linux/arch/parisc/kernel/perf.c
<<
>>
Prefs
   1/*
   2 *  Parisc performance counters
   3 *  Copyright (C) 2001 Randolph Chung <tausq@debian.org>
   4 *
   5 *  This code is derived, with permission, from HP/UX sources.
   6 *
   7 *    This program is free software; you can redistribute it and/or modify
   8 *    it under the terms of the GNU General Public License as published by
   9 *    the Free Software Foundation; either version 2, or (at your option)
  10 *    any later version.
  11 *
  12 *    This program is distributed in the hope that it will be useful,
  13 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *    GNU General Public License for more details.
  16 *
  17 *    You should have received a copy of the GNU General Public License
  18 *    along with this program; if not, write to the Free Software
  19 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20 */
  21
  22/*
  23 *  Edited comment from original sources:
  24 *
  25 *  This driver programs the PCX-U/PCX-W performance counters
  26 *  on the PA-RISC 2.0 chips.  The driver keeps all images now
  27 *  internally to the kernel to hopefully eliminate the possibility
  28 *  of a bad image halting the CPU.  Also, there are different
  29 *  images for the PCX-W and later chips vs the PCX-U chips.
  30 *
  31 *  Only 1 process is allowed to access the driver at any time,
  32 *  so the only protection that is needed is at open and close.
  33 *  A variable "perf_enabled" is used to hold the state of the
  34 *  driver.  The spinlock "perf_lock" is used to protect the
  35 *  modification of the state during open/close operations so
  36 *  multiple processes don't get into the driver simultaneously.
  37 *
  38 *  This driver accesses the processor directly vs going through
  39 *  the PDC INTRIGUE calls.  This is done to eliminate bugs introduced
  40 *  in various PDC revisions.  The code is much more maintainable
  41 *  and reliable this way vs having to debug on every version of PDC
  42 *  on every box.
  43 */
  44
  45#include <linux/capability.h>
  46#include <linux/init.h>
  47#include <linux/proc_fs.h>
  48#include <linux/miscdevice.h>
  49#include <linux/spinlock.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/perf.h>
  53#include <asm/parisc-device.h>
  54#include <asm/processor.h>
  55#include <asm/runway.h>
  56#include <asm/io.h>             /* for __raw_read() */
  57
  58#include "perf_images.h"
  59
  60#define MAX_RDR_WORDS   24
  61#define PERF_VERSION    2       /* derived from hpux's PI v2 interface */
  62
  63/* definition of RDR regs */
  64struct rdr_tbl_ent {
  65        uint16_t        width;
  66        uint8_t         num_words;
  67        uint8_t         write_control;
  68};
  69
  70static int perf_processor_interface __read_mostly = UNKNOWN_INTF;
  71static int perf_enabled __read_mostly;
  72static spinlock_t perf_lock;
  73struct parisc_device *cpu_device __read_mostly;
  74
  75/* RDRs to write for PCX-W */
  76static const int perf_rdrs_W[] =
  77        { 0, 1, 4, 5, 6, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
  78
  79/* RDRs to write for PCX-U */
  80static const int perf_rdrs_U[] =
  81        { 0, 1, 4, 5, 6, 7, 16, 17, 18, 20, 21, 22, 23, 24, 25, -1 };
  82
  83/* RDR register descriptions for PCX-W */
  84static const struct rdr_tbl_ent perf_rdr_tbl_W[] = {
  85        { 19,   1,      8 },   /* RDR 0 */
  86        { 16,   1,      16 },  /* RDR 1 */
  87        { 72,   2,      0 },   /* RDR 2 */
  88        { 81,   2,      0 },   /* RDR 3 */
  89        { 328,  6,      0 },   /* RDR 4 */
  90        { 160,  3,      0 },   /* RDR 5 */
  91        { 336,  6,      0 },   /* RDR 6 */
  92        { 164,  3,      0 },   /* RDR 7 */
  93        { 0,    0,      0 },   /* RDR 8 */
  94        { 35,   1,      0 },   /* RDR 9 */
  95        { 6,    1,      0 },   /* RDR 10 */
  96        { 18,   1,      0 },   /* RDR 11 */
  97        { 13,   1,      0 },   /* RDR 12 */
  98        { 8,    1,      0 },   /* RDR 13 */
  99        { 8,    1,      0 },   /* RDR 14 */
 100        { 8,    1,      0 },   /* RDR 15 */
 101        { 1530, 24,     0 },   /* RDR 16 */
 102        { 16,   1,      0 },   /* RDR 17 */
 103        { 4,    1,      0 },   /* RDR 18 */
 104        { 0,    0,      0 },   /* RDR 19 */
 105        { 152,  3,      24 },  /* RDR 20 */
 106        { 152,  3,      24 },  /* RDR 21 */
 107        { 233,  4,      48 },  /* RDR 22 */
 108        { 233,  4,      48 },  /* RDR 23 */
 109        { 71,   2,      0 },   /* RDR 24 */
 110        { 71,   2,      0 },   /* RDR 25 */
 111        { 11,   1,      0 },   /* RDR 26 */
 112        { 18,   1,      0 },   /* RDR 27 */
 113        { 128,  2,      0 },   /* RDR 28 */
 114        { 0,    0,      0 },   /* RDR 29 */
 115        { 16,   1,      0 },   /* RDR 30 */
 116        { 16,   1,      0 },   /* RDR 31 */
 117};
 118
 119/* RDR register descriptions for PCX-U */
 120static const struct rdr_tbl_ent perf_rdr_tbl_U[] = {
 121        { 19,   1,      8 },              /* RDR 0 */
 122        { 32,   1,      16 },             /* RDR 1 */
 123        { 20,   1,      0 },              /* RDR 2 */
 124        { 0,    0,      0 },              /* RDR 3 */
 125        { 344,  6,      0 },              /* RDR 4 */
 126        { 176,  3,      0 },              /* RDR 5 */
 127        { 336,  6,      0 },              /* RDR 6 */
 128        { 0,    0,      0 },              /* RDR 7 */
 129        { 0,    0,      0 },              /* RDR 8 */
 130        { 0,    0,      0 },              /* RDR 9 */
 131        { 28,   1,      0 },              /* RDR 10 */
 132        { 33,   1,      0 },              /* RDR 11 */
 133        { 0,    0,      0 },              /* RDR 12 */
 134        { 230,  4,      0 },              /* RDR 13 */
 135        { 32,   1,      0 },              /* RDR 14 */
 136        { 128,  2,      0 },              /* RDR 15 */
 137        { 1494, 24,     0 },              /* RDR 16 */
 138        { 18,   1,      0 },              /* RDR 17 */
 139        { 4,    1,      0 },              /* RDR 18 */
 140        { 0,    0,      0 },              /* RDR 19 */
 141        { 158,  3,      24 },             /* RDR 20 */
 142        { 158,  3,      24 },             /* RDR 21 */
 143        { 194,  4,      48 },             /* RDR 22 */
 144        { 194,  4,      48 },             /* RDR 23 */
 145        { 71,   2,      0 },              /* RDR 24 */
 146        { 71,   2,      0 },              /* RDR 25 */
 147        { 28,   1,      0 },              /* RDR 26 */
 148        { 33,   1,      0 },              /* RDR 27 */
 149        { 88,   2,      0 },              /* RDR 28 */
 150        { 32,   1,      0 },              /* RDR 29 */
 151        { 24,   1,      0 },              /* RDR 30 */
 152        { 16,   1,      0 },              /* RDR 31 */
 153};
 154
 155/*
 156 * A non-zero write_control in the above tables is a byte offset into
 157 * this array.
 158 */
 159static const uint64_t perf_bitmasks[] = {
 160        0x0000000000000000ul,     /* first dbl word must be zero */
 161        0xfdffe00000000000ul,     /* RDR0 bitmask */
 162        0x003f000000000000ul,     /* RDR1 bitmask */
 163        0x00fffffffffffffful,     /* RDR20-RDR21 bitmask (152 bits) */
 164        0xfffffffffffffffful,
 165        0xfffffffc00000000ul,
 166        0xfffffffffffffffful,     /* RDR22-RDR23 bitmask (233 bits) */
 167        0xfffffffffffffffful,
 168        0xfffffffffffffffcul,
 169        0xff00000000000000ul
 170};
 171
 172/*
 173 * Write control bitmasks for Pa-8700 processor given
 174 * some things have changed slightly.
 175 */
 176static const uint64_t perf_bitmasks_piranha[] = {
 177        0x0000000000000000ul,     /* first dbl word must be zero */
 178        0xfdffe00000000000ul,     /* RDR0 bitmask */
 179        0x003f000000000000ul,     /* RDR1 bitmask */
 180        0x00fffffffffffffful,     /* RDR20-RDR21 bitmask (158 bits) */
 181        0xfffffffffffffffful,
 182        0xfffffffc00000000ul,
 183        0xfffffffffffffffful,     /* RDR22-RDR23 bitmask (210 bits) */
 184        0xfffffffffffffffful,
 185        0xfffffffffffffffful,
 186        0xfffc000000000000ul
 187};
 188
 189static const uint64_t *bitmask_array;   /* array of bitmasks to use */
 190
 191/******************************************************************************
 192 * Function Prototypes
 193 *****************************************************************************/
 194static int perf_config(uint32_t *image_ptr);
 195static int perf_release(struct inode *inode, struct file *file);
 196static int perf_open(struct inode *inode, struct file *file);
 197static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos);
 198static ssize_t perf_write(struct file *file, const char __user *buf,
 199        size_t count, loff_t *ppos);
 200static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 201static void perf_start_counters(void);
 202static int perf_stop_counters(uint32_t *raddr);
 203static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num);
 204static int perf_rdr_read_ubuf(uint32_t  rdr_num, uint64_t *buffer);
 205static int perf_rdr_clear(uint32_t rdr_num);
 206static int perf_write_image(uint64_t *memaddr);
 207static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer);
 208
 209/* External Assembly Routines */
 210extern uint64_t perf_rdr_shift_in_W (uint32_t rdr_num, uint16_t width);
 211extern uint64_t perf_rdr_shift_in_U (uint32_t rdr_num, uint16_t width);
 212extern void perf_rdr_shift_out_W (uint32_t rdr_num, uint64_t buffer);
 213extern void perf_rdr_shift_out_U (uint32_t rdr_num, uint64_t buffer);
 214extern void perf_intrigue_enable_perf_counters (void);
 215extern void perf_intrigue_disable_perf_counters (void);
 216
 217/******************************************************************************
 218 * Function Definitions
 219 *****************************************************************************/
 220
 221
 222/*
 223 * configure:
 224 *
 225 * Configure the cpu with a given data image.  First turn off the counters,
 226 * then download the image, then turn the counters back on.
 227 */
 228static int perf_config(uint32_t *image_ptr)
 229{
 230        long error;
 231        uint32_t raddr[4];
 232
 233        /* Stop the counters*/
 234        error = perf_stop_counters(raddr);
 235        if (error != 0) {
 236                printk("perf_config: perf_stop_counters = %ld\n", error);
 237                return -EINVAL;
 238        }
 239
 240printk("Preparing to write image\n");
 241        /* Write the image to the chip */
 242        error = perf_write_image((uint64_t *)image_ptr);
 243        if (error != 0) {
 244                printk("perf_config: DOWNLOAD = %ld\n", error);
 245                return -EINVAL;
 246        }
 247
 248printk("Preparing to start counters\n");
 249
 250        /* Start the counters */
 251        perf_start_counters();
 252
 253        return sizeof(uint32_t);
 254}
 255
 256/*
 257 * Open the device and initialize all of its memory.  The device is only
 258 * opened once, but can be "queried" by multiple processes that know its
 259 * file descriptor.
 260 */
 261static int perf_open(struct inode *inode, struct file *file)
 262{
 263        spin_lock(&perf_lock);
 264        if (perf_enabled) {
 265                spin_unlock(&perf_lock);
 266                return -EBUSY;
 267        }
 268        perf_enabled = 1;
 269        spin_unlock(&perf_lock);
 270
 271        return 0;
 272}
 273
 274/*
 275 * Close the device.
 276 */
 277static int perf_release(struct inode *inode, struct file *file)
 278{
 279        spin_lock(&perf_lock);
 280        perf_enabled = 0;
 281        spin_unlock(&perf_lock);
 282
 283        return 0;
 284}
 285
 286/*
 287 * Read does nothing for this driver
 288 */
 289static ssize_t perf_read(struct file *file, char __user *buf, size_t cnt, loff_t *ppos)
 290{
 291        return 0;
 292}
 293
 294/*
 295 * write:
 296 *
 297 * This routine downloads the image to the chip.  It must be
 298 * called on the processor that the download should happen
 299 * on.
 300 */
 301static ssize_t perf_write(struct file *file, const char __user *buf,
 302        size_t count, loff_t *ppos)
 303{
 304        size_t image_size;
 305        uint32_t image_type;
 306        uint32_t interface_type;
 307        uint32_t test;
 308
 309        if (perf_processor_interface == ONYX_INTF)
 310                image_size = PCXU_IMAGE_SIZE;
 311        else if (perf_processor_interface == CUDA_INTF)
 312                image_size = PCXW_IMAGE_SIZE;
 313        else
 314                return -EFAULT;
 315
 316        if (!capable(CAP_SYS_ADMIN))
 317                return -EACCES;
 318
 319        if (count != sizeof(uint32_t))
 320                return -EIO;
 321
 322        if (copy_from_user(&image_type, buf, sizeof(uint32_t)))
 323                return -EFAULT;
 324
 325        /* Get the interface type and test type */
 326        interface_type = (image_type >> 16) & 0xffff;
 327        test           = (image_type & 0xffff);
 328
 329        /* Make sure everything makes sense */
 330
 331        /* First check the machine type is correct for
 332           the requested image */
 333        if (((perf_processor_interface == CUDA_INTF) &&
 334                        (interface_type != CUDA_INTF)) ||
 335                ((perf_processor_interface == ONYX_INTF) &&
 336                        (interface_type != ONYX_INTF)))
 337                return -EINVAL;
 338
 339        /* Next check to make sure the requested image
 340           is valid */
 341        if (((interface_type == CUDA_INTF) &&
 342                       (test >= MAX_CUDA_IMAGES)) ||
 343            ((interface_type == ONYX_INTF) &&
 344                       (test >= MAX_ONYX_IMAGES)))
 345                return -EINVAL;
 346
 347        /* Copy the image into the processor */
 348        if (interface_type == CUDA_INTF)
 349                return perf_config(cuda_images[test]);
 350        else
 351                return perf_config(onyx_images[test]);
 352
 353        return count;
 354}
 355
 356/*
 357 * Patch the images that need to know the IVA addresses.
 358 */
 359static void perf_patch_images(void)
 360{
 361#if 0 /* FIXME!! */
 362/*
 363 * NOTE:  this routine is VERY specific to the current TLB image.
 364 * If the image is changed, this routine might also need to be changed.
 365 */
 366        extern void $i_itlb_miss_2_0();
 367        extern void $i_dtlb_miss_2_0();
 368        extern void PA2_0_iva();
 369
 370        /*
 371         * We can only use the lower 32-bits, the upper 32-bits should be 0
 372         * anyway given this is in the kernel
 373         */
 374        uint32_t itlb_addr  = (uint32_t)&($i_itlb_miss_2_0);
 375        uint32_t dtlb_addr  = (uint32_t)&($i_dtlb_miss_2_0);
 376        uint32_t IVAaddress = (uint32_t)&PA2_0_iva;
 377
 378        if (perf_processor_interface == ONYX_INTF) {
 379                /* clear last 2 bytes */
 380                onyx_images[TLBMISS][15] &= 0xffffff00;
 381                /* set 2 bytes */
 382                onyx_images[TLBMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
 383                onyx_images[TLBMISS][16] = (dtlb_addr << 8)&0xffffff00;
 384                onyx_images[TLBMISS][17] = itlb_addr;
 385
 386                /* clear last 2 bytes */
 387                onyx_images[TLBHANDMISS][15] &= 0xffffff00;
 388                /* set 2 bytes */
 389                onyx_images[TLBHANDMISS][15] |= (0x000000ff&((dtlb_addr) >> 24));
 390                onyx_images[TLBHANDMISS][16] = (dtlb_addr << 8)&0xffffff00;
 391                onyx_images[TLBHANDMISS][17] = itlb_addr;
 392
 393                /* clear last 2 bytes */
 394                onyx_images[BIG_CPI][15] &= 0xffffff00;
 395                /* set 2 bytes */
 396                onyx_images[BIG_CPI][15] |= (0x000000ff&((dtlb_addr) >> 24));
 397                onyx_images[BIG_CPI][16] = (dtlb_addr << 8)&0xffffff00;
 398                onyx_images[BIG_CPI][17] = itlb_addr;
 399
 400            onyx_images[PANIC][15] &= 0xffffff00;  /* clear last 2 bytes */
 401                onyx_images[PANIC][15] |= (0x000000ff&((IVAaddress) >> 24)); /* set 2 bytes */
 402                onyx_images[PANIC][16] = (IVAaddress << 8)&0xffffff00;
 403
 404
 405        } else if (perf_processor_interface == CUDA_INTF) {
 406                /* Cuda interface */
 407                cuda_images[TLBMISS][16] =
 408                        (cuda_images[TLBMISS][16]&0xffff0000) |
 409                        ((dtlb_addr >> 8)&0x0000ffff);
 410                cuda_images[TLBMISS][17] =
 411                        ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
 412                cuda_images[TLBMISS][18] = (itlb_addr << 16)&0xffff0000;
 413
 414                cuda_images[TLBHANDMISS][16] =
 415                        (cuda_images[TLBHANDMISS][16]&0xffff0000) |
 416                        ((dtlb_addr >> 8)&0x0000ffff);
 417                cuda_images[TLBHANDMISS][17] =
 418                        ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
 419                cuda_images[TLBHANDMISS][18] = (itlb_addr << 16)&0xffff0000;
 420
 421                cuda_images[BIG_CPI][16] =
 422                        (cuda_images[BIG_CPI][16]&0xffff0000) |
 423                        ((dtlb_addr >> 8)&0x0000ffff);
 424                cuda_images[BIG_CPI][17] =
 425                        ((dtlb_addr << 24)&0xff000000) | ((itlb_addr >> 16)&0x000000ff);
 426                cuda_images[BIG_CPI][18] = (itlb_addr << 16)&0xffff0000;
 427        } else {
 428                /* Unknown type */
 429        }
 430#endif
 431}
 432
 433
 434/*
 435 * ioctl routine
 436 * All routines effect the processor that they are executed on.  Thus you
 437 * must be running on the processor that you wish to change.
 438 */
 439
 440static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 441{
 442        long error_start;
 443        uint32_t raddr[4];
 444        int error = 0;
 445
 446        switch (cmd) {
 447
 448            case PA_PERF_ON:
 449                        /* Start the counters */
 450                        perf_start_counters();
 451                        break;
 452
 453            case PA_PERF_OFF:
 454                        error_start = perf_stop_counters(raddr);
 455                        if (error_start != 0) {
 456                                printk(KERN_ERR "perf_off: perf_stop_counters = %ld\n", error_start);
 457                                error = -EFAULT;
 458                                break;
 459                        }
 460
 461                        /* copy out the Counters */
 462                        if (copy_to_user((void __user *)arg, raddr,
 463                                        sizeof (raddr)) != 0) {
 464                                error =  -EFAULT;
 465                                break;
 466                        }
 467                        break;
 468
 469            case PA_PERF_VERSION:
 470                        /* Return the version # */
 471                        error = put_user(PERF_VERSION, (int *)arg);
 472                        break;
 473
 474            default:
 475                        error = -ENOTTY;
 476        }
 477
 478        return error;
 479}
 480
 481static const struct file_operations perf_fops = {
 482        .llseek = no_llseek,
 483        .read = perf_read,
 484        .write = perf_write,
 485        .unlocked_ioctl = perf_ioctl,
 486        .compat_ioctl = perf_ioctl,
 487        .open = perf_open,
 488        .release = perf_release
 489};
 490
 491static struct miscdevice perf_dev = {
 492        MISC_DYNAMIC_MINOR,
 493        PA_PERF_DEV,
 494        &perf_fops
 495};
 496
 497/*
 498 * Initialize the module
 499 */
 500static int __init perf_init(void)
 501{
 502        int ret;
 503
 504        /* Determine correct processor interface to use */
 505        bitmask_array = perf_bitmasks;
 506
 507        if (boot_cpu_data.cpu_type == pcxu ||
 508            boot_cpu_data.cpu_type == pcxu_) {
 509                perf_processor_interface = ONYX_INTF;
 510        } else if (boot_cpu_data.cpu_type == pcxw ||
 511                 boot_cpu_data.cpu_type == pcxw_ ||
 512                 boot_cpu_data.cpu_type == pcxw2 ||
 513                 boot_cpu_data.cpu_type == mako ||
 514                 boot_cpu_data.cpu_type == mako2) {
 515                perf_processor_interface = CUDA_INTF;
 516                if (boot_cpu_data.cpu_type == pcxw2 ||
 517                    boot_cpu_data.cpu_type == mako ||
 518                    boot_cpu_data.cpu_type == mako2)
 519                        bitmask_array = perf_bitmasks_piranha;
 520        } else {
 521                perf_processor_interface = UNKNOWN_INTF;
 522                printk("Performance monitoring counters not supported on this processor\n");
 523                return -ENODEV;
 524        }
 525
 526        ret = misc_register(&perf_dev);
 527        if (ret) {
 528                printk(KERN_ERR "Performance monitoring counters: "
 529                        "cannot register misc device.\n");
 530                return ret;
 531        }
 532
 533        /* Patch the images to match the system */
 534        perf_patch_images();
 535
 536        spin_lock_init(&perf_lock);
 537
 538        /* TODO: this only lets us access the first cpu.. what to do for SMP? */
 539        cpu_device = per_cpu(cpu_data, 0).dev;
 540        printk("Performance monitoring counters enabled for %s\n",
 541                per_cpu(cpu_data, 0).dev->name);
 542
 543        return 0;
 544}
 545device_initcall(perf_init);
 546
 547/*
 548 * perf_start_counters(void)
 549 *
 550 * Start the counters.
 551 */
 552static void perf_start_counters(void)
 553{
 554        /* Enable performance monitor counters */
 555        perf_intrigue_enable_perf_counters();
 556}
 557
 558/*
 559 * perf_stop_counters
 560 *
 561 * Stop the performance counters and save counts
 562 * in a per_processor array.
 563 */
 564static int perf_stop_counters(uint32_t *raddr)
 565{
 566        uint64_t userbuf[MAX_RDR_WORDS];
 567
 568        /* Disable performance counters */
 569        perf_intrigue_disable_perf_counters();
 570
 571        if (perf_processor_interface == ONYX_INTF) {
 572                uint64_t tmp64;
 573                /*
 574                 * Read the counters
 575                 */
 576                if (!perf_rdr_read_ubuf(16, userbuf))
 577                        return -13;
 578
 579                /* Counter0 is bits 1398 to 1429 */
 580                tmp64 =  (userbuf[21] << 22) & 0x00000000ffc00000;
 581                tmp64 |= (userbuf[22] >> 42) & 0x00000000003fffff;
 582                /* OR sticky0 (bit 1430) to counter0 bit 32 */
 583                tmp64 |= (userbuf[22] >> 10) & 0x0000000080000000;
 584                raddr[0] = (uint32_t)tmp64;
 585
 586                /* Counter1 is bits 1431 to 1462 */
 587                tmp64 =  (userbuf[22] >> 9) & 0x00000000ffffffff;
 588                /* OR sticky1 (bit 1463) to counter1 bit 32 */
 589                tmp64 |= (userbuf[22] << 23) & 0x0000000080000000;
 590                raddr[1] = (uint32_t)tmp64;
 591
 592                /* Counter2 is bits 1464 to 1495 */
 593                tmp64 =  (userbuf[22] << 24) & 0x00000000ff000000;
 594                tmp64 |= (userbuf[23] >> 40) & 0x0000000000ffffff;
 595                /* OR sticky2 (bit 1496) to counter2 bit 32 */
 596                tmp64 |= (userbuf[23] >> 8) & 0x0000000080000000;
 597                raddr[2] = (uint32_t)tmp64;
 598
 599                /* Counter3 is bits 1497 to 1528 */
 600                tmp64 =  (userbuf[23] >> 7) & 0x00000000ffffffff;
 601                /* OR sticky3 (bit 1529) to counter3 bit 32 */
 602                tmp64 |= (userbuf[23] << 25) & 0x0000000080000000;
 603                raddr[3] = (uint32_t)tmp64;
 604
 605                /*
 606                 * Zero out the counters
 607                 */
 608
 609                /*
 610                 * The counters and sticky-bits comprise the last 132 bits
 611                 * (1398 - 1529) of RDR16 on a U chip.  We'll zero these
 612                 * out the easy way: zero out last 10 bits of dword 21,
 613                 * all of dword 22 and 58 bits (plus 6 don't care bits) of
 614                 * dword 23.
 615                 */
 616                userbuf[21] &= 0xfffffffffffffc00ul;    /* 0 to last 10 bits */
 617                userbuf[22] = 0;
 618                userbuf[23] = 0;
 619
 620                /*
 621                 * Write back the zeroed bytes + the image given
 622                 * the read was destructive.
 623                 */
 624                perf_rdr_write(16, userbuf);
 625        } else {
 626
 627                /*
 628                 * Read RDR-15 which contains the counters and sticky bits
 629                 */
 630                if (!perf_rdr_read_ubuf(15, userbuf)) {
 631                        return -13;
 632                }
 633
 634                /*
 635                 * Clear out the counters
 636                 */
 637                perf_rdr_clear(15);
 638
 639                /*
 640                 * Copy the counters 
 641                 */
 642                raddr[0] = (uint32_t)((userbuf[0] >> 32) & 0x00000000ffffffffUL);
 643                raddr[1] = (uint32_t)(userbuf[0] & 0x00000000ffffffffUL);
 644                raddr[2] = (uint32_t)((userbuf[1] >> 32) & 0x00000000ffffffffUL);
 645                raddr[3] = (uint32_t)(userbuf[1] & 0x00000000ffffffffUL);
 646        }
 647
 648        return 0;
 649}
 650
 651/*
 652 * perf_rdr_get_entry
 653 *
 654 * Retrieve a pointer to the description of what this
 655 * RDR contains.
 656 */
 657static const struct rdr_tbl_ent * perf_rdr_get_entry(uint32_t rdr_num)
 658{
 659        if (perf_processor_interface == ONYX_INTF) {
 660                return &perf_rdr_tbl_U[rdr_num];
 661        } else {
 662                return &perf_rdr_tbl_W[rdr_num];
 663        }
 664}
 665
 666/*
 667 * perf_rdr_read_ubuf
 668 *
 669 * Read the RDR value into the buffer specified.
 670 */
 671static int perf_rdr_read_ubuf(uint32_t  rdr_num, uint64_t *buffer)
 672{
 673        uint64_t        data, data_mask = 0;
 674        uint32_t        width, xbits, i;
 675        const struct rdr_tbl_ent *tentry;
 676
 677        tentry = perf_rdr_get_entry(rdr_num);
 678        if ((width = tentry->width) == 0)
 679                return 0;
 680
 681        /* Clear out buffer */
 682        i = tentry->num_words;
 683        while (i--) {
 684                buffer[i] = 0;
 685        }
 686
 687        /* Check for bits an even number of 64 */
 688        if ((xbits = width & 0x03f) != 0) {
 689                data_mask = 1;
 690                data_mask <<= (64 - xbits);
 691                data_mask--;
 692        }
 693
 694        /* Grab all of the data */
 695        i = tentry->num_words;
 696        while (i--) {
 697
 698                if (perf_processor_interface == ONYX_INTF) {
 699                        data = perf_rdr_shift_in_U(rdr_num, width);
 700                } else {
 701                        data = perf_rdr_shift_in_W(rdr_num, width);
 702                }
 703                if (xbits) {
 704                        buffer[i] |= (data << (64 - xbits));
 705                        if (i) {
 706                                buffer[i-1] |= ((data >> xbits) & data_mask);
 707                        }
 708                } else {
 709                        buffer[i] = data;
 710                }
 711        }
 712
 713        return 1;
 714}
 715
 716/*
 717 * perf_rdr_clear
 718 *
 719 * Zero out the given RDR register
 720 */
 721static int perf_rdr_clear(uint32_t      rdr_num)
 722{
 723        const struct rdr_tbl_ent *tentry;
 724        int32_t         i;
 725
 726        tentry = perf_rdr_get_entry(rdr_num);
 727
 728        if (tentry->width == 0) {
 729                return -1;
 730        }
 731
 732        i = tentry->num_words;
 733        while (i--) {
 734                if (perf_processor_interface == ONYX_INTF) {
 735                        perf_rdr_shift_out_U(rdr_num, 0UL);
 736                } else {
 737                        perf_rdr_shift_out_W(rdr_num, 0UL);
 738                }
 739        }
 740
 741        return 0;
 742}
 743
 744
 745/*
 746 * perf_write_image
 747 *
 748 * Write the given image out to the processor
 749 */
 750static int perf_write_image(uint64_t *memaddr)
 751{
 752        uint64_t buffer[MAX_RDR_WORDS];
 753        uint64_t *bptr;
 754        uint32_t dwords;
 755        const uint32_t *intrigue_rdr;
 756        const uint64_t *intrigue_bitmask;
 757        uint64_t tmp64;
 758        void __iomem *runway;
 759        const struct rdr_tbl_ent *tentry;
 760        int i;
 761
 762        /* Clear out counters */
 763        if (perf_processor_interface == ONYX_INTF) {
 764
 765                perf_rdr_clear(16);
 766
 767                /* Toggle performance monitor */
 768                perf_intrigue_enable_perf_counters();
 769                perf_intrigue_disable_perf_counters();
 770
 771                intrigue_rdr = perf_rdrs_U;
 772        } else {
 773                perf_rdr_clear(15);
 774                intrigue_rdr = perf_rdrs_W;
 775        }
 776
 777        /* Write all RDRs */
 778        while (*intrigue_rdr != -1) {
 779                tentry = perf_rdr_get_entry(*intrigue_rdr);
 780                perf_rdr_read_ubuf(*intrigue_rdr, buffer);
 781                bptr   = &buffer[0];
 782                dwords = tentry->num_words;
 783                if (tentry->write_control) {
 784                        intrigue_bitmask = &bitmask_array[tentry->write_control >> 3];
 785                        while (dwords--) {
 786                                tmp64 = *intrigue_bitmask & *memaddr++;
 787                                tmp64 |= (~(*intrigue_bitmask++)) & *bptr;
 788                                *bptr++ = tmp64;
 789                        }
 790                } else {
 791                        while (dwords--) {
 792                                *bptr++ = *memaddr++;
 793                        }
 794                }
 795
 796                perf_rdr_write(*intrigue_rdr, buffer);
 797                intrigue_rdr++;
 798        }
 799
 800        /*
 801         * Now copy out the Runway stuff which is not in RDRs
 802         */
 803
 804        if (cpu_device == NULL)
 805        {
 806                printk(KERN_ERR "write_image: cpu_device not yet initialized!\n");
 807                return -1;
 808        }
 809
 810        runway = ioremap_nocache(cpu_device->hpa.start, 4096);
 811        if (!runway) {
 812                pr_err("perf_write_image: ioremap failed!\n");
 813                return -ENOMEM;
 814        }
 815
 816        /* Merge intrigue bits into Runway STATUS 0 */
 817        tmp64 = __raw_readq(runway + RUNWAY_STATUS) & 0xffecfffffffffffful;
 818        __raw_writeq(tmp64 | (*memaddr++ & 0x0013000000000000ul),
 819                     runway + RUNWAY_STATUS);
 820
 821        /* Write RUNWAY DEBUG registers */
 822        for (i = 0; i < 8; i++) {
 823                __raw_writeq(*memaddr++, runway + RUNWAY_DEBUG);
 824        }
 825
 826        return 0;
 827}
 828
 829/*
 830 * perf_rdr_write
 831 *
 832 * Write the given RDR register with the contents
 833 * of the given buffer.
 834 */
 835static void perf_rdr_write(uint32_t rdr_num, uint64_t *buffer)
 836{
 837        const struct rdr_tbl_ent *tentry;
 838        int32_t         i;
 839
 840printk("perf_rdr_write\n");
 841        tentry = perf_rdr_get_entry(rdr_num);
 842        if (tentry->width == 0) { return; }
 843
 844        i = tentry->num_words;
 845        while (i--) {
 846                if (perf_processor_interface == ONYX_INTF) {
 847                        perf_rdr_shift_out_U(rdr_num, buffer[i]);
 848                } else {
 849                        perf_rdr_shift_out_W(rdr_num, buffer[i]);
 850                }
 851        }
 852printk("perf_rdr_write done\n");
 853}
 854