linux/arch/arm/mm/nommu.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/mm/nommu.c
   3 *
   4 * ARM uCLinux supporting functions.
   5 */
   6#include <linux/module.h>
   7#include <linux/mm.h>
   8#include <linux/pagemap.h>
   9#include <linux/io.h>
  10#include <linux/memblock.h>
  11#include <linux/kernel.h>
  12
  13#include <asm/cacheflush.h>
  14#include <asm/cp15.h>
  15#include <asm/sections.h>
  16#include <asm/page.h>
  17#include <asm/setup.h>
  18#include <asm/traps.h>
  19#include <asm/mach/arch.h>
  20#include <asm/cputype.h>
  21#include <asm/mpu.h>
  22#include <asm/procinfo.h>
  23
  24#include "mm.h"
  25
  26unsigned long vectors_base;
  27
  28#ifdef CONFIG_ARM_MPU
  29struct mpu_rgn_info mpu_rgn_info;
  30
  31/* Region number */
  32static void rgnr_write(u32 v)
  33{
  34        asm("mcr        p15, 0, %0, c6, c2, 0" : : "r" (v));
  35}
  36
  37/* Data-side / unified region attributes */
  38
  39/* Region access control register */
  40static void dracr_write(u32 v)
  41{
  42        asm("mcr        p15, 0, %0, c6, c1, 4" : : "r" (v));
  43}
  44
  45/* Region size register */
  46static void drsr_write(u32 v)
  47{
  48        asm("mcr        p15, 0, %0, c6, c1, 2" : : "r" (v));
  49}
  50
  51/* Region base address register */
  52static void drbar_write(u32 v)
  53{
  54        asm("mcr        p15, 0, %0, c6, c1, 0" : : "r" (v));
  55}
  56
  57static u32 drbar_read(void)
  58{
  59        u32 v;
  60        asm("mrc        p15, 0, %0, c6, c1, 0" : "=r" (v));
  61        return v;
  62}
  63/* Optional instruction-side region attributes */
  64
  65/* I-side Region access control register */
  66static void iracr_write(u32 v)
  67{
  68        asm("mcr        p15, 0, %0, c6, c1, 5" : : "r" (v));
  69}
  70
  71/* I-side Region size register */
  72static void irsr_write(u32 v)
  73{
  74        asm("mcr        p15, 0, %0, c6, c1, 3" : : "r" (v));
  75}
  76
  77/* I-side Region base address register */
  78static void irbar_write(u32 v)
  79{
  80        asm("mcr        p15, 0, %0, c6, c1, 1" : : "r" (v));
  81}
  82
  83static unsigned long irbar_read(void)
  84{
  85        unsigned long v;
  86        asm("mrc        p15, 0, %0, c6, c1, 1" : "=r" (v));
  87        return v;
  88}
  89
  90/* MPU initialisation functions */
  91void __init adjust_lowmem_bounds_mpu(void)
  92{
  93        phys_addr_t phys_offset = PHYS_OFFSET;
  94        phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size;
  95        struct memblock_region *reg;
  96        bool first = true;
  97        phys_addr_t mem_start;
  98        phys_addr_t mem_end;
  99
 100        for_each_memblock(memory, reg) {
 101                if (first) {
 102                        /*
 103                         * Initially only use memory continuous from
 104                         * PHYS_OFFSET */
 105                        if (reg->base != phys_offset)
 106                                panic("First memory bank must be contiguous from PHYS_OFFSET");
 107
 108                        mem_start = reg->base;
 109                        mem_end = reg->base + reg->size;
 110                        specified_mem_size = reg->size;
 111                        first = false;
 112                } else {
 113                        /*
 114                         * memblock auto merges contiguous blocks, remove
 115                         * all blocks afterwards in one go (we can't remove
 116                         * blocks separately while iterating)
 117                         */
 118                        pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n",
 119                                  &mem_end, &reg->base);
 120                        memblock_remove(reg->base, 0 - reg->base);
 121                        break;
 122                }
 123        }
 124
 125        /*
 126         * MPU has curious alignment requirements: Size must be power of 2, and
 127         * region start must be aligned to the region size
 128         */
 129        if (phys_offset != 0)
 130                pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n");
 131
 132        /*
 133         * Maximum aligned region might overflow phys_addr_t if phys_offset is
 134         * 0. Hence we keep everything below 4G until we take the smaller of
 135         * the aligned_region_size and rounded_mem_size, one of which is
 136         * guaranteed to be smaller than the maximum physical address.
 137         */
 138        aligned_region_size = (phys_offset - 1) ^ (phys_offset);
 139        /* Find the max power-of-two sized region that fits inside our bank */
 140        rounded_mem_size = (1 <<  __fls(specified_mem_size)) - 1;
 141
 142        /* The actual region size is the smaller of the two */
 143        aligned_region_size = aligned_region_size < rounded_mem_size
 144                                ? aligned_region_size + 1
 145                                : rounded_mem_size + 1;
 146
 147        if (aligned_region_size != specified_mem_size) {
 148                pr_warn("Truncating memory from %pa to %pa (MPU region constraints)",
 149                                &specified_mem_size, &aligned_region_size);
 150                memblock_remove(mem_start + aligned_region_size,
 151                                specified_mem_size - aligned_region_size);
 152
 153                mem_end = mem_start + aligned_region_size;
 154        }
 155
 156        pr_debug("MPU Region from %pa size %pa (end %pa))\n",
 157                &phys_offset, &aligned_region_size, &mem_end);
 158
 159}
 160
 161static int mpu_present(void)
 162{
 163        return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7);
 164}
 165
 166static int mpu_max_regions(void)
 167{
 168        /*
 169         * We don't support a different number of I/D side regions so if we
 170         * have separate instruction and data memory maps then return
 171         * whichever side has a smaller number of supported regions.
 172         */
 173        u32 dregions, iregions, mpuir;
 174        mpuir = read_cpuid(CPUID_MPUIR);
 175
 176        dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
 177
 178        /* Check for separate d-side and i-side memory maps */
 179        if (mpuir & MPUIR_nU)
 180                iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
 181
 182        /* Use the smallest of the two maxima */
 183        return min(dregions, iregions);
 184}
 185
 186static int mpu_iside_independent(void)
 187{
 188        /* MPUIR.nU specifies whether there is *not* a unified memory map */
 189        return read_cpuid(CPUID_MPUIR) & MPUIR_nU;
 190}
 191
 192static int mpu_min_region_order(void)
 193{
 194        u32 drbar_result, irbar_result;
 195        /* We've kept a region free for this probing */
 196        rgnr_write(MPU_PROBE_REGION);
 197        isb();
 198        /*
 199         * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
 200         * region order
 201        */
 202        drbar_write(0xFFFFFFFC);
 203        drbar_result = irbar_result = drbar_read();
 204        drbar_write(0x0);
 205        /* If the MPU is non-unified, we use the larger of the two minima*/
 206        if (mpu_iside_independent()) {
 207                irbar_write(0xFFFFFFFC);
 208                irbar_result = irbar_read();
 209                irbar_write(0x0);
 210        }
 211        isb(); /* Ensure that MPU region operations have completed */
 212        /* Return whichever result is larger */
 213        return __ffs(max(drbar_result, irbar_result));
 214}
 215
 216static int mpu_setup_region(unsigned int number, phys_addr_t start,
 217                        unsigned int size_order, unsigned int properties)
 218{
 219        u32 size_data;
 220
 221        /* We kept a region free for probing resolution of MPU regions*/
 222        if (number > mpu_max_regions() || number == MPU_PROBE_REGION)
 223                return -ENOENT;
 224
 225        if (size_order > 32)
 226                return -ENOMEM;
 227
 228        if (size_order < mpu_min_region_order())
 229                return -ENOMEM;
 230
 231        /* Writing N to bits 5:1 (RSR_SZ)  specifies region size 2^N+1 */
 232        size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN;
 233
 234        dsb(); /* Ensure all previous data accesses occur with old mappings */
 235        rgnr_write(number);
 236        isb();
 237        drbar_write(start);
 238        dracr_write(properties);
 239        isb(); /* Propagate properties before enabling region */
 240        drsr_write(size_data);
 241
 242        /* Check for independent I-side registers */
 243        if (mpu_iside_independent()) {
 244                irbar_write(start);
 245                iracr_write(properties);
 246                isb();
 247                irsr_write(size_data);
 248        }
 249        isb();
 250
 251        /* Store region info (we treat i/d side the same, so only store d) */
 252        mpu_rgn_info.rgns[number].dracr = properties;
 253        mpu_rgn_info.rgns[number].drbar = start;
 254        mpu_rgn_info.rgns[number].drsr = size_data;
 255        return 0;
 256}
 257
 258/*
 259* Set up default MPU regions, doing nothing if there is no MPU
 260*/
 261void __init mpu_setup(void)
 262{
 263        int region_err;
 264        if (!mpu_present())
 265                return;
 266
 267        region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET,
 268                                        ilog2(memblock.memory.regions[0].size),
 269                                        MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL);
 270        if (region_err) {
 271                panic("MPU region initialization failure! %d", region_err);
 272        } else {
 273                pr_info("Using ARMv7 PMSA Compliant MPU. "
 274                         "Region independence: %s, Max regions: %d\n",
 275                        mpu_iside_independent() ? "Yes" : "No",
 276                        mpu_max_regions());
 277        }
 278}
 279#else
 280static void adjust_lowmem_bounds_mpu(void) {}
 281static void __init mpu_setup(void) {}
 282#endif /* CONFIG_ARM_MPU */
 283
 284#ifdef CONFIG_CPU_CP15
 285#ifdef CONFIG_CPU_HIGH_VECTOR
 286static unsigned long __init setup_vectors_base(void)
 287{
 288        unsigned long reg = get_cr();
 289
 290        set_cr(reg | CR_V);
 291        return 0xffff0000;
 292}
 293#else /* CONFIG_CPU_HIGH_VECTOR */
 294/* Write exception base address to VBAR */
 295static inline void set_vbar(unsigned long val)
 296{
 297        asm("mcr p15, 0, %0, c12, c0, 0" : : "r" (val) : "cc");
 298}
 299
 300/*
 301 * Security extensions, bits[7:4], permitted values,
 302 * 0b0000 - not implemented, 0b0001/0b0010 - implemented
 303 */
 304static inline bool security_extensions_enabled(void)
 305{
 306        /* Check CPUID Identification Scheme before ID_PFR1 read */
 307        if ((read_cpuid_id() & 0x000f0000) == 0x000f0000)
 308                return !!cpuid_feature_extract(CPUID_EXT_PFR1, 4);
 309        return 0;
 310}
 311
 312static unsigned long __init setup_vectors_base(void)
 313{
 314        unsigned long base = 0, reg = get_cr();
 315
 316        set_cr(reg & ~CR_V);
 317        if (security_extensions_enabled()) {
 318                if (IS_ENABLED(CONFIG_REMAP_VECTORS_TO_RAM))
 319                        base = CONFIG_DRAM_BASE;
 320                set_vbar(base);
 321        } else if (IS_ENABLED(CONFIG_REMAP_VECTORS_TO_RAM)) {
 322                if (CONFIG_DRAM_BASE != 0)
 323                        pr_err("Security extensions not enabled, vectors cannot be remapped to RAM, vectors base will be 0x00000000\n");
 324        }
 325
 326        return base;
 327}
 328#endif /* CONFIG_CPU_HIGH_VECTOR */
 329#endif /* CONFIG_CPU_CP15 */
 330
 331void __init arm_mm_memblock_reserve(void)
 332{
 333#ifndef CONFIG_CPU_V7M
 334        vectors_base = IS_ENABLED(CONFIG_CPU_CP15) ? setup_vectors_base() : 0;
 335        /*
 336         * Register the exception vector page.
 337         * some architectures which the DRAM is the exception vector to trap,
 338         * alloc_page breaks with error, although it is not NULL, but "0."
 339         */
 340        memblock_reserve(vectors_base, 2 * PAGE_SIZE);
 341#else /* ifndef CONFIG_CPU_V7M */
 342        /*
 343         * There is no dedicated vector page on V7-M. So nothing needs to be
 344         * reserved here.
 345         */
 346#endif
 347}
 348
 349void __init adjust_lowmem_bounds(void)
 350{
 351        phys_addr_t end;
 352        adjust_lowmem_bounds_mpu();
 353        end = memblock_end_of_DRAM();
 354        high_memory = __va(end - 1) + 1;
 355        memblock_set_current_limit(end);
 356}
 357
 358/*
 359 * paging_init() sets up the page tables, initialises the zone memory
 360 * maps, and sets up the zero page, bad page and bad page tables.
 361 */
 362void __init paging_init(const struct machine_desc *mdesc)
 363{
 364        early_trap_init((void *)vectors_base);
 365        mpu_setup();
 366        bootmem_init();
 367}
 368
 369/*
 370 * We don't need to do anything here for nommu machines.
 371 */
 372void setup_mm_for_reboot(void)
 373{
 374}
 375
 376void flush_dcache_page(struct page *page)
 377{
 378        __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
 379}
 380EXPORT_SYMBOL(flush_dcache_page);
 381
 382void flush_kernel_dcache_page(struct page *page)
 383{
 384        __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
 385}
 386EXPORT_SYMBOL(flush_kernel_dcache_page);
 387
 388void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
 389                       unsigned long uaddr, void *dst, const void *src,
 390                       unsigned long len)
 391{
 392        memcpy(dst, src, len);
 393        if (vma->vm_flags & VM_EXEC)
 394                __cpuc_coherent_user_range(uaddr, uaddr + len);
 395}
 396
 397void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
 398                                size_t size, unsigned int mtype)
 399{
 400        if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
 401                return NULL;
 402        return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
 403}
 404EXPORT_SYMBOL(__arm_ioremap_pfn);
 405
 406void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
 407                                   unsigned int mtype, void *caller)
 408{
 409        return (void __iomem *)phys_addr;
 410}
 411
 412void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
 413
 414void __iomem *ioremap(resource_size_t res_cookie, size_t size)
 415{
 416        return __arm_ioremap_caller(res_cookie, size, MT_DEVICE,
 417                                    __builtin_return_address(0));
 418}
 419EXPORT_SYMBOL(ioremap);
 420
 421void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
 422        __alias(ioremap_cached);
 423
 424void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size)
 425{
 426        return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
 427                                    __builtin_return_address(0));
 428}
 429EXPORT_SYMBOL(ioremap_cache);
 430EXPORT_SYMBOL(ioremap_cached);
 431
 432void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
 433{
 434        return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
 435                                    __builtin_return_address(0));
 436}
 437EXPORT_SYMBOL(ioremap_wc);
 438
 439void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
 440{
 441        return (void *)phys_addr;
 442}
 443
 444void __iounmap(volatile void __iomem *addr)
 445{
 446}
 447EXPORT_SYMBOL(__iounmap);
 448
 449void (*arch_iounmap)(volatile void __iomem *);
 450
 451void iounmap(volatile void __iomem *addr)
 452{
 453}
 454EXPORT_SYMBOL(iounmap);
 455