linux/arch/powerpc/include/asm/book3s/64/pgtable.h
<<
>>
Prefs
   1#ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
   2#define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
   3
   4#include <asm-generic/5level-fixup.h>
   5
   6#ifndef __ASSEMBLY__
   7#include <linux/mmdebug.h>
   8#endif
   9
  10/*
  11 * Common bits between hash and Radix page table
  12 */
  13#define _PAGE_BIT_SWAP_TYPE     0
  14
  15#define _PAGE_RO                0
  16
  17#define _PAGE_EXEC              0x00001 /* execute permission */
  18#define _PAGE_WRITE             0x00002 /* write access allowed */
  19#define _PAGE_READ              0x00004 /* read access allowed */
  20#define _PAGE_RW                (_PAGE_READ | _PAGE_WRITE)
  21#define _PAGE_RWX               (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
  22#define _PAGE_PRIVILEGED        0x00008 /* kernel access only */
  23#define _PAGE_SAO               0x00010 /* Strong access order */
  24#define _PAGE_NON_IDEMPOTENT    0x00020 /* non idempotent memory */
  25#define _PAGE_TOLERANT          0x00030 /* tolerant memory, cache inhibited */
  26#define _PAGE_DIRTY             0x00080 /* C: page changed */
  27#define _PAGE_ACCESSED          0x00100 /* R: page referenced */
  28/*
  29 * Software bits
  30 */
  31#define _RPAGE_SW0              0x2000000000000000UL
  32#define _RPAGE_SW1              0x00800
  33#define _RPAGE_SW2              0x00400
  34#define _RPAGE_SW3              0x00200
  35#define _RPAGE_RSV1             0x1000000000000000UL
  36#define _RPAGE_RSV2             0x0800000000000000UL
  37#define _RPAGE_RSV3             0x0400000000000000UL
  38#define _RPAGE_RSV4             0x0200000000000000UL
  39
  40#ifdef CONFIG_MEM_SOFT_DIRTY
  41#define _PAGE_SOFT_DIRTY        _RPAGE_SW3 /* software: software dirty tracking */
  42#else
  43#define _PAGE_SOFT_DIRTY        0x00000
  44#endif
  45#define _PAGE_SPECIAL           _RPAGE_SW2 /* software: special page */
  46
  47/*
  48 * For P9 DD1 only, we need to track whether the pte's huge.
  49 */
  50#define _PAGE_LARGE     _RPAGE_RSV1
  51
  52
  53#define _PAGE_PTE               (1ul << 62)     /* distinguishes PTEs from pointers */
  54#define _PAGE_PRESENT           (1ul << 63)     /* pte contains a translation */
  55/*
  56 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
  57 * Instead of fixing all of them, add an alternate define which
  58 * maps CI pte mapping.
  59 */
  60#define _PAGE_NO_CACHE          _PAGE_TOLERANT
  61/*
  62 * We support 57 bit real address in pte. Clear everything above 57, and
  63 * every thing below PAGE_SHIFT;
  64 */
  65#define PTE_RPN_MASK    (((1UL << 57) - 1) & (PAGE_MASK))
  66/*
  67 * set of bits not changed in pmd_modify. Even though we have hash specific bits
  68 * in here, on radix we expect them to be zero.
  69 */
  70#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
  71                         _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
  72                         _PAGE_SOFT_DIRTY)
  73/*
  74 * user access blocked by key
  75 */
  76#define _PAGE_KERNEL_RW         (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
  77#define _PAGE_KERNEL_RO          (_PAGE_PRIVILEGED | _PAGE_READ)
  78#define _PAGE_KERNEL_RWX        (_PAGE_PRIVILEGED | _PAGE_DIRTY |       \
  79                                 _PAGE_RW | _PAGE_EXEC)
  80/*
  81 * No page size encoding in the linux PTE
  82 */
  83#define _PAGE_PSIZE             0
  84/*
  85 * _PAGE_CHG_MASK masks of bits that are to be preserved across
  86 * pgprot changes
  87 */
  88#define _PAGE_CHG_MASK  (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
  89                         _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |   \
  90                         _PAGE_SOFT_DIRTY)
  91/*
  92 * Mask of bits returned by pte_pgprot()
  93 */
  94#define PAGE_PROT_BITS  (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \
  95                         H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \
  96                         _PAGE_READ | _PAGE_WRITE |  _PAGE_DIRTY | _PAGE_EXEC | \
  97                         _PAGE_SOFT_DIRTY)
  98/*
  99 * We define 2 sets of base prot bits, one for basic pages (ie,
 100 * cacheable kernel and user pages) and one for non cacheable
 101 * pages. We always set _PAGE_COHERENT when SMP is enabled or
 102 * the processor might need it for DMA coherency.
 103 */
 104#define _PAGE_BASE_NC   (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
 105#define _PAGE_BASE      (_PAGE_BASE_NC)
 106
 107/* Permission masks used to generate the __P and __S table,
 108 *
 109 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
 110 *
 111 * Write permissions imply read permissions for now (we could make write-only
 112 * pages on BookE but we don't bother for now). Execute permission control is
 113 * possible on platforms that define _PAGE_EXEC
 114 *
 115 * Note due to the way vm flags are laid out, the bits are XWR
 116 */
 117#define PAGE_NONE       __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
 118#define PAGE_SHARED     __pgprot(_PAGE_BASE | _PAGE_RW)
 119#define PAGE_SHARED_X   __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
 120#define PAGE_COPY       __pgprot(_PAGE_BASE | _PAGE_READ)
 121#define PAGE_COPY_X     __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
 122#define PAGE_READONLY   __pgprot(_PAGE_BASE | _PAGE_READ)
 123#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
 124
 125#define __P000  PAGE_NONE
 126#define __P001  PAGE_READONLY
 127#define __P010  PAGE_COPY
 128#define __P011  PAGE_COPY
 129#define __P100  PAGE_READONLY_X
 130#define __P101  PAGE_READONLY_X
 131#define __P110  PAGE_COPY_X
 132#define __P111  PAGE_COPY_X
 133
 134#define __S000  PAGE_NONE
 135#define __S001  PAGE_READONLY
 136#define __S010  PAGE_SHARED
 137#define __S011  PAGE_SHARED
 138#define __S100  PAGE_READONLY_X
 139#define __S101  PAGE_READONLY_X
 140#define __S110  PAGE_SHARED_X
 141#define __S111  PAGE_SHARED_X
 142
 143/* Permission masks used for kernel mappings */
 144#define PAGE_KERNEL     __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
 145#define PAGE_KERNEL_NC  __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
 146                                 _PAGE_TOLERANT)
 147#define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
 148                                 _PAGE_NON_IDEMPOTENT)
 149#define PAGE_KERNEL_X   __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
 150#define PAGE_KERNEL_RO  __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
 151#define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
 152
 153/*
 154 * Protection used for kernel text. We want the debuggers to be able to
 155 * set breakpoints anywhere, so don't write protect the kernel text
 156 * on platforms where such control is possible.
 157 */
 158#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
 159        defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
 160#define PAGE_KERNEL_TEXT        PAGE_KERNEL_X
 161#else
 162#define PAGE_KERNEL_TEXT        PAGE_KERNEL_ROX
 163#endif
 164
 165/* Make modules code happy. We don't set RO yet */
 166#define PAGE_KERNEL_EXEC        PAGE_KERNEL_X
 167#define PAGE_AGP                (PAGE_KERNEL_NC)
 168
 169#ifndef __ASSEMBLY__
 170/*
 171 * page table defines
 172 */
 173extern unsigned long __pte_index_size;
 174extern unsigned long __pmd_index_size;
 175extern unsigned long __pud_index_size;
 176extern unsigned long __pgd_index_size;
 177extern unsigned long __pmd_cache_index;
 178#define PTE_INDEX_SIZE  __pte_index_size
 179#define PMD_INDEX_SIZE  __pmd_index_size
 180#define PUD_INDEX_SIZE  __pud_index_size
 181#define PGD_INDEX_SIZE  __pgd_index_size
 182#define PMD_CACHE_INDEX __pmd_cache_index
 183/*
 184 * Because of use of pte fragments and THP, size of page table
 185 * are not always derived out of index size above.
 186 */
 187extern unsigned long __pte_table_size;
 188extern unsigned long __pmd_table_size;
 189extern unsigned long __pud_table_size;
 190extern unsigned long __pgd_table_size;
 191#define PTE_TABLE_SIZE  __pte_table_size
 192#define PMD_TABLE_SIZE  __pmd_table_size
 193#define PUD_TABLE_SIZE  __pud_table_size
 194#define PGD_TABLE_SIZE  __pgd_table_size
 195
 196extern unsigned long __pmd_val_bits;
 197extern unsigned long __pud_val_bits;
 198extern unsigned long __pgd_val_bits;
 199#define PMD_VAL_BITS    __pmd_val_bits
 200#define PUD_VAL_BITS    __pud_val_bits
 201#define PGD_VAL_BITS    __pgd_val_bits
 202
 203extern unsigned long __pte_frag_nr;
 204#define PTE_FRAG_NR __pte_frag_nr
 205extern unsigned long __pte_frag_size_shift;
 206#define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
 207#define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
 208/*
 209 * Pgtable size used by swapper, init in asm code
 210 */
 211#define MAX_PGD_TABLE_SIZE (sizeof(pgd_t) << RADIX_PGD_INDEX_SIZE)
 212
 213#define PTRS_PER_PTE    (1 << PTE_INDEX_SIZE)
 214#define PTRS_PER_PMD    (1 << PMD_INDEX_SIZE)
 215#define PTRS_PER_PUD    (1 << PUD_INDEX_SIZE)
 216#define PTRS_PER_PGD    (1 << PGD_INDEX_SIZE)
 217
 218/* PMD_SHIFT determines what a second-level page table entry can map */
 219#define PMD_SHIFT       (PAGE_SHIFT + PTE_INDEX_SIZE)
 220#define PMD_SIZE        (1UL << PMD_SHIFT)
 221#define PMD_MASK        (~(PMD_SIZE-1))
 222
 223/* PUD_SHIFT determines what a third-level page table entry can map */
 224#define PUD_SHIFT       (PMD_SHIFT + PMD_INDEX_SIZE)
 225#define PUD_SIZE        (1UL << PUD_SHIFT)
 226#define PUD_MASK        (~(PUD_SIZE-1))
 227
 228/* PGDIR_SHIFT determines what a fourth-level page table entry can map */
 229#define PGDIR_SHIFT     (PUD_SHIFT + PUD_INDEX_SIZE)
 230#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
 231#define PGDIR_MASK      (~(PGDIR_SIZE-1))
 232
 233/* Bits to mask out from a PMD to get to the PTE page */
 234#define PMD_MASKED_BITS         0xc0000000000000ffUL
 235/* Bits to mask out from a PUD to get to the PMD page */
 236#define PUD_MASKED_BITS         0xc0000000000000ffUL
 237/* Bits to mask out from a PGD to get to the PUD page */
 238#define PGD_MASKED_BITS         0xc0000000000000ffUL
 239
 240extern unsigned long __vmalloc_start;
 241extern unsigned long __vmalloc_end;
 242#define VMALLOC_START   __vmalloc_start
 243#define VMALLOC_END     __vmalloc_end
 244
 245extern unsigned long __kernel_virt_start;
 246extern unsigned long __kernel_virt_size;
 247#define KERN_VIRT_START __kernel_virt_start
 248#define KERN_VIRT_SIZE  __kernel_virt_size
 249extern struct page *vmemmap;
 250extern unsigned long ioremap_bot;
 251extern unsigned long pci_io_base;
 252#endif /* __ASSEMBLY__ */
 253
 254#include <asm/book3s/64/hash.h>
 255#include <asm/book3s/64/radix.h>
 256
 257#ifdef CONFIG_PPC_64K_PAGES
 258#include <asm/book3s/64/pgtable-64k.h>
 259#else
 260#include <asm/book3s/64/pgtable-4k.h>
 261#endif
 262
 263#include <asm/barrier.h>
 264/*
 265 * The second half of the kernel virtual space is used for IO mappings,
 266 * it's itself carved into the PIO region (ISA and PHB IO space) and
 267 * the ioremap space
 268 *
 269 *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
 270 *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
 271 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
 272 */
 273#define KERN_IO_START   (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
 274#define FULL_IO_SIZE    0x80000000ul
 275#define  ISA_IO_BASE    (KERN_IO_START)
 276#define  ISA_IO_END     (KERN_IO_START + 0x10000ul)
 277#define  PHB_IO_BASE    (ISA_IO_END)
 278#define  PHB_IO_END     (KERN_IO_START + FULL_IO_SIZE)
 279#define IOREMAP_BASE    (PHB_IO_END)
 280#define IOREMAP_END     (KERN_VIRT_START + KERN_VIRT_SIZE)
 281
 282/* Advertise special mapping type for AGP */
 283#define HAVE_PAGE_AGP
 284
 285/* Advertise support for _PAGE_SPECIAL */
 286#define __HAVE_ARCH_PTE_SPECIAL
 287
 288#ifndef __ASSEMBLY__
 289
 290/*
 291 * This is the default implementation of various PTE accessors, it's
 292 * used in all cases except Book3S with 64K pages where we have a
 293 * concept of sub-pages
 294 */
 295#ifndef __real_pte
 296
 297#define __real_pte(e,p)         ((real_pte_t){(e)})
 298#define __rpte_to_pte(r)        ((r).pte)
 299#define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
 300
 301#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
 302        do {                                                             \
 303                index = 0;                                               \
 304                shift = mmu_psize_defs[psize].shift;                     \
 305
 306#define pte_iterate_hashed_end() } while(0)
 307
 308/*
 309 * We expect this to be called only for user addresses or kernel virtual
 310 * addresses other than the linear mapping.
 311 */
 312#define pte_pagesize_index(mm, addr, pte)       MMU_PAGE_4K
 313
 314#endif /* __real_pte */
 315
 316static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
 317                                       pte_t *ptep, unsigned long clr,
 318                                       unsigned long set, int huge)
 319{
 320        if (radix_enabled())
 321                return radix__pte_update(mm, addr, ptep, clr, set, huge);
 322        return hash__pte_update(mm, addr, ptep, clr, set, huge);
 323}
 324/*
 325 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
 326 * We currently remove entries from the hashtable regardless of whether
 327 * the entry was young or dirty.
 328 *
 329 * We should be more intelligent about this but for the moment we override
 330 * these functions and force a tlb flush unconditionally
 331 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
 332 * function for both hash and radix.
 333 */
 334static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
 335                                              unsigned long addr, pte_t *ptep)
 336{
 337        unsigned long old;
 338
 339        if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
 340                return 0;
 341        old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
 342        return (old & _PAGE_ACCESSED) != 0;
 343}
 344
 345#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 346#define ptep_test_and_clear_young(__vma, __addr, __ptep)        \
 347({                                                              \
 348        int __r;                                                \
 349        __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
 350        __r;                                                    \
 351})
 352
 353static inline int __pte_write(pte_t pte)
 354{
 355        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
 356}
 357
 358#ifdef CONFIG_NUMA_BALANCING
 359#define pte_savedwrite pte_savedwrite
 360static inline bool pte_savedwrite(pte_t pte)
 361{
 362        /*
 363         * Saved write ptes are prot none ptes that doesn't have
 364         * privileged bit sit. We mark prot none as one which has
 365         * present and pviliged bit set and RWX cleared. To mark
 366         * protnone which used to have _PAGE_WRITE set we clear
 367         * the privileged bit.
 368         */
 369        return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
 370}
 371#else
 372#define pte_savedwrite pte_savedwrite
 373static inline bool pte_savedwrite(pte_t pte)
 374{
 375        return false;
 376}
 377#endif
 378
 379static inline int pte_write(pte_t pte)
 380{
 381        return __pte_write(pte) || pte_savedwrite(pte);
 382}
 383
 384#define __HAVE_ARCH_PTEP_SET_WRPROTECT
 385static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
 386                                      pte_t *ptep)
 387{
 388        if (__pte_write(*ptep))
 389                pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
 390        else if (unlikely(pte_savedwrite(*ptep)))
 391                pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
 392}
 393
 394static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
 395                                           unsigned long addr, pte_t *ptep)
 396{
 397        /*
 398         * We should not find protnone for hugetlb, but this complete the
 399         * interface.
 400         */
 401        if (__pte_write(*ptep))
 402                pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
 403        else if (unlikely(pte_savedwrite(*ptep)))
 404                pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
 405}
 406
 407#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 408static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 409                                       unsigned long addr, pte_t *ptep)
 410{
 411        unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
 412        return __pte(old);
 413}
 414
 415#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 416static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 417                                            unsigned long addr,
 418                                            pte_t *ptep, int full)
 419{
 420        if (full && radix_enabled()) {
 421                /*
 422                 * Let's skip the DD1 style pte update here. We know that
 423                 * this is a full mm pte clear and hence can be sure there is
 424                 * no parallel set_pte.
 425                 */
 426                return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
 427        }
 428        return ptep_get_and_clear(mm, addr, ptep);
 429}
 430
 431
 432static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
 433                             pte_t * ptep)
 434{
 435        pte_update(mm, addr, ptep, ~0UL, 0, 0);
 436}
 437
 438static inline int pte_dirty(pte_t pte)
 439{
 440        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
 441}
 442
 443static inline int pte_young(pte_t pte)
 444{
 445        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
 446}
 447
 448static inline int pte_special(pte_t pte)
 449{
 450        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
 451}
 452
 453static inline pgprot_t pte_pgprot(pte_t pte)    { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
 454
 455#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
 456static inline bool pte_soft_dirty(pte_t pte)
 457{
 458        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
 459}
 460
 461static inline pte_t pte_mksoft_dirty(pte_t pte)
 462{
 463        return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
 464}
 465
 466static inline pte_t pte_clear_soft_dirty(pte_t pte)
 467{
 468        return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY);
 469}
 470#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
 471
 472#ifdef CONFIG_NUMA_BALANCING
 473static inline int pte_protnone(pte_t pte)
 474{
 475        return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
 476                cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
 477}
 478
 479#define pte_mk_savedwrite pte_mk_savedwrite
 480static inline pte_t pte_mk_savedwrite(pte_t pte)
 481{
 482        /*
 483         * Used by Autonuma subsystem to preserve the write bit
 484         * while marking the pte PROT_NONE. Only allow this
 485         * on PROT_NONE pte
 486         */
 487        VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
 488                  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
 489        return __pte(pte_val(pte) & ~_PAGE_PRIVILEGED);
 490}
 491
 492#define pte_clear_savedwrite pte_clear_savedwrite
 493static inline pte_t pte_clear_savedwrite(pte_t pte)
 494{
 495        /*
 496         * Used by KSM subsystem to make a protnone pte readonly.
 497         */
 498        VM_BUG_ON(!pte_protnone(pte));
 499        return __pte(pte_val(pte) | _PAGE_PRIVILEGED);
 500}
 501#else
 502#define pte_clear_savedwrite pte_clear_savedwrite
 503static inline pte_t pte_clear_savedwrite(pte_t pte)
 504{
 505        VM_WARN_ON(1);
 506        return __pte(pte_val(pte) & ~_PAGE_WRITE);
 507}
 508#endif /* CONFIG_NUMA_BALANCING */
 509
 510static inline int pte_present(pte_t pte)
 511{
 512        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
 513}
 514/*
 515 * Conversion functions: convert a page and protection to a page entry,
 516 * and a page entry and page directory to the page they refer to.
 517 *
 518 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
 519 * long for now.
 520 */
 521static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
 522{
 523        return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
 524                     pgprot_val(pgprot));
 525}
 526
 527static inline unsigned long pte_pfn(pte_t pte)
 528{
 529        return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
 530}
 531
 532/* Generic modifiers for PTE bits */
 533static inline pte_t pte_wrprotect(pte_t pte)
 534{
 535        if (unlikely(pte_savedwrite(pte)))
 536                return pte_clear_savedwrite(pte);
 537        return __pte(pte_val(pte) & ~_PAGE_WRITE);
 538}
 539
 540static inline pte_t pte_mkclean(pte_t pte)
 541{
 542        return __pte(pte_val(pte) & ~_PAGE_DIRTY);
 543}
 544
 545static inline pte_t pte_mkold(pte_t pte)
 546{
 547        return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
 548}
 549
 550static inline pte_t pte_mkwrite(pte_t pte)
 551{
 552        /*
 553         * write implies read, hence set both
 554         */
 555        return __pte(pte_val(pte) | _PAGE_RW);
 556}
 557
 558static inline pte_t pte_mkdirty(pte_t pte)
 559{
 560        return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
 561}
 562
 563static inline pte_t pte_mkyoung(pte_t pte)
 564{
 565        return __pte(pte_val(pte) | _PAGE_ACCESSED);
 566}
 567
 568static inline pte_t pte_mkspecial(pte_t pte)
 569{
 570        return __pte(pte_val(pte) | _PAGE_SPECIAL);
 571}
 572
 573static inline pte_t pte_mkhuge(pte_t pte)
 574{
 575        return pte;
 576}
 577
 578static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 579{
 580        /* FIXME!! check whether this need to be a conditional */
 581        return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
 582}
 583
 584static inline bool pte_user(pte_t pte)
 585{
 586        return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
 587}
 588
 589/* Encode and de-code a swap entry */
 590#define MAX_SWAPFILES_CHECK() do { \
 591        BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
 592        /*                                                      \
 593         * Don't have overlapping bits with _PAGE_HPTEFLAGS     \
 594         * We filter HPTEFLAGS on set_pte.                      \
 595         */                                                     \
 596        BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
 597        BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);   \
 598        } while (0)
 599/*
 600 * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
 601 */
 602#define SWP_TYPE_BITS 5
 603#define __swp_type(x)           (((x).val >> _PAGE_BIT_SWAP_TYPE) \
 604                                & ((1UL << SWP_TYPE_BITS) - 1))
 605#define __swp_offset(x)         (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
 606#define __swp_entry(type, offset)       ((swp_entry_t) { \
 607                                ((type) << _PAGE_BIT_SWAP_TYPE) \
 608                                | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
 609/*
 610 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
 611 * swap type and offset we get from swap and convert that to pte to find a
 612 * matching pte in linux page table.
 613 * Clear bits not found in swap entries here.
 614 */
 615#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
 616#define __swp_entry_to_pte(x)   __pte((x).val | _PAGE_PTE)
 617
 618#ifdef CONFIG_MEM_SOFT_DIRTY
 619#define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
 620#else
 621#define _PAGE_SWP_SOFT_DIRTY    0UL
 622#endif /* CONFIG_MEM_SOFT_DIRTY */
 623
 624#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
 625static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
 626{
 627        return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
 628}
 629
 630static inline bool pte_swp_soft_dirty(pte_t pte)
 631{
 632        return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
 633}
 634
 635static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
 636{
 637        return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY);
 638}
 639#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
 640
 641static inline bool check_pte_access(unsigned long access, unsigned long ptev)
 642{
 643        /*
 644         * This check for _PAGE_RWX and _PAGE_PRESENT bits
 645         */
 646        if (access & ~ptev)
 647                return false;
 648        /*
 649         * This check for access to privilege space
 650         */
 651        if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
 652                return false;
 653
 654        return true;
 655}
 656/*
 657 * Generic functions with hash/radix callbacks
 658 */
 659
 660static inline void __ptep_set_access_flags(struct mm_struct *mm,
 661                                           pte_t *ptep, pte_t entry,
 662                                           unsigned long address)
 663{
 664        if (radix_enabled())
 665                return radix__ptep_set_access_flags(mm, ptep, entry, address);
 666        return hash__ptep_set_access_flags(ptep, entry);
 667}
 668
 669#define __HAVE_ARCH_PTE_SAME
 670static inline int pte_same(pte_t pte_a, pte_t pte_b)
 671{
 672        if (radix_enabled())
 673                return radix__pte_same(pte_a, pte_b);
 674        return hash__pte_same(pte_a, pte_b);
 675}
 676
 677static inline int pte_none(pte_t pte)
 678{
 679        if (radix_enabled())
 680                return radix__pte_none(pte);
 681        return hash__pte_none(pte);
 682}
 683
 684static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
 685                                pte_t *ptep, pte_t pte, int percpu)
 686{
 687        if (radix_enabled())
 688                return radix__set_pte_at(mm, addr, ptep, pte, percpu);
 689        return hash__set_pte_at(mm, addr, ptep, pte, percpu);
 690}
 691
 692#define _PAGE_CACHE_CTL (_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
 693
 694#define pgprot_noncached pgprot_noncached
 695static inline pgprot_t pgprot_noncached(pgprot_t prot)
 696{
 697        return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
 698                        _PAGE_NON_IDEMPOTENT);
 699}
 700
 701#define pgprot_noncached_wc pgprot_noncached_wc
 702static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
 703{
 704        return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
 705                        _PAGE_TOLERANT);
 706}
 707
 708#define pgprot_cached pgprot_cached
 709static inline pgprot_t pgprot_cached(pgprot_t prot)
 710{
 711        return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
 712}
 713
 714#define pgprot_writecombine pgprot_writecombine
 715static inline pgprot_t pgprot_writecombine(pgprot_t prot)
 716{
 717        return pgprot_noncached_wc(prot);
 718}
 719/*
 720 * check a pte mapping have cache inhibited property
 721 */
 722static inline bool pte_ci(pte_t pte)
 723{
 724        unsigned long pte_v = pte_val(pte);
 725
 726        if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) ||
 727            ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT))
 728                return true;
 729        return false;
 730}
 731
 732static inline void pmd_set(pmd_t *pmdp, unsigned long val)
 733{
 734        *pmdp = __pmd(val);
 735}
 736
 737static inline void pmd_clear(pmd_t *pmdp)
 738{
 739        *pmdp = __pmd(0);
 740}
 741
 742static inline int pmd_none(pmd_t pmd)
 743{
 744        return !pmd_raw(pmd);
 745}
 746
 747static inline int pmd_present(pmd_t pmd)
 748{
 749
 750        return !pmd_none(pmd);
 751}
 752
 753static inline int pmd_bad(pmd_t pmd)
 754{
 755        if (radix_enabled())
 756                return radix__pmd_bad(pmd);
 757        return hash__pmd_bad(pmd);
 758}
 759
 760static inline void pud_set(pud_t *pudp, unsigned long val)
 761{
 762        *pudp = __pud(val);
 763}
 764
 765static inline void pud_clear(pud_t *pudp)
 766{
 767        *pudp = __pud(0);
 768}
 769
 770static inline int pud_none(pud_t pud)
 771{
 772        return !pud_raw(pud);
 773}
 774
 775static inline int pud_present(pud_t pud)
 776{
 777        return !pud_none(pud);
 778}
 779
 780extern struct page *pud_page(pud_t pud);
 781extern struct page *pmd_page(pmd_t pmd);
 782static inline pte_t pud_pte(pud_t pud)
 783{
 784        return __pte_raw(pud_raw(pud));
 785}
 786
 787static inline pud_t pte_pud(pte_t pte)
 788{
 789        return __pud_raw(pte_raw(pte));
 790}
 791#define pud_write(pud)          pte_write(pud_pte(pud))
 792
 793static inline int pud_bad(pud_t pud)
 794{
 795        if (radix_enabled())
 796                return radix__pud_bad(pud);
 797        return hash__pud_bad(pud);
 798}
 799
 800
 801#define pgd_write(pgd)          pte_write(pgd_pte(pgd))
 802static inline void pgd_set(pgd_t *pgdp, unsigned long val)
 803{
 804        *pgdp = __pgd(val);
 805}
 806
 807static inline void pgd_clear(pgd_t *pgdp)
 808{
 809        *pgdp = __pgd(0);
 810}
 811
 812static inline int pgd_none(pgd_t pgd)
 813{
 814        return !pgd_raw(pgd);
 815}
 816
 817static inline int pgd_present(pgd_t pgd)
 818{
 819        return !pgd_none(pgd);
 820}
 821
 822static inline pte_t pgd_pte(pgd_t pgd)
 823{
 824        return __pte_raw(pgd_raw(pgd));
 825}
 826
 827static inline pgd_t pte_pgd(pte_t pte)
 828{
 829        return __pgd_raw(pte_raw(pte));
 830}
 831
 832static inline int pgd_bad(pgd_t pgd)
 833{
 834        if (radix_enabled())
 835                return radix__pgd_bad(pgd);
 836        return hash__pgd_bad(pgd);
 837}
 838
 839extern struct page *pgd_page(pgd_t pgd);
 840
 841/* Pointers in the page table tree are physical addresses */
 842#define __pgtable_ptr_val(ptr)  __pa(ptr)
 843
 844#define pmd_page_vaddr(pmd)     __va(pmd_val(pmd) & ~PMD_MASKED_BITS)
 845#define pud_page_vaddr(pud)     __va(pud_val(pud) & ~PUD_MASKED_BITS)
 846#define pgd_page_vaddr(pgd)     __va(pgd_val(pgd) & ~PGD_MASKED_BITS)
 847
 848#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
 849#define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
 850#define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
 851#define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
 852
 853/*
 854 * Find an entry in a page-table-directory.  We combine the address region
 855 * (the high order N bits) and the pgd portion of the address.
 856 */
 857
 858#define pgd_offset(mm, address)  ((mm)->pgd + pgd_index(address))
 859
 860#define pud_offset(pgdp, addr)  \
 861        (((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
 862#define pmd_offset(pudp,addr) \
 863        (((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
 864#define pte_offset_kernel(dir,addr) \
 865        (((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
 866
 867#define pte_offset_map(dir,addr)        pte_offset_kernel((dir), (addr))
 868#define pte_unmap(pte)                  do { } while(0)
 869
 870/* to find an entry in a kernel page-table-directory */
 871/* This now only contains the vmalloc pages */
 872#define pgd_offset_k(address) pgd_offset(&init_mm, address)
 873
 874#define pte_ERROR(e) \
 875        pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
 876#define pmd_ERROR(e) \
 877        pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
 878#define pud_ERROR(e) \
 879        pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
 880#define pgd_ERROR(e) \
 881        pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
 882
 883static inline int map_kernel_page(unsigned long ea, unsigned long pa,
 884                                  unsigned long flags)
 885{
 886        if (radix_enabled()) {
 887#if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
 888                unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
 889                WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
 890#endif
 891                return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE);
 892        }
 893        return hash__map_kernel_page(ea, pa, flags);
 894}
 895
 896static inline int __meminit vmemmap_create_mapping(unsigned long start,
 897                                                   unsigned long page_size,
 898                                                   unsigned long phys)
 899{
 900        if (radix_enabled())
 901                return radix__vmemmap_create_mapping(start, page_size, phys);
 902        return hash__vmemmap_create_mapping(start, page_size, phys);
 903}
 904
 905#ifdef CONFIG_MEMORY_HOTPLUG
 906static inline void vmemmap_remove_mapping(unsigned long start,
 907                                          unsigned long page_size)
 908{
 909        if (radix_enabled())
 910                return radix__vmemmap_remove_mapping(start, page_size);
 911        return hash__vmemmap_remove_mapping(start, page_size);
 912}
 913#endif
 914struct page *realmode_pfn_to_page(unsigned long pfn);
 915
 916static inline pte_t pmd_pte(pmd_t pmd)
 917{
 918        return __pte_raw(pmd_raw(pmd));
 919}
 920
 921static inline pmd_t pte_pmd(pte_t pte)
 922{
 923        return __pmd_raw(pte_raw(pte));
 924}
 925
 926static inline pte_t *pmdp_ptep(pmd_t *pmd)
 927{
 928        return (pte_t *)pmd;
 929}
 930#define pmd_pfn(pmd)            pte_pfn(pmd_pte(pmd))
 931#define pmd_dirty(pmd)          pte_dirty(pmd_pte(pmd))
 932#define pmd_young(pmd)          pte_young(pmd_pte(pmd))
 933#define pmd_mkold(pmd)          pte_pmd(pte_mkold(pmd_pte(pmd)))
 934#define pmd_wrprotect(pmd)      pte_pmd(pte_wrprotect(pmd_pte(pmd)))
 935#define pmd_mkdirty(pmd)        pte_pmd(pte_mkdirty(pmd_pte(pmd)))
 936#define pmd_mkclean(pmd)        pte_pmd(pte_mkclean(pmd_pte(pmd)))
 937#define pmd_mkyoung(pmd)        pte_pmd(pte_mkyoung(pmd_pte(pmd)))
 938#define pmd_mkwrite(pmd)        pte_pmd(pte_mkwrite(pmd_pte(pmd)))
 939#define pmd_mk_savedwrite(pmd)  pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
 940#define pmd_clear_savedwrite(pmd)       pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
 941
 942#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
 943#define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
 944#define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
 945#define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
 946#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
 947
 948#ifdef CONFIG_NUMA_BALANCING
 949static inline int pmd_protnone(pmd_t pmd)
 950{
 951        return pte_protnone(pmd_pte(pmd));
 952}
 953#endif /* CONFIG_NUMA_BALANCING */
 954
 955#define __HAVE_ARCH_PMD_WRITE
 956#define pmd_write(pmd)          pte_write(pmd_pte(pmd))
 957#define __pmd_write(pmd)        __pte_write(pmd_pte(pmd))
 958#define pmd_savedwrite(pmd)     pte_savedwrite(pmd_pte(pmd))
 959
 960#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 961extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
 962extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
 963extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
 964extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
 965                       pmd_t *pmdp, pmd_t pmd);
 966extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
 967                                 pmd_t *pmd);
 968extern int hash__has_transparent_hugepage(void);
 969static inline int has_transparent_hugepage(void)
 970{
 971        if (radix_enabled())
 972                return radix__has_transparent_hugepage();
 973        return hash__has_transparent_hugepage();
 974}
 975#define has_transparent_hugepage has_transparent_hugepage
 976
 977static inline unsigned long
 978pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
 979                    unsigned long clr, unsigned long set)
 980{
 981        if (radix_enabled())
 982                return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
 983        return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
 984}
 985
 986static inline int pmd_large(pmd_t pmd)
 987{
 988        return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
 989}
 990
 991static inline pmd_t pmd_mknotpresent(pmd_t pmd)
 992{
 993        return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
 994}
 995/*
 996 * For radix we should always find H_PAGE_HASHPTE zero. Hence
 997 * the below will work for radix too
 998 */
 999static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1000                                              unsigned long addr, pmd_t *pmdp)
1001{
1002        unsigned long old;
1003
1004        if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1005                return 0;
1006        old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1007        return ((old & _PAGE_ACCESSED) != 0);
1008}
1009
1010#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1011static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1012                                      pmd_t *pmdp)
1013{
1014        if (__pmd_write((*pmdp)))
1015                pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1016        else if (unlikely(pmd_savedwrite(*pmdp)))
1017                pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1018}
1019
1020static inline int pmd_trans_huge(pmd_t pmd)
1021{
1022        if (radix_enabled())
1023                return radix__pmd_trans_huge(pmd);
1024        return hash__pmd_trans_huge(pmd);
1025}
1026
1027#define __HAVE_ARCH_PMD_SAME
1028static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1029{
1030        if (radix_enabled())
1031                return radix__pmd_same(pmd_a, pmd_b);
1032        return hash__pmd_same(pmd_a, pmd_b);
1033}
1034
1035static inline pmd_t pmd_mkhuge(pmd_t pmd)
1036{
1037        if (radix_enabled())
1038                return radix__pmd_mkhuge(pmd);
1039        return hash__pmd_mkhuge(pmd);
1040}
1041
1042#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1043extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1044                                 unsigned long address, pmd_t *pmdp,
1045                                 pmd_t entry, int dirty);
1046
1047#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1048extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1049                                     unsigned long address, pmd_t *pmdp);
1050
1051#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1052static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1053                                            unsigned long addr, pmd_t *pmdp)
1054{
1055        if (radix_enabled())
1056                return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1057        return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1058}
1059
1060static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1061                                        unsigned long address, pmd_t *pmdp)
1062{
1063        if (radix_enabled())
1064                return radix__pmdp_collapse_flush(vma, address, pmdp);
1065        return hash__pmdp_collapse_flush(vma, address, pmdp);
1066}
1067#define pmdp_collapse_flush pmdp_collapse_flush
1068
1069#define __HAVE_ARCH_PGTABLE_DEPOSIT
1070static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1071                                              pmd_t *pmdp, pgtable_t pgtable)
1072{
1073        if (radix_enabled())
1074                return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1075        return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1076}
1077
1078#define __HAVE_ARCH_PGTABLE_WITHDRAW
1079static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1080                                                    pmd_t *pmdp)
1081{
1082        if (radix_enabled())
1083                return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1084        return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1085}
1086
1087#define __HAVE_ARCH_PMDP_INVALIDATE
1088extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1089                            pmd_t *pmdp);
1090
1091#define __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
1092static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
1093                                           unsigned long address, pmd_t *pmdp)
1094{
1095        if (radix_enabled())
1096                return radix__pmdp_huge_split_prepare(vma, address, pmdp);
1097        return hash__pmdp_huge_split_prepare(vma, address, pmdp);
1098}
1099
1100#define pmd_move_must_withdraw pmd_move_must_withdraw
1101struct spinlock;
1102static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1103                                         struct spinlock *old_pmd_ptl,
1104                                         struct vm_area_struct *vma)
1105{
1106        if (radix_enabled())
1107                return false;
1108        /*
1109         * Archs like ppc64 use pgtable to store per pmd
1110         * specific information. So when we switch the pmd,
1111         * we should also withdraw and deposit the pgtable
1112         */
1113        return true;
1114}
1115
1116
1117#define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1118static inline bool arch_needs_pgtable_deposit(void)
1119{
1120        if (radix_enabled())
1121                return false;
1122        return true;
1123}
1124
1125#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1126#endif /* __ASSEMBLY__ */
1127#endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1128