021        vm->addr = (void *)addr;
1022        vm->size = size;
1023        vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1024        vm->caller = caller;
1025        add_static_vm_early(svm);
1026}
1027
1028#ifndef CONFIG_ARM_LPAE
1029
1030/*
1031 * The Linux PMD is made of two consecutive section entries covering 2MB
1032 * (see definition in include/asm/pgtable-2level.h).  However a call to
1033 * create_mapping() may optimize static mappings by using individual
1034 * 1MB section mappings.  This leaves the actual PMD potentially half
1035 * initialized if the top or bottom section entry isn't used, leaving it
1036 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1037 * the virtual space left free by that unused section entry.
1038 *
1039 * Let's avoid the issue by inserting dummy vm entries covering the unused
1040 * PMD halves once the static mappings are in place.
1041 */
1042
1043static void __init pmd_empty_section_gap(unsigned long addr)
1044{
1045        vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1046}
1047
1048static void __init fill_pmd_gaps(void)
1049{
1050        struct static_vm *svm;
1051        struct vm_struct *vm;
1052        unsigned long addr, next = 0;
1053        pmd_t *pmd;
1054
1055        list_for_each_entry(svm, &static_vmlist, list) {
1056                vm = &svm->vm;
1057                addr = (unsigned long)vm->addr;
1058                if (addr < next)
1059                        continue;
1060
1061                /*
1062                 * Check if this vm starts on an odd section boundary.
1063                 * If so and the first section entry for this PMD is free
1064                 * then we block the corresponding virtual address.
1065                 */
1066                if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1067                        pmd = pmd_off_k(addr);
1068                        if (pmd_none(*pmd))
1069                                pmd_empty_section_gap(addr & PMD_MASK);
1070                }
1071
1072                /*
1073                 * Then check if this vm ends on an odd section boundary.
1074                 * If so and the second section entry for this PMD is empty
1075                 * then we block the corresponding virtual address.
1076                 */
1077                addr += vm->size;
1078                if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1079                        pmd = pmd_off_k(addr) + 1;
1080                        if (pmd_none(*pmd))
1081                                pmd_empty_section_gap(addr);
1082                }
1083
1084                /* no need to look at any vm entry until we hit the next PMD */
1085                next = (addr + PMD_SIZE - 1) & PMD_MASK;
1086        }
1087}
1088
1089#else
1090#define fill_pmd_gaps() do { } while (0)
1091#endif
1092
1093#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1094static void __init pci_reserve_io(void)
1095{
1096        struct static_vm *svm;
1097
1098        svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1099        if (svm)
1100                return;
1101
1102        vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1103}
1104#else
1105#define pci_reserve_io() do { } while (0)
1106#endif
1107
1108#ifdef CONFIG_DEBUG_LL
1109void __init debug_ll_io_init(void)
1110{
1111        struct map_desc map;
1112
1113        debug_ll_addr(&map.pfn, &map.virtual);
1114        if (!map.pfn || !map.virtual)
1115                return;
1116        map.pfn = __phys_to_pfn(map.pfn);
1117        map.virtual &= PAGE_MASK;
1118        map.length = PAGE_SIZE;
1119        map.type = MT_DEVICE;
1120        iotable_init(&map, 1);
1121}
1122#endif
1123
1124static void * __initdata vmalloc_min =
1125        (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1126
1127/*
1128 * vmalloc=size forces the vmalloc area to be exactly 'size'
1129 * bytes. This can be used to increase (or decrease) the vmalloc
1130 * area - the default is 240m.
1131 */
1132static int __init early_vmalloc(char *arg)
1133{
1134        unsigned long vmalloc_reserve = memparse(arg, NULL);
1135
1136        if (vmalloc_reserve < SZ_16M) {
1137                vmalloc_reserve = SZ_16M;
1138                pr_warn("vmalloc area too small, limiting to %luMB\n",
1139                        vmalloc_reserve >> 20);
1140        }
1141
1142        if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1143                vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1144                pr_warn("vmalloc area is too big, limiting to %luMB\n",
1145                        vmalloc_reserve >> 20);
1146        }
1147
1148        vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1149        return 0;
1150}
1151early_param("vmalloc", early_vmalloc);
1152
1153phys_addr_t arm_lowmem_limit __initdata = 0;
1154
1155void __init adjust_lowmem_bounds(void)
1156{
1157        phys_addr_t memblock_limit = 0;
1158        u64 vmalloc_limit;
1159        struct memblock_region *reg;
1160        phys_addr_t lowmem_limit = 0;
1161
1162        /*
1163         * Let's use our own (unoptimized) equivalent of __pa() that is
1164         * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1165         * The result is used as the upper bound on physical memory address
1166         * and may itself be outside the valid range for which phys_addr_t
1167         * and therefore __pa() is defined.
1168         */
1169        vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET;
1170
1171        for_each_memblock(memory, reg) {
1172                phys_addr_t block_start = reg->base;
1173                phys_addr_t block_end = reg->base + reg->size;
1174
1175                if (reg->base < vmalloc_limit) {
1176                        if (block_end > lowmem_limit)
1177                                /*
1178                                 * Compare as u64 to ensure vmalloc_limit does
1179                                 * not get truncated. block_end should always
1180                                 * fit in phys_addr_t so there should be no
1181                                 * issue with assignment.
1182                                 */
1183                                lowmem_limit = min_t(u64,
1184                                                         vmalloc_limit,
1185                                                         block_end);
1186
1187                        /*
1188                         * Find the first non-pmd-aligned page, and point
1189                         * memblock_limit at it. This relies on rounding the
1190                         * limit down to be pmd-aligned, which happens at the
1191                         * end of this function.
1192                         *
1193                         * With this algorithm, the start or end of almost any
1194                         * bank can be non-pmd-aligned. The only exception is
1195                         * that the start of the bank 0 must be section-
1196                         * aligned, since otherwise memory would need to be
1197                         * allocated when mapping the start of bank 0, which
1198                         * occurs before any free memory is mapped.
1199                         */
1200                        if (!memblock_limit) {
1201                                if (!IS_ALIGNED(block_start, PMD_SIZE))
1202                                        memblock_limit = block_start;
1203                                else if (!IS_ALIGNED(block_end, PMD_SIZE))
1204                                        memblock_limit = lowmem_limit;
1205                        }
1206
1207                }
1208        }
1209
1210        arm_lowmem_limit = lowmem_limit;
1211
1212        high_memory = __va(arm_lowmem_limit - 1) + 1;
1213
1214        /*
1215         * Round the memblock limit down to a pmd size.  This
1216         * helps to ensure that we will allocate memory from the
1217         * last full pmd, which should be mapped.
1218         */
1219        if (memblock_limit)
1220                memblock_limit = round_down(memblock_limit, PMD_SIZE);
1221        if (!memblock_limit)
1222                memblock_limit = arm_lowmem_limit;
1223
1224        if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1225                if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1226                        phys_addr_t end = memblock_end_of_DRAM();
1227
1228                        pr_notice("Ignoring RAM at %pa-%pa\n",
1229                                  &memblock_limit, &end);
1230                        pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1231
1232                        memblock_remove(memblock_limit, end - memblock_limit);
1233                }
1234        }
1235
1236        memblock_set_current_limit(memblock_limit);
1237}
1238
1239static inline void prepare_page_table(void)
1240{
1241        unsigned long addr;
1242        phys_addr_t end;
1243
1244        /*
1245         * Clear out all the mappings below the kernel image.
1246         */
1247        for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1248                pmd_clear(pmd_off_k(addr));
1249
1250#ifdef CONFIG_XIP_KERNEL
1251        /* The XIP kernel is mapped in the module area -- skip over it */
1252        addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1253#endif
1254        for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1255                pmd_clear(pmd_off_k(addr));
1256
1257        /*
1258         * Find the end of the first block of lowmem.
1259         */
1260        end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1261        if (end >= arm_lowmem_limit)
1262                end = arm_lowmem_limit;
1263
1264        /*
1265         * Clear out all the kernel space mappings, except for the first
1266         * memory bank, up to the vmalloc region.
1267         */
1268        for (addr = __phys_to_virt(end);
1269             addr < VMALLOC_START; addr += PMD_SIZE)
1270                pmd_clear(pmd_off_k(addr));
1271}
1272
1273#ifdef CONFIG_ARM_LPAE
1274/* the first page is reserved for pgd */
1275#define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1276                                 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1277#else
1278#define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1279#endif
1280
1281/*
1282 * Reserve the special regions of memory
1283 */
1284void __init arm_mm_memblock_reserve(void)
1285{
1286        /*
1287         * Reserve the page tables.  These are already in use,
1288         * and can only be in node 0.
1289         */
1290        memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1291
1292#ifdef CONFIG_SA1111
1293        /*
1294         * Because of the SA1111 DMA bug, we want to preserve our
1295         * precious DMA-able memory...
1296         */
1297        memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1298#endif
1299}
1300
1301/*
1302 * Set up the device mappings.  Since we clear out the page tables for all
1303 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1304 * device mappings.  This means earlycon can be used to debug this function
1305 * Any other function or debugging method which may touch any device _will_
1306 * crash the kernel.
1307 */
1308static void __init devicemaps_init(const struct machine_desc *mdesc)
1309{
1310        struct map_desc map;
1311        unsigned long addr;
1312        void *vectors;
1313
1314        /*
1315         * Allocate the vector page early.
1316         */
1317        vectors = early_alloc(PAGE_SIZE * 2);
1318
1319        early_trap_init(vectors);
1320
1321        /*
1322         * Clear page table except top pmd used by early fixmaps
1323         */
1324        for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1325                pmd_clear(pmd_off_k(addr));
1326
1327        /*
1328         * Map the kernel if it is XIP.
1329         * It is always first in the modulearea.
1330         */
1331#ifdef CONFIG_XIP_KERNEL
1332        map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1333        map.virtual = MODULES_VADDR;
1334        map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1335        map.type = MT_ROM;
1336        create_mapping(&map);
1337#endif
1338
1339        /*
1340         * Map the cache flushing regions.
1341         */
1342#ifdef FLUSH_BASE
1343        map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1344        map.virtual = FLUSH_BASE;
1345        map.length = SZ_1M;
1346        map.type = MT_CACHECLEAN;
1347        create_mapping(&map);
1348#endif
1349#ifdef FLUSH_BASE_MINICACHE
1350        map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1351        map.virtual = FLUSH_BASE_MINICACHE;
1352        map.length = SZ_1M;
1353        map.type = MT_MINICLEAN;
1354        create_mapping(&map);
1355#endif
1356
1357        /*
1358         * Create a mapping for the machine vectors at the high-vectors
1359         * location (0xffff0000).  If we aren't using high-vectors, also
1360         * create a mapping at the low-vectors virtual address.
1361         */
1362        map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1363        map.virtual = 0xffff0000;
1364        map.length = PAGE_SIZE;
1365#ifdef CONFIG_KUSER_HELPERS
1366        map.type = MT_HIGH_VECTORS;
1367#else
1368        map.type = MT_LOW_VECTORS;
1369#endif
1370        create_mapping(&map);
1371
1372        if (!vectors_high()) {
1373                map.virtual = 0;
1374                map.length = PAGE_SIZE * 2;
1375                map.type = MT_LOW_VECTORS;
1376                create_mapping(&map);
1377        }
1378
1379        /* Now create a kernel read-only mapping */
1380        map.pfn += 1;
1381        map.virtual = 0xffff0000 + PAGE_SIZE;
1382        map.length = PAGE_SIZE;
1383        map.type = MT_LOW_VECTORS;
1384        create_mapping(&map);
1385
1386        /*
1387         * Ask the machine support to map in the statically mapped devices.
1388         */
1389        if (mdesc->map_io)
1390                mdesc->map_io();
1391        else
1392                debug_ll_io_init();
1393        fill_pmd_gaps();
1394
1395        /* Reserve fixed i/o space in VMALLOC region */
1396        pci_reserve_io();
1397
1398        /*
1399         * Finally flush the caches and tlb to ensure that we're in a
1400         * consistent state wrt the writebuffer.  This also ensures that
1401         * any write-allocated cache lines in the vector page are written
1402         * back.  After this point, we can start to touch devices again.
1403         */
1404        local_flush_tlb_all();
1405        flush_cache_all();
1406
1407        /* Enable asynchronous aborts */
1408        early_abt_enable();
1409}
1410
1411static void __init kmap_init(void)
1412{
1413#ifdef CONFIG_HIGHMEM
1414        pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1415                PKMAP_BASE, _PAGE_KERNEL_TABLE);
1416#endif
1417
1418        early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1419                        _PAGE_KERNEL_TABLE);
1420}
1421
1422static void __init map_lowmem(void)
1423{
1424        struct memblock_region *reg;
1425        phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE);
1426        phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1427
1428        /* Map all the lowmem memory banks. */
1429        for_each_memblock(memory, reg) {
1430                phys_addr_t start = reg->base;
1431                phys_addr_t end = start + reg->size;
1432                struct map_desc map;
1433
1434                if (memblock_is_nomap(reg))
1435                        continue;
1436
1437                if (end > arm_lowmem_limit)
1438                        end = arm_lowmem_limit;
1439                if (start >= end)
1440                        break;
1441
1442                if (end < kernel_x_start) {
1443                        map.pfn = __phys_to_pfn(start);
1444                        map.virtual = __phys_to_virt(start);
1445                        map.length = end - start;
1446                        map.type = MT_MEMORY_RWX;
1447
1448                        create_mapping(&map);
1449                } else if (start >= kernel_x_end) {
1450                        map.pfn = __phys_to_pfn(start);
1451                        map.virtual = __phys_to_virt(start);
1452                        map.length = end - start;
1453                        map.type = MT_MEMORY_RW;
1454
1455                        create_mapping(&map);
1456                } else {
1457                        /* This better cover the entire kernel */
1458                        if (start < kernel_x_start) {
1459                                map.pfn = __phys_to_pfn(start);
1460                                map.virtual = __phys_to_virt(start);
1461                                map.length = kernel_x_start - start;
1462                                map.type = MT_MEMORY_RW;
1463
1464                                create_mapping(&map);
1465                        }
1466
1467                        map.pfn = __phys_to_pfn(kernel_x_start);
1468                        map.virtual = __phys_to_virt(kernel_x_start);
1469                        map.length = kernel_x_end - kernel_x_start;
1470                        map.type = MT_MEMORY_RWX;
1471
1472                        create_mapping(&map);
1473
1474                        if (kernel_x_end < end) {
1475                                map.pfn = __phys_to_pfn(kernel_x_end);
1476                                map.virtual = __phys_to_virt(kernel_x_end);
1477                                map.length = end - kernel_x_end;
1478                                map.type = MT_MEMORY_RW;
1479
1480                                create_mapping(&map);
1481                        }
1482                }
1483        }
1484}
1485
1486#ifdef CONFIG_ARM_PV_FIXUP
1487extern unsigned long __atags_pointer;
1488typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1489pgtables_remap lpae_pgtables_remap_asm;
1490
1491/*
1492 * early_paging_init() recreates boot time page table setup, allowing machines
1493 * to switch over to a high (>4G) address space on LPAE systems
1494 */
1495void __init early_paging_init(const struct machine_desc *mdesc)
1496{
1497        pgtables_remap *lpae_pgtables_remap;
1498        unsigned long pa_pgd;
1499        unsigned int cr, ttbcr;
1500        long long offset;
1501        void *boot_data;
1502
1503        if (!mdesc->pv_fixup)
1504                return;
1505
1506        offset = mdesc->pv_fixup();
1507        if (offset == 0)
1508                return;
1509
1510        /*
1511         * Get the address of the remap function in the 1:1 identity
1512         * mapping setup by the early page table assembly code.  We
1513         * must get this prior to the pv update.  The following barrier
1514         * ensures that this is complete before we fixup any P:V offsets.
1515         */
1516        lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1517        pa_pgd = __pa(swapper_pg_dir);
1518        boot_data = __va(__atags_pointer);
1519        barrier();
1520
1521        pr_info("Switching physical address space to 0x%08llx\n",
1522                (u64)PHYS_OFFSET + offset);
1523
1524        /* Re-set the phys pfn offset, and the pv offset */
1525        __pv_offset += offset;
1526        __pv_phys_pfn_offset += PFN_DOWN(offset);
1527
1528        /* Run the patch stub to update the constants */
1529        fixup_pv_table(&__pv_table_begin,
1530                (&__pv_table_end - &__pv_table_begin) << 2);
1531
1532        /*
1533         * We changing not only the virtual to physical mapping, but also
1534         * the physical addresses used to access memory.  We need to flush
1535         * all levels of cache in the system with caching disabled to
1536         * ensure that all data is written back, and nothing is prefetched
1537         * into the caches.  We also need to prevent the TLB walkers
1538         * allocating into the caches too.  Note that this is ARMv7 LPAE
1539         * specific.
1540         */
1541        cr = get_cr();
1542        set_cr(cr & ~(CR_I | CR_C));
1543        asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1544        asm volatile("mcr p15, 0, %0, c2, c0, 2"
1545                : : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1546        flush_cache_all();
1547
1548        /*
1549         * Fixup the page tables - this must be in the idmap region as
1550         * we need to disable the MMU to do this safely, and hence it
1551         * needs to be assembly.  It's fairly simple, as we're using the
1552         * temporary tables setup by the initial assembly code.
1553         */
1554        lpae_pgtables_remap(offset, pa_pgd, boot_data);
1555
1556        /* Re-enable the caches and cacheable TLB walks */
1557        asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1558        set_cr(cr);
1559}
1560
1561#else
1562
1563void __init early_paging_init(const struct machine_desc *mdesc)
1564{
1565        long long offset;
1566
1567        if (!mdesc->pv_fixup)
1568                return;
1569
1570        offset = mdesc->pv_fixup();
1571        if (offset == 0)
1572                return;
1573
1574        pr_crit("Physical address space modification is only to support Keystone2.\n");
1575        pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1576        pr_crit("feature. Your kernel may crash now, have a good day.\n");
1577        add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1578}
1579
1580#endif
1581
1582static void __init early_fixmap_shutdown(void)
1583{
1584        int i;
1585        unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1586
1587        pte_offset_fixmap = pte_offset_late_fixmap;
1588        pmd_clear(fixmap_pmd(va));
1589        local_flush_tlb_kernel_page(va);
1590
1591        for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1592                pte_t *pte;
1593                struct map_desc map;
1594
1595                map.virtual = fix_to_virt(i);
1596                pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1597
1598                /* Only i/o device mappings are supported ATM */
1599                if (pte_none(*pte) ||
1600                    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1601                        continue;
1602
1603                map.pfn = pte_pfn(*pte);
1604                map.type = MT_DEVICE;
1605                map.length = PAGE_SIZE;
1606
1607                create_mapping(&map);
1608        }
1609}
1610
1611/*
1612 * paging_init() sets up the page tables, initialises the zone memory
1613 * maps, and sets up the zero page, bad page and bad page tables.
1614 */
1615void __init paging_init(const struct machine_desc *mdesc)
1616{
1617        void *zero_page;
1618
1619        build_mem_type_table();
1620        prepare_page_table();
1621        map_lowmem();
1622        memblock_set_current_limit(arm_lowmem_limit);
1623        dma_contiguous_remap();
1624        early_fixmap_shutdown();
1625        devicemaps_init(mdesc);
1626        kmap_init();
1627        tcm_init();
1628
1629        top_pmd = pmd_off_k(0xffff0000);
1630
1631        /* allocate the zero page. */
1632        zero_page = early_alloc(PAGE_SIZE);
1633
1634        bootmem_init();
1635
1636        empty_zero_page = virt_to_page(zero_page);
1637        __flush_dcache_page(NULL, empty_zero_page);
1638}
1639