linux/arch/sparc/kernel/uprobes.c
<<
>>
Prefs
   1/*
   2 * User-space Probes (UProbes) for sparc
   3 *
   4 * Copyright (C) 2013 Oracle Inc.
   5 *
   6 * This program is free software: you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation, either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  18 *
  19 * Authors:
  20 *      Jose E. Marchesi <jose.marchesi@oracle.com>
  21 *      Eric Saint Etienne <eric.saint.etienne@oracle.com>
  22 */
  23
  24#include <linux/kernel.h>
  25#include <linux/highmem.h>
  26#include <linux/uprobes.h>
  27#include <linux/uaccess.h>
  28#include <linux/sched.h> /* For struct task_struct */
  29#include <linux/kdebug.h>
  30
  31#include <asm/cacheflush.h>
  32#include <linux/uaccess.h>
  33
  34/* Compute the address of the breakpoint instruction and return it.
  35 *
  36 * Note that uprobe_get_swbp_addr is defined as a weak symbol in
  37 * kernel/events/uprobe.c.
  38 */
  39unsigned long uprobe_get_swbp_addr(struct pt_regs *regs)
  40{
  41        return instruction_pointer(regs);
  42}
  43
  44static void copy_to_page(struct page *page, unsigned long vaddr,
  45                         const void *src, int len)
  46{
  47        void *kaddr = kmap_atomic(page);
  48
  49        memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
  50        kunmap_atomic(kaddr);
  51}
  52
  53/* Fill in the xol area with the probed instruction followed by the
  54 * single-step trap.  Some fixups in the copied instruction are
  55 * performed at this point.
  56 *
  57 * Note that uprobe_xol_copy is defined as a weak symbol in
  58 * kernel/events/uprobe.c.
  59 */
  60void arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
  61                           void *src, unsigned long len)
  62{
  63        const u32 stp_insn = UPROBE_STP_INSN;
  64        u32 insn = *(u32 *) src;
  65
  66        /* Branches annulling their delay slot must be fixed to not do
  67         * so.  Clearing the annul bit on these instructions we can be
  68         * sure the single-step breakpoint in the XOL slot will be
  69         * executed.
  70         */
  71
  72        u32 op = (insn >> 30) & 0x3;
  73        u32 op2 = (insn >> 22) & 0x7;
  74
  75        if (op == 0 &&
  76            (op2 == 1 || op2 == 2 || op2 == 3 || op2 == 5 || op2 == 6) &&
  77            (insn & ANNUL_BIT) == ANNUL_BIT)
  78                insn &= ~ANNUL_BIT;
  79
  80        copy_to_page(page, vaddr, &insn, len);
  81        copy_to_page(page, vaddr+len, &stp_insn, 4);
  82}
  83
  84
  85/* Instruction analysis/validity.
  86 *
  87 * This function returns 0 on success or a -ve number on error.
  88 */
  89int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe,
  90                             struct mm_struct *mm, unsigned long addr)
  91{
  92        /* Any unsupported instruction?  Then return -EINVAL  */
  93        return 0;
  94}
  95
  96/* If INSN is a relative control transfer instruction, return the
  97 * corrected branch destination value.
  98 *
  99 * Note that regs->tpc and regs->tnpc still hold the values of the
 100 * program counters at the time of the single-step trap due to the
 101 * execution of the UPROBE_STP_INSN at utask->xol_vaddr + 4.
 102 *
 103 */
 104static unsigned long relbranch_fixup(u32 insn, struct uprobe_task *utask,
 105                                     struct pt_regs *regs)
 106{
 107        /* Branch not taken, no mods necessary.  */
 108        if (regs->tnpc == regs->tpc + 0x4UL)
 109                return utask->autask.saved_tnpc + 0x4UL;
 110
 111        /* The three cases are call, branch w/prediction,
 112         * and traditional branch.
 113         */
 114        if ((insn & 0xc0000000) == 0x40000000 ||
 115            (insn & 0xc1c00000) == 0x00400000 ||
 116            (insn & 0xc1c00000) == 0x00800000) {
 117                unsigned long real_pc = (unsigned long) utask->vaddr;
 118                unsigned long ixol_addr = utask->xol_vaddr;
 119
 120                /* The instruction did all the work for us
 121                 * already, just apply the offset to the correct
 122                 * instruction location.
 123                 */
 124                return (real_pc + (regs->tnpc - ixol_addr));
 125        }
 126
 127        /* It is jmpl or some other absolute PC modification instruction,
 128         * leave NPC as-is.
 129         */
 130        return regs->tnpc;
 131}
 132
 133/* If INSN is an instruction which writes its PC location
 134 * into a destination register, fix that up.
 135 */
 136static int retpc_fixup(struct pt_regs *regs, u32 insn,
 137                       unsigned long real_pc)
 138{
 139        unsigned long *slot = NULL;
 140        int rc = 0;
 141
 142        /* Simplest case is 'call', which always uses %o7 */
 143        if ((insn & 0xc0000000) == 0x40000000)
 144                slot = &regs->u_regs[UREG_I7];
 145
 146        /* 'jmpl' encodes the register inside of the opcode */
 147        if ((insn & 0xc1f80000) == 0x81c00000) {
 148                unsigned long rd = ((insn >> 25) & 0x1f);
 149
 150                if (rd <= 15) {
 151                        slot = &regs->u_regs[rd];
 152                } else {
 153                        unsigned long fp = regs->u_regs[UREG_FP];
 154                        /* Hard case, it goes onto the stack. */
 155                        flushw_all();
 156
 157                        rd -= 16;
 158                        if (test_thread_64bit_stack(fp)) {
 159                                unsigned long __user *uslot =
 160                        (unsigned long __user *) (fp + STACK_BIAS) + rd;
 161                                rc = __put_user(real_pc, uslot);
 162                        } else {
 163                                unsigned int __user *uslot = (unsigned int
 164                                                __user *) fp + rd;
 165                                rc = __put_user((u32) real_pc, uslot);
 166                        }
 167                }
 168        }
 169        if (slot != NULL)
 170                *slot = real_pc;
 171        return rc;
 172}
 173
 174/* Single-stepping can be avoided for certain instructions: NOPs and
 175 * instructions that can be emulated.  This function determines
 176 * whether the instruction where the uprobe is installed falls in one
 177 * of these cases and emulates it.
 178 *
 179 * This function returns true if the single-stepping can be skipped,
 180 * false otherwise.
 181 */
 182bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
 183{
 184        /* We currently only emulate NOP instructions.
 185         */
 186
 187        if (auprobe->ixol == (1 << 24)) {
 188                regs->tnpc += 4;
 189                regs->tpc += 4;
 190                return true;
 191        }
 192
 193        return false;
 194}
 195
 196/* Prepare to execute out of line.  At this point
 197 * current->utask->xol_vaddr points to an allocated XOL slot properly
 198 * initialized with the original instruction and the single-stepping
 199 * trap instruction.
 200 *
 201 * This function returns 0 on success, any other number on error.
 202 */
 203int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 204{
 205        struct uprobe_task *utask = current->utask;
 206        struct arch_uprobe_task *autask = &current->utask->autask;
 207
 208        /* Save the current program counters so they can be restored
 209         * later.
 210         */
 211        autask->saved_tpc = regs->tpc;
 212        autask->saved_tnpc = regs->tnpc;
 213
 214        /* Adjust PC and NPC so the first instruction in the XOL slot
 215         * will be executed by the user task.
 216         */
 217        instruction_pointer_set(regs, utask->xol_vaddr);
 218
 219        return 0;
 220}
 221
 222/* Prepare to resume execution after the single-step.  Called after
 223 * single-stepping. To avoid the SMP problems that can occur when we
 224 * temporarily put back the original opcode to single-step, we
 225 * single-stepped a copy of the instruction.
 226 *
 227 * This function returns 0 on success, any other number on error.
 228 */
 229int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 230{
 231        struct uprobe_task *utask = current->utask;
 232        struct arch_uprobe_task *autask = &utask->autask;
 233        u32 insn = auprobe->ixol;
 234        int rc = 0;
 235
 236        if (utask->state == UTASK_SSTEP_ACK) {
 237                regs->tnpc = relbranch_fixup(insn, utask, regs);
 238                regs->tpc = autask->saved_tnpc;
 239                rc =  retpc_fixup(regs, insn, (unsigned long) utask->vaddr);
 240        } else {
 241                regs->tnpc = utask->vaddr+4;
 242                regs->tpc = autask->saved_tnpc+4;
 243        }
 244        return rc;
 245}
 246
 247/* Handler for uprobe traps.  This is called from the traps table and
 248 * triggers the proper die notification.
 249 */
 250asmlinkage void uprobe_trap(struct pt_regs *regs,
 251                            unsigned long trap_level)
 252{
 253        BUG_ON(trap_level != 0x173 && trap_level != 0x174);
 254
 255        /* We are only interested in user-mode code.  Uprobe traps
 256         * shall not be present in kernel code.
 257         */
 258        if (!user_mode(regs)) {
 259                local_irq_enable();
 260                bad_trap(regs, trap_level);
 261                return;
 262        }
 263
 264        /* trap_level == 0x173 --> ta 0x73
 265         * trap_level == 0x174 --> ta 0x74
 266         */
 267        if (notify_die((trap_level == 0x173) ? DIE_BPT : DIE_SSTEP,
 268                                (trap_level == 0x173) ? "bpt" : "sstep",
 269                                regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
 270                bad_trap(regs, trap_level);
 271}
 272
 273/* Callback routine for handling die notifications.
 274*/
 275int arch_uprobe_exception_notify(struct notifier_block *self,
 276                                 unsigned long val, void *data)
 277{
 278        int ret = NOTIFY_DONE;
 279        struct die_args *args = (struct die_args *)data;
 280
 281        /* We are only interested in userspace traps */
 282        if (args->regs && !user_mode(args->regs))
 283                return NOTIFY_DONE;
 284
 285        switch (val) {
 286        case DIE_BPT:
 287                if (uprobe_pre_sstep_notifier(args->regs))
 288                        ret = NOTIFY_STOP;
 289                break;
 290
 291        case DIE_SSTEP:
 292                if (uprobe_post_sstep_notifier(args->regs))
 293                        ret = NOTIFY_STOP;
 294
 295        default:
 296                break;
 297        }
 298
 299        return ret;
 300}
 301
 302/* This function gets called when a XOL instruction either gets
 303 * trapped or the thread has a fatal signal, so reset the instruction
 304 * pointer to its probed address.
 305 */
 306void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 307{
 308        struct uprobe_task *utask = current->utask;
 309
 310        instruction_pointer_set(regs, utask->vaddr);
 311}
 312
 313/* If xol insn itself traps and generates a signal(Say,
 314 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
 315 * instruction jumps back to its own address.
 316 */
 317bool arch_uprobe_xol_was_trapped(struct task_struct *t)
 318{
 319        return false;
 320}
 321
 322unsigned long
 323arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr,
 324                                  struct pt_regs *regs)
 325{
 326        unsigned long orig_ret_vaddr = regs->u_regs[UREG_I7];
 327
 328        regs->u_regs[UREG_I7] = trampoline_vaddr-8;
 329
 330        return orig_ret_vaddr + 8;
 331}
 332