linux/arch/ia64/kernel/smpboot.c
<<
>>
Prefs
   1/*
   2 * SMP boot-related support
   3 *
   4 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
   5 *      David Mosberger-Tang <davidm@hpl.hp.com>
   6 * Copyright (C) 2001, 2004-2005 Intel Corp
   7 *      Rohit Seth <rohit.seth@intel.com>
   8 *      Suresh Siddha <suresh.b.siddha@intel.com>
   9 *      Gordon Jin <gordon.jin@intel.com>
  10 *      Ashok Raj  <ashok.raj@intel.com>
  11 *
  12 * 01/05/16 Rohit Seth <rohit.seth@intel.com>   Moved SMP booting functions from smp.c to here.
  13 * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
  14 * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
  15 *                                              smp_boot_cpus()/smp_commence() is replaced by
  16 *                                              smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
  17 * 04/06/21 Ashok Raj           <ashok.raj@intel.com> Added CPU Hotplug Support
  18 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
  19 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
  20 *                                              Add multi-threading and multi-core detection
  21 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
  22 *                                              Setup cpu_sibling_map and cpu_core_map
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/acpi.h>
  27#include <linux/bootmem.h>
  28#include <linux/cpu.h>
  29#include <linux/delay.h>
  30#include <linux/init.h>
  31#include <linux/interrupt.h>
  32#include <linux/irq.h>
  33#include <linux/kernel.h>
  34#include <linux/kernel_stat.h>
  35#include <linux/mm.h>
  36#include <linux/notifier.h>
  37#include <linux/smp.h>
  38#include <linux/spinlock.h>
  39#include <linux/efi.h>
  40#include <linux/percpu.h>
  41#include <linux/bitops.h>
  42
  43#include <linux/atomic.h>
  44#include <asm/cache.h>
  45#include <asm/current.h>
  46#include <asm/delay.h>
  47#include <asm/io.h>
  48#include <asm/irq.h>
  49#include <asm/machvec.h>
  50#include <asm/mca.h>
  51#include <asm/page.h>
  52#include <asm/pgalloc.h>
  53#include <asm/pgtable.h>
  54#include <asm/processor.h>
  55#include <asm/ptrace.h>
  56#include <asm/sal.h>
  57#include <asm/tlbflush.h>
  58#include <asm/unistd.h>
  59#include <asm/sn/arch.h>
  60
  61#define SMP_DEBUG 0
  62
  63#if SMP_DEBUG
  64#define Dprintk(x...)  printk(x)
  65#else
  66#define Dprintk(x...)
  67#endif
  68
  69#ifdef CONFIG_HOTPLUG_CPU
  70#ifdef CONFIG_PERMIT_BSP_REMOVE
  71#define bsp_remove_ok   1
  72#else
  73#define bsp_remove_ok   0
  74#endif
  75
  76/*
  77 * Global array allocated for NR_CPUS at boot time
  78 */
  79struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
  80
  81/*
  82 * start_ap in head.S uses this to store current booting cpu
  83 * info.
  84 */
  85struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
  86
  87#define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
  88
  89#else
  90#define set_brendez_area(x)
  91#endif
  92
  93
  94/*
  95 * ITC synchronization related stuff:
  96 */
  97#define MASTER  (0)
  98#define SLAVE   (SMP_CACHE_BYTES/8)
  99
 100#define NUM_ROUNDS      64      /* magic value */
 101#define NUM_ITERS       5       /* likewise */
 102
 103static DEFINE_SPINLOCK(itc_sync_lock);
 104static volatile unsigned long go[SLAVE + 1];
 105
 106#define DEBUG_ITC_SYNC  0
 107
 108extern void start_ap (void);
 109extern unsigned long ia64_iobase;
 110
 111struct task_struct *task_for_booting_cpu;
 112
 113/*
 114 * State for each CPU
 115 */
 116DEFINE_PER_CPU(int, cpu_state);
 117
 118cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
 119EXPORT_SYMBOL(cpu_core_map);
 120DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
 121EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
 122
 123int smp_num_siblings = 1;
 124
 125/* which logical CPU number maps to which CPU (physical APIC ID) */
 126volatile int ia64_cpu_to_sapicid[NR_CPUS];
 127EXPORT_SYMBOL(ia64_cpu_to_sapicid);
 128
 129static cpumask_t cpu_callin_map;
 130
 131struct smp_boot_data smp_boot_data __initdata;
 132
 133unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
 134
 135char __initdata no_int_routing;
 136
 137unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
 138
 139#ifdef CONFIG_FORCE_CPEI_RETARGET
 140#define CPEI_OVERRIDE_DEFAULT   (1)
 141#else
 142#define CPEI_OVERRIDE_DEFAULT   (0)
 143#endif
 144
 145unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
 146
 147static int __init
 148cmdl_force_cpei(char *str)
 149{
 150        int value=0;
 151
 152        get_option (&str, &value);
 153        force_cpei_retarget = value;
 154
 155        return 1;
 156}
 157
 158__setup("force_cpei=", cmdl_force_cpei);
 159
 160static int __init
 161nointroute (char *str)
 162{
 163        no_int_routing = 1;
 164        printk ("no_int_routing on\n");
 165        return 1;
 166}
 167
 168__setup("nointroute", nointroute);
 169
 170static void fix_b0_for_bsp(void)
 171{
 172#ifdef CONFIG_HOTPLUG_CPU
 173        int cpuid;
 174        static int fix_bsp_b0 = 1;
 175
 176        cpuid = smp_processor_id();
 177
 178        /*
 179         * Cache the b0 value on the first AP that comes up
 180         */
 181        if (!(fix_bsp_b0 && cpuid))
 182                return;
 183
 184        sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
 185        printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
 186
 187        fix_bsp_b0 = 0;
 188#endif
 189}
 190
 191void
 192sync_master (void *arg)
 193{
 194        unsigned long flags, i;
 195
 196        go[MASTER] = 0;
 197
 198        local_irq_save(flags);
 199        {
 200                for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
 201                        while (!go[MASTER])
 202                                cpu_relax();
 203                        go[MASTER] = 0;
 204                        go[SLAVE] = ia64_get_itc();
 205                }
 206        }
 207        local_irq_restore(flags);
 208}
 209
 210/*
 211 * Return the number of cycles by which our itc differs from the itc on the master
 212 * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master,
 213 * negative that it is behind.
 214 */
 215static inline long
 216get_delta (long *rt, long *master)
 217{
 218        unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 219        unsigned long tcenter, t0, t1, tm;
 220        long i;
 221
 222        for (i = 0; i < NUM_ITERS; ++i) {
 223                t0 = ia64_get_itc();
 224                go[MASTER] = 1;
 225                while (!(tm = go[SLAVE]))
 226                        cpu_relax();
 227                go[SLAVE] = 0;
 228                t1 = ia64_get_itc();
 229
 230                if (t1 - t0 < best_t1 - best_t0)
 231                        best_t0 = t0, best_t1 = t1, best_tm = tm;
 232        }
 233
 234        *rt = best_t1 - best_t0;
 235        *master = best_tm - best_t0;
 236
 237        /* average best_t0 and best_t1 without overflow: */
 238        tcenter = (best_t0/2 + best_t1/2);
 239        if (best_t0 % 2 + best_t1 % 2 == 2)
 240                ++tcenter;
 241        return tcenter - best_tm;
 242}
 243
 244/*
 245 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
 246 * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
 247 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
 248 * step).  The basic idea is for the slave to ask the master what itc value it has and to
 249 * read its own itc before and after the master responds.  Each iteration gives us three
 250 * timestamps:
 251 *
 252 *      slave           master
 253 *
 254 *      t0 ---\
 255 *             ---\
 256 *                 --->
 257 *                      tm
 258 *                 /---
 259 *             /---
 260 *      t1 <---
 261 *
 262 *
 263 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
 264 * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
 265 * between the slave and the master is symmetric.  Even if the interconnect were
 266 * asymmetric, we would still know that the synchronization error is smaller than the
 267 * roundtrip latency (t0 - t1).
 268 *
 269 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
 270 * within one or two cycles.  However, we can only *guarantee* that the synchronization is
 271 * accurate to within a round-trip time, which is typically in the range of several
 272 * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
 273 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
 274 * than half a micro second or so.
 275 */
 276void
 277ia64_sync_itc (unsigned int master)
 278{
 279        long i, delta, adj, adjust_latency = 0, done = 0;
 280        unsigned long flags, rt, master_time_stamp, bound;
 281#if DEBUG_ITC_SYNC
 282        struct {
 283                long rt;        /* roundtrip time */
 284                long master;    /* master's timestamp */
 285                long diff;      /* difference between midpoint and master's timestamp */
 286                long lat;       /* estimate of itc adjustment latency */
 287        } t[NUM_ROUNDS];
 288#endif
 289
 290        /*
 291         * Make sure local timer ticks are disabled while we sync.  If
 292         * they were enabled, we'd have to worry about nasty issues
 293         * like setting the ITC ahead of (or a long time before) the
 294         * next scheduled tick.
 295         */
 296        BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
 297
 298        go[MASTER] = 1;
 299
 300        if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
 301                printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
 302                return;
 303        }
 304
 305        while (go[MASTER])
 306                cpu_relax();    /* wait for master to be ready */
 307
 308        spin_lock_irqsave(&itc_sync_lock, flags);
 309        {
 310                for (i = 0; i < NUM_ROUNDS; ++i) {
 311                        delta = get_delta(&rt, &master_time_stamp);
 312                        if (delta == 0) {
 313                                done = 1;       /* let's lock on to this... */
 314                                bound = rt;
 315                        }
 316
 317                        if (!done) {
 318                                if (i > 0) {
 319                                        adjust_latency += -delta;
 320                                        adj = -delta + adjust_latency/4;
 321                                } else
 322                                        adj = -delta;
 323
 324                                ia64_set_itc(ia64_get_itc() + adj);
 325                        }
 326#if DEBUG_ITC_SYNC
 327                        t[i].rt = rt;
 328                        t[i].master = master_time_stamp;
 329                        t[i].diff = delta;
 330                        t[i].lat = adjust_latency/4;
 331#endif
 332                }
 333        }
 334        spin_unlock_irqrestore(&itc_sync_lock, flags);
 335
 336#if DEBUG_ITC_SYNC
 337        for (i = 0; i < NUM_ROUNDS; ++i)
 338                printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 339                       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 340#endif
 341
 342        printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
 343               "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
 344}
 345
 346/*
 347 * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
 348 */
 349static inline void smp_setup_percpu_timer(void)
 350{
 351}
 352
 353static void
 354smp_callin (void)
 355{
 356        int cpuid, phys_id, itc_master;
 357        struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
 358        extern void ia64_init_itm(void);
 359        extern volatile int time_keeper_id;
 360
 361#ifdef CONFIG_PERFMON
 362        extern void pfm_init_percpu(void);
 363#endif
 364
 365        cpuid = smp_processor_id();
 366        phys_id = hard_smp_processor_id();
 367        itc_master = time_keeper_id;
 368
 369        if (cpu_online(cpuid)) {
 370                printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
 371                       phys_id, cpuid);
 372                BUG();
 373        }
 374
 375        fix_b0_for_bsp();
 376
 377        /*
 378         * numa_node_id() works after this.
 379         */
 380        set_numa_node(cpu_to_node_map[cpuid]);
 381        set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
 382
 383        spin_lock(&vector_lock);
 384        /* Setup the per cpu irq handling data structures */
 385        __setup_vector_irq(cpuid);
 386        notify_cpu_starting(cpuid);
 387        set_cpu_online(cpuid, true);
 388        per_cpu(cpu_state, cpuid) = CPU_ONLINE;
 389        spin_unlock(&vector_lock);
 390
 391        smp_setup_percpu_timer();
 392
 393        ia64_mca_cmc_vector_setup();    /* Setup vector on AP */
 394
 395#ifdef CONFIG_PERFMON
 396        pfm_init_percpu();
 397#endif
 398
 399        local_irq_enable();
 400
 401        if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
 402                /*
 403                 * Synchronize the ITC with the BP.  Need to do this after irqs are
 404                 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
 405                 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
 406                 * local_bh_enable(), which bugs out if irqs are not enabled...
 407                 */
 408                Dprintk("Going to syncup ITC with ITC Master.\n");
 409                ia64_sync_itc(itc_master);
 410        }
 411
 412        /*
 413         * Get our bogomips.
 414         */
 415        ia64_init_itm();
 416
 417        /*
 418         * Delay calibration can be skipped if new processor is identical to the
 419         * previous processor.
 420         */
 421        last_cpuinfo = cpu_data(cpuid - 1);
 422        this_cpuinfo = local_cpu_data;
 423        if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
 424            last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
 425            last_cpuinfo->features != this_cpuinfo->features ||
 426            last_cpuinfo->revision != this_cpuinfo->revision ||
 427            last_cpuinfo->family != this_cpuinfo->family ||
 428            last_cpuinfo->archrev != this_cpuinfo->archrev ||
 429            last_cpuinfo->model != this_cpuinfo->model)
 430                calibrate_delay();
 431        local_cpu_data->loops_per_jiffy = loops_per_jiffy;
 432
 433        /*
 434         * Allow the master to continue.
 435         */
 436        cpumask_set_cpu(cpuid, &cpu_callin_map);
 437        Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
 438}
 439
 440
 441/*
 442 * Activate a secondary processor.  head.S calls this.
 443 */
 444int
 445start_secondary (void *unused)
 446{
 447        /* Early console may use I/O ports */
 448        ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
 449#ifndef CONFIG_PRINTK_TIME
 450        Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
 451#endif
 452        efi_map_pal_code();
 453        cpu_init();
 454        preempt_disable();
 455        smp_callin();
 456
 457        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 458        return 0;
 459}
 460
 461static int
 462do_boot_cpu (int sapicid, int cpu, struct task_struct *idle)
 463{
 464        int timeout;
 465
 466        task_for_booting_cpu = idle;
 467        Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
 468
 469        set_brendez_area(cpu);
 470        platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
 471
 472        /*
 473         * Wait 10s total for the AP to start
 474         */
 475        Dprintk("Waiting on callin_map ...");
 476        for (timeout = 0; timeout < 100000; timeout++) {
 477                if (cpumask_test_cpu(cpu, &cpu_callin_map))
 478                        break;  /* It has booted */
 479                barrier(); /* Make sure we re-read cpu_callin_map */
 480                udelay(100);
 481        }
 482        Dprintk("\n");
 483
 484        if (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
 485                printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
 486                ia64_cpu_to_sapicid[cpu] = -1;
 487                set_cpu_online(cpu, false);  /* was set in smp_callin() */
 488                return -EINVAL;
 489        }
 490        return 0;
 491}
 492
 493static int __init
 494decay (char *str)
 495{
 496        int ticks;
 497        get_option (&str, &ticks);
 498        return 1;
 499}
 500
 501__setup("decay=", decay);
 502
 503/*
 504 * Initialize the logical CPU number to SAPICID mapping
 505 */
 506void __init
 507smp_build_cpu_map (void)
 508{
 509        int sapicid, cpu, i;
 510        int boot_cpu_id = hard_smp_processor_id();
 511
 512        for (cpu = 0; cpu < NR_CPUS; cpu++) {
 513                ia64_cpu_to_sapicid[cpu] = -1;
 514        }
 515
 516        ia64_cpu_to_sapicid[0] = boot_cpu_id;
 517        init_cpu_present(cpumask_of(0));
 518        set_cpu_possible(0, true);
 519        for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
 520                sapicid = smp_boot_data.cpu_phys_id[i];
 521                if (sapicid == boot_cpu_id)
 522                        continue;
 523                set_cpu_present(cpu, true);
 524                set_cpu_possible(cpu, true);
 525                ia64_cpu_to_sapicid[cpu] = sapicid;
 526                cpu++;
 527        }
 528}
 529
 530/*
 531 * Cycle through the APs sending Wakeup IPIs to boot each.
 532 */
 533void __init
 534smp_prepare_cpus (unsigned int max_cpus)
 535{
 536        int boot_cpu_id = hard_smp_processor_id();
 537
 538        /*
 539         * Initialize the per-CPU profiling counter/multiplier
 540         */
 541
 542        smp_setup_percpu_timer();
 543
 544        cpumask_set_cpu(0, &cpu_callin_map);
 545
 546        local_cpu_data->loops_per_jiffy = loops_per_jiffy;
 547        ia64_cpu_to_sapicid[0] = boot_cpu_id;
 548
 549        printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
 550
 551        current_thread_info()->cpu = 0;
 552
 553        /*
 554         * If SMP should be disabled, then really disable it!
 555         */
 556        if (!max_cpus) {
 557                printk(KERN_INFO "SMP mode deactivated.\n");
 558                init_cpu_online(cpumask_of(0));
 559                init_cpu_present(cpumask_of(0));
 560                init_cpu_possible(cpumask_of(0));
 561                return;
 562        }
 563}
 564
 565void smp_prepare_boot_cpu(void)
 566{
 567        set_cpu_online(smp_processor_id(), true);
 568        cpumask_set_cpu(smp_processor_id(), &cpu_callin_map);
 569        set_numa_node(cpu_to_node_map[smp_processor_id()]);
 570        per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
 571}
 572
 573#ifdef CONFIG_HOTPLUG_CPU
 574static inline void
 575clear_cpu_sibling_map(int cpu)
 576{
 577        int i;
 578
 579        for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
 580                cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
 581        for_each_cpu(i, &cpu_core_map[cpu])
 582                cpumask_clear_cpu(cpu, &cpu_core_map[i]);
 583
 584        per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
 585}
 586
 587static void
 588remove_siblinginfo(int cpu)
 589{
 590        int last = 0;
 591
 592        if (cpu_data(cpu)->threads_per_core == 1 &&
 593            cpu_data(cpu)->cores_per_socket == 1) {
 594                cpumask_clear_cpu(cpu, &cpu_core_map[cpu]);
 595                cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
 596                return;
 597        }
 598
 599        last = (cpumask_weight(&cpu_core_map[cpu]) == 1 ? 1 : 0);
 600
 601        /* remove it from all sibling map's */
 602        clear_cpu_sibling_map(cpu);
 603}
 604
 605extern void fixup_irqs(void);
 606
 607int migrate_platform_irqs(unsigned int cpu)
 608{
 609        int new_cpei_cpu;
 610        struct irq_data *data = NULL;
 611        const struct cpumask *mask;
 612        int             retval = 0;
 613
 614        /*
 615         * dont permit CPEI target to removed.
 616         */
 617        if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
 618                printk ("CPU (%d) is CPEI Target\n", cpu);
 619                if (can_cpei_retarget()) {
 620                        /*
 621                         * Now re-target the CPEI to a different processor
 622                         */
 623                        new_cpei_cpu = cpumask_any(cpu_online_mask);
 624                        mask = cpumask_of(new_cpei_cpu);
 625                        set_cpei_target_cpu(new_cpei_cpu);
 626                        data = irq_get_irq_data(ia64_cpe_irq);
 627                        /*
 628                         * Switch for now, immediately, we need to do fake intr
 629                         * as other interrupts, but need to study CPEI behaviour with
 630                         * polling before making changes.
 631                         */
 632                        if (data && data->chip) {
 633                                data->chip->irq_disable(data);
 634                                data->chip->irq_set_affinity(data, mask, false);
 635                                data->chip->irq_enable(data);
 636                                printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
 637                        }
 638                }
 639                if (!data) {
 640                        printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
 641                        retval = -EBUSY;
 642                }
 643        }
 644        return retval;
 645}
 646
 647/* must be called with cpucontrol mutex held */
 648int __cpu_disable(void)
 649{
 650        int cpu = smp_processor_id();
 651
 652        /*
 653         * dont permit boot processor for now
 654         */
 655        if (cpu == 0 && !bsp_remove_ok) {
 656                printk ("Your platform does not support removal of BSP\n");
 657                return (-EBUSY);
 658        }
 659
 660        if (ia64_platform_is("sn2")) {
 661                if (!sn_cpu_disable_allowed(cpu))
 662                        return -EBUSY;
 663        }
 664
 665        set_cpu_online(cpu, false);
 666
 667        if (migrate_platform_irqs(cpu)) {
 668                set_cpu_online(cpu, true);
 669                return -EBUSY;
 670        }
 671
 672        remove_siblinginfo(cpu);
 673        fixup_irqs();
 674        local_flush_tlb_all();
 675        cpumask_clear_cpu(cpu, &cpu_callin_map);
 676        return 0;
 677}
 678
 679void __cpu_die(unsigned int cpu)
 680{
 681        unsigned int i;
 682
 683        for (i = 0; i < 100; i++) {
 684                /* They ack this in play_dead by setting CPU_DEAD */
 685                if (per_cpu(cpu_state, cpu) == CPU_DEAD)
 686                {
 687                        printk ("CPU %d is now offline\n", cpu);
 688                        return;
 689                }
 690                msleep(100);
 691        }
 692        printk(KERN_ERR "CPU %u didn't die...\n", cpu);
 693}
 694#endif /* CONFIG_HOTPLUG_CPU */
 695
 696void
 697smp_cpus_done (unsigned int dummy)
 698{
 699        int cpu;
 700        unsigned long bogosum = 0;
 701
 702        /*
 703         * Allow the user to impress friends.
 704         */
 705
 706        for_each_online_cpu(cpu) {
 707                bogosum += cpu_data(cpu)->loops_per_jiffy;
 708        }
 709
 710        printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
 711               (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
 712}
 713
 714static inline void set_cpu_sibling_map(int cpu)
 715{
 716        int i;
 717
 718        for_each_online_cpu(i) {
 719                if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
 720                        cpumask_set_cpu(i, &cpu_core_map[cpu]);
 721                        cpumask_set_cpu(cpu, &cpu_core_map[i]);
 722                        if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
 723                                cpumask_set_cpu(i,
 724                                                &per_cpu(cpu_sibling_map, cpu));
 725                                cpumask_set_cpu(cpu,
 726                                                &per_cpu(cpu_sibling_map, i));
 727                        }
 728                }
 729        }
 730}
 731
 732int
 733__cpu_up(unsigned int cpu, struct task_struct *tidle)
 734{
 735        int ret;
 736        int sapicid;
 737
 738        sapicid = ia64_cpu_to_sapicid[cpu];
 739        if (sapicid == -1)
 740                return -EINVAL;
 741
 742        /*
 743         * Already booted cpu? not valid anymore since we dont
 744         * do idle loop tightspin anymore.
 745         */
 746        if (cpumask_test_cpu(cpu, &cpu_callin_map))
 747                return -EINVAL;
 748
 749        per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
 750        /* Processor goes to start_secondary(), sets online flag */
 751        ret = do_boot_cpu(sapicid, cpu, tidle);
 752        if (ret < 0)
 753                return ret;
 754
 755        if (cpu_data(cpu)->threads_per_core == 1 &&
 756            cpu_data(cpu)->cores_per_socket == 1) {
 757                cpumask_set_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
 758                cpumask_set_cpu(cpu, &cpu_core_map[cpu]);
 759                return 0;
 760        }
 761
 762        set_cpu_sibling_map(cpu);
 763
 764        return 0;
 765}
 766
 767/*
 768 * Assume that CPUs have been discovered by some platform-dependent interface.  For
 769 * SoftSDV/Lion, that would be ACPI.
 770 *
 771 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
 772 */
 773void __init
 774init_smp_config(void)
 775{
 776        struct fptr {
 777                unsigned long fp;
 778                unsigned long gp;
 779        } *ap_startup;
 780        long sal_ret;
 781
 782        /* Tell SAL where to drop the APs.  */
 783        ap_startup = (struct fptr *) start_ap;
 784        sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
 785                                       ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
 786        if (sal_ret < 0)
 787                printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
 788                       ia64_sal_strerror(sal_ret));
 789}
 790
 791/*
 792 * identify_siblings(cpu) gets called from identify_cpu. This populates the 
 793 * information related to logical execution units in per_cpu_data structure.
 794 */
 795void identify_siblings(struct cpuinfo_ia64 *c)
 796{
 797        long status;
 798        u16 pltid;
 799        pal_logical_to_physical_t info;
 800
 801        status = ia64_pal_logical_to_phys(-1, &info);
 802        if (status != PAL_STATUS_SUCCESS) {
 803                if (status != PAL_STATUS_UNIMPLEMENTED) {
 804                        printk(KERN_ERR
 805                                "ia64_pal_logical_to_phys failed with %ld\n",
 806                                status);
 807                        return;
 808                }
 809
 810                info.overview_ppid = 0;
 811                info.overview_cpp  = 1;
 812                info.overview_tpc  = 1;
 813        }
 814
 815        status = ia64_sal_physical_id_info(&pltid);
 816        if (status != PAL_STATUS_SUCCESS) {
 817                if (status != PAL_STATUS_UNIMPLEMENTED)
 818                        printk(KERN_ERR
 819                                "ia64_sal_pltid failed with %ld\n",
 820                                status);
 821                return;
 822        }
 823
 824        c->socket_id =  (pltid << 8) | info.overview_ppid;
 825
 826        if (info.overview_cpp == 1 && info.overview_tpc == 1)
 827                return;
 828
 829        c->cores_per_socket = info.overview_cpp;
 830        c->threads_per_core = info.overview_tpc;
 831        c->num_log = info.overview_num_log;
 832
 833        c->core_id = info.log1_cid;
 834        c->thread_id = info.log1_tid;
 835}
 836
 837/*
 838 * returns non zero, if multi-threading is enabled
 839 * on at least one physical package. Due to hotplug cpu
 840 * and (maxcpus=), all threads may not necessarily be enabled
 841 * even though the processor supports multi-threading.
 842 */
 843int is_multithreading_enabled(void)
 844{
 845        int i, j;
 846
 847        for_each_present_cpu(i) {
 848                for_each_present_cpu(j) {
 849                        if (j == i)
 850                                continue;
 851                        if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
 852                                if (cpu_data(j)->core_id == cpu_data(i)->core_id)
 853                                        return 1;
 854                        }
 855                }
 856        }
 857        return 0;
 858}
 859EXPORT_SYMBOL_GPL(is_multithreading_enabled);
 860