linux/arch/mips/mm/uasm-mips.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * A small micro-assembler. It is intentionally kept simple, does only
   7 * support a subset of instructions, and does not try to hide pipeline
   8 * effects like branch delay slots.
   9 *
  10 * Copyright (C) 2004, 2005, 2006, 2008  Thiemo Seufer
  11 * Copyright (C) 2005, 2007  Maciej W. Rozycki
  12 * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
  13 * Copyright (C) 2012, 2013  MIPS Technologies, Inc.  All rights reserved.
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/types.h>
  18
  19#include <asm/inst.h>
  20#include <asm/elf.h>
  21#include <asm/bugs.h>
  22#define UASM_ISA        _UASM_ISA_CLASSIC
  23#include <asm/uasm.h>
  24
  25#define RS_MASK         0x1f
  26#define RS_SH           21
  27#define RT_MASK         0x1f
  28#define RT_SH           16
  29#define SCIMM_MASK      0xfffff
  30#define SCIMM_SH        6
  31
  32/* This macro sets the non-variable bits of an instruction. */
  33#define M(a, b, c, d, e, f)                                     \
  34        ((a) << OP_SH                                           \
  35         | (b) << RS_SH                                         \
  36         | (c) << RT_SH                                         \
  37         | (d) << RD_SH                                         \
  38         | (e) << RE_SH                                         \
  39         | (f) << FUNC_SH)
  40
  41/* This macro sets the non-variable bits of an R6 instruction. */
  42#define M6(a, b, c, d, e)                                       \
  43        ((a) << OP_SH                                           \
  44         | (b) << RS_SH                                         \
  45         | (c) << RT_SH                                         \
  46         | (d) << SIMM9_SH                                      \
  47         | (e) << FUNC_SH)
  48
  49#include "uasm.c"
  50
  51static struct insn insn_table[] = {
  52        { insn_addiu, M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  53        { insn_addu, M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD },
  54        { insn_andi, M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
  55        { insn_and, M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD },
  56        { insn_bbit0, M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
  57        { insn_bbit1, M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
  58        { insn_beql, M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
  59        { insn_beq, M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
  60        { insn_bgezl, M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM },
  61        { insn_bgez, M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM },
  62        { insn_bltzl, M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM },
  63        { insn_bltz, M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM },
  64        { insn_bne, M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
  65#ifndef CONFIG_CPU_MIPSR6
  66        { insn_cache,  M(cache_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
  67#else
  68        { insn_cache,  M6(spec3_op, 0, 0, 0, cache6_op),  RS | RT | SIMM9 },
  69#endif
  70        { insn_cfc1, M(cop1_op, cfc_op, 0, 0, 0, 0), RT | RD },
  71        { insn_cfcmsa, M(msa_op, 0, msa_cfc_op, 0, 0, msa_elm_op), RD | RE },
  72        { insn_ctc1, M(cop1_op, ctc_op, 0, 0, 0, 0), RT | RD },
  73        { insn_ctcmsa, M(msa_op, 0, msa_ctc_op, 0, 0, msa_elm_op), RD | RE },
  74        { insn_daddiu, M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
  75        { insn_daddu, M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD },
  76        { insn_dinsm, M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE },
  77        { insn_di, M(cop0_op, mfmc0_op, 0, 12, 0, 0), RT },
  78        { insn_dins, M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE },
  79        { insn_divu, M(spec_op, 0, 0, 0, 0, divu_op), RS | RT },
  80        { insn_dmfc0, M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
  81        { insn_dmtc0, M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
  82        { insn_drotr32, M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE },
  83        { insn_drotr, M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE },
  84        { insn_dsll32, M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE },
  85        { insn_dsll, M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE },
  86        { insn_dsra, M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE },
  87        { insn_dsrl32, M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE },
  88        { insn_dsrl, M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE },
  89        { insn_dsubu, M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD },
  90        { insn_eret,  M(cop0_op, cop_op, 0, 0, 0, eret_op),  0 },
  91        { insn_ext, M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE },
  92        { insn_ins, M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE },
  93        { insn_j,  M(j_op, 0, 0, 0, 0, 0),  JIMM },
  94        { insn_jal,  M(jal_op, 0, 0, 0, 0, 0),  JIMM },
  95        { insn_jalr,  M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD },
  96        { insn_j,  M(j_op, 0, 0, 0, 0, 0),  JIMM },
  97#ifndef CONFIG_CPU_MIPSR6
  98        { insn_jr,  M(spec_op, 0, 0, 0, 0, jr_op),  RS },
  99#else
 100        { insn_jr,  M(spec_op, 0, 0, 0, 0, jalr_op),  RS },
 101#endif
 102        { insn_lb, M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
 103        { insn_ld,  M(ld_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
 104        { insn_ldx, M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD },
 105        { insn_lh,  M(lh_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
 106#ifndef CONFIG_CPU_MIPSR6
 107        { insn_lld,  M(lld_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
 108        { insn_ll,  M(ll_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
 109#else
 110        { insn_lld,  M6(spec3_op, 0, 0, 0, lld6_op),  RS | RT | SIMM9 },
 111        { insn_ll,  M6(spec3_op, 0, 0, 0, ll6_op),  RS | RT | SIMM9 },
 112#endif
 113        { insn_lui,  M(lui_op, 0, 0, 0, 0, 0),  RT | SIMM },
 114        { insn_lw,  M(lw_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
 115        { insn_lwx, M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD },
 116        { insn_mfc0,  M(cop0_op, mfc_op, 0, 0, 0, 0),  RT | RD | SET},
 117        { insn_mfhc0,  M(cop0_op, mfhc0_op, 0, 0, 0, 0),  RT | RD | SET},
 118        { insn_mfhi,  M(spec_op, 0, 0, 0, 0, mfhi_op), RD },
 119        { insn_mflo,  M(spec_op, 0, 0, 0, 0, mflo_op), RD },
 120        { insn_mtc0,  M(cop0_op, mtc_op, 0, 0, 0, 0),  RT | RD | SET},
 121        { insn_mthc0,  M(cop0_op, mthc0_op, 0, 0, 0, 0),  RT | RD | SET},
 122        { insn_mthi,  M(spec_op, 0, 0, 0, 0, mthi_op), RS },
 123        { insn_mtlo,  M(spec_op, 0, 0, 0, 0, mtlo_op), RS },
 124#ifndef CONFIG_CPU_MIPSR6
 125        { insn_mul, M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD},
 126#else
 127        { insn_mul, M(spec_op, 0, 0, 0, mult_mul_op, mult_op), RS | RT | RD},
 128#endif
 129        { insn_ori,  M(ori_op, 0, 0, 0, 0, 0),  RS | RT | UIMM },
 130        { insn_or,  M(spec_op, 0, 0, 0, 0, or_op),  RS | RT | RD },
 131#ifndef CONFIG_CPU_MIPSR6
 132        { insn_pref,  M(pref_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
 133#else
 134        { insn_pref,  M6(spec3_op, 0, 0, 0, pref6_op),  RS | RT | SIMM9 },
 135#endif
 136        { insn_rfe,  M(cop0_op, cop_op, 0, 0, 0, rfe_op),  0 },
 137        { insn_rotr,  M(spec_op, 1, 0, 0, 0, srl_op),  RT | RD | RE },
 138#ifndef CONFIG_CPU_MIPSR6
 139        { insn_scd,  M(scd_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
 140        { insn_sc,  M(sc_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
 141#else
 142        { insn_scd,  M6(spec3_op, 0, 0, 0, scd6_op),  RS | RT | SIMM9 },
 143        { insn_sc,  M6(spec3_op, 0, 0, 0, sc6_op),  RS | RT | SIMM9 },
 144#endif
 145        { insn_sd,  M(sd_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
 146        { insn_sll,  M(spec_op, 0, 0, 0, 0, sll_op),  RT | RD | RE },
 147        { insn_sllv,  M(spec_op, 0, 0, 0, 0, sllv_op),  RS | RT | RD },
 148        { insn_slt,  M(spec_op, 0, 0, 0, 0, slt_op),  RS | RT | RD },
 149        { insn_sltiu, M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
 150        { insn_sltu, M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD },
 151        { insn_sra,  M(spec_op, 0, 0, 0, 0, sra_op),  RT | RD | RE },
 152        { insn_srl,  M(spec_op, 0, 0, 0, 0, srl_op),  RT | RD | RE },
 153        { insn_srlv,  M(spec_op, 0, 0, 0, 0, srlv_op),  RS | RT | RD },
 154        { insn_subu,  M(spec_op, 0, 0, 0, 0, subu_op),  RS | RT | RD },
 155        { insn_sw,  M(sw_op, 0, 0, 0, 0, 0),  RS | RT | SIMM },
 156        { insn_sync, M(spec_op, 0, 0, 0, 0, sync_op), RE },
 157        { insn_syscall, M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
 158        { insn_tlbp,  M(cop0_op, cop_op, 0, 0, 0, tlbp_op),  0 },
 159        { insn_tlbr,  M(cop0_op, cop_op, 0, 0, 0, tlbr_op),  0 },
 160        { insn_tlbwi,  M(cop0_op, cop_op, 0, 0, 0, tlbwi_op),  0 },
 161        { insn_tlbwr,  M(cop0_op, cop_op, 0, 0, 0, tlbwr_op),  0 },
 162        { insn_wait, M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM },
 163        { insn_wsbh, M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD },
 164        { insn_xori,  M(xori_op, 0, 0, 0, 0, 0),  RS | RT | UIMM },
 165        { insn_xor,  M(spec_op, 0, 0, 0, 0, xor_op),  RS | RT | RD },
 166        { insn_yield, M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD },
 167        { insn_ldpte, M(lwc2_op, 0, 0, 0, ldpte_op, mult_op), RS | RD },
 168        { insn_lddir, M(lwc2_op, 0, 0, 0, lddir_op, mult_op), RS | RT | RD },
 169        { insn_invalid, 0, 0 }
 170};
 171
 172#undef M
 173
 174static inline u32 build_bimm(s32 arg)
 175{
 176        WARN(arg > 0x1ffff || arg < -0x20000,
 177             KERN_WARNING "Micro-assembler field overflow\n");
 178
 179        WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
 180
 181        return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
 182}
 183
 184static inline u32 build_jimm(u32 arg)
 185{
 186        WARN(arg & ~(JIMM_MASK << 2),
 187             KERN_WARNING "Micro-assembler field overflow\n");
 188
 189        return (arg >> 2) & JIMM_MASK;
 190}
 191
 192/*
 193 * The order of opcode arguments is implicitly left to right,
 194 * starting with RS and ending with FUNC or IMM.
 195 */
 196static void build_insn(u32 **buf, enum opcode opc, ...)
 197{
 198        struct insn *ip = NULL;
 199        unsigned int i;
 200        va_list ap;
 201        u32 op;
 202
 203        for (i = 0; insn_table[i].opcode != insn_invalid; i++)
 204                if (insn_table[i].opcode == opc) {
 205                        ip = &insn_table[i];
 206                        break;
 207                }
 208
 209        if (!ip || (opc == insn_daddiu && r4k_daddiu_bug()))
 210                panic("Unsupported Micro-assembler instruction %d", opc);
 211
 212        op = ip->match;
 213        va_start(ap, opc);
 214        if (ip->fields & RS)
 215                op |= build_rs(va_arg(ap, u32));
 216        if (ip->fields & RT)
 217                op |= build_rt(va_arg(ap, u32));
 218        if (ip->fields & RD)
 219                op |= build_rd(va_arg(ap, u32));
 220        if (ip->fields & RE)
 221                op |= build_re(va_arg(ap, u32));
 222        if (ip->fields & SIMM)
 223                op |= build_simm(va_arg(ap, s32));
 224        if (ip->fields & UIMM)
 225                op |= build_uimm(va_arg(ap, u32));
 226        if (ip->fields & BIMM)
 227                op |= build_bimm(va_arg(ap, s32));
 228        if (ip->fields & JIMM)
 229                op |= build_jimm(va_arg(ap, u32));
 230        if (ip->fields & FUNC)
 231                op |= build_func(va_arg(ap, u32));
 232        if (ip->fields & SET)
 233                op |= build_set(va_arg(ap, u32));
 234        if (ip->fields & SCIMM)
 235                op |= build_scimm(va_arg(ap, u32));
 236        if (ip->fields & SIMM9)
 237                op |= build_scimm9(va_arg(ap, u32));
 238        va_end(ap);
 239
 240        **buf = op;
 241        (*buf)++;
 242}
 243
 244static inline void
 245__resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
 246{
 247        long laddr = (long)lab->addr;
 248        long raddr = (long)rel->addr;
 249
 250        switch (rel->type) {
 251        case R_MIPS_PC16:
 252                *rel->addr |= build_bimm(laddr - (raddr + 4));
 253                break;
 254
 255        default:
 256                panic("Unsupported Micro-assembler relocation %d",
 257                      rel->type);
 258        }
 259}
 260