linux/arch/mips/kernel/setup.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1995 Linus Torvalds
   7 * Copyright (C) 1995 Waldorf Electronics
   8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
   9 * Copyright (C) 1996 Stoned Elipot
  10 * Copyright (C) 1999 Silicon Graphics, Inc.
  11 * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
  12 */
  13#include <linux/init.h>
  14#include <linux/ioport.h>
  15#include <linux/export.h>
  16#include <linux/screen_info.h>
  17#include <linux/memblock.h>
  18#include <linux/bootmem.h>
  19#include <linux/initrd.h>
  20#include <linux/root_dev.h>
  21#include <linux/highmem.h>
  22#include <linux/console.h>
  23#include <linux/pfn.h>
  24#include <linux/debugfs.h>
  25#include <linux/kexec.h>
  26#include <linux/sizes.h>
  27#include <linux/device.h>
  28#include <linux/dma-contiguous.h>
  29#include <linux/decompress/generic.h>
  30#include <linux/of_fdt.h>
  31
  32#include <asm/addrspace.h>
  33#include <asm/bootinfo.h>
  34#include <asm/bugs.h>
  35#include <asm/cache.h>
  36#include <asm/cdmm.h>
  37#include <asm/cpu.h>
  38#include <asm/debug.h>
  39#include <asm/sections.h>
  40#include <asm/setup.h>
  41#include <asm/smp-ops.h>
  42#include <asm/prom.h>
  43
  44#ifdef CONFIG_MIPS_ELF_APPENDED_DTB
  45const char __section(.appended_dtb) __appended_dtb[0x100000];
  46#endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
  47
  48struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
  49
  50EXPORT_SYMBOL(cpu_data);
  51
  52#ifdef CONFIG_VT
  53struct screen_info screen_info;
  54#endif
  55
  56/*
  57 * Setup information
  58 *
  59 * These are initialized so they are in the .data section
  60 */
  61unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
  62
  63EXPORT_SYMBOL(mips_machtype);
  64
  65struct boot_mem_map boot_mem_map;
  66
  67static char __initdata command_line[COMMAND_LINE_SIZE];
  68char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
  69
  70#ifdef CONFIG_CMDLINE_BOOL
  71static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
  72#endif
  73
  74/*
  75 * mips_io_port_base is the begin of the address space to which x86 style
  76 * I/O ports are mapped.
  77 */
  78const unsigned long mips_io_port_base = -1;
  79EXPORT_SYMBOL(mips_io_port_base);
  80
  81static struct resource code_resource = { .name = "Kernel code", };
  82static struct resource data_resource = { .name = "Kernel data", };
  83
  84static void *detect_magic __initdata = detect_memory_region;
  85
  86void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
  87{
  88        int x = boot_mem_map.nr_map;
  89        int i;
  90
  91        /*
  92         * If the region reaches the top of the physical address space, adjust
  93         * the size slightly so that (start + size) doesn't overflow
  94         */
  95        if (start + size - 1 == (phys_addr_t)ULLONG_MAX)
  96                --size;
  97
  98        /* Sanity check */
  99        if (start + size < start) {
 100                pr_warn("Trying to add an invalid memory region, skipped\n");
 101                return;
 102        }
 103
 104        /*
 105         * Try to merge with existing entry, if any.
 106         */
 107        for (i = 0; i < boot_mem_map.nr_map; i++) {
 108                struct boot_mem_map_entry *entry = boot_mem_map.map + i;
 109                unsigned long top;
 110
 111                if (entry->type != type)
 112                        continue;
 113
 114                if (start + size < entry->addr)
 115                        continue;                       /* no overlap */
 116
 117                if (entry->addr + entry->size < start)
 118                        continue;                       /* no overlap */
 119
 120                top = max(entry->addr + entry->size, start + size);
 121                entry->addr = min(entry->addr, start);
 122                entry->size = top - entry->addr;
 123
 124                return;
 125        }
 126
 127        if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
 128                pr_err("Ooops! Too many entries in the memory map!\n");
 129                return;
 130        }
 131
 132        boot_mem_map.map[x].addr = start;
 133        boot_mem_map.map[x].size = size;
 134        boot_mem_map.map[x].type = type;
 135        boot_mem_map.nr_map++;
 136}
 137
 138void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
 139{
 140        void *dm = &detect_magic;
 141        phys_addr_t size;
 142
 143        for (size = sz_min; size < sz_max; size <<= 1) {
 144                if (!memcmp(dm, dm + size, sizeof(detect_magic)))
 145                        break;
 146        }
 147
 148        pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
 149                ((unsigned long long) size) / SZ_1M,
 150                (unsigned long long) start,
 151                ((unsigned long long) sz_min) / SZ_1M,
 152                ((unsigned long long) sz_max) / SZ_1M);
 153
 154        add_memory_region(start, size, BOOT_MEM_RAM);
 155}
 156
 157bool __init memory_region_available(phys_addr_t start, phys_addr_t size)
 158{
 159        int i;
 160        bool in_ram = false, free = true;
 161
 162        for (i = 0; i < boot_mem_map.nr_map; i++) {
 163                phys_addr_t start_, end_;
 164
 165                start_ = boot_mem_map.map[i].addr;
 166                end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size;
 167
 168                switch (boot_mem_map.map[i].type) {
 169                case BOOT_MEM_RAM:
 170                        if (start >= start_ && start + size <= end_)
 171                                in_ram = true;
 172                        break;
 173                case BOOT_MEM_RESERVED:
 174                        if ((start >= start_ && start < end_) ||
 175                            (start < start_ && start + size >= start_))
 176                                free = false;
 177                        break;
 178                default:
 179                        continue;
 180                }
 181        }
 182
 183        return in_ram && free;
 184}
 185
 186static void __init print_memory_map(void)
 187{
 188        int i;
 189        const int field = 2 * sizeof(unsigned long);
 190
 191        for (i = 0; i < boot_mem_map.nr_map; i++) {
 192                printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
 193                       field, (unsigned long long) boot_mem_map.map[i].size,
 194                       field, (unsigned long long) boot_mem_map.map[i].addr);
 195
 196                switch (boot_mem_map.map[i].type) {
 197                case BOOT_MEM_RAM:
 198                        printk(KERN_CONT "(usable)\n");
 199                        break;
 200                case BOOT_MEM_INIT_RAM:
 201                        printk(KERN_CONT "(usable after init)\n");
 202                        break;
 203                case BOOT_MEM_ROM_DATA:
 204                        printk(KERN_CONT "(ROM data)\n");
 205                        break;
 206                case BOOT_MEM_RESERVED:
 207                        printk(KERN_CONT "(reserved)\n");
 208                        break;
 209                default:
 210                        printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
 211                        break;
 212                }
 213        }
 214}
 215
 216/*
 217 * Manage initrd
 218 */
 219#ifdef CONFIG_BLK_DEV_INITRD
 220
 221static int __init rd_start_early(char *p)
 222{
 223        unsigned long start = memparse(p, &p);
 224
 225#ifdef CONFIG_64BIT
 226        /* Guess if the sign extension was forgotten by bootloader */
 227        if (start < XKPHYS)
 228                start = (int)start;
 229#endif
 230        initrd_start = start;
 231        initrd_end += start;
 232        return 0;
 233}
 234early_param("rd_start", rd_start_early);
 235
 236static int __init rd_size_early(char *p)
 237{
 238        initrd_end += memparse(p, &p);
 239        return 0;
 240}
 241early_param("rd_size", rd_size_early);
 242
 243/* it returns the next free pfn after initrd */
 244static unsigned long __init init_initrd(void)
 245{
 246        unsigned long end;
 247
 248        /*
 249         * Board specific code or command line parser should have
 250         * already set up initrd_start and initrd_end. In these cases
 251         * perfom sanity checks and use them if all looks good.
 252         */
 253        if (!initrd_start || initrd_end <= initrd_start)
 254                goto disable;
 255
 256        if (initrd_start & ~PAGE_MASK) {
 257                pr_err("initrd start must be page aligned\n");
 258                goto disable;
 259        }
 260        if (initrd_start < PAGE_OFFSET) {
 261                pr_err("initrd start < PAGE_OFFSET\n");
 262                goto disable;
 263        }
 264
 265        /*
 266         * Sanitize initrd addresses. For example firmware
 267         * can't guess if they need to pass them through
 268         * 64-bits values if the kernel has been built in pure
 269         * 32-bit. We need also to switch from KSEG0 to XKPHYS
 270         * addresses now, so the code can now safely use __pa().
 271         */
 272        end = __pa(initrd_end);
 273        initrd_end = (unsigned long)__va(end);
 274        initrd_start = (unsigned long)__va(__pa(initrd_start));
 275
 276        ROOT_DEV = Root_RAM0;
 277        return PFN_UP(end);
 278disable:
 279        initrd_start = 0;
 280        initrd_end = 0;
 281        return 0;
 282}
 283
 284/* In some conditions (e.g. big endian bootloader with a little endian
 285   kernel), the initrd might appear byte swapped.  Try to detect this and
 286   byte swap it if needed.  */
 287static void __init maybe_bswap_initrd(void)
 288{
 289#if defined(CONFIG_CPU_CAVIUM_OCTEON)
 290        u64 buf;
 291
 292        /* Check for CPIO signature */
 293        if (!memcmp((void *)initrd_start, "070701", 6))
 294                return;
 295
 296        /* Check for compressed initrd */
 297        if (decompress_method((unsigned char *)initrd_start, 8, NULL))
 298                return;
 299
 300        /* Try again with a byte swapped header */
 301        buf = swab64p((u64 *)initrd_start);
 302        if (!memcmp(&buf, "070701", 6) ||
 303            decompress_method((unsigned char *)(&buf), 8, NULL)) {
 304                unsigned long i;
 305
 306                pr_info("Byteswapped initrd detected\n");
 307                for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
 308                        swab64s((u64 *)i);
 309        }
 310#endif
 311}
 312
 313static void __init finalize_initrd(void)
 314{
 315        unsigned long size = initrd_end - initrd_start;
 316
 317        if (size == 0) {
 318                printk(KERN_INFO "Initrd not found or empty");
 319                goto disable;
 320        }
 321        if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
 322                printk(KERN_ERR "Initrd extends beyond end of memory");
 323                goto disable;
 324        }
 325
 326        maybe_bswap_initrd();
 327
 328        reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
 329        initrd_below_start_ok = 1;
 330
 331        pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
 332                initrd_start, size);
 333        return;
 334disable:
 335        printk(KERN_CONT " - disabling initrd\n");
 336        initrd_start = 0;
 337        initrd_end = 0;
 338}
 339
 340#else  /* !CONFIG_BLK_DEV_INITRD */
 341
 342static unsigned long __init init_initrd(void)
 343{
 344        return 0;
 345}
 346
 347#define finalize_initrd()       do {} while (0)
 348
 349#endif
 350
 351/*
 352 * Initialize the bootmem allocator. It also setup initrd related data
 353 * if needed.
 354 */
 355#if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
 356
 357static void __init bootmem_init(void)
 358{
 359        init_initrd();
 360        finalize_initrd();
 361}
 362
 363#else  /* !CONFIG_SGI_IP27 */
 364
 365static unsigned long __init bootmap_bytes(unsigned long pages)
 366{
 367        unsigned long bytes = DIV_ROUND_UP(pages, 8);
 368
 369        return ALIGN(bytes, sizeof(long));
 370}
 371
 372static void __init bootmem_init(void)
 373{
 374        unsigned long reserved_end;
 375        unsigned long mapstart = ~0UL;
 376        unsigned long bootmap_size;
 377        bool bootmap_valid = false;
 378        int i;
 379
 380        /*
 381         * Sanity check any INITRD first. We don't take it into account
 382         * for bootmem setup initially, rely on the end-of-kernel-code
 383         * as our memory range starting point. Once bootmem is inited we
 384         * will reserve the area used for the initrd.
 385         */
 386        init_initrd();
 387        reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
 388
 389        /*
 390         * max_low_pfn is not a number of pages. The number of pages
 391         * of the system is given by 'max_low_pfn - min_low_pfn'.
 392         */
 393        min_low_pfn = ~0UL;
 394        max_low_pfn = 0;
 395
 396        /*
 397         * Find the highest page frame number we have available.
 398         */
 399        for (i = 0; i < boot_mem_map.nr_map; i++) {
 400                unsigned long start, end;
 401
 402                if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
 403                        continue;
 404
 405                start = PFN_UP(boot_mem_map.map[i].addr);
 406                end = PFN_DOWN(boot_mem_map.map[i].addr
 407                                + boot_mem_map.map[i].size);
 408
 409#ifndef CONFIG_HIGHMEM
 410                /*
 411                 * Skip highmem here so we get an accurate max_low_pfn if low
 412                 * memory stops short of high memory.
 413                 * If the region overlaps HIGHMEM_START, end is clipped so
 414                 * max_pfn excludes the highmem portion.
 415                 */
 416                if (start >= PFN_DOWN(HIGHMEM_START))
 417                        continue;
 418                if (end > PFN_DOWN(HIGHMEM_START))
 419                        end = PFN_DOWN(HIGHMEM_START);
 420#endif
 421
 422                if (end > max_low_pfn)
 423                        max_low_pfn = end;
 424                if (start < min_low_pfn)
 425                        min_low_pfn = start;
 426                if (end <= reserved_end)
 427                        continue;
 428#ifdef CONFIG_BLK_DEV_INITRD
 429                /* Skip zones before initrd and initrd itself */
 430                if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
 431                        continue;
 432#endif
 433                if (start >= mapstart)
 434                        continue;
 435                mapstart = max(reserved_end, start);
 436        }
 437
 438        if (min_low_pfn >= max_low_pfn)
 439                panic("Incorrect memory mapping !!!");
 440        if (min_low_pfn > ARCH_PFN_OFFSET) {
 441                pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
 442                        (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
 443                        min_low_pfn - ARCH_PFN_OFFSET);
 444        } else if (min_low_pfn < ARCH_PFN_OFFSET) {
 445                pr_info("%lu free pages won't be used\n",
 446                        ARCH_PFN_OFFSET - min_low_pfn);
 447        }
 448        min_low_pfn = ARCH_PFN_OFFSET;
 449
 450        /*
 451         * Determine low and high memory ranges
 452         */
 453        max_pfn = max_low_pfn;
 454        if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
 455#ifdef CONFIG_HIGHMEM
 456                highstart_pfn = PFN_DOWN(HIGHMEM_START);
 457                highend_pfn = max_low_pfn;
 458#endif
 459                max_low_pfn = PFN_DOWN(HIGHMEM_START);
 460        }
 461
 462#ifdef CONFIG_BLK_DEV_INITRD
 463        /*
 464         * mapstart should be after initrd_end
 465         */
 466        if (initrd_end)
 467                mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
 468#endif
 469
 470        /*
 471         * check that mapstart doesn't overlap with any of
 472         * memory regions that have been reserved through eg. DTB
 473         */
 474        bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn);
 475
 476        bootmap_valid = memory_region_available(PFN_PHYS(mapstart),
 477                                                bootmap_size);
 478        for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) {
 479                unsigned long mapstart_addr;
 480
 481                switch (boot_mem_map.map[i].type) {
 482                case BOOT_MEM_RESERVED:
 483                        mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr +
 484                                                boot_mem_map.map[i].size);
 485                        if (PHYS_PFN(mapstart_addr) < mapstart)
 486                                break;
 487
 488                        bootmap_valid = memory_region_available(mapstart_addr,
 489                                                                bootmap_size);
 490                        if (bootmap_valid)
 491                                mapstart = PHYS_PFN(mapstart_addr);
 492                        break;
 493                default:
 494                        break;
 495                }
 496        }
 497
 498        if (!bootmap_valid)
 499                panic("No memory area to place a bootmap bitmap");
 500
 501        /*
 502         * Initialize the boot-time allocator with low memory only.
 503         */
 504        if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart,
 505                                         min_low_pfn, max_low_pfn))
 506                panic("Unexpected memory size required for bootmap");
 507
 508        for (i = 0; i < boot_mem_map.nr_map; i++) {
 509                unsigned long start, end;
 510
 511                start = PFN_UP(boot_mem_map.map[i].addr);
 512                end = PFN_DOWN(boot_mem_map.map[i].addr
 513                                + boot_mem_map.map[i].size);
 514
 515                if (start <= min_low_pfn)
 516                        start = min_low_pfn;
 517                if (start >= end)
 518                        continue;
 519
 520#ifndef CONFIG_HIGHMEM
 521                if (end > max_low_pfn)
 522                        end = max_low_pfn;
 523
 524                /*
 525                 * ... finally, is the area going away?
 526                 */
 527                if (end <= start)
 528                        continue;
 529#endif
 530
 531                memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
 532        }
 533
 534        /*
 535         * Register fully available low RAM pages with the bootmem allocator.
 536         */
 537        for (i = 0; i < boot_mem_map.nr_map; i++) {
 538                unsigned long start, end, size;
 539
 540                start = PFN_UP(boot_mem_map.map[i].addr);
 541                end   = PFN_DOWN(boot_mem_map.map[i].addr
 542                                    + boot_mem_map.map[i].size);
 543
 544                /*
 545                 * Reserve usable memory.
 546                 */
 547                switch (boot_mem_map.map[i].type) {
 548                case BOOT_MEM_RAM:
 549                        break;
 550                case BOOT_MEM_INIT_RAM:
 551                        memory_present(0, start, end);
 552                        continue;
 553                default:
 554                        /* Not usable memory */
 555                        if (start > min_low_pfn && end < max_low_pfn)
 556                                reserve_bootmem(boot_mem_map.map[i].addr,
 557                                                boot_mem_map.map[i].size,
 558                                                BOOTMEM_DEFAULT);
 559                        continue;
 560                }
 561
 562                /*
 563                 * We are rounding up the start address of usable memory
 564                 * and at the end of the usable range downwards.
 565                 */
 566                if (start >= max_low_pfn)
 567                        continue;
 568                if (start < reserved_end)
 569                        start = reserved_end;
 570                if (end > max_low_pfn)
 571                        end = max_low_pfn;
 572
 573                /*
 574                 * ... finally, is the area going away?
 575                 */
 576                if (end <= start)
 577                        continue;
 578                size = end - start;
 579
 580                /* Register lowmem ranges */
 581                free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
 582                memory_present(0, start, end);
 583        }
 584
 585        /*
 586         * Reserve the bootmap memory.
 587         */
 588        reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
 589
 590#ifdef CONFIG_RELOCATABLE
 591        /*
 592         * The kernel reserves all memory below its _end symbol as bootmem,
 593         * but the kernel may now be at a much higher address. The memory
 594         * between the original and new locations may be returned to the system.
 595         */
 596        if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
 597                unsigned long offset;
 598                extern void show_kernel_relocation(const char *level);
 599
 600                offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
 601                free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
 602
 603#if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
 604                /*
 605                 * This information is necessary when debugging the kernel
 606                 * But is a security vulnerability otherwise!
 607                 */
 608                show_kernel_relocation(KERN_INFO);
 609#endif
 610        }
 611#endif
 612
 613        /*
 614         * Reserve initrd memory if needed.
 615         */
 616        finalize_initrd();
 617}
 618
 619#endif  /* CONFIG_SGI_IP27 */
 620
 621/*
 622 * arch_mem_init - initialize memory management subsystem
 623 *
 624 *  o plat_mem_setup() detects the memory configuration and will record detected
 625 *    memory areas using add_memory_region.
 626 *
 627 * At this stage the memory configuration of the system is known to the
 628 * kernel but generic memory management system is still entirely uninitialized.
 629 *
 630 *  o bootmem_init()
 631 *  o sparse_init()
 632 *  o paging_init()
 633 *  o dma_contiguous_reserve()
 634 *
 635 * At this stage the bootmem allocator is ready to use.
 636 *
 637 * NOTE: historically plat_mem_setup did the entire platform initialization.
 638 *       This was rather impractical because it meant plat_mem_setup had to
 639 * get away without any kind of memory allocator.  To keep old code from
 640 * breaking plat_setup was just renamed to plat_mem_setup and a second platform
 641 * initialization hook for anything else was introduced.
 642 */
 643
 644static int usermem __initdata;
 645
 646static int __init early_parse_mem(char *p)
 647{
 648        phys_addr_t start, size;
 649
 650        /*
 651         * If a user specifies memory size, we
 652         * blow away any automatically generated
 653         * size.
 654         */
 655        if (usermem == 0) {
 656                boot_mem_map.nr_map = 0;
 657                usermem = 1;
 658        }
 659        start = 0;
 660        size = memparse(p, &p);
 661        if (*p == '@')
 662                start = memparse(p + 1, &p);
 663
 664        add_memory_region(start, size, BOOT_MEM_RAM);
 665
 666        if (start && start > PHYS_OFFSET)
 667                add_memory_region(PHYS_OFFSET, start - PHYS_OFFSET,
 668                                BOOT_MEM_RESERVED);
 669        return 0;
 670}
 671early_param("mem", early_parse_mem);
 672
 673#ifdef CONFIG_PROC_VMCORE
 674unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
 675static int __init early_parse_elfcorehdr(char *p)
 676{
 677        int i;
 678
 679        setup_elfcorehdr = memparse(p, &p);
 680
 681        for (i = 0; i < boot_mem_map.nr_map; i++) {
 682                unsigned long start = boot_mem_map.map[i].addr;
 683                unsigned long end = (boot_mem_map.map[i].addr +
 684                                     boot_mem_map.map[i].size);
 685                if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
 686                        /*
 687                         * Reserve from the elf core header to the end of
 688                         * the memory segment, that should all be kdump
 689                         * reserved memory.
 690                         */
 691                        setup_elfcorehdr_size = end - setup_elfcorehdr;
 692                        break;
 693                }
 694        }
 695        /*
 696         * If we don't find it in the memory map, then we shouldn't
 697         * have to worry about it, as the new kernel won't use it.
 698         */
 699        return 0;
 700}
 701early_param("elfcorehdr", early_parse_elfcorehdr);
 702#endif
 703
 704static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
 705{
 706        phys_addr_t size;
 707        int i;
 708
 709        size = end - mem;
 710        if (!size)
 711                return;
 712
 713        /* Make sure it is in the boot_mem_map */
 714        for (i = 0; i < boot_mem_map.nr_map; i++) {
 715                if (mem >= boot_mem_map.map[i].addr &&
 716                    mem < (boot_mem_map.map[i].addr +
 717                           boot_mem_map.map[i].size))
 718                        return;
 719        }
 720        add_memory_region(mem, size, type);
 721}
 722
 723#ifdef CONFIG_KEXEC
 724static inline unsigned long long get_total_mem(void)
 725{
 726        unsigned long long total;
 727
 728        total = max_pfn - min_low_pfn;
 729        return total << PAGE_SHIFT;
 730}
 731
 732static void __init mips_parse_crashkernel(void)
 733{
 734        unsigned long long total_mem;
 735        unsigned long long crash_size, crash_base;
 736        int ret;
 737
 738        total_mem = get_total_mem();
 739        ret = parse_crashkernel(boot_command_line, total_mem,
 740                                &crash_size, &crash_base);
 741        if (ret != 0 || crash_size <= 0)
 742                return;
 743
 744        if (!memory_region_available(crash_base, crash_size)) {
 745                pr_warn("Invalid memory region reserved for crash kernel\n");
 746                return;
 747        }
 748
 749        crashk_res.start = crash_base;
 750        crashk_res.end   = crash_base + crash_size - 1;
 751}
 752
 753static void __init request_crashkernel(struct resource *res)
 754{
 755        int ret;
 756
 757        if (crashk_res.start == crashk_res.end)
 758                return;
 759
 760        ret = request_resource(res, &crashk_res);
 761        if (!ret)
 762                pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
 763                        (unsigned long)((crashk_res.end -
 764                                         crashk_res.start + 1) >> 20),
 765                        (unsigned long)(crashk_res.start  >> 20));
 766}
 767#else /* !defined(CONFIG_KEXEC)         */
 768static void __init mips_parse_crashkernel(void)
 769{
 770}
 771
 772static void __init request_crashkernel(struct resource *res)
 773{
 774}
 775#endif /* !defined(CONFIG_KEXEC)  */
 776
 777#define USE_PROM_CMDLINE        IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
 778#define USE_DTB_CMDLINE         IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
 779#define EXTEND_WITH_PROM        IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
 780#define BUILTIN_EXTEND_WITH_PROM        \
 781        IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
 782
 783static void __init arch_mem_init(char **cmdline_p)
 784{
 785        struct memblock_region *reg;
 786        extern void plat_mem_setup(void);
 787
 788        /* call board setup routine */
 789        plat_mem_setup();
 790
 791        /*
 792         * Make sure all kernel memory is in the maps.  The "UP" and
 793         * "DOWN" are opposite for initdata since if it crosses over
 794         * into another memory section you don't want that to be
 795         * freed when the initdata is freed.
 796         */
 797        arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
 798                         PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
 799                         BOOT_MEM_RAM);
 800        arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
 801                         PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
 802                         BOOT_MEM_INIT_RAM);
 803
 804        pr_info("Determined physical RAM map:\n");
 805        print_memory_map();
 806
 807#if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
 808        strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 809#else
 810        if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
 811            (USE_DTB_CMDLINE && !boot_command_line[0]))
 812                strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
 813
 814        if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
 815                if (boot_command_line[0])
 816                        strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
 817                strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
 818        }
 819
 820#if defined(CONFIG_CMDLINE_BOOL)
 821        if (builtin_cmdline[0]) {
 822                if (boot_command_line[0])
 823                        strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
 824                strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 825        }
 826
 827        if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
 828                if (boot_command_line[0])
 829                        strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
 830                strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
 831        }
 832#endif
 833#endif
 834        strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 835
 836        *cmdline_p = command_line;
 837
 838        parse_early_param();
 839
 840        if (usermem) {
 841                pr_info("User-defined physical RAM map:\n");
 842                print_memory_map();
 843        }
 844
 845        early_init_fdt_reserve_self();
 846        early_init_fdt_scan_reserved_mem();
 847
 848        bootmem_init();
 849#ifdef CONFIG_PROC_VMCORE
 850        if (setup_elfcorehdr && setup_elfcorehdr_size) {
 851                printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
 852                       setup_elfcorehdr, setup_elfcorehdr_size);
 853                reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
 854                                BOOTMEM_DEFAULT);
 855        }
 856#endif
 857
 858        mips_parse_crashkernel();
 859#ifdef CONFIG_KEXEC
 860        if (crashk_res.start != crashk_res.end)
 861                reserve_bootmem(crashk_res.start,
 862                                crashk_res.end - crashk_res.start + 1,
 863                                BOOTMEM_DEFAULT);
 864#endif
 865        device_tree_init();
 866        sparse_init();
 867        plat_swiotlb_setup();
 868
 869        dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
 870        /* Tell bootmem about cma reserved memblock section */
 871        for_each_memblock(reserved, reg)
 872                if (reg->size != 0)
 873                        reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
 874
 875        reserve_bootmem_region(__pa_symbol(&__nosave_begin),
 876                        __pa_symbol(&__nosave_end)); /* Reserve for hibernation */
 877}
 878
 879static void __init resource_init(void)
 880{
 881        int i;
 882
 883        if (UNCAC_BASE != IO_BASE)
 884                return;
 885
 886        code_resource.start = __pa_symbol(&_text);
 887        code_resource.end = __pa_symbol(&_etext) - 1;
 888        data_resource.start = __pa_symbol(&_etext);
 889        data_resource.end = __pa_symbol(&_edata) - 1;
 890
 891        for (i = 0; i < boot_mem_map.nr_map; i++) {
 892                struct resource *res;
 893                unsigned long start, end;
 894
 895                start = boot_mem_map.map[i].addr;
 896                end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
 897                if (start >= HIGHMEM_START)
 898                        continue;
 899                if (end >= HIGHMEM_START)
 900                        end = HIGHMEM_START - 1;
 901
 902                res = alloc_bootmem(sizeof(struct resource));
 903
 904                res->start = start;
 905                res->end = end;
 906                res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 907
 908                switch (boot_mem_map.map[i].type) {
 909                case BOOT_MEM_RAM:
 910                case BOOT_MEM_INIT_RAM:
 911                case BOOT_MEM_ROM_DATA:
 912                        res->name = "System RAM";
 913                        res->flags |= IORESOURCE_SYSRAM;
 914                        break;
 915                case BOOT_MEM_RESERVED:
 916                default:
 917                        res->name = "reserved";
 918                }
 919
 920                request_resource(&iomem_resource, res);
 921
 922                /*
 923                 *  We don't know which RAM region contains kernel data,
 924                 *  so we try it repeatedly and let the resource manager
 925                 *  test it.
 926                 */
 927                request_resource(res, &code_resource);
 928                request_resource(res, &data_resource);
 929                request_crashkernel(res);
 930        }
 931}
 932
 933#ifdef CONFIG_SMP
 934static void __init prefill_possible_map(void)
 935{
 936        int i, possible = num_possible_cpus();
 937
 938        if (possible > nr_cpu_ids)
 939                possible = nr_cpu_ids;
 940
 941        for (i = 0; i < possible; i++)
 942                set_cpu_possible(i, true);
 943        for (; i < NR_CPUS; i++)
 944                set_cpu_possible(i, false);
 945
 946        nr_cpu_ids = possible;
 947}
 948#else
 949static inline void prefill_possible_map(void) {}
 950#endif
 951
 952void __init setup_arch(char **cmdline_p)
 953{
 954        cpu_probe();
 955        mips_cm_probe();
 956        prom_init();
 957
 958        setup_early_fdc_console();
 959#ifdef CONFIG_EARLY_PRINTK
 960        setup_early_printk();
 961#endif
 962        cpu_report();
 963        check_bugs_early();
 964
 965#if defined(CONFIG_VT)
 966#if defined(CONFIG_VGA_CONSOLE)
 967        conswitchp = &vga_con;
 968#elif defined(CONFIG_DUMMY_CONSOLE)
 969        conswitchp = &dummy_con;
 970#endif
 971#endif
 972
 973        arch_mem_init(cmdline_p);
 974
 975        resource_init();
 976        plat_smp_setup();
 977        prefill_possible_map();
 978
 979        cpu_cache_init();
 980        paging_init();
 981}
 982
 983unsigned long kernelsp[NR_CPUS];
 984unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
 985
 986#ifdef CONFIG_USE_OF
 987unsigned long fw_passed_dtb;
 988#endif
 989
 990#ifdef CONFIG_DEBUG_FS
 991struct dentry *mips_debugfs_dir;
 992static int __init debugfs_mips(void)
 993{
 994        struct dentry *d;
 995
 996        d = debugfs_create_dir("mips", NULL);
 997        if (!d)
 998                return -ENOMEM;
 999        mips_debugfs_dir = d;
1000        return 0;
1001}
1002arch_initcall(debugfs_mips);
1003#endif
1004