linux/arch/tile/kernel/pci-dma.c
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#include <linux/mm.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/swiotlb.h>
  18#include <linux/vmalloc.h>
  19#include <linux/export.h>
  20#include <asm/tlbflush.h>
  21#include <asm/homecache.h>
  22
  23/* Generic DMA mapping functions: */
  24
  25/*
  26 * Allocate what Linux calls "coherent" memory.  On TILEPro this is
  27 * uncached memory; on TILE-Gx it is hash-for-home memory.
  28 */
  29#ifdef __tilepro__
  30#define PAGE_HOME_DMA PAGE_HOME_UNCACHED
  31#else
  32#define PAGE_HOME_DMA PAGE_HOME_HASH
  33#endif
  34
  35static void *tile_dma_alloc_coherent(struct device *dev, size_t size,
  36                                     dma_addr_t *dma_handle, gfp_t gfp,
  37                                     unsigned long attrs)
  38{
  39        u64 dma_mask = (dev && dev->coherent_dma_mask) ?
  40                dev->coherent_dma_mask : DMA_BIT_MASK(32);
  41        int node = dev ? dev_to_node(dev) : 0;
  42        int order = get_order(size);
  43        struct page *pg;
  44        dma_addr_t addr;
  45
  46        gfp |= __GFP_ZERO;
  47
  48        /*
  49         * If the mask specifies that the memory be in the first 4 GB, then
  50         * we force the allocation to come from the DMA zone.  We also
  51         * force the node to 0 since that's the only node where the DMA
  52         * zone isn't empty.  If the mask size is smaller than 32 bits, we
  53         * may still not be able to guarantee a suitable memory address, in
  54         * which case we will return NULL.  But such devices are uncommon.
  55         */
  56        if (dma_mask <= DMA_BIT_MASK(32)) {
  57                gfp |= GFP_DMA;
  58                node = 0;
  59        }
  60
  61        pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
  62        if (pg == NULL)
  63                return NULL;
  64
  65        addr = page_to_phys(pg);
  66        if (addr + size > dma_mask) {
  67                __homecache_free_pages(pg, order);
  68                return NULL;
  69        }
  70
  71        *dma_handle = addr;
  72
  73        return page_address(pg);
  74}
  75
  76/*
  77 * Free memory that was allocated with tile_dma_alloc_coherent.
  78 */
  79static void tile_dma_free_coherent(struct device *dev, size_t size,
  80                                   void *vaddr, dma_addr_t dma_handle,
  81                                   unsigned long attrs)
  82{
  83        homecache_free_pages((unsigned long)vaddr, get_order(size));
  84}
  85
  86/*
  87 * The map routines "map" the specified address range for DMA
  88 * accesses.  The memory belongs to the device after this call is
  89 * issued, until it is unmapped with dma_unmap_single.
  90 *
  91 * We don't need to do any mapping, we just flush the address range
  92 * out of the cache and return a DMA address.
  93 *
  94 * The unmap routines do whatever is necessary before the processor
  95 * accesses the memory again, and must be called before the driver
  96 * touches the memory.  We can get away with a cache invalidate if we
  97 * can count on nothing having been touched.
  98 */
  99
 100/* Set up a single page for DMA access. */
 101static void __dma_prep_page(struct page *page, unsigned long offset,
 102                            size_t size, enum dma_data_direction direction)
 103{
 104        /*
 105         * Flush the page from cache if necessary.
 106         * On tilegx, data is delivered to hash-for-home L3; on tilepro,
 107         * data is delivered direct to memory.
 108         *
 109         * NOTE: If we were just doing DMA_TO_DEVICE we could optimize
 110         * this to be a "flush" not a "finv" and keep some of the
 111         * state in cache across the DMA operation, but it doesn't seem
 112         * worth creating the necessary flush_buffer_xxx() infrastructure.
 113         */
 114        int home = page_home(page);
 115        switch (home) {
 116        case PAGE_HOME_HASH:
 117#ifdef __tilegx__
 118                return;
 119#endif
 120                break;
 121        case PAGE_HOME_UNCACHED:
 122#ifdef __tilepro__
 123                return;
 124#endif
 125                break;
 126        case PAGE_HOME_IMMUTABLE:
 127                /* Should be going to the device only. */
 128                BUG_ON(direction == DMA_FROM_DEVICE ||
 129                       direction == DMA_BIDIRECTIONAL);
 130                return;
 131        case PAGE_HOME_INCOHERENT:
 132                /* Incoherent anyway, so no need to work hard here. */
 133                return;
 134        default:
 135                BUG_ON(home < 0 || home >= NR_CPUS);
 136                break;
 137        }
 138        homecache_finv_page(page);
 139
 140#ifdef DEBUG_ALIGNMENT
 141        /* Warn if the region isn't cacheline aligned. */
 142        if (offset & (L2_CACHE_BYTES - 1) || (size & (L2_CACHE_BYTES - 1)))
 143                pr_warn("Unaligned DMA to non-hfh memory: PA %#llx/%#lx\n",
 144                        PFN_PHYS(page_to_pfn(page)) + offset, size);
 145#endif
 146}
 147
 148/* Make the page ready to be read by the core. */
 149static void __dma_complete_page(struct page *page, unsigned long offset,
 150                                size_t size, enum dma_data_direction direction)
 151{
 152#ifdef __tilegx__
 153        switch (page_home(page)) {
 154        case PAGE_HOME_HASH:
 155                /* I/O device delivered data the way the cpu wanted it. */
 156                break;
 157        case PAGE_HOME_INCOHERENT:
 158                /* Incoherent anyway, so no need to work hard here. */
 159                break;
 160        case PAGE_HOME_IMMUTABLE:
 161                /* Extra read-only copies are not a problem. */
 162                break;
 163        default:
 164                /* Flush the bogus hash-for-home I/O entries to memory. */
 165                homecache_finv_map_page(page, PAGE_HOME_HASH);
 166                break;
 167        }
 168#endif
 169}
 170
 171static void __dma_prep_pa_range(dma_addr_t dma_addr, size_t size,
 172                                enum dma_data_direction direction)
 173{
 174        struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
 175        unsigned long offset = dma_addr & (PAGE_SIZE - 1);
 176        size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
 177
 178        while (size != 0) {
 179                __dma_prep_page(page, offset, bytes, direction);
 180                size -= bytes;
 181                ++page;
 182                offset = 0;
 183                bytes = min((size_t)PAGE_SIZE, size);
 184        }
 185}
 186
 187static void __dma_complete_pa_range(dma_addr_t dma_addr, size_t size,
 188                                    enum dma_data_direction direction)
 189{
 190        struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
 191        unsigned long offset = dma_addr & (PAGE_SIZE - 1);
 192        size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
 193
 194        while (size != 0) {
 195                __dma_complete_page(page, offset, bytes, direction);
 196                size -= bytes;
 197                ++page;
 198                offset = 0;
 199                bytes = min((size_t)PAGE_SIZE, size);
 200        }
 201}
 202
 203static int tile_dma_map_sg(struct device *dev, struct scatterlist *sglist,
 204                           int nents, enum dma_data_direction direction,
 205                           unsigned long attrs)
 206{
 207        struct scatterlist *sg;
 208        int i;
 209
 210        BUG_ON(!valid_dma_direction(direction));
 211
 212        WARN_ON(nents == 0 || sglist->length == 0);
 213
 214        for_each_sg(sglist, sg, nents, i) {
 215                sg->dma_address = sg_phys(sg);
 216#ifdef CONFIG_NEED_SG_DMA_LENGTH
 217                sg->dma_length = sg->length;
 218#endif
 219                if (attrs & DMA_ATTR_SKIP_CPU_SYNC)
 220                        continue;
 221                __dma_prep_pa_range(sg->dma_address, sg->length, direction);
 222        }
 223
 224        return nents;
 225}
 226
 227static void tile_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
 228                              int nents, enum dma_data_direction direction,
 229                              unsigned long attrs)
 230{
 231        struct scatterlist *sg;
 232        int i;
 233
 234        BUG_ON(!valid_dma_direction(direction));
 235        for_each_sg(sglist, sg, nents, i) {
 236                sg->dma_address = sg_phys(sg);
 237                if (attrs & DMA_ATTR_SKIP_CPU_SYNC)
 238                        continue;
 239                __dma_complete_pa_range(sg->dma_address, sg->length,
 240                                        direction);
 241        }
 242}
 243
 244static dma_addr_t tile_dma_map_page(struct device *dev, struct page *page,
 245                                    unsigned long offset, size_t size,
 246                                    enum dma_data_direction direction,
 247                                    unsigned long attrs)
 248{
 249        BUG_ON(!valid_dma_direction(direction));
 250
 251        BUG_ON(offset + size > PAGE_SIZE);
 252        if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
 253                __dma_prep_page(page, offset, size, direction);
 254
 255        return page_to_pa(page) + offset;
 256}
 257
 258static void tile_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
 259                                size_t size, enum dma_data_direction direction,
 260                                unsigned long attrs)
 261{
 262        BUG_ON(!valid_dma_direction(direction));
 263
 264        if (attrs & DMA_ATTR_SKIP_CPU_SYNC)
 265                return;
 266
 267        __dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
 268                            dma_address & (PAGE_SIZE - 1), size, direction);
 269}
 270
 271static void tile_dma_sync_single_for_cpu(struct device *dev,
 272                                         dma_addr_t dma_handle,
 273                                         size_t size,
 274                                         enum dma_data_direction direction)
 275{
 276        BUG_ON(!valid_dma_direction(direction));
 277
 278        __dma_complete_pa_range(dma_handle, size, direction);
 279}
 280
 281static void tile_dma_sync_single_for_device(struct device *dev,
 282                                            dma_addr_t dma_handle, size_t size,
 283                                            enum dma_data_direction direction)
 284{
 285        __dma_prep_pa_range(dma_handle, size, direction);
 286}
 287
 288static void tile_dma_sync_sg_for_cpu(struct device *dev,
 289                                     struct scatterlist *sglist, int nelems,
 290                                     enum dma_data_direction direction)
 291{
 292        struct scatterlist *sg;
 293        int i;
 294
 295        BUG_ON(!valid_dma_direction(direction));
 296        WARN_ON(nelems == 0 || sglist->length == 0);
 297
 298        for_each_sg(sglist, sg, nelems, i) {
 299                dma_sync_single_for_cpu(dev, sg->dma_address,
 300                                        sg_dma_len(sg), direction);
 301        }
 302}
 303
 304static void tile_dma_sync_sg_for_device(struct device *dev,
 305                                        struct scatterlist *sglist, int nelems,
 306                                        enum dma_data_direction direction)
 307{
 308        struct scatterlist *sg;
 309        int i;
 310
 311        BUG_ON(!valid_dma_direction(direction));
 312        WARN_ON(nelems == 0 || sglist->length == 0);
 313
 314        for_each_sg(sglist, sg, nelems, i) {
 315                dma_sync_single_for_device(dev, sg->dma_address,
 316                                           sg_dma_len(sg), direction);
 317        }
 318}
 319
 320static inline int
 321tile_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 322{
 323        return 0;
 324}
 325
 326static inline int
 327tile_dma_supported(struct device *dev, u64 mask)
 328{
 329        return 1;
 330}
 331
 332static const struct dma_map_ops tile_default_dma_map_ops = {
 333        .alloc = tile_dma_alloc_coherent,
 334        .free = tile_dma_free_coherent,
 335        .map_page = tile_dma_map_page,
 336        .unmap_page = tile_dma_unmap_page,
 337        .map_sg = tile_dma_map_sg,
 338        .unmap_sg = tile_dma_unmap_sg,
 339        .sync_single_for_cpu = tile_dma_sync_single_for_cpu,
 340        .sync_single_for_device = tile_dma_sync_single_for_device,
 341        .sync_sg_for_cpu = tile_dma_sync_sg_for_cpu,
 342        .sync_sg_for_device = tile_dma_sync_sg_for_device,
 343        .mapping_error = tile_dma_mapping_error,
 344        .dma_supported = tile_dma_supported
 345};
 346
 347const struct dma_map_ops *tile_dma_map_ops = &tile_default_dma_map_ops;
 348EXPORT_SYMBOL(tile_dma_map_ops);
 349
 350/* Generic PCI DMA mapping functions */
 351
 352static void *tile_pci_dma_alloc_coherent(struct device *dev, size_t size,
 353                                         dma_addr_t *dma_handle, gfp_t gfp,
 354                                         unsigned long attrs)
 355{
 356        int node = dev_to_node(dev);
 357        int order = get_order(size);
 358        struct page *pg;
 359        dma_addr_t addr;
 360
 361        gfp |= __GFP_ZERO;
 362
 363        pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
 364        if (pg == NULL)
 365                return NULL;
 366
 367        addr = page_to_phys(pg);
 368
 369        *dma_handle = addr + get_dma_offset(dev);
 370
 371        return page_address(pg);
 372}
 373
 374/*
 375 * Free memory that was allocated with tile_pci_dma_alloc_coherent.
 376 */
 377static void tile_pci_dma_free_coherent(struct device *dev, size_t size,
 378                                       void *vaddr, dma_addr_t dma_handle,
 379                                       unsigned long attrs)
 380{
 381        homecache_free_pages((unsigned long)vaddr, get_order(size));
 382}
 383
 384static int tile_pci_dma_map_sg(struct device *dev, struct scatterlist *sglist,
 385                               int nents, enum dma_data_direction direction,
 386                               unsigned long attrs)
 387{
 388        struct scatterlist *sg;
 389        int i;
 390
 391        BUG_ON(!valid_dma_direction(direction));
 392
 393        WARN_ON(nents == 0 || sglist->length == 0);
 394
 395        for_each_sg(sglist, sg, nents, i) {
 396                sg->dma_address = sg_phys(sg);
 397                __dma_prep_pa_range(sg->dma_address, sg->length, direction);
 398
 399                sg->dma_address = sg->dma_address + get_dma_offset(dev);
 400#ifdef CONFIG_NEED_SG_DMA_LENGTH
 401                sg->dma_length = sg->length;
 402#endif
 403        }
 404
 405        return nents;
 406}
 407
 408static void tile_pci_dma_unmap_sg(struct device *dev,
 409                                  struct scatterlist *sglist, int nents,
 410                                  enum dma_data_direction direction,
 411                                  unsigned long attrs)
 412{
 413        struct scatterlist *sg;
 414        int i;
 415
 416        BUG_ON(!valid_dma_direction(direction));
 417        for_each_sg(sglist, sg, nents, i) {
 418                sg->dma_address = sg_phys(sg);
 419                __dma_complete_pa_range(sg->dma_address, sg->length,
 420                                        direction);
 421        }
 422}
 423
 424static dma_addr_t tile_pci_dma_map_page(struct device *dev, struct page *page,
 425                                        unsigned long offset, size_t size,
 426                                        enum dma_data_direction direction,
 427                                        unsigned long attrs)
 428{
 429        BUG_ON(!valid_dma_direction(direction));
 430
 431        BUG_ON(offset + size > PAGE_SIZE);
 432        __dma_prep_page(page, offset, size, direction);
 433
 434        return page_to_pa(page) + offset + get_dma_offset(dev);
 435}
 436
 437static void tile_pci_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
 438                                    size_t size,
 439                                    enum dma_data_direction direction,
 440                                    unsigned long attrs)
 441{
 442        BUG_ON(!valid_dma_direction(direction));
 443
 444        dma_address -= get_dma_offset(dev);
 445
 446        __dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
 447                            dma_address & (PAGE_SIZE - 1), size, direction);
 448}
 449
 450static void tile_pci_dma_sync_single_for_cpu(struct device *dev,
 451                                             dma_addr_t dma_handle,
 452                                             size_t size,
 453                                             enum dma_data_direction direction)
 454{
 455        BUG_ON(!valid_dma_direction(direction));
 456
 457        dma_handle -= get_dma_offset(dev);
 458
 459        __dma_complete_pa_range(dma_handle, size, direction);
 460}
 461
 462static void tile_pci_dma_sync_single_for_device(struct device *dev,
 463                                                dma_addr_t dma_handle,
 464                                                size_t size,
 465                                                enum dma_data_direction
 466                                                direction)
 467{
 468        dma_handle -= get_dma_offset(dev);
 469
 470        __dma_prep_pa_range(dma_handle, size, direction);
 471}
 472
 473static void tile_pci_dma_sync_sg_for_cpu(struct device *dev,
 474                                         struct scatterlist *sglist,
 475                                         int nelems,
 476                                         enum dma_data_direction direction)
 477{
 478        struct scatterlist *sg;
 479        int i;
 480
 481        BUG_ON(!valid_dma_direction(direction));
 482        WARN_ON(nelems == 0 || sglist->length == 0);
 483
 484        for_each_sg(sglist, sg, nelems, i) {
 485                dma_sync_single_for_cpu(dev, sg->dma_address,
 486                                        sg_dma_len(sg), direction);
 487        }
 488}
 489
 490static void tile_pci_dma_sync_sg_for_device(struct device *dev,
 491                                            struct scatterlist *sglist,
 492                                            int nelems,
 493                                            enum dma_data_direction direction)
 494{
 495        struct scatterlist *sg;
 496        int i;
 497
 498        BUG_ON(!valid_dma_direction(direction));
 499        WARN_ON(nelems == 0 || sglist->length == 0);
 500
 501        for_each_sg(sglist, sg, nelems, i) {
 502                dma_sync_single_for_device(dev, sg->dma_address,
 503                                           sg_dma_len(sg), direction);
 504        }
 505}
 506
 507static inline int
 508tile_pci_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 509{
 510        return 0;
 511}
 512
 513static inline int
 514tile_pci_dma_supported(struct device *dev, u64 mask)
 515{
 516        return 1;
 517}
 518
 519static const struct dma_map_ops tile_pci_default_dma_map_ops = {
 520        .alloc = tile_pci_dma_alloc_coherent,
 521        .free = tile_pci_dma_free_coherent,
 522        .map_page = tile_pci_dma_map_page,
 523        .unmap_page = tile_pci_dma_unmap_page,
 524        .map_sg = tile_pci_dma_map_sg,
 525        .unmap_sg = tile_pci_dma_unmap_sg,
 526        .sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu,
 527        .sync_single_for_device = tile_pci_dma_sync_single_for_device,
 528        .sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu,
 529        .sync_sg_for_device = tile_pci_dma_sync_sg_for_device,
 530        .mapping_error = tile_pci_dma_mapping_error,
 531        .dma_supported = tile_pci_dma_supported
 532};
 533
 534const struct dma_map_ops *gx_pci_dma_map_ops = &tile_pci_default_dma_map_ops;
 535EXPORT_SYMBOL(gx_pci_dma_map_ops);
 536
 537/* PCI DMA mapping functions for legacy PCI devices */
 538
 539#ifdef CONFIG_SWIOTLB
 540static void *tile_swiotlb_alloc_coherent(struct device *dev, size_t size,
 541                                         dma_addr_t *dma_handle, gfp_t gfp,
 542                                         unsigned long attrs)
 543{
 544        gfp |= GFP_DMA;
 545        return swiotlb_alloc_coherent(dev, size, dma_handle, gfp);
 546}
 547
 548static void tile_swiotlb_free_coherent(struct device *dev, size_t size,
 549                                       void *vaddr, dma_addr_t dma_addr,
 550                                       unsigned long attrs)
 551{
 552        swiotlb_free_coherent(dev, size, vaddr, dma_addr);
 553}
 554
 555static const struct dma_map_ops pci_swiotlb_dma_ops = {
 556        .alloc = tile_swiotlb_alloc_coherent,
 557        .free = tile_swiotlb_free_coherent,
 558        .map_page = swiotlb_map_page,
 559        .unmap_page = swiotlb_unmap_page,
 560        .map_sg = swiotlb_map_sg_attrs,
 561        .unmap_sg = swiotlb_unmap_sg_attrs,
 562        .sync_single_for_cpu = swiotlb_sync_single_for_cpu,
 563        .sync_single_for_device = swiotlb_sync_single_for_device,
 564        .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
 565        .sync_sg_for_device = swiotlb_sync_sg_for_device,
 566        .dma_supported = swiotlb_dma_supported,
 567        .mapping_error = swiotlb_dma_mapping_error,
 568};
 569
 570static const struct dma_map_ops pci_hybrid_dma_ops = {
 571        .alloc = tile_swiotlb_alloc_coherent,
 572        .free = tile_swiotlb_free_coherent,
 573        .map_page = tile_pci_dma_map_page,
 574        .unmap_page = tile_pci_dma_unmap_page,
 575        .map_sg = tile_pci_dma_map_sg,
 576        .unmap_sg = tile_pci_dma_unmap_sg,
 577        .sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu,
 578        .sync_single_for_device = tile_pci_dma_sync_single_for_device,
 579        .sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu,
 580        .sync_sg_for_device = tile_pci_dma_sync_sg_for_device,
 581        .mapping_error = tile_pci_dma_mapping_error,
 582        .dma_supported = tile_pci_dma_supported
 583};
 584
 585const struct dma_map_ops *gx_legacy_pci_dma_map_ops = &pci_swiotlb_dma_ops;
 586const struct dma_map_ops *gx_hybrid_pci_dma_map_ops = &pci_hybrid_dma_ops;
 587#else
 588const struct dma_map_ops *gx_legacy_pci_dma_map_ops;
 589const struct dma_map_ops *gx_hybrid_pci_dma_map_ops;
 590#endif
 591EXPORT_SYMBOL(gx_legacy_pci_dma_map_ops);
 592EXPORT_SYMBOL(gx_hybrid_pci_dma_map_ops);
 593
 594int dma_set_mask(struct device *dev, u64 mask)
 595{
 596        const struct dma_map_ops *dma_ops = get_dma_ops(dev);
 597
 598        /*
 599         * For PCI devices with 64-bit DMA addressing capability, promote
 600         * the dma_ops to hybrid, with the consistent memory DMA space limited
 601         * to 32-bit. For 32-bit capable devices, limit the streaming DMA
 602         * address range to max_direct_dma_addr.
 603         */
 604        if (dma_ops == gx_pci_dma_map_ops ||
 605            dma_ops == gx_hybrid_pci_dma_map_ops ||
 606            dma_ops == gx_legacy_pci_dma_map_ops) {
 607                if (mask == DMA_BIT_MASK(64) &&
 608                    dma_ops == gx_legacy_pci_dma_map_ops)
 609                        set_dma_ops(dev, gx_hybrid_pci_dma_map_ops);
 610                else if (mask > dev->archdata.max_direct_dma_addr)
 611                        mask = dev->archdata.max_direct_dma_addr;
 612        }
 613
 614        if (!dev->dma_mask || !dma_supported(dev, mask))
 615                return -EIO;
 616
 617        *dev->dma_mask = mask;
 618
 619        return 0;
 620}
 621EXPORT_SYMBOL(dma_set_mask);
 622
 623#ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
 624int dma_set_coherent_mask(struct device *dev, u64 mask)
 625{
 626        const struct dma_map_ops *dma_ops = get_dma_ops(dev);
 627
 628        /*
 629         * For PCI devices with 64-bit DMA addressing capability, promote
 630         * the dma_ops to full capability for both streams and consistent
 631         * memory access. For 32-bit capable devices, limit the consistent 
 632         * memory DMA range to max_direct_dma_addr.
 633         */
 634        if (dma_ops == gx_pci_dma_map_ops ||
 635            dma_ops == gx_hybrid_pci_dma_map_ops ||
 636            dma_ops == gx_legacy_pci_dma_map_ops) {
 637                if (mask == DMA_BIT_MASK(64))
 638                        set_dma_ops(dev, gx_pci_dma_map_ops);
 639                else if (mask > dev->archdata.max_direct_dma_addr)
 640                        mask = dev->archdata.max_direct_dma_addr;
 641        }
 642
 643        if (!dma_supported(dev, mask))
 644                return -EIO;
 645        dev->coherent_dma_mask = mask;
 646        return 0;
 647}
 648EXPORT_SYMBOL(dma_set_coherent_mask);
 649#endif
 650
 651#ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
 652/*
 653 * The generic dma_get_required_mask() uses the highest physical address
 654 * (max_pfn) to provide the hint to the PCI drivers regarding 32-bit or
 655 * 64-bit DMA configuration. Since TILEGx has I/O TLB/MMU, allowing the
 656 * DMAs to use the full 64-bit PCI address space and not limited by
 657 * the physical memory space, we always let the PCI devices use
 658 * 64-bit DMA if they have that capability, by returning the 64-bit
 659 * DMA mask here. The device driver has the option to use 32-bit DMA if
 660 * the device is not capable of 64-bit DMA.
 661 */
 662u64 dma_get_required_mask(struct device *dev)
 663{
 664        return DMA_BIT_MASK(64);
 665}
 666EXPORT_SYMBOL_GPL(dma_get_required_mask);
 667#endif
 668