linux/arch/powerpc/kernel/traps.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
   3 *  Copyright 2007-2010 Freescale Semiconductor, Inc.
   4 *
   5 *  This program is free software; you can redistribute it and/or
   6 *  modify it under the terms of the GNU General Public License
   7 *  as published by the Free Software Foundation; either version
   8 *  2 of the License, or (at your option) any later version.
   9 *
  10 *  Modified by Cort Dougan (cort@cs.nmt.edu)
  11 *  and Paul Mackerras (paulus@samba.org)
  12 */
  13
  14/*
  15 * This file handles the architecture-dependent parts of hardware exceptions
  16 */
  17
  18#include <linux/errno.h>
  19#include <linux/sched.h>
  20#include <linux/sched/debug.h>
  21#include <linux/kernel.h>
  22#include <linux/mm.h>
  23#include <linux/stddef.h>
  24#include <linux/unistd.h>
  25#include <linux/ptrace.h>
  26#include <linux/user.h>
  27#include <linux/interrupt.h>
  28#include <linux/init.h>
  29#include <linux/extable.h>
  30#include <linux/module.h>       /* print_modules */
  31#include <linux/prctl.h>
  32#include <linux/delay.h>
  33#include <linux/kprobes.h>
  34#include <linux/kexec.h>
  35#include <linux/backlight.h>
  36#include <linux/bug.h>
  37#include <linux/kdebug.h>
  38#include <linux/debugfs.h>
  39#include <linux/ratelimit.h>
  40#include <linux/context_tracking.h>
  41
  42#include <asm/emulated_ops.h>
  43#include <asm/pgtable.h>
  44#include <linux/uaccess.h>
  45#include <asm/io.h>
  46#include <asm/machdep.h>
  47#include <asm/rtas.h>
  48#include <asm/pmc.h>
  49#include <asm/reg.h>
  50#ifdef CONFIG_PMAC_BACKLIGHT
  51#include <asm/backlight.h>
  52#endif
  53#ifdef CONFIG_PPC64
  54#include <asm/firmware.h>
  55#include <asm/processor.h>
  56#include <asm/tm.h>
  57#endif
  58#include <asm/kexec.h>
  59#include <asm/ppc-opcode.h>
  60#include <asm/rio.h>
  61#include <asm/fadump.h>
  62#include <asm/switch_to.h>
  63#include <asm/tm.h>
  64#include <asm/debug.h>
  65#include <asm/asm-prototypes.h>
  66#include <asm/hmi.h>
  67#include <sysdev/fsl_pci.h>
  68#include <asm/kprobes.h>
  69
  70#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
  71int (*__debugger)(struct pt_regs *regs) __read_mostly;
  72int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
  73int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
  74int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
  75int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
  76int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
  77int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
  78
  79EXPORT_SYMBOL(__debugger);
  80EXPORT_SYMBOL(__debugger_ipi);
  81EXPORT_SYMBOL(__debugger_bpt);
  82EXPORT_SYMBOL(__debugger_sstep);
  83EXPORT_SYMBOL(__debugger_iabr_match);
  84EXPORT_SYMBOL(__debugger_break_match);
  85EXPORT_SYMBOL(__debugger_fault_handler);
  86#endif
  87
  88/* Transactional Memory trap debug */
  89#ifdef TM_DEBUG_SW
  90#define TM_DEBUG(x...) printk(KERN_INFO x)
  91#else
  92#define TM_DEBUG(x...) do { } while(0)
  93#endif
  94
  95/*
  96 * Trap & Exception support
  97 */
  98
  99#ifdef CONFIG_PMAC_BACKLIGHT
 100static void pmac_backlight_unblank(void)
 101{
 102        mutex_lock(&pmac_backlight_mutex);
 103        if (pmac_backlight) {
 104                struct backlight_properties *props;
 105
 106                props = &pmac_backlight->props;
 107                props->brightness = props->max_brightness;
 108                props->power = FB_BLANK_UNBLANK;
 109                backlight_update_status(pmac_backlight);
 110        }
 111        mutex_unlock(&pmac_backlight_mutex);
 112}
 113#else
 114static inline void pmac_backlight_unblank(void) { }
 115#endif
 116
 117static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 118static int die_owner = -1;
 119static unsigned int die_nest_count;
 120static int die_counter;
 121
 122static unsigned long oops_begin(struct pt_regs *regs)
 123{
 124        int cpu;
 125        unsigned long flags;
 126
 127        oops_enter();
 128
 129        /* racy, but better than risking deadlock. */
 130        raw_local_irq_save(flags);
 131        cpu = smp_processor_id();
 132        if (!arch_spin_trylock(&die_lock)) {
 133                if (cpu == die_owner)
 134                        /* nested oops. should stop eventually */;
 135                else
 136                        arch_spin_lock(&die_lock);
 137        }
 138        die_nest_count++;
 139        die_owner = cpu;
 140        console_verbose();
 141        bust_spinlocks(1);
 142        if (machine_is(powermac))
 143                pmac_backlight_unblank();
 144        return flags;
 145}
 146NOKPROBE_SYMBOL(oops_begin);
 147
 148static void oops_end(unsigned long flags, struct pt_regs *regs,
 149                               int signr)
 150{
 151        bust_spinlocks(0);
 152        add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 153        die_nest_count--;
 154        oops_exit();
 155        printk("\n");
 156        if (!die_nest_count) {
 157                /* Nest count reaches zero, release the lock. */
 158                die_owner = -1;
 159                arch_spin_unlock(&die_lock);
 160        }
 161        raw_local_irq_restore(flags);
 162
 163        crash_fadump(regs, "die oops");
 164
 165        /*
 166         * A system reset (0x100) is a request to dump, so we always send
 167         * it through the crashdump code.
 168         */
 169        if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
 170                crash_kexec(regs);
 171
 172                /*
 173                 * We aren't the primary crash CPU. We need to send it
 174                 * to a holding pattern to avoid it ending up in the panic
 175                 * code.
 176                 */
 177                crash_kexec_secondary(regs);
 178        }
 179
 180        if (!signr)
 181                return;
 182
 183        /*
 184         * While our oops output is serialised by a spinlock, output
 185         * from panic() called below can race and corrupt it. If we
 186         * know we are going to panic, delay for 1 second so we have a
 187         * chance to get clean backtraces from all CPUs that are oopsing.
 188         */
 189        if (in_interrupt() || panic_on_oops || !current->pid ||
 190            is_global_init(current)) {
 191                mdelay(MSEC_PER_SEC);
 192        }
 193
 194        if (in_interrupt())
 195                panic("Fatal exception in interrupt");
 196        if (panic_on_oops)
 197                panic("Fatal exception");
 198        do_exit(signr);
 199}
 200NOKPROBE_SYMBOL(oops_end);
 201
 202static int __die(const char *str, struct pt_regs *regs, long err)
 203{
 204        printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
 205#ifdef CONFIG_PREEMPT
 206        printk("PREEMPT ");
 207#endif
 208#ifdef CONFIG_SMP
 209        printk("SMP NR_CPUS=%d ", NR_CPUS);
 210#endif
 211        if (debug_pagealloc_enabled())
 212                printk("DEBUG_PAGEALLOC ");
 213#ifdef CONFIG_NUMA
 214        printk("NUMA ");
 215#endif
 216        printk("%s\n", ppc_md.name ? ppc_md.name : "");
 217
 218        if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
 219                return 1;
 220
 221        print_modules();
 222        show_regs(regs);
 223
 224        return 0;
 225}
 226NOKPROBE_SYMBOL(__die);
 227
 228void die(const char *str, struct pt_regs *regs, long err)
 229{
 230        unsigned long flags;
 231
 232        if (debugger(regs))
 233                return;
 234
 235        flags = oops_begin(regs);
 236        if (__die(str, regs, err))
 237                err = 0;
 238        oops_end(flags, regs, err);
 239}
 240
 241void user_single_step_siginfo(struct task_struct *tsk,
 242                                struct pt_regs *regs, siginfo_t *info)
 243{
 244        memset(info, 0, sizeof(*info));
 245        info->si_signo = SIGTRAP;
 246        info->si_code = TRAP_TRACE;
 247        info->si_addr = (void __user *)regs->nip;
 248}
 249
 250void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
 251{
 252        siginfo_t info;
 253        const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
 254                        "at %08lx nip %08lx lr %08lx code %x\n";
 255        const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
 256                        "at %016lx nip %016lx lr %016lx code %x\n";
 257
 258        if (!user_mode(regs)) {
 259                die("Exception in kernel mode", regs, signr);
 260                return;
 261        }
 262
 263        if (show_unhandled_signals && unhandled_signal(current, signr)) {
 264                printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
 265                                   current->comm, current->pid, signr,
 266                                   addr, regs->nip, regs->link, code);
 267        }
 268
 269        if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
 270                local_irq_enable();
 271
 272        current->thread.trap_nr = code;
 273        memset(&info, 0, sizeof(info));
 274        info.si_signo = signr;
 275        info.si_code = code;
 276        info.si_addr = (void __user *) addr;
 277        force_sig_info(signr, &info, current);
 278}
 279
 280void system_reset_exception(struct pt_regs *regs)
 281{
 282        /* See if any machine dependent calls */
 283        if (ppc_md.system_reset_exception) {
 284                if (ppc_md.system_reset_exception(regs))
 285                        return;
 286        }
 287
 288        die("System Reset", regs, SIGABRT);
 289
 290        /* Must die if the interrupt is not recoverable */
 291        if (!(regs->msr & MSR_RI))
 292                panic("Unrecoverable System Reset");
 293
 294        /* What should we do here? We could issue a shutdown or hard reset. */
 295}
 296
 297#ifdef CONFIG_PPC64
 298/*
 299 * This function is called in real mode. Strictly no printk's please.
 300 *
 301 * regs->nip and regs->msr contains srr0 and ssr1.
 302 */
 303long machine_check_early(struct pt_regs *regs)
 304{
 305        long handled = 0;
 306
 307        __this_cpu_inc(irq_stat.mce_exceptions);
 308
 309        add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
 310
 311        if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
 312                handled = cur_cpu_spec->machine_check_early(regs);
 313        return handled;
 314}
 315
 316long hmi_exception_realmode(struct pt_regs *regs)
 317{
 318        __this_cpu_inc(irq_stat.hmi_exceptions);
 319
 320        wait_for_subcore_guest_exit();
 321
 322        if (ppc_md.hmi_exception_early)
 323                ppc_md.hmi_exception_early(regs);
 324
 325        wait_for_tb_resync();
 326
 327        return 0;
 328}
 329
 330#endif
 331
 332/*
 333 * I/O accesses can cause machine checks on powermacs.
 334 * Check if the NIP corresponds to the address of a sync
 335 * instruction for which there is an entry in the exception
 336 * table.
 337 * Note that the 601 only takes a machine check on TEA
 338 * (transfer error ack) signal assertion, and does not
 339 * set any of the top 16 bits of SRR1.
 340 *  -- paulus.
 341 */
 342static inline int check_io_access(struct pt_regs *regs)
 343{
 344#ifdef CONFIG_PPC32
 345        unsigned long msr = regs->msr;
 346        const struct exception_table_entry *entry;
 347        unsigned int *nip = (unsigned int *)regs->nip;
 348
 349        if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
 350            && (entry = search_exception_tables(regs->nip)) != NULL) {
 351                /*
 352                 * Check that it's a sync instruction, or somewhere
 353                 * in the twi; isync; nop sequence that inb/inw/inl uses.
 354                 * As the address is in the exception table
 355                 * we should be able to read the instr there.
 356                 * For the debug message, we look at the preceding
 357                 * load or store.
 358                 */
 359                if (*nip == PPC_INST_NOP)
 360                        nip -= 2;
 361                else if (*nip == PPC_INST_ISYNC)
 362                        --nip;
 363                if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
 364                        unsigned int rb;
 365
 366                        --nip;
 367                        rb = (*nip >> 11) & 0x1f;
 368                        printk(KERN_DEBUG "%s bad port %lx at %p\n",
 369                               (*nip & 0x100)? "OUT to": "IN from",
 370                               regs->gpr[rb] - _IO_BASE, nip);
 371                        regs->msr |= MSR_RI;
 372                        regs->nip = extable_fixup(entry);
 373                        return 1;
 374                }
 375        }
 376#endif /* CONFIG_PPC32 */
 377        return 0;
 378}
 379
 380#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 381/* On 4xx, the reason for the machine check or program exception
 382   is in the ESR. */
 383#define get_reason(regs)        ((regs)->dsisr)
 384#ifndef CONFIG_FSL_BOOKE
 385#define get_mc_reason(regs)     ((regs)->dsisr)
 386#else
 387#define get_mc_reason(regs)     (mfspr(SPRN_MCSR))
 388#endif
 389#define REASON_FP               ESR_FP
 390#define REASON_ILLEGAL          (ESR_PIL | ESR_PUO)
 391#define REASON_PRIVILEGED       ESR_PPR
 392#define REASON_TRAP             ESR_PTR
 393
 394/* single-step stuff */
 395#define single_stepping(regs)   (current->thread.debug.dbcr0 & DBCR0_IC)
 396#define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
 397
 398#else
 399/* On non-4xx, the reason for the machine check or program
 400   exception is in the MSR. */
 401#define get_reason(regs)        ((regs)->msr)
 402#define get_mc_reason(regs)     ((regs)->msr)
 403#define REASON_TM               0x200000
 404#define REASON_FP               0x100000
 405#define REASON_ILLEGAL          0x80000
 406#define REASON_PRIVILEGED       0x40000
 407#define REASON_TRAP             0x20000
 408
 409#define single_stepping(regs)   ((regs)->msr & MSR_SE)
 410#define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
 411#endif
 412
 413#if defined(CONFIG_4xx)
 414int machine_check_4xx(struct pt_regs *regs)
 415{
 416        unsigned long reason = get_mc_reason(regs);
 417
 418        if (reason & ESR_IMCP) {
 419                printk("Instruction");
 420                mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 421        } else
 422                printk("Data");
 423        printk(" machine check in kernel mode.\n");
 424
 425        return 0;
 426}
 427
 428int machine_check_440A(struct pt_regs *regs)
 429{
 430        unsigned long reason = get_mc_reason(regs);
 431
 432        printk("Machine check in kernel mode.\n");
 433        if (reason & ESR_IMCP){
 434                printk("Instruction Synchronous Machine Check exception\n");
 435                mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 436        }
 437        else {
 438                u32 mcsr = mfspr(SPRN_MCSR);
 439                if (mcsr & MCSR_IB)
 440                        printk("Instruction Read PLB Error\n");
 441                if (mcsr & MCSR_DRB)
 442                        printk("Data Read PLB Error\n");
 443                if (mcsr & MCSR_DWB)
 444                        printk("Data Write PLB Error\n");
 445                if (mcsr & MCSR_TLBP)
 446                        printk("TLB Parity Error\n");
 447                if (mcsr & MCSR_ICP){
 448                        flush_instruction_cache();
 449                        printk("I-Cache Parity Error\n");
 450                }
 451                if (mcsr & MCSR_DCSP)
 452                        printk("D-Cache Search Parity Error\n");
 453                if (mcsr & MCSR_DCFP)
 454                        printk("D-Cache Flush Parity Error\n");
 455                if (mcsr & MCSR_IMPE)
 456                        printk("Machine Check exception is imprecise\n");
 457
 458                /* Clear MCSR */
 459                mtspr(SPRN_MCSR, mcsr);
 460        }
 461        return 0;
 462}
 463
 464int machine_check_47x(struct pt_regs *regs)
 465{
 466        unsigned long reason = get_mc_reason(regs);
 467        u32 mcsr;
 468
 469        printk(KERN_ERR "Machine check in kernel mode.\n");
 470        if (reason & ESR_IMCP) {
 471                printk(KERN_ERR
 472                       "Instruction Synchronous Machine Check exception\n");
 473                mtspr(SPRN_ESR, reason & ~ESR_IMCP);
 474                return 0;
 475        }
 476        mcsr = mfspr(SPRN_MCSR);
 477        if (mcsr & MCSR_IB)
 478                printk(KERN_ERR "Instruction Read PLB Error\n");
 479        if (mcsr & MCSR_DRB)
 480                printk(KERN_ERR "Data Read PLB Error\n");
 481        if (mcsr & MCSR_DWB)
 482                printk(KERN_ERR "Data Write PLB Error\n");
 483        if (mcsr & MCSR_TLBP)
 484                printk(KERN_ERR "TLB Parity Error\n");
 485        if (mcsr & MCSR_ICP) {
 486                flush_instruction_cache();
 487                printk(KERN_ERR "I-Cache Parity Error\n");
 488        }
 489        if (mcsr & MCSR_DCSP)
 490                printk(KERN_ERR "D-Cache Search Parity Error\n");
 491        if (mcsr & PPC47x_MCSR_GPR)
 492                printk(KERN_ERR "GPR Parity Error\n");
 493        if (mcsr & PPC47x_MCSR_FPR)
 494                printk(KERN_ERR "FPR Parity Error\n");
 495        if (mcsr & PPC47x_MCSR_IPR)
 496                printk(KERN_ERR "Machine Check exception is imprecise\n");
 497
 498        /* Clear MCSR */
 499        mtspr(SPRN_MCSR, mcsr);
 500
 501        return 0;
 502}
 503#elif defined(CONFIG_E500)
 504int machine_check_e500mc(struct pt_regs *regs)
 505{
 506        unsigned long mcsr = mfspr(SPRN_MCSR);
 507        unsigned long reason = mcsr;
 508        int recoverable = 1;
 509
 510        if (reason & MCSR_LD) {
 511                recoverable = fsl_rio_mcheck_exception(regs);
 512                if (recoverable == 1)
 513                        goto silent_out;
 514        }
 515
 516        printk("Machine check in kernel mode.\n");
 517        printk("Caused by (from MCSR=%lx): ", reason);
 518
 519        if (reason & MCSR_MCP)
 520                printk("Machine Check Signal\n");
 521
 522        if (reason & MCSR_ICPERR) {
 523                printk("Instruction Cache Parity Error\n");
 524
 525                /*
 526                 * This is recoverable by invalidating the i-cache.
 527                 */
 528                mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
 529                while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
 530                        ;
 531
 532                /*
 533                 * This will generally be accompanied by an instruction
 534                 * fetch error report -- only treat MCSR_IF as fatal
 535                 * if it wasn't due to an L1 parity error.
 536                 */
 537                reason &= ~MCSR_IF;
 538        }
 539
 540        if (reason & MCSR_DCPERR_MC) {
 541                printk("Data Cache Parity Error\n");
 542
 543                /*
 544                 * In write shadow mode we auto-recover from the error, but it
 545                 * may still get logged and cause a machine check.  We should
 546                 * only treat the non-write shadow case as non-recoverable.
 547                 */
 548                if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
 549                        recoverable = 0;
 550        }
 551
 552        if (reason & MCSR_L2MMU_MHIT) {
 553                printk("Hit on multiple TLB entries\n");
 554                recoverable = 0;
 555        }
 556
 557        if (reason & MCSR_NMI)
 558                printk("Non-maskable interrupt\n");
 559
 560        if (reason & MCSR_IF) {
 561                printk("Instruction Fetch Error Report\n");
 562                recoverable = 0;
 563        }
 564
 565        if (reason & MCSR_LD) {
 566                printk("Load Error Report\n");
 567                recoverable = 0;
 568        }
 569
 570        if (reason & MCSR_ST) {
 571                printk("Store Error Report\n");
 572                recoverable = 0;
 573        }
 574
 575        if (reason & MCSR_LDG) {
 576                printk("Guarded Load Error Report\n");
 577                recoverable = 0;
 578        }
 579
 580        if (reason & MCSR_TLBSYNC)
 581                printk("Simultaneous tlbsync operations\n");
 582
 583        if (reason & MCSR_BSL2_ERR) {
 584                printk("Level 2 Cache Error\n");
 585                recoverable = 0;
 586        }
 587
 588        if (reason & MCSR_MAV) {
 589                u64 addr;
 590
 591                addr = mfspr(SPRN_MCAR);
 592                addr |= (u64)mfspr(SPRN_MCARU) << 32;
 593
 594                printk("Machine Check %s Address: %#llx\n",
 595                       reason & MCSR_MEA ? "Effective" : "Physical", addr);
 596        }
 597
 598silent_out:
 599        mtspr(SPRN_MCSR, mcsr);
 600        return mfspr(SPRN_MCSR) == 0 && recoverable;
 601}
 602
 603int machine_check_e500(struct pt_regs *regs)
 604{
 605        unsigned long reason = get_mc_reason(regs);
 606
 607        if (reason & MCSR_BUS_RBERR) {
 608                if (fsl_rio_mcheck_exception(regs))
 609                        return 1;
 610                if (fsl_pci_mcheck_exception(regs))
 611                        return 1;
 612        }
 613
 614        printk("Machine check in kernel mode.\n");
 615        printk("Caused by (from MCSR=%lx): ", reason);
 616
 617        if (reason & MCSR_MCP)
 618                printk("Machine Check Signal\n");
 619        if (reason & MCSR_ICPERR)
 620                printk("Instruction Cache Parity Error\n");
 621        if (reason & MCSR_DCP_PERR)
 622                printk("Data Cache Push Parity Error\n");
 623        if (reason & MCSR_DCPERR)
 624                printk("Data Cache Parity Error\n");
 625        if (reason & MCSR_BUS_IAERR)
 626                printk("Bus - Instruction Address Error\n");
 627        if (reason & MCSR_BUS_RAERR)
 628                printk("Bus - Read Address Error\n");
 629        if (reason & MCSR_BUS_WAERR)
 630                printk("Bus - Write Address Error\n");
 631        if (reason & MCSR_BUS_IBERR)
 632                printk("Bus - Instruction Data Error\n");
 633        if (reason & MCSR_BUS_RBERR)
 634                printk("Bus - Read Data Bus Error\n");
 635        if (reason & MCSR_BUS_WBERR)
 636                printk("Bus - Write Data Bus Error\n");
 637        if (reason & MCSR_BUS_IPERR)
 638                printk("Bus - Instruction Parity Error\n");
 639        if (reason & MCSR_BUS_RPERR)
 640                printk("Bus - Read Parity Error\n");
 641
 642        return 0;
 643}
 644
 645int machine_check_generic(struct pt_regs *regs)
 646{
 647        return 0;
 648}
 649#elif defined(CONFIG_E200)
 650int machine_check_e200(struct pt_regs *regs)
 651{
 652        unsigned long reason = get_mc_reason(regs);
 653
 654        printk("Machine check in kernel mode.\n");
 655        printk("Caused by (from MCSR=%lx): ", reason);
 656
 657        if (reason & MCSR_MCP)
 658                printk("Machine Check Signal\n");
 659        if (reason & MCSR_CP_PERR)
 660                printk("Cache Push Parity Error\n");
 661        if (reason & MCSR_CPERR)
 662                printk("Cache Parity Error\n");
 663        if (reason & MCSR_EXCP_ERR)
 664                printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
 665        if (reason & MCSR_BUS_IRERR)
 666                printk("Bus - Read Bus Error on instruction fetch\n");
 667        if (reason & MCSR_BUS_DRERR)
 668                printk("Bus - Read Bus Error on data load\n");
 669        if (reason & MCSR_BUS_WRERR)
 670                printk("Bus - Write Bus Error on buffered store or cache line push\n");
 671
 672        return 0;
 673}
 674#elif defined(CONFIG_PPC_8xx)
 675int machine_check_8xx(struct pt_regs *regs)
 676{
 677        unsigned long reason = get_mc_reason(regs);
 678
 679        pr_err("Machine check in kernel mode.\n");
 680        pr_err("Caused by (from SRR1=%lx): ", reason);
 681        if (reason & 0x40000000)
 682                pr_err("Fetch error at address %lx\n", regs->nip);
 683        else
 684                pr_err("Data access error at address %lx\n", regs->dar);
 685
 686#ifdef CONFIG_PCI
 687        /* the qspan pci read routines can cause machine checks -- Cort
 688         *
 689         * yuck !!! that totally needs to go away ! There are better ways
 690         * to deal with that than having a wart in the mcheck handler.
 691         * -- BenH
 692         */
 693        bad_page_fault(regs, regs->dar, SIGBUS);
 694        return 1;
 695#else
 696        return 0;
 697#endif
 698}
 699#else
 700int machine_check_generic(struct pt_regs *regs)
 701{
 702        unsigned long reason = get_mc_reason(regs);
 703
 704        printk("Machine check in kernel mode.\n");
 705        printk("Caused by (from SRR1=%lx): ", reason);
 706        switch (reason & 0x601F0000) {
 707        case 0x80000:
 708                printk("Machine check signal\n");
 709                break;
 710        case 0:         /* for 601 */
 711        case 0x40000:
 712        case 0x140000:  /* 7450 MSS error and TEA */
 713                printk("Transfer error ack signal\n");
 714                break;
 715        case 0x20000:
 716                printk("Data parity error signal\n");
 717                break;
 718        case 0x10000:
 719                printk("Address parity error signal\n");
 720                break;
 721        case 0x20000000:
 722                printk("L1 Data Cache error\n");
 723                break;
 724        case 0x40000000:
 725                printk("L1 Instruction Cache error\n");
 726                break;
 727        case 0x00100000:
 728                printk("L2 data cache parity error\n");
 729                break;
 730        default:
 731                printk("Unknown values in msr\n");
 732        }
 733        return 0;
 734}
 735#endif /* everything else */
 736
 737void machine_check_exception(struct pt_regs *regs)
 738{
 739        enum ctx_state prev_state = exception_enter();
 740        int recover = 0;
 741
 742        __this_cpu_inc(irq_stat.mce_exceptions);
 743
 744        /* See if any machine dependent calls. In theory, we would want
 745         * to call the CPU first, and call the ppc_md. one if the CPU
 746         * one returns a positive number. However there is existing code
 747         * that assumes the board gets a first chance, so let's keep it
 748         * that way for now and fix things later. --BenH.
 749         */
 750        if (ppc_md.machine_check_exception)
 751                recover = ppc_md.machine_check_exception(regs);
 752        else if (cur_cpu_spec->machine_check)
 753                recover = cur_cpu_spec->machine_check(regs);
 754
 755        if (recover > 0)
 756                goto bail;
 757
 758        if (debugger_fault_handler(regs))
 759                goto bail;
 760
 761        if (check_io_access(regs))
 762                goto bail;
 763
 764        die("Machine check", regs, SIGBUS);
 765
 766        /* Must die if the interrupt is not recoverable */
 767        if (!(regs->msr & MSR_RI))
 768                panic("Unrecoverable Machine check");
 769
 770bail:
 771        exception_exit(prev_state);
 772}
 773
 774void SMIException(struct pt_regs *regs)
 775{
 776        die("System Management Interrupt", regs, SIGABRT);
 777}
 778
 779void handle_hmi_exception(struct pt_regs *regs)
 780{
 781        struct pt_regs *old_regs;
 782
 783        old_regs = set_irq_regs(regs);
 784        irq_enter();
 785
 786        if (ppc_md.handle_hmi_exception)
 787                ppc_md.handle_hmi_exception(regs);
 788
 789        irq_exit();
 790        set_irq_regs(old_regs);
 791}
 792
 793void unknown_exception(struct pt_regs *regs)
 794{
 795        enum ctx_state prev_state = exception_enter();
 796
 797        printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
 798               regs->nip, regs->msr, regs->trap);
 799
 800        _exception(SIGTRAP, regs, 0, 0);
 801
 802        exception_exit(prev_state);
 803}
 804
 805void instruction_breakpoint_exception(struct pt_regs *regs)
 806{
 807        enum ctx_state prev_state = exception_enter();
 808
 809        if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
 810                                        5, SIGTRAP) == NOTIFY_STOP)
 811                goto bail;
 812        if (debugger_iabr_match(regs))
 813                goto bail;
 814        _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
 815
 816bail:
 817        exception_exit(prev_state);
 818}
 819
 820void RunModeException(struct pt_regs *regs)
 821{
 822        _exception(SIGTRAP, regs, 0, 0);
 823}
 824
 825void single_step_exception(struct pt_regs *regs)
 826{
 827        enum ctx_state prev_state = exception_enter();
 828
 829        clear_single_step(regs);
 830
 831        if (kprobe_post_handler(regs))
 832                return;
 833
 834        if (notify_die(DIE_SSTEP, "single_step", regs, 5,
 835                                        5, SIGTRAP) == NOTIFY_STOP)
 836                goto bail;
 837        if (debugger_sstep(regs))
 838                goto bail;
 839
 840        _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
 841
 842bail:
 843        exception_exit(prev_state);
 844}
 845NOKPROBE_SYMBOL(single_step_exception);
 846
 847/*
 848 * After we have successfully emulated an instruction, we have to
 849 * check if the instruction was being single-stepped, and if so,
 850 * pretend we got a single-step exception.  This was pointed out
 851 * by Kumar Gala.  -- paulus
 852 */
 853static void emulate_single_step(struct pt_regs *regs)
 854{
 855        if (single_stepping(regs))
 856                single_step_exception(regs);
 857}
 858
 859static inline int __parse_fpscr(unsigned long fpscr)
 860{
 861        int ret = 0;
 862
 863        /* Invalid operation */
 864        if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
 865                ret = FPE_FLTINV;
 866
 867        /* Overflow */
 868        else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
 869                ret = FPE_FLTOVF;
 870
 871        /* Underflow */
 872        else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
 873                ret = FPE_FLTUND;
 874
 875        /* Divide by zero */
 876        else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
 877                ret = FPE_FLTDIV;
 878
 879        /* Inexact result */
 880        else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
 881                ret = FPE_FLTRES;
 882
 883        return ret;
 884}
 885
 886static void parse_fpe(struct pt_regs *regs)
 887{
 888        int code = 0;
 889
 890        flush_fp_to_thread(current);
 891
 892        code = __parse_fpscr(current->thread.fp_state.fpscr);
 893
 894        _exception(SIGFPE, regs, code, regs->nip);
 895}
 896
 897/*
 898 * Illegal instruction emulation support.  Originally written to
 899 * provide the PVR to user applications using the mfspr rd, PVR.
 900 * Return non-zero if we can't emulate, or -EFAULT if the associated
 901 * memory access caused an access fault.  Return zero on success.
 902 *
 903 * There are a couple of ways to do this, either "decode" the instruction
 904 * or directly match lots of bits.  In this case, matching lots of
 905 * bits is faster and easier.
 906 *
 907 */
 908static int emulate_string_inst(struct pt_regs *regs, u32 instword)
 909{
 910        u8 rT = (instword >> 21) & 0x1f;
 911        u8 rA = (instword >> 16) & 0x1f;
 912        u8 NB_RB = (instword >> 11) & 0x1f;
 913        u32 num_bytes;
 914        unsigned long EA;
 915        int pos = 0;
 916
 917        /* Early out if we are an invalid form of lswx */
 918        if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
 919                if ((rT == rA) || (rT == NB_RB))
 920                        return -EINVAL;
 921
 922        EA = (rA == 0) ? 0 : regs->gpr[rA];
 923
 924        switch (instword & PPC_INST_STRING_MASK) {
 925                case PPC_INST_LSWX:
 926                case PPC_INST_STSWX:
 927                        EA += NB_RB;
 928                        num_bytes = regs->xer & 0x7f;
 929                        break;
 930                case PPC_INST_LSWI:
 931                case PPC_INST_STSWI:
 932                        num_bytes = (NB_RB == 0) ? 32 : NB_RB;
 933                        break;
 934                default:
 935                        return -EINVAL;
 936        }
 937
 938        while (num_bytes != 0)
 939        {
 940                u8 val;
 941                u32 shift = 8 * (3 - (pos & 0x3));
 942
 943                /* if process is 32-bit, clear upper 32 bits of EA */
 944                if ((regs->msr & MSR_64BIT) == 0)
 945                        EA &= 0xFFFFFFFF;
 946
 947                switch ((instword & PPC_INST_STRING_MASK)) {
 948                        case PPC_INST_LSWX:
 949                        case PPC_INST_LSWI:
 950                                if (get_user(val, (u8 __user *)EA))
 951                                        return -EFAULT;
 952                                /* first time updating this reg,
 953                                 * zero it out */
 954                                if (pos == 0)
 955                                        regs->gpr[rT] = 0;
 956                                regs->gpr[rT] |= val << shift;
 957                                break;
 958                        case PPC_INST_STSWI:
 959                        case PPC_INST_STSWX:
 960                                val = regs->gpr[rT] >> shift;
 961                                if (put_user(val, (u8 __user *)EA))
 962                                        return -EFAULT;
 963                                break;
 964                }
 965                /* move EA to next address */
 966                EA += 1;
 967                num_bytes--;
 968
 969                /* manage our position within the register */
 970                if (++pos == 4) {
 971                        pos = 0;
 972                        if (++rT == 32)
 973                                rT = 0;
 974                }
 975        }
 976
 977        return 0;
 978}
 979
 980static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
 981{
 982        u32 ra,rs;
 983        unsigned long tmp;
 984
 985        ra = (instword >> 16) & 0x1f;
 986        rs = (instword >> 21) & 0x1f;
 987
 988        tmp = regs->gpr[rs];
 989        tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
 990        tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
 991        tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
 992        regs->gpr[ra] = tmp;
 993
 994        return 0;
 995}
 996
 997static int emulate_isel(struct pt_regs *regs, u32 instword)
 998{
 999        u8 rT = (instword >> 21) & 0x1f;
1000        u8 rA = (instword >> 16) & 0x1f;
1001        u8 rB = (instword >> 11) & 0x1f;
1002        u8 BC = (instword >> 6) & 0x1f;
1003        u8 bit;
1004        unsigned long tmp;
1005
1006        tmp = (rA == 0) ? 0 : regs->gpr[rA];
1007        bit = (regs->ccr >> (31 - BC)) & 0x1;
1008
1009        regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1010
1011        return 0;
1012}
1013
1014#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1015static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1016{
1017        /* If we're emulating a load/store in an active transaction, we cannot
1018         * emulate it as the kernel operates in transaction suspended context.
1019         * We need to abort the transaction.  This creates a persistent TM
1020         * abort so tell the user what caused it with a new code.
1021         */
1022        if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1023                tm_enable();
1024                tm_abort(cause);
1025                return true;
1026        }
1027        return false;
1028}
1029#else
1030static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1031{
1032        return false;
1033}
1034#endif
1035
1036static int emulate_instruction(struct pt_regs *regs)
1037{
1038        u32 instword;
1039        u32 rd;
1040
1041        if (!user_mode(regs))
1042                return -EINVAL;
1043        CHECK_FULL_REGS(regs);
1044
1045        if (get_user(instword, (u32 __user *)(regs->nip)))
1046                return -EFAULT;
1047
1048        /* Emulate the mfspr rD, PVR. */
1049        if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1050                PPC_WARN_EMULATED(mfpvr, regs);
1051                rd = (instword >> 21) & 0x1f;
1052                regs->gpr[rd] = mfspr(SPRN_PVR);
1053                return 0;
1054        }
1055
1056        /* Emulating the dcba insn is just a no-op.  */
1057        if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1058                PPC_WARN_EMULATED(dcba, regs);
1059                return 0;
1060        }
1061
1062        /* Emulate the mcrxr insn.  */
1063        if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1064                int shift = (instword >> 21) & 0x1c;
1065                unsigned long msk = 0xf0000000UL >> shift;
1066
1067                PPC_WARN_EMULATED(mcrxr, regs);
1068                regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1069                regs->xer &= ~0xf0000000UL;
1070                return 0;
1071        }
1072
1073        /* Emulate load/store string insn. */
1074        if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1075                if (tm_abort_check(regs,
1076                                   TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1077                        return -EINVAL;
1078                PPC_WARN_EMULATED(string, regs);
1079                return emulate_string_inst(regs, instword);
1080        }
1081
1082        /* Emulate the popcntb (Population Count Bytes) instruction. */
1083        if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1084                PPC_WARN_EMULATED(popcntb, regs);
1085                return emulate_popcntb_inst(regs, instword);
1086        }
1087
1088        /* Emulate isel (Integer Select) instruction */
1089        if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1090                PPC_WARN_EMULATED(isel, regs);
1091                return emulate_isel(regs, instword);
1092        }
1093
1094        /* Emulate sync instruction variants */
1095        if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1096                PPC_WARN_EMULATED(sync, regs);
1097                asm volatile("sync");
1098                return 0;
1099        }
1100
1101#ifdef CONFIG_PPC64
1102        /* Emulate the mfspr rD, DSCR. */
1103        if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1104                PPC_INST_MFSPR_DSCR_USER) ||
1105             ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1106                PPC_INST_MFSPR_DSCR)) &&
1107                        cpu_has_feature(CPU_FTR_DSCR)) {
1108                PPC_WARN_EMULATED(mfdscr, regs);
1109                rd = (instword >> 21) & 0x1f;
1110                regs->gpr[rd] = mfspr(SPRN_DSCR);
1111                return 0;
1112        }
1113        /* Emulate the mtspr DSCR, rD. */
1114        if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1115                PPC_INST_MTSPR_DSCR_USER) ||
1116             ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1117                PPC_INST_MTSPR_DSCR)) &&
1118                        cpu_has_feature(CPU_FTR_DSCR)) {
1119                PPC_WARN_EMULATED(mtdscr, regs);
1120                rd = (instword >> 21) & 0x1f;
1121                current->thread.dscr = regs->gpr[rd];
1122                current->thread.dscr_inherit = 1;
1123                mtspr(SPRN_DSCR, current->thread.dscr);
1124                return 0;
1125        }
1126#endif
1127
1128        return -EINVAL;
1129}
1130
1131int is_valid_bugaddr(unsigned long addr)
1132{
1133        return is_kernel_addr(addr);
1134}
1135
1136#ifdef CONFIG_MATH_EMULATION
1137static int emulate_math(struct pt_regs *regs)
1138{
1139        int ret;
1140        extern int do_mathemu(struct pt_regs *regs);
1141
1142        ret = do_mathemu(regs);
1143        if (ret >= 0)
1144                PPC_WARN_EMULATED(math, regs);
1145
1146        switch (ret) {
1147        case 0:
1148                emulate_single_step(regs);
1149                return 0;
1150        case 1: {
1151                        int code = 0;
1152                        code = __parse_fpscr(current->thread.fp_state.fpscr);
1153                        _exception(SIGFPE, regs, code, regs->nip);
1154                        return 0;
1155                }
1156        case -EFAULT:
1157                _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1158                return 0;
1159        }
1160
1161        return -1;
1162}
1163#else
1164static inline int emulate_math(struct pt_regs *regs) { return -1; }
1165#endif
1166
1167void program_check_exception(struct pt_regs *regs)
1168{
1169        enum ctx_state prev_state = exception_enter();
1170        unsigned int reason = get_reason(regs);
1171
1172        /* We can now get here via a FP Unavailable exception if the core
1173         * has no FPU, in that case the reason flags will be 0 */
1174
1175        if (reason & REASON_FP) {
1176                /* IEEE FP exception */
1177                parse_fpe(regs);
1178                goto bail;
1179        }
1180        if (reason & REASON_TRAP) {
1181                unsigned long bugaddr;
1182                /* Debugger is first in line to stop recursive faults in
1183                 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1184                if (debugger_bpt(regs))
1185                        goto bail;
1186
1187                if (kprobe_handler(regs))
1188                        goto bail;
1189
1190                /* trap exception */
1191                if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1192                                == NOTIFY_STOP)
1193                        goto bail;
1194
1195                bugaddr = regs->nip;
1196                /*
1197                 * Fixup bugaddr for BUG_ON() in real mode
1198                 */
1199                if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1200                        bugaddr += PAGE_OFFSET;
1201
1202                if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1203                    report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1204                        regs->nip += 4;
1205                        goto bail;
1206                }
1207                _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1208                goto bail;
1209        }
1210#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1211        if (reason & REASON_TM) {
1212                /* This is a TM "Bad Thing Exception" program check.
1213                 * This occurs when:
1214                 * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1215                 *    transition in TM states.
1216                 * -  A trechkpt is attempted when transactional.
1217                 * -  A treclaim is attempted when non transactional.
1218                 * -  A tend is illegally attempted.
1219                 * -  writing a TM SPR when transactional.
1220                 */
1221                if (!user_mode(regs) &&
1222                    report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1223                        regs->nip += 4;
1224                        goto bail;
1225                }
1226                /* If usermode caused this, it's done something illegal and
1227                 * gets a SIGILL slap on the wrist.  We call it an illegal
1228                 * operand to distinguish from the instruction just being bad
1229                 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1230                 * illegal /placement/ of a valid instruction.
1231                 */
1232                if (user_mode(regs)) {
1233                        _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1234                        goto bail;
1235                } else {
1236                        printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1237                               "at %lx (msr 0x%x)\n", regs->nip, reason);
1238                        die("Unrecoverable exception", regs, SIGABRT);
1239                }
1240        }
1241#endif
1242
1243        /*
1244         * If we took the program check in the kernel skip down to sending a
1245         * SIGILL. The subsequent cases all relate to emulating instructions
1246         * which we should only do for userspace. We also do not want to enable
1247         * interrupts for kernel faults because that might lead to further
1248         * faults, and loose the context of the original exception.
1249         */
1250        if (!user_mode(regs))
1251                goto sigill;
1252
1253        /* We restore the interrupt state now */
1254        if (!arch_irq_disabled_regs(regs))
1255                local_irq_enable();
1256
1257        /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1258         * but there seems to be a hardware bug on the 405GP (RevD)
1259         * that means ESR is sometimes set incorrectly - either to
1260         * ESR_DST (!?) or 0.  In the process of chasing this with the
1261         * hardware people - not sure if it can happen on any illegal
1262         * instruction or only on FP instructions, whether there is a
1263         * pattern to occurrences etc. -dgibson 31/Mar/2003
1264         */
1265        if (!emulate_math(regs))
1266                goto bail;
1267
1268        /* Try to emulate it if we should. */
1269        if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1270                switch (emulate_instruction(regs)) {
1271                case 0:
1272                        regs->nip += 4;
1273                        emulate_single_step(regs);
1274                        goto bail;
1275                case -EFAULT:
1276                        _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1277                        goto bail;
1278                }
1279        }
1280
1281sigill:
1282        if (reason & REASON_PRIVILEGED)
1283                _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1284        else
1285                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1286
1287bail:
1288        exception_exit(prev_state);
1289}
1290NOKPROBE_SYMBOL(program_check_exception);
1291
1292/*
1293 * This occurs when running in hypervisor mode on POWER6 or later
1294 * and an illegal instruction is encountered.
1295 */
1296void emulation_assist_interrupt(struct pt_regs *regs)
1297{
1298        regs->msr |= REASON_ILLEGAL;
1299        program_check_exception(regs);
1300}
1301NOKPROBE_SYMBOL(emulation_assist_interrupt);
1302
1303void alignment_exception(struct pt_regs *regs)
1304{
1305        enum ctx_state prev_state = exception_enter();
1306        int sig, code, fixed = 0;
1307
1308        /* We restore the interrupt state now */
1309        if (!arch_irq_disabled_regs(regs))
1310                local_irq_enable();
1311
1312        if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1313                goto bail;
1314
1315        /* we don't implement logging of alignment exceptions */
1316        if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1317                fixed = fix_alignment(regs);
1318
1319        if (fixed == 1) {
1320                regs->nip += 4; /* skip over emulated instruction */
1321                emulate_single_step(regs);
1322                goto bail;
1323        }
1324
1325        /* Operand address was bad */
1326        if (fixed == -EFAULT) {
1327                sig = SIGSEGV;
1328                code = SEGV_ACCERR;
1329        } else {
1330                sig = SIGBUS;
1331                code = BUS_ADRALN;
1332        }
1333        if (user_mode(regs))
1334                _exception(sig, regs, code, regs->dar);
1335        else
1336                bad_page_fault(regs, regs->dar, sig);
1337
1338bail:
1339        exception_exit(prev_state);
1340}
1341
1342void slb_miss_bad_addr(struct pt_regs *regs)
1343{
1344        enum ctx_state prev_state = exception_enter();
1345
1346        if (user_mode(regs))
1347                _exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
1348        else
1349                bad_page_fault(regs, regs->dar, SIGSEGV);
1350
1351        exception_exit(prev_state);
1352}
1353
1354void StackOverflow(struct pt_regs *regs)
1355{
1356        printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1357               current, regs->gpr[1]);
1358        debugger(regs);
1359        show_regs(regs);
1360        panic("kernel stack overflow");
1361}
1362
1363void nonrecoverable_exception(struct pt_regs *regs)
1364{
1365        printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1366               regs->nip, regs->msr);
1367        debugger(regs);
1368        die("nonrecoverable exception", regs, SIGKILL);
1369}
1370
1371void kernel_fp_unavailable_exception(struct pt_regs *regs)
1372{
1373        enum ctx_state prev_state = exception_enter();
1374
1375        printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1376                          "%lx at %lx\n", regs->trap, regs->nip);
1377        die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1378
1379        exception_exit(prev_state);
1380}
1381
1382void altivec_unavailable_exception(struct pt_regs *regs)
1383{
1384        enum ctx_state prev_state = exception_enter();
1385
1386        if (user_mode(regs)) {
1387                /* A user program has executed an altivec instruction,
1388                   but this kernel doesn't support altivec. */
1389                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1390                goto bail;
1391        }
1392
1393        printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1394                        "%lx at %lx\n", regs->trap, regs->nip);
1395        die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1396
1397bail:
1398        exception_exit(prev_state);
1399}
1400
1401void vsx_unavailable_exception(struct pt_regs *regs)
1402{
1403        if (user_mode(regs)) {
1404                /* A user program has executed an vsx instruction,
1405                   but this kernel doesn't support vsx. */
1406                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1407                return;
1408        }
1409
1410        printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1411                        "%lx at %lx\n", regs->trap, regs->nip);
1412        die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1413}
1414
1415#ifdef CONFIG_PPC64
1416static void tm_unavailable(struct pt_regs *regs)
1417{
1418#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1419        if (user_mode(regs)) {
1420                current->thread.load_tm++;
1421                regs->msr |= MSR_TM;
1422                tm_enable();
1423                tm_restore_sprs(&current->thread);
1424                return;
1425        }
1426#endif
1427        pr_emerg("Unrecoverable TM Unavailable Exception "
1428                        "%lx at %lx\n", regs->trap, regs->nip);
1429        die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1430}
1431
1432void facility_unavailable_exception(struct pt_regs *regs)
1433{
1434        static char *facility_strings[] = {
1435                [FSCR_FP_LG] = "FPU",
1436                [FSCR_VECVSX_LG] = "VMX/VSX",
1437                [FSCR_DSCR_LG] = "DSCR",
1438                [FSCR_PM_LG] = "PMU SPRs",
1439                [FSCR_BHRB_LG] = "BHRB",
1440                [FSCR_TM_LG] = "TM",
1441                [FSCR_EBB_LG] = "EBB",
1442                [FSCR_TAR_LG] = "TAR",
1443        };
1444        char *facility = "unknown";
1445        u64 value;
1446        u32 instword, rd;
1447        u8 status;
1448        bool hv;
1449
1450        hv = (regs->trap == 0xf80);
1451        if (hv)
1452                value = mfspr(SPRN_HFSCR);
1453        else
1454                value = mfspr(SPRN_FSCR);
1455
1456        status = value >> 56;
1457        if (status == FSCR_DSCR_LG) {
1458                /*
1459                 * User is accessing the DSCR register using the problem
1460                 * state only SPR number (0x03) either through a mfspr or
1461                 * a mtspr instruction. If it is a write attempt through
1462                 * a mtspr, then we set the inherit bit. This also allows
1463                 * the user to write or read the register directly in the
1464                 * future by setting via the FSCR DSCR bit. But in case it
1465                 * is a read DSCR attempt through a mfspr instruction, we
1466                 * just emulate the instruction instead. This code path will
1467                 * always emulate all the mfspr instructions till the user
1468                 * has attempted at least one mtspr instruction. This way it
1469                 * preserves the same behaviour when the user is accessing
1470                 * the DSCR through privilege level only SPR number (0x11)
1471                 * which is emulated through illegal instruction exception.
1472                 * We always leave HFSCR DSCR set.
1473                 */
1474                if (get_user(instword, (u32 __user *)(regs->nip))) {
1475                        pr_err("Failed to fetch the user instruction\n");
1476                        return;
1477                }
1478
1479                /* Write into DSCR (mtspr 0x03, RS) */
1480                if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1481                                == PPC_INST_MTSPR_DSCR_USER) {
1482                        rd = (instword >> 21) & 0x1f;
1483                        current->thread.dscr = regs->gpr[rd];
1484                        current->thread.dscr_inherit = 1;
1485                        current->thread.fscr |= FSCR_DSCR;
1486                        mtspr(SPRN_FSCR, current->thread.fscr);
1487                }
1488
1489                /* Read from DSCR (mfspr RT, 0x03) */
1490                if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1491                                == PPC_INST_MFSPR_DSCR_USER) {
1492                        if (emulate_instruction(regs)) {
1493                                pr_err("DSCR based mfspr emulation failed\n");
1494                                return;
1495                        }
1496                        regs->nip += 4;
1497                        emulate_single_step(regs);
1498                }
1499                return;
1500        }
1501
1502        if (status == FSCR_TM_LG) {
1503                /*
1504                 * If we're here then the hardware is TM aware because it
1505                 * generated an exception with FSRM_TM set.
1506                 *
1507                 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1508                 * told us not to do TM, or the kernel is not built with TM
1509                 * support.
1510                 *
1511                 * If both of those things are true, then userspace can spam the
1512                 * console by triggering the printk() below just by continually
1513                 * doing tbegin (or any TM instruction). So in that case just
1514                 * send the process a SIGILL immediately.
1515                 */
1516                if (!cpu_has_feature(CPU_FTR_TM))
1517                        goto out;
1518
1519                tm_unavailable(regs);
1520                return;
1521        }
1522
1523        if ((hv || status >= 2) &&
1524            (status < ARRAY_SIZE(facility_strings)) &&
1525            facility_strings[status])
1526                facility = facility_strings[status];
1527
1528        /* We restore the interrupt state now */
1529        if (!arch_irq_disabled_regs(regs))
1530                local_irq_enable();
1531
1532        pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1533                hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1534
1535out:
1536        if (user_mode(regs)) {
1537                _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1538                return;
1539        }
1540
1541        die("Unexpected facility unavailable exception", regs, SIGABRT);
1542}
1543#endif
1544
1545#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1546
1547void fp_unavailable_tm(struct pt_regs *regs)
1548{
1549        /* Note:  This does not handle any kind of FP laziness. */
1550
1551        TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1552                 regs->nip, regs->msr);
1553
1554        /* We can only have got here if the task started using FP after
1555         * beginning the transaction.  So, the transactional regs are just a
1556         * copy of the checkpointed ones.  But, we still need to recheckpoint
1557         * as we're enabling FP for the process; it will return, abort the
1558         * transaction, and probably retry but now with FP enabled.  So the
1559         * checkpointed FP registers need to be loaded.
1560         */
1561        tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1562        /* Reclaim didn't save out any FPRs to transact_fprs. */
1563
1564        /* Enable FP for the task: */
1565        regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1566
1567        /* This loads and recheckpoints the FP registers from
1568         * thread.fpr[].  They will remain in registers after the
1569         * checkpoint so we don't need to reload them after.
1570         * If VMX is in use, the VRs now hold checkpointed values,
1571         * so we don't want to load the VRs from the thread_struct.
1572         */
1573        tm_recheckpoint(&current->thread, MSR_FP);
1574
1575        /* If VMX is in use, get the transactional values back */
1576        if (regs->msr & MSR_VEC) {
1577                msr_check_and_set(MSR_VEC);
1578                load_vr_state(&current->thread.vr_state);
1579                /* At this point all the VSX state is loaded, so enable it */
1580                regs->msr |= MSR_VSX;
1581        }
1582}
1583
1584void altivec_unavailable_tm(struct pt_regs *regs)
1585{
1586        /* See the comments in fp_unavailable_tm().  This function operates
1587         * the same way.
1588         */
1589
1590        TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1591                 "MSR=%lx\n",
1592                 regs->nip, regs->msr);
1593        tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1594        regs->msr |= MSR_VEC;
1595        tm_recheckpoint(&current->thread, MSR_VEC);
1596        current->thread.used_vr = 1;
1597
1598        if (regs->msr & MSR_FP) {
1599                msr_check_and_set(MSR_FP);
1600                load_fp_state(&current->thread.fp_state);
1601                regs->msr |= MSR_VSX;
1602        }
1603}
1604
1605void vsx_unavailable_tm(struct pt_regs *regs)
1606{
1607        unsigned long orig_msr = regs->msr;
1608
1609        /* See the comments in fp_unavailable_tm().  This works similarly,
1610         * though we're loading both FP and VEC registers in here.
1611         *
1612         * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1613         * regs.  Either way, set MSR_VSX.
1614         */
1615
1616        TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1617                 "MSR=%lx\n",
1618                 regs->nip, regs->msr);
1619
1620        current->thread.used_vsr = 1;
1621
1622        /* If FP and VMX are already loaded, we have all the state we need */
1623        if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1624                regs->msr |= MSR_VSX;
1625                return;
1626        }
1627
1628        /* This reclaims FP and/or VR regs if they're already enabled */
1629        tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1630
1631        regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1632                MSR_VSX;
1633
1634        /* This loads & recheckpoints FP and VRs; but we have
1635         * to be sure not to overwrite previously-valid state.
1636         */
1637        tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1638
1639        msr_check_and_set(orig_msr & (MSR_FP | MSR_VEC));
1640
1641        if (orig_msr & MSR_FP)
1642                load_fp_state(&current->thread.fp_state);
1643        if (orig_msr & MSR_VEC)
1644                load_vr_state(&current->thread.vr_state);
1645}
1646#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1647
1648void performance_monitor_exception(struct pt_regs *regs)
1649{
1650        __this_cpu_inc(irq_stat.pmu_irqs);
1651
1652        perf_irq(regs);
1653}
1654
1655#ifdef CONFIG_8xx
1656void SoftwareEmulation(struct pt_regs *regs)
1657{
1658        CHECK_FULL_REGS(regs);
1659
1660        if (!user_mode(regs)) {
1661                debugger(regs);
1662                die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1663                        regs, SIGFPE);
1664        }
1665
1666        if (!emulate_math(regs))
1667                return;
1668
1669        _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1670}
1671#endif /* CONFIG_8xx */
1672
1673#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1674static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1675{
1676        int changed = 0;
1677        /*
1678         * Determine the cause of the debug event, clear the
1679         * event flags and send a trap to the handler. Torez
1680         */
1681        if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1682                dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1683#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1684                current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1685#endif
1686                do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1687                             5);
1688                changed |= 0x01;
1689        }  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1690                dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1691                do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1692                             6);
1693                changed |= 0x01;
1694        }  else if (debug_status & DBSR_IAC1) {
1695                current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1696                dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1697                do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1698                             1);
1699                changed |= 0x01;
1700        }  else if (debug_status & DBSR_IAC2) {
1701                current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1702                do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1703                             2);
1704                changed |= 0x01;
1705        }  else if (debug_status & DBSR_IAC3) {
1706                current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1707                dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1708                do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1709                             3);
1710                changed |= 0x01;
1711        }  else if (debug_status & DBSR_IAC4) {
1712                current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1713                do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1714                             4);
1715                changed |= 0x01;
1716        }
1717        /*
1718         * At the point this routine was called, the MSR(DE) was turned off.
1719         * Check all other debug flags and see if that bit needs to be turned
1720         * back on or not.
1721         */
1722        if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1723                               current->thread.debug.dbcr1))
1724                regs->msr |= MSR_DE;
1725        else
1726                /* Make sure the IDM flag is off */
1727                current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1728
1729        if (changed & 0x01)
1730                mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1731}
1732
1733void DebugException(struct pt_regs *regs, unsigned long debug_status)
1734{
1735        current->thread.debug.dbsr = debug_status;
1736
1737        /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1738         * on server, it stops on the target of the branch. In order to simulate
1739         * the server behaviour, we thus restart right away with a single step
1740         * instead of stopping here when hitting a BT
1741         */
1742        if (debug_status & DBSR_BT) {
1743                regs->msr &= ~MSR_DE;
1744
1745                /* Disable BT */
1746                mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1747                /* Clear the BT event */
1748                mtspr(SPRN_DBSR, DBSR_BT);
1749
1750                /* Do the single step trick only when coming from userspace */
1751                if (user_mode(regs)) {
1752                        current->thread.debug.dbcr0 &= ~DBCR0_BT;
1753                        current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1754                        regs->msr |= MSR_DE;
1755                        return;
1756                }
1757
1758                if (kprobe_post_handler(regs))
1759                        return;
1760
1761                if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1762                               5, SIGTRAP) == NOTIFY_STOP) {
1763                        return;
1764                }
1765                if (debugger_sstep(regs))
1766                        return;
1767        } else if (debug_status & DBSR_IC) {    /* Instruction complete */
1768                regs->msr &= ~MSR_DE;
1769
1770                /* Disable instruction completion */
1771                mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1772                /* Clear the instruction completion event */
1773                mtspr(SPRN_DBSR, DBSR_IC);
1774
1775                if (kprobe_post_handler(regs))
1776                        return;
1777
1778                if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1779                               5, SIGTRAP) == NOTIFY_STOP) {
1780                        return;
1781                }
1782
1783                if (debugger_sstep(regs))
1784                        return;
1785
1786                if (user_mode(regs)) {
1787                        current->thread.debug.dbcr0 &= ~DBCR0_IC;
1788                        if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1789                                               current->thread.debug.dbcr1))
1790                                regs->msr |= MSR_DE;
1791                        else
1792                                /* Make sure the IDM bit is off */
1793                                current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1794                }
1795
1796                _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1797        } else
1798                handle_debug(regs, debug_status);
1799}
1800NOKPROBE_SYMBOL(DebugException);
1801#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1802
1803#if !defined(CONFIG_TAU_INT)
1804void TAUException(struct pt_regs *regs)
1805{
1806        printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx    %s\n",
1807               regs->nip, regs->msr, regs->trap, print_tainted());
1808}
1809#endif /* CONFIG_INT_TAU */
1810
1811#ifdef CONFIG_ALTIVEC
1812void altivec_assist_exception(struct pt_regs *regs)
1813{
1814        int err;
1815
1816        if (!user_mode(regs)) {
1817                printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1818                       " at %lx\n", regs->nip);
1819                die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1820        }
1821
1822        flush_altivec_to_thread(current);
1823
1824        PPC_WARN_EMULATED(altivec, regs);
1825        err = emulate_altivec(regs);
1826        if (err == 0) {
1827                regs->nip += 4;         /* skip emulated instruction */
1828                emulate_single_step(regs);
1829                return;
1830        }
1831
1832        if (err == -EFAULT) {
1833                /* got an error reading the instruction */
1834                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1835        } else {
1836                /* didn't recognize the instruction */
1837                /* XXX quick hack for now: set the non-Java bit in the VSCR */
1838                printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1839                                   "in %s at %lx\n", current->comm, regs->nip);
1840                current->thread.vr_state.vscr.u[3] |= 0x10000;
1841        }
1842}
1843#endif /* CONFIG_ALTIVEC */
1844
1845#ifdef CONFIG_FSL_BOOKE
1846void CacheLockingException(struct pt_regs *regs, unsigned long address,
1847                           unsigned long error_code)
1848{
1849        /* We treat cache locking instructions from the user
1850         * as priv ops, in the future we could try to do
1851         * something smarter
1852         */
1853        if (error_code & (ESR_DLK|ESR_ILK))
1854                _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1855        return;
1856}
1857#endif /* CONFIG_FSL_BOOKE */
1858
1859#ifdef CONFIG_SPE
1860void SPEFloatingPointException(struct pt_regs *regs)
1861{
1862        extern int do_spe_mathemu(struct pt_regs *regs);
1863        unsigned long spefscr;
1864        int fpexc_mode;
1865        int code = 0;
1866        int err;
1867
1868        flush_spe_to_thread(current);
1869
1870        spefscr = current->thread.spefscr;
1871        fpexc_mode = current->thread.fpexc_mode;
1872
1873        if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1874                code = FPE_FLTOVF;
1875        }
1876        else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1877                code = FPE_FLTUND;
1878        }
1879        else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1880                code = FPE_FLTDIV;
1881        else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1882                code = FPE_FLTINV;
1883        }
1884        else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1885                code = FPE_FLTRES;
1886
1887        err = do_spe_mathemu(regs);
1888        if (err == 0) {
1889                regs->nip += 4;         /* skip emulated instruction */
1890                emulate_single_step(regs);
1891                return;
1892        }
1893
1894        if (err == -EFAULT) {
1895                /* got an error reading the instruction */
1896                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1897        } else if (err == -EINVAL) {
1898                /* didn't recognize the instruction */
1899                printk(KERN_ERR "unrecognized spe instruction "
1900                       "in %s at %lx\n", current->comm, regs->nip);
1901        } else {
1902                _exception(SIGFPE, regs, code, regs->nip);
1903        }
1904
1905        return;
1906}
1907
1908void SPEFloatingPointRoundException(struct pt_regs *regs)
1909{
1910        extern int speround_handler(struct pt_regs *regs);
1911        int err;
1912
1913        preempt_disable();
1914        if (regs->msr & MSR_SPE)
1915                giveup_spe(current);
1916        preempt_enable();
1917
1918        regs->nip -= 4;
1919        err = speround_handler(regs);
1920        if (err == 0) {
1921                regs->nip += 4;         /* skip emulated instruction */
1922                emulate_single_step(regs);
1923                return;
1924        }
1925
1926        if (err == -EFAULT) {
1927                /* got an error reading the instruction */
1928                _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1929        } else if (err == -EINVAL) {
1930                /* didn't recognize the instruction */
1931                printk(KERN_ERR "unrecognized spe instruction "
1932                       "in %s at %lx\n", current->comm, regs->nip);
1933        } else {
1934                _exception(SIGFPE, regs, 0, regs->nip);
1935                return;
1936        }
1937}
1938#endif
1939
1940/*
1941 * We enter here if we get an unrecoverable exception, that is, one
1942 * that happened at a point where the RI (recoverable interrupt) bit
1943 * in the MSR is 0.  This indicates that SRR0/1 are live, and that
1944 * we therefore lost state by taking this exception.
1945 */
1946void unrecoverable_exception(struct pt_regs *regs)
1947{
1948        printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1949               regs->trap, regs->nip);
1950        die("Unrecoverable exception", regs, SIGABRT);
1951}
1952
1953#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1954/*
1955 * Default handler for a Watchdog exception,
1956 * spins until a reboot occurs
1957 */
1958void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1959{
1960        /* Generic WatchdogHandler, implement your own */
1961        mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1962        return;
1963}
1964
1965void WatchdogException(struct pt_regs *regs)
1966{
1967        printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1968        WatchdogHandler(regs);
1969}
1970#endif
1971
1972/*
1973 * We enter here if we discover during exception entry that we are
1974 * running in supervisor mode with a userspace value in the stack pointer.
1975 */
1976void kernel_bad_stack(struct pt_regs *regs)
1977{
1978        printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1979               regs->gpr[1], regs->nip);
1980        die("Bad kernel stack pointer", regs, SIGABRT);
1981}
1982
1983void __init trap_init(void)
1984{
1985}
1986
1987
1988#ifdef CONFIG_PPC_EMULATED_STATS
1989
1990#define WARN_EMULATED_SETUP(type)       .type = { .name = #type }
1991
1992struct ppc_emulated ppc_emulated = {
1993#ifdef CONFIG_ALTIVEC
1994        WARN_EMULATED_SETUP(altivec),
1995#endif
1996        WARN_EMULATED_SETUP(dcba),
1997        WARN_EMULATED_SETUP(dcbz),
1998        WARN_EMULATED_SETUP(fp_pair),
1999        WARN_EMULATED_SETUP(isel),
2000        WARN_EMULATED_SETUP(mcrxr),
2001        WARN_EMULATED_SETUP(mfpvr),
2002        WARN_EMULATED_SETUP(multiple),
2003        WARN_EMULATED_SETUP(popcntb),
2004        WARN_EMULATED_SETUP(spe),
2005        WARN_EMULATED_SETUP(string),
2006        WARN_EMULATED_SETUP(sync),
2007        WARN_EMULATED_SETUP(unaligned),
2008#ifdef CONFIG_MATH_EMULATION
2009        WARN_EMULATED_SETUP(math),
2010#endif
2011#ifdef CONFIG_VSX
2012        WARN_EMULATED_SETUP(vsx),
2013#endif
2014#ifdef CONFIG_PPC64
2015        WARN_EMULATED_SETUP(mfdscr),
2016        WARN_EMULATED_SETUP(mtdscr),
2017        WARN_EMULATED_SETUP(lq_stq),
2018#endif
2019};
2020
2021u32 ppc_warn_emulated;
2022
2023void ppc_warn_emulated_print(const char *type)
2024{
2025        pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2026                            type);
2027}
2028
2029static int __init ppc_warn_emulated_init(void)
2030{
2031        struct dentry *dir, *d;
2032        unsigned int i;
2033        struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2034
2035        if (!powerpc_debugfs_root)
2036                return -ENODEV;
2037
2038        dir = debugfs_create_dir("emulated_instructions",
2039                                 powerpc_debugfs_root);
2040        if (!dir)
2041                return -ENOMEM;
2042
2043        d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
2044                               &ppc_warn_emulated);
2045        if (!d)
2046                goto fail;
2047
2048        for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
2049                d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
2050                                       (u32 *)&entries[i].val.counter);
2051                if (!d)
2052                        goto fail;
2053        }
2054
2055        return 0;
2056
2057fail:
2058        debugfs_remove_recursive(dir);
2059        return -ENOMEM;
2060}
2061
2062device_initcall(ppc_warn_emulated_init);
2063
2064#endif /* CONFIG_PPC_EMULATED_STATS */
2065